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Isoperimetric Inequality in the 
Plane 

By Rober to  Mont i  and  Danie le  Morbide l l i  

Grushin 

ABSTRACT. We prove a sharp isoperimetric inequality in the Grushin plane and compute the corre- 

sponding isoperimetric sets. 

1. Introduction 

Carnot-Carathrodory spaces have a metric (Hausdorff) dimension, say d > 2, larger than 
their topological dimension, and the isoperimetric inequality gives an upper bound for the volume 
of bounded sets (their d dimensional Hausdorff measure) in terms of the d - 1 dimensional 
Hausdorff measure of the boundary. Apparently, the first result of this type is due to Pansu in the 
case of the Heisenberg group [19]. In more general Carnot-Carathrodory spaces, isoperimetric 
inequalities are discussed by Gromov in [12]. These inequalities have also been obtained under 
the form of Sobolev-Poincar6 inequalities. Relationships between isoperimetric inequalities, 
Sobolev inequalities, and heat kernels are discussed in various settings in [21, 9, 4, 11]. Recently, 
a geometric measure theory approach to isoperimetric problems in Carnot groups has also been 
proposed in [14]. 

In all previous results, the price paid for generality is the lack of sharp constants and extremal 
sets. In this work we find explicit solutions and sharp constants for the isoperimetric inequality in 
one of the simplest examples of sub-Riemannian geometry, the "Grushin plane." This expression 

2 2 stems from the hypoelliptic differential operator a 2 + x 0y, which is known as the Grushin 
operator. We recall the construction of the Grushin plane in a slightly more general situation. Fix 
a real number c~ > 0 and consider the "Riemannian" metric in 1~2 ds 2 = d x  2 q_ i x [ - 2 a  dy2. It is 
easy to check that, in spite of the singular term, for any pair of points p, q 6 R 2, there are paths 
of finite length in the metric ds 2 connecting p and q. Then a distance d~ (p, q) can be naturally 
defined minimizing the length of such curves. The size of the corresponding balls B~(p, r) has 
been described by Franchi and Lanconelli [ 10] by means of the boxes 

Qa((x,  y), r) = [x - r , x  + r] x [y - r(Ix] + r) a, y + r(Ixl + r) a ] .  

Precisely, there exist constants 0 < Cl < c2 such that Qa(p,  clr)  c Ba(p,  r) C Qu(p,  c2r) for 
all p 6 1R 2 and r > 0. The size of small or-balls with center away from x = 0 is approximately of 
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Euclidean type. But the Lebesgue measure of B~ ((0, y), r) is comparable to r 2+a. The number 
d = 2 + a turns out to be the isoperimetric dimension of the Grushin plane. 

The a-perimeter of a measurable set E C R 2 can be defined as follows: 

P ~ ( E ) = s u p { f E ( O X q g l + l X l ' ~ O y ~ P 2 ) d x d y :  qgl, go2 E Col (~2), sup(q92 + ~o2)1/2 _< 1 } . 

This definition is a special case of the one given in [11] for Camot--Carathrodory spaces and also 
of the one introduced in [1] for more general metric spaces. An essential feature of Pa is the 
lower semicontinuity with respect to the L 1 convergence of sets, which, along with a compactness 
argument, easily gives the existence of isoperimetric sets. 

The relation between Pa and the Grushin metric d~ can be described in terms of Minkowski 
content. Precisely, if E is a bounded open set with regular boundary, then 

P~(E) = 93t~(OE) := lim [{p E R 2 : 0  < dist,(p; E) < e}[ , (1.1) 
e$O e 

where [ �9 I stands for Lebesgue measure in the plane. This identity holds in general Carnot- 
Carathrodory spaces (see [17]). According to a general result of Ambrosio [1], a representation 
for or-perimeter in terms of Hausdorff measures is also possible. Note that, even for a smooth set 
E, P~(E) is different from the length of OE as curve in (R 2, d~). 

We are ready for the statement of our main result. 

Theorem 1.1. 
measure 

Let  ct >_ 0 and d = ct + 2. Then for any measurable set E C ]R e with finite 

1 

a + l  ( f0Jr ) ~+l d IEI < - -  2 sin~(t)dt  P~(E) ~ r  . (1.2) 
- a + 2  

(1.3) 

Equality holds in (1.2) for the isoperimetric set 

I r J E~ = ( x , y )  ~IR2: [yl < sinC~+l(t)dt, Ixl < 1 . 
, /arcsin Ix [ 

I f  et > O, isoperimetric sets are unique up to vertical translations and dilations o f  the form 
(x, y) w-~ ~x(x, y) = (~.x, ~y+ly), ~. > 0. 

We briefly explain the proof. The perimeter Pu is (d - l)-homogeneous with respect to the 
dilations &, whereas Lebesgue measure is d-homogeneous (see Proposition 2.2). Using these 
homogeneity properties, the problem of finding the sharp constant in (1.2) can be reduced to 
solving the minimum problem 

min {Pa(E) : E C R 2 measurable set with [El = 1} . (1.4) 

A key step in the proof of existence of solutions is to show that the class of admissible sets can 
be restricted to sets which are symmetric both in the x and in the y direction. In fact, solutions 
must be symmetric with respect to the y axis. The argument relies upon an adaptation of Steiner 
symmetrization. After a suitable change of variable ~,  the or-perimeter of a set E is equal to the 
Euclidean perimeter of the set F = qJ(E) (see Proposition 2.3). By a fundamental result of De 
Giorgi [6], the Euclidean perimeter of the Steiner symmetrized set F* is less or equal than that of 
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F. It follows that Pa(qJ-~(F*)) < Pu(E) and the problem is reduced to studying how the map 
qJ changes volume (see Theorem 3.1). 

Our approach is inspired by De Giorgi's original work on the isoperimetric property of balls. 
Unfortunately, this work is mentioned neither in the rich historical survey of Osserman [ 18] nor 
in the comprehensive book of Chavel [5]. 

Besides symmetry, solutions to problem (1.4) must also be convex. This implies Lipschitz 
regularity of the boundary of minimum sets, and then, using an integral representation for t~- 
perimeter proved in Theorem 2.1, it is possible to write down the Euler-Lagrange equation for 
problem (1.4), a simple ordinary differential equation that yields the explicit solutions (1.3). 

By an argument of Federer and Fleming [8] and Maz'ya [15], inequality (1.2) yields a 
Gagliardo-Nirenberg inequality for the Grushin sub-elliptic gradient. Precisely, 

d 1 

( s  ) T  a_~f~[ ] dxdy If[ ~-l dx dy < c(~)7 IOxf] 2 -t-[xl2~lOyfl2 1/2 
2 2 

1 
a+l (2 f o  sina(t)dt) ~+' is the same constant for all functions f c C~(R2). Here c(ot) := 

appearing in the right-hand side of (1.2) and the inequality is sharp (Corollary 4.2). However, 
contrary to the Euclidean setting, the isoperimetric inequality does not provide the sharp constant 
in the Sobolev embedding 

d - 2  (s )T s ] 
Ifl z-Tdxdy <c ]Oxfl 2 +lxl2=loyfl 2 dxdy. (1.5) 

2 2 

Indeed, extremal functions for inequality (1.5) in the case ot = 1 have been recently found by 
Beckner in [2]. They are functions of the form f(x, y) = ((1 + x2) 2 + 4y2) -1/4, and their level 
sets are not isoperimetric balls. 

d 
Taking (1.1) into account, a simple corollary of (1.2) is the inequality I EI _< c (o09Yt,~ (0 E) zr:-r 

for bounded open sets (Corollary 4.1). This is the kind of isoperimetric inequality suggested by 
Gromov in [ 12] for non equiregular sub-Riemannian manifolds. 

Finally, we point out the special interest of the case t~ = 1 in connection with the Heisenberg 
group. In this particular case the isoperimetric ball 

El={(x,y) c N 2 : j y l < ~ ( a r c c o s l x l + l x l ~ ) , l x l < l  I 

is bounded by two geodesics for the Grushin metric dl which are symmetric with respect to the y 
axis (see end of Section 4). The same phenomenon seems to appear in the Heisenberg group, as 
conjectured by Pansu in [19]. Moreover, identifying the Grushin plane with a vertical hyperplane 
of ~3 and the y axis with the vertical axis of N 3, then by rotating E1 around the vertical axis one 
obtains a set which is believed to solve the isoperimetric problem in the Heiseneberg group (see 
also [16, 13, 7]). 

2. Preliminary results 

In this section we prove some preliminary results concerning a-perimeter. Introduce the 
family of test functions 

= I v :  R2) Jl rl  _< 1 / ,  br(R 2) 
[ / 



358 Roberto Monti and Daniele Morbidelli 

where Ilgolloo = sup(go~ + go2)1/2. 
R2 

We fix a real number a > 0. The u-divergence of a vector valued function go �9 C 1 (I~2; R 2) 
is divugo = Oxgol + Ix 1~8ygo2. Following [11], we define the a-perimeter  of a measurable subset 
E of l~ 2 as 

Pa(E) = sup f divugo(x,y) d x d y .  (2.1) 
~0E~-(R2) d E 

Two measurable sets E,  F C ]I~ 2 a r e  said to be equivalent if I E \ F I = IF \ EI = 0. Equivalent 
sets have the same a-perimeter. Our results are stated and hold up to equivalence of sets. If  
P~(E) < +oo ,  the set E is said to have finite a-perimeter. We shall only consider sets E with 
finite measure I EI < +c~ .  In the sequel, when a ----- 0 we shall omit the subscript a ,  reducing our 
definitions to the classical (Euclidean) ones. 

A key feature of  definition (2.1) is the following lower semicontinuity property. Let (Eh)heN 
be a sequence of measurable sets whose characteristic functions are converging in L~o c (]R 2) to the 
characteristic function of a set E. Then 

P~ (E) _< lim inf P~ (Eh) �9 (2.2) 
h--+oo 

Such a lower semicontinuity and a compactness argument will give the existence of  isoperimetric 
sets. 

When the set E has regular boundary, its a-perimeter  has the following integral representa- 
tion. 

T h e o r e m  2.1. Let E C 1R 2 be a bounded open set with Lipschitz boundary. Then 

P ~ ( E ) = f a E  ( n l ( x ' y ) 2 + ' x l 2 ~ n 2 ( x ' y ) 2 ) l / 2 d ~ l '  (2.3) 

where n (x, y) = (n l (x, y), n2 (x, y) ) iS the (outward) unit normal to a E at the point (x, y) �9 8 E, 
and 7-ll is the one-dimensional Hausdorff measure in the plane. 

Proof. Since OE is locally the graph of Lipschitz functions, the normal n(x, y) is defined for 
~ 1  _ a.e. (x, y) �9 OE and is a ~t~l -measurab le  function on OE. Let F C OE be the set of  points 
of  8E where n is defined. 

Fix a test function go �9 Y(]R 2) and recall that Ilgolloo _< 1. Using the divergence theorem and 
the Cauchy-Schwarz inequality we get 

f divugodxdy = (nlgol -~-Ix[~r/2go2) dT-~ 1 < (nl  2 + Ixl2C~n 2 dT-/1 := I .  
E E 

The inequality P,, (E) _< I follows by taking the supremum over all test functions. 

We have to prove the converse inequality 1 < Pc~(E). Note first that the set G = {(x, y) �9 
F : x = 0 and nl(x,  y) = 0} is at most countable, because it is discrete. Fix a number e > 0. 
By Lusin theorem there exists a compact set K C F \ G such that niK is continuous on K and 
7-/1(8E \ K)  _< e. Let B = {(x, y) �9 I~ 2 : X 2 + y2 < 1}, Q = [ - 1 ,  1] • [ - 1 ,  1]. Fix a 
homeomorphism g : B --+ Q. 

The function v : K ---> B defined by 

(nl(x, y), Ixl~n2(x, y)) 
v(x, y) = [nl(x,  y)2 + [x[Zan2(x, y)2] l /2 '  (x, y) �9 K , 
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is continuous on K. The map g o v : K --+ Q can be extended to a continuous function from 
•2 to Q with compact support (this can be seen by applying Tietze-Urysohn theorem to both its 
components). Taking the composition of this function with g - l  we find a continuous function 

E C0(]I~2; B) such that ~ = v on K. Write 

I = f0E (nl~l  q-[x[an2~2)dT[ 1 -  fOE\K ( nl~rl-klxlc~n2~2- (n~q-[xl2e~R2)l/2)d~ 

Since ~ 1 (0 E \ K) < e, IIn II ~ -< 1 and II~P II ~ -< 1, there exists a constant C depending on ot and 
E such that 

xlZ~n z dT-[ 1 _ Ce . foe\/~ nl~Pl +lx l=n2~2- (n~  +1 2) 1/2 < 

Then it follows that 

f (nl~kl + IxlUn2~Pz)d~ 1 I -  Ce.  > 
E 

Let (Jo)n>o be a family of mollifiers and define ~Po = J,  * r  Then lp o E C~(~2;  I~2), 
117toll~ _< 1 and Cn ~ lp uniformly as 77 ~ 0. Choosing ~o = Cn with 1/> 0 small enough we 
get 

f e d i v ~ ~  (nx~~  

and since ~0 E )r(/l~2) we have Pa (E) > I - 2Ce. But e > 0 is arbitrary. Then the claim 
Pa(E) >_ I is proved. [] 

Consider the real number d = 2 + or. Lebesgue measure and a-perimeter are, respectively, 
d-homogeneous and (d - 1)-homogeneous with respect to the dilations (x, y) ~ 8x(x, y) = 
(~.X, ~c~+ly). 

Proposi t ion 2.2. Let E C ~2 be a measurable set. Then for all )~ > 0 

(i) ISx(E)I =•dIEI; 
(ii) Pa(rx(E)) = za-Ip~(E).  

Proof  We prove (ii). Let ~o 6 )r(~2) and write 

f~x ( e) div'~~ y ) dx dy = fsz ( E) ( Ox~~ (x ' Y ) + lx la OYq~ (x' y ) ) dx dy 

a 1 
(~0~e~l(~'~, ~'a+l/'/)q-~'al~[ ~--ff~Orl~2(.~,~.~ 

)d-1 fE div,~ (~0 o 8D(~, ~) d~ do <_ )~d-l pa(E) 

because ~0 o 8x ~ U(I~2). Taking the supremum over test functions gives Pa(3z(E)) <_ ) j -1p~ 
(E). The converse inequality is obtained in the same way. [] 

We introduce a change of variable that transforms the a-perimeter of a set into the usual 
perimeter of its transformed set. Consider the functions ~, �9 : I~ 2 --+ ]~2 defined by 

l \ { Ixl '~+~ \ 
~(~, O)= ,(sgn(~)[(~ + 1)~[~Tr, 0],, O2(x, y ) =  ' ,  y ) .  (2.4) 
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et 

Clearly, qJ is a homeomorphism and �9 is its inverse. Notice that I det J �9 (~, r/)[ = I(ot + l )~l -  
for~ 5 0 .  

P ropos i t ion  2.3. Let E C N 2 be a measurable set and define F = ~P(E). Then P(F)  = 
P~(E). 

Proof. Take a test function ~0 ~ br(~2). A short computation gives 

f v  div~o(x, y ) d x d y  = . s  [Ox~Ol(X, y ) +  [xlaOy~O2(x, y)] d x d y  

drl . 

Note that the function 0f (~01 o ~)  (~, 77) = [ (a + 1)~ l- ~ (01~01) (~ (8, 0)) is in L 1 (R2), because 
cc 

al ~01 is bounded and with compact support, and the singular term [~ [-~vr is locally integrable. 
The same happens for 0 7 (~02 o (I)). 

By known density theorems for Sobolev spaces 

sup f div ~(~, 7) d~ dr/ P(F)  
,IF 

2 - -  

Then it follows that 

fE diV~O( x, Y) < . dx dy P(F)  

Taking the supremum over test functions we find P~ (E) < P (F). The converse inequality can 
be achieved by the same argument, using the function q~ instead of ap. [ ]  

3. Isoperimetric inequality 

In this section we prove the isoperimetric inequality. First we need a theorem that reduces 
the problem to convex and symmetric sets. To this aim we introduce some definitions concerning 
geometrical properties of sets. A set E C N 2 is x-symmetric if (x, y) ~ E implies ( - x ,  y) ~ E. 
E is y-symmetric if (x, y) ~ E implies (x, - y )  ~ E. Finally, E is said to be symmetric if it is 
both x-and y-symmetric. 

Given a set E C N 2 define for every x, y ~ N 

E X = { y s l R : ( x , y ) ~ E } ,  E Y = { x s l R : ( x , y )  s E } .  

A set E C R e is x-convex if E y is an (open or empty) interval for all y ~ N. E is y-convex if E x 
is an (open or empty) interval for all x ~ ~. Finally, E will be said to be separately convex if it 
is both x- and y-convex. 

Theorem 3.1. Let E C N 2 be a measurable set with Pu(E) < +cx~ and 0 < [E[ < + ~ .  
There exists a symmetric, convex set E* C R 2 such that Pu(E*) < P~(E) and IE*[ = [E[. 
Moreover, in case ot > O, i f  E is not (equivalent to) an x-symmetric and convex set, then the 
strict inequality P~(E*) < P~(E) holds. 
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Proof. Let E C ]R 2 be a measurable set with positive and finite measure and finite perimeter. 
Define F = qJ (E), where qJ is the map introduced in (2.4). By Proposition 2.3, P (F) = P~ (E) < 
+ ~ .  Moreover, letting 

#(F) = fF I(o~ + 1)~l' a~ ar/, 

we find 

~X 
t~- 

o ~ + 1  ' 

IE[ = f ,  dxdy= fF tdetJ~P(Gr/)[d~dr/=#(F)" 
(F) 

Let F1 be the Steiner symmetrization of F in the r/-direction. Precisely, 

{ E l  = (~ ,  r/) E ]I~ 2 :lr/I < ~ l f  ~ �9 

Here, [ �9 [ stands for one-dimensional Lebesgue measure. By [6, Theorem II], (see also [20, 
Section 3.8]), P(F1) < P(F), where the inequality is strict if F is not (equivalent to) an r/- 
convex set. Moreover, by the Fubini-Tonelli Theorem 

# ( F )  = f~  [(ot + 1)~f  d~ d r / =  fT,(o + I)~I~[F~[ d~ 

= I ( a + l ) ~ l ~ l F  d ~ = / z ( F 1 ) ,  
~x~ 

becat~se [F~ [ = [ F1 ~ [ for all ~ ~ I~. 

Let F2 be the Steiner symmetrization of F1 in the ~-direcfion. Precisely, 

F2 = (~, r/) c ~2 :  1~] < ~]f~ I 

Then, as above, P(F2) < P(F1) < P(F). Consider the volume 

) #(F2) = [(ot+l)~-,l~d,e, dr/= ~ [(~ + 1)~[~ d~ dr/. 

In order to estimate the last term, we use the following elementary fact. Given a measurable 
set I C R with finite measure, denote by I* = (-1II /2,  1II/2)) its symmetrized set. Since the 
number ]3 is negative, we have I~l ~ >_ (I/I/2)~ i f~ ~ I*, and 1~[# < (llI/2) I~ i f~ ~ I \ I*. 
T h u s ,  

(U 
(U f, = nl. l~l'd~+ Iz*xzl_< , l~l'd~. 

The inequality is strict if and only if I is equivalent to I*. 

From the above considerations it follows that/z(F2) >_ #(F1) with equality if and only if F1 
is (equivalent to) an x-symmetric and x-convex set. 

F2 is a symmetric, separately convex open set. Moreover, 0 F2 is the union of the image of 
four 1-Lipschitz curves. This can be easily visualized by looking at the set after a rotation of 45 
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degrees. More precisely, for all s c R such that the set written below is nonempty, define the 
function 

{ } 0 ( s ) = s u p  t > l s l : \ ~ -  EF2  �9 

F2 is separately convex and then 0 is 1-Lipschitz. Moreover, OF2 M {~ > 0, rl > 0} is a graph of 
the form t = O(s) in the variables s = (~ - O)/~/~ and t = (~ + 0)/~/-2. From a well-known 
characterization of  Euclidean perimeter, it follows that P (F2) = H i ( 0  F2). 

Let F3 = co(F2) be the convex hull of F2. Since F2 C F3, it follows that/~(F2) < / z (F3 )  
with strict inequality if F2 is not a convex set. Write OF3 = (OF3 M OF2) U (OF3 \ OF2), where 
0 F3 \ O F2 is the disjoint union of  an at most countable family of  line segments In = (pn, qn) C ]~2, 
n E N. Analogously, OF2 = (OF2 fl OF3) U (OF2 \ OF3), where OF2 \ OF3 is the disjoint union 
of  an at most countable family of  rectifiable curves Yn, n 6 N. After a relabelling, we can 
assume that Yn connects Pn and qn. Then the length of yn is greater than that of  In, and therefore 
P(F3)  = 7-~1(0F3) < 7-Ll(0F2) = P(F2). 

Define E* = 6z(r  where ~. > 0 is chosen in order to ensure [E*I = [El (it turns 
out that )~ < 1, see below). The set E* is symmetric because ~ preserves symmetry. We 
show that E* is also convex. Since the map 8z is linear, it is sufficient to show that ~(F3)  is 
convex. Let (xo, Yo), (Xl, Xl) c qb(F3) and write (xi, Yi) = ~(~i ,  rli), (~i, Hi) E F3, i = O, 1. 

(F3) is symmetric and separately convex and therefore we can without loss of  generality assume 
X 0 ,  X l  ~ 0. Clearly, qb(r(~0, ~0) + (1 - " ( ) ( ~ 1 ,  r]l)) ~ qb(F3), r ~ [0, 1], because F3 is convex. 
From the concavity inequality 

1 1 1 

r~0 ~+~ + ( 1 - r ) ~ l  ~+~ < ( z ~ 0 + ( 1 - r ) ~ l )  ~T , r ~ [ 0 , 1 ] ,  ~0,~1 > 0 ,  

and from x-symmetry, x- and y-convexity of ~ (F3), it follows that r @ (~0, rl0) + (1 - r)qb (~1, r/1 ) 
�9 (F3) for all r ~ [0, 1]. 

Notice that I@(F3)l : lz(F3) ~ ~(F2) ~ At(F1) = / z ( F )  = IEI, and then it must be k < 1, 
with ~. < 1 if E is not (equivalent to) an x-symmetric, convex set. Moreover, by Propositions 2.2 
and 2.3 it follows that 

~ l -dp~  (E*) = P~(~(F3))  = P(F3) < P(F2) < P(F)  = P~(E) .  

Hence, Pa (E*) < P~ (E) with strict inequality if E is not (equivalent to) an x-symmetric, convex 
set. [ ]  

d 
A measurable set with positive and finite measure minimizing the ratio P~ (E)zzr / IE!  will 

be called an isoperimetric set. The class of  isoperimetric sets is invariant under dilations (x, y) v-+ 
6z(x, y), ~. > 0, and under vertical translations (x, y) ~ (x, y + h), h 6 ~.  

Theorem 3.2. Let ot > O and d = a + 2 .  There exists a constant c(ot) > O such that for any 
measurable set E C ~2 with finite measure 

d 
[El < c(a)P~(E) ~zT . (3.1) 

The constant c(ot) is determined by equality in (3.1) achieved by the isoperimetric set 

Ea = ( x , y )  E R  2 : [y[  < sina+l(t)dt,  Ix[ < 1 ; 
~, arcsin I xl 

(3.2) 
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precisely, 
1 

o+, 

c(ot) = ~ + 2 \ sin ~ (t) dt 

Isoperimetric sets are unique up to dilations and vertical translations. 

(3.3) 

Proof. Consider the following minimum problem 

min [ P ~ ( E ) :  E C •2 measurable set with IEI = 1}.  (3.4) 

We study the existence of  solutions by the direct method of  the calculus of  variations. By 
Theorem 3.1 the class of  admissible sets can be restricted to symmetric and convex sets. Recall 
that a set is symmetric if it is both x- and y-symmetric. Define 

vat = {E Q ~ . 2 :  E symmetric, convex set with IEI = 1 and P~(E) < k ] .  

Here k > 0 is any fixed constant large enough to ensure ,,4 ~ 0. Such a constant does exist. 

We claim that any set E ~ A is contained in the rectangle [ - a ,  a] x [ - b ,  b], where a > 0 
and b > 0 depend only on k and ~. Fix a number e > 0. Let ~e 6 C l(N) be an increasing 
function such that ~Pe(Y) = 1 i f y  _> e and ~Pe(Y) = - 1  i f y  _< - e .  Take a set E 6 Jt  and let 
a = sup{x > 0 : IEXl > 0}, b = sup{y > 0 : IEY] > 0}, ae = sup{x > 0 : [EX[ > 2e} and 
be = sup{y > 0 : IEY[ > 2e}. The numbers ae and be are both finite and tend, respectively 
to a and b, as e --+ 0. Choose the test function qge(x, y) = (0, O(x, y)Oe(y)) ~ 5t'(~2), where 
0 6 Co 1 (II~ 2) is a function such that XE < 0 < 1. We have 

>_ Pot(E)>_ f~ [x[~Oy(O(x,Y)~e(Y))dxdy = fr k [xlC~Oy~e(y) d x d y  

f_~ f~  f a r  ae~+l (3.5) 

J / z  J / L  

= Ixl ~ Oy~e(y)dydx >_ 2 Ixl~dx = 4 
a x ~-a~ ot + 1 

Since ae --> a when e --~ 0, we get 4a ~+1 < k(c~ + 1). A similar argument shows that 4b < k. 
The claim is proved. 

Let (Eh)h~l~  C JOt be a minimizing sequence for problem (3.4) 

lim Pu(Eh) = inf{P~,(E) : E ~ .A}. 
h - - + ~  

The sets Fh = ~(Eh) are contained in the bounded set ~ ( [ - a ,  a] x [ - b ,  b]). Moreover, by 
Proposition 2.3, P(Fh) = Pc~(Eh) < k for all h 6 1% The space of  functions with bounded 
variation BV(II~ 2) is compactly embedded in L~oc(/I~2). Therefore, possibly extracting a subse- 

quence, there exists a measurable set F C ~ ( [ - a ,  a] • [ - b ,  b]) such that XFh ~ XF in L 1 (~2). 
Letting E = O(F) ,  it follows that XEh --+ XE in LI(R2).  The set E is (equivalent to) an x -  
and y - symmet r i c  and convex set. This follows from the fact that XEh can be also assumed to 
converge almost everywhere to XE. By the lower semicontinuity (2.2) 

P~(E) < l iminfPa(Eh) = inf{P~(E) : E ~ ,A}. 
h--~ ~ 

Thus, E is a minimum, because E E A. By Proposition 2.2 this set is also a solution of  the 

problem 

d 

m i n [  Pa (E) ~ : E C R 2 measurable set with 0 < [EI < +cx~/ .  (3.6) 
/ IEI / 
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The set E is convex and therefore its boundary 0 E is locally the graph of Lipschitz functions. 
In a neighborhood of the point (0, b) ~ 0 E, b > 0, the set 0 E can be written as a Lipschitz graph 
of  the form y = tp(x). We are led to the following situation. Let 6 > 0, ~o ~ L i p ( - &  3) 
and assume that {(x,~0(x)) : x ~ ( - 6 ,  3)} = O E ( ' l { ( x , y )  ~ R e : - 6  < x < 6, y > 0}. 
Fix a function 0 ~ Cot( - 6, 6). For Itl < to let Et be the set obtained from E by replacing 

OE N {(x, y) ~ ~2 : - 6  < x < 6, y > 0} with {(x,~0(x) + tO(x))  : x ~ ( - 6 ,  6)}. Denote by 
(n~, n~) the unit normal to OEt. By Theorem 2.1 and by the length formula 

d__ p~(e ,  ) d 
dt [t=o = ~'~ foE, n{lxl<&y>O} [n~ (x, y ) 2 +  ,xl2ant2(x, y)2]I/2dOr_[l ,=0 

=--dt 6 (~o'(x) + tO'(x))  2 + Ix[ 2~ 1/2 (3.7) 

f9 ~o'(x)O'(x) 
[~ ~ + ixl2~]l/2 dx. 

We can interchange derivative and integral because 

0-~0 [ (qg ' (x)+  tO'(x))  2 + Ix12~] 1/2 . . . . .  [(~o'(x) + .--~2----tO'(x))O'(x)l 1/2 

_< [O'(x) I ~ L~( -6 ,  6 ) .  

Analogously, 

, 0f f/ __d [Ell =--dt (~o(x) + t O ( x ) ) d x  = O ( x ) d x  = - x O ' ( x ) d x  . 
dt t=o 6 a 8 

Thus, 

The set E is a solution of problem (3.6), and hence 

d d 
p~(E)7-r  pu(Et)  ~ 

IEI - IE, I 
ltl < t o .  

d t = 0  

d Pc~(Et) ~zT 
0 -  dt lEt[ 

_ p ~ ( E ) z = r  IEI 
IEI:  a [~o'(x) 2 + Ixl:~] 1/2 dx + P,~(E) a x O ' ( x ) d x  . 

The function 0 ~ Co t ( - 3 ,  3) is arbitrary. Therefore it must be 

d tp'(x) 
d---~IE[ [~ ~ + 1x12=]1/2 + Pc~(E)x = c, for a.e. x e ( - 6 ,  6 ) ,  

(3.8) 

9 ' (x)  = - sgn(x)  [1 - ~.2x2] 1/2 for a.e. x ~ ( - 8 ,  6) .  (3.9) 

for some constant c ~ ~.  The function ~o must be even because the set E is x-symmetric.  Then 
qg' is odd and this implies c = 0. Setting )~ d-I P~(E} -- d EEl we find 
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This equation shows that ~0 ~, which a priori is only a locally bounded measurable function, is in 
fact, a continuous function, and the equation is satisfied for all Ixl < 1/3.. 

Letting a = sup{x > 0 : I E x I > 0}, a regularity argument similar to the one discussed above 
shows that OE is of  class C 1 in a neighborhood of  (a, 0). Then it must be ~0(a) = 0, ~o'(a) = - c ~  
and a = 1/)~. Hence, for x 6 [0, a] 

ix a t~+l f /2 ~p(x) = dt = a a+l sin a+l (t) d t .  
a (1 -- ( t /a)  2) 1/2 darcsin(x/a) 

The parameter a > 0 is fixed by means of the volume constraint I EI = 1. 

If  we choose ~ = a = 1 then we find the isoperimetric set E~ in (3.2). By (3.9) with )~ = 1 
and Theorem 2.1 we also find 

f0'  fo fo Pa(E~) = 4 qg'(x) 2 + Ixl 2a dx = 4 = 2 sin~(t) dt 

Moreover, lEa I = @ P~ (E~). Therefore, the isoperimetric constant c(ot) is given by 

1 

d -- - - P ~ ( E a )  r:a -- 2 s in~(t)dt  . 
P a ( E ~ ) ~  d d 

The statement concerning uniqueness follows from Theorem 3.1 and from the previous 
analysis. [ ]  

4. Corollaries and remarks 

In the first part of  this section we state some corollaries of  Theorem 3.2. In the second one, 
we discuss the isoperimetric inequality in the Grushin plane in connection with the isoperimetric 
problem in the Heisenberg group. For technical reasons connected with the Lipschitz continuity 
of the function x ~+ Ix I ~, we shall state the next corollaries for the case t~ > 1. 

Consider a bounded open set E C N 2 and define the distance distu (p; E) = infqeE da (p, q). 
We define the Minkowski content of  OE as 

924c~(0E) = l iminf  [{p E N 2 : 0 < dista(p; E) < e}[ (4.1) 
e$0 e 

If  E is a bounded open set with boundary of  class C 2, then "lim inf" in (4.1) can be replaced by 
"lim" and the identity 9Y~a(OE) = P~(E) holds. This can be proved as in [17] Theorem 5.1. 

The following corollary gives a sharp isoperimetric inequality for Minkowski content. 

Corollary 4.1. Let  ot > 1, d = 2 + ~ and let c(ot) be the constant in (3.3). Then, for any 

bounded open set E C ~2 it holds 

d 
IEI < c(~)gJta(OE) z-r �9 (4.2) 

Proof .  Let E C ]t~ 2 be a bounded open set and write O(P) = dist,~(p; E). For any e > 0 let 
Ee = {p E N 2 : O(P) < e}. Without loss of  generality we can assume that [E~ \ El converges 
to zero as e $ 0, otherwise 9Yta(OE) = +oo. 
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By Theorem 3.1 in [17] we have the Eikonal equation (I OxO(X, y)) 12 + Ix 12~ I OyO(X, y) 12) 1/2 

= 1 for almost every (x, y) e R 2 \ E. From the coarea formula proved in Theorem 5.2 of [11] it 
follows 

[Ee \E l fEOOXO(x ,Y ) )J2WIx l2~ lOyO(x , y ) [2 ) l /2  fo e = dx dy = Pc~ (Er)  d r .  (4.3) 
~\E 

Given e > 0, it cannot be Pa(Er)  > IG\el for/all r 6 (0, e), otherwise (4.3) would be false. g 

Then, for every e > 0 there exists r (e)  c (0, e) such that 

- ~ ,  ,P-[Er(e}~ < lEe \ El 
e 

From (2.2), by taking the lim inf we find P~(E) < 9Jta(OE) and the claim follows from (3.1). [ ]  

The second corollary we discuss is a Sobolev inequality for the Grushin gradient. 

Corol lary  4.2. Let ot > 1, d = 2 + ~ and let c(ot) be the constant in (3.3). Then for  any 
f c C ~ ( N  2) 

d - I  

(fR )~-- a_l fR [ ~ ~ ' a l / 2  2 IflS-r-1 dxdy  <_ c(ot)~- 2 [Oxf)12 + ]xl~lOyflZ] d x d y .  (4.4) 

The constant in this inequality is sharp. 

Proof. The isoperimetric inequality (3.1) implies (4.4). This can be proved by a straightforward 
adaptation of the argument in Remark 6.6 of [8]. 

The sharpness of the constant can by proved in the following way. We take a bounded open 
set E C R 2 with boundary of class C 2 and we define, as before, p(p)  = dista(p; E). For any 
e > 0 let 

1 if p e  /~, 

f ~ ( p ) =  1 - { Q ( p )  i f 0 < Q ( p ) < e  

0 if Q(p) > e .  

Apply the Sobolev inequality to fe. Letting e ~ 0 and using the Eikonal equation and the identity 
9Y~ (3 E) = P~ (E) we get the isoperimetric inequality (3.1). [ ]  

Finally, we would like to point out the special interest of the isoperimetric problem in the 
Grushin plane in the case ot = 1. Geodesics (i.e., curves with minimal length connecting points) 
in the metric space (N 2, d~) are solution of a particular system of differential equations. Consider 
the Hamilton function H(x, y, ~, '/) = �89 (~2 + Ix 12~,/2) and the corresponding problem (we study 
the case x > 0) 

i = O~ H (x, y, ~, 17) = ~2c, 
3rlH(x, y ,~ , ' / )=  x '/ 
-3xH(x ,  y, ~, '/) = - o t x  2 ~ - 1  '/2 

--OyH (x, y, ~, '/) = 0 

x(0 )  = 0 

y(0)  = o 

~ ( o )  = 1 

o ( 0 )  = - z .  

Geodesics have to be found (after a reparameterization) among curves y (t) = (x (t), y (t)) solving 
this problem. We refer to [3] for a motivation of this fact. The choice x(0) = 0 and y(0) = 0 
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means that y starts from the origin, whereas the choice ~(0) = 1 corresponds to arclength 
parameterization. Finally, ~. > 0 is a parameter controlling the direction of the curve. The first, 
third, and fourth equations give 3~ + a)~2x2'~-1 = 0 and by integration 3~2 _[_ ~2xZa  : 1 and thus 

.~ = (1 --  )~2xZa)1/2.  Denoting by y; the derivative of  y with respect to x we find 

y1(x) _ dy dt _ )~x 2c~ 
dt dx (1 -  2x2 )1/2 

When a = 1 this differential equation coincides with the differential Equation (3.9). Then the 
boundary of the isoperimetric set 

E1 = (x, y) e ~2 : lYl < ~ arccos Ixl + Ixl , Ix[ < 1 (4.5) 

consists of  two geodesics in the metric space (R 2, dl)  which are symmetric with respect to the y 
axis. 

This fact shows an interesting analogy with the Heisenberg group. Pansu conjectured in [ 19] 
that in this setting the solution to the isoperimetric problem is foliated by Heisenberg geodesics 
(see also [13] for some numerical evidence supporting this conjecture). 

In R 3 consider the vector fields X = Ox-+-2y Or and Y = Oy-  2xOt. The Heisenberg perimeter 
of  a measurable set E C N 3 is 

Ptt(E) = sup { (X~ol(x, y , t )  + Y~o2(x, y , t ) )  d x d y d t  , 
~o E,~"(~ 2 ) dE 

and the problem is to find a solution of 

m i n { P l 4 ( E ) ' E  C I1~ 3 measurable set with IEI = 1 } .  

The existence of solutions is proved by Leonardi and Rigot in [14]. It is not known whether 
solutions are (up to a group left translation) smooth sets E with rotational symmetry of the form 
E = {(z, t) ~ C x N : Itl < 7;(Izl)}. If  this is the case, then the function 7z can be computed and 

is ~P(Izl) = arccos Izl + Izh/1 - Izl 2 (see Proposition 3.4 in [16], Theorem 3.3 in [13], and [7]). 
This candidate solution is obtained (up to an immaterial constant factor �89 by a rotation in the 
three-dimensional space of the set E1 in (4.5) solving the isoperimetric problem in the Grushin 
plane for ot = 1. 
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