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ACCESSIBLE DOMAINS IN THE HEISENBERG GROUP

ZOLTÁN M. BALOGH AND ROBERTO MONTI

(Communicated by Juha M. Heinonen)

Abstract. We study the problem of accessibility of boundary points for do-
mains in the sub–Riemannian setting of the first Heisenberg group. A sufficient
condition for accessibility is given. It is a Dini–type continuity condition for the
horizontal gradient of the defining function. The sharpness of this condition
is shown by examples.

1. Introduction

Let Ω ⊂ Rn be a domain in the Euclidean space and let x0 ∈ Ω be a fixed
basepoint. A boundary point x ∈ ∂Ω is said to be accessible from x0 if there exists
a continuous rectifiable curve γ : [0, 1] → Rn such that γ(0) = x0, γ(1) = x and
γ(t) ∈ Ω for all t ∈ [0, 1). The property of accessibility is independent from the
choice of the basepoint, but it depends on the regularity of the boundary ∂Ω in
a neighborhood of x. If Ω has Lipschitz boundary, then every boundary point is
accessible, but there are many examples of domains with fractal–type boundary,
for instance the snowflake domain, whose boundary points are still accessible. For
a simply connected domain in the complex plane the question of accessibility is a
classical subject in complex function theory. By a theorem of Gehring and Hayman
it is equivalent to the finiteness of the length of the image of radii under the Riemann
mapping [16]. If the domain is not simply connected, the problem of accessibility
is much more complicated and is at present the subject of research in complex
dynamics (see [13], [17], [19]).

The notion of accessibility is of a purely metric nature and the definition of
accessible domain can be introduced in a general metric space. If the metric space
is locally bi–Lipschitz equivalent to some open set of Rn, then the analysis is reduced
to the Euclidean case. The problem becomes interesting in metric spaces not of
Euclidean type and in this paper we study the question in the sub–Riemannian
metric setting of the Heisenberg group. By a result of Semmes [18] there is no
bi–Lipschitz embedding of the Heisenberg group into any Euclidean space. This is
in contrast with the case of Riemannian manifolds and shows the genuinely non–
Euclidean nature of the Heisenberg group as a metric space. Regularity properties
of domains in Heisenberg and more general Carnot groups have been studied by
Hansen and Hueber in [10], by Capogna and Tang in [5], by Capogna and Garofalo
in [3] (see also the survey [4]) and more recently by Morbidelli and the second
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author in [14]. In [14] it is proved that any domain of class C1,1 in a group of step
two is non–tangentially accessible and thus, a fortiori, a John domain. The John
property implies the accessibility of boundary points by means of rectifiable curves;
however, this property typically fails for domains whose boundary is less than C1,1–
regular. It could even be expected that the property of accessibility already holds
for domains with C1–regular boundary. In this paper we show that this is not true:
in the metric setting of the Heisenberg group the C1–regularity of a domain does
not ensure accessibility. However, an additional Dini condition on the modulus of
continuity of the horizontal gradient of the defining function for the boundary (see
(2.3)–(2.4)) is shown to be a sufficient condition.

For the sake of simplicity we have chosen to state and prove our theorems in the
first Heisenberg group but the same results can be proved without any modification
in higher-dimensional Heisenberg groups. We think that a Dini condition similar to
(2.4) is sufficient for accessibility of boundary points in every Carnot group of step
two, and moreover the techniques introduced are also likely to be useful in groups
of steps greater than two.

The paper is organized as follows. In section 2 we recall some background results
on the metric structure of the Heisenberg group and give the precise statement of
the main theorem. In section 3 we discuss the accessibility condition for a special
model domain. In section 4 we give the full proof of our main result.

2. Preliminaries and main result

We begin with some preliminaries about the metric structure of the first Heisen-
berg group. For an introduction to the subject we refer to the work of Gromov
[9]. The underlying space of the first Heisenberg group (H1, ·) is R3 and the group
operation is given by

(2.1) x · y = (x1 + y1, x2 + y2, x3 + y3 + 2(x2y1 − x1y2))

for x = (x1, x2, x3), y = (y1, y2, y3) ∈ H1. Clearly, x−1 = (−x1,−x2,−x3). For any
x ∈ H1 the map τx : H1 → H1 defined by τx(y) = x · y is a left translation.

The differential structure of H1 is determined by the following so–called hori-
zontal vector fields

(2.2) X1 = ∂1 + 2x2∂3, and X2 = ∂2 − 2x1∂3,

which are left invariant for the group law (2.1) and generate by commutators the
Lie algebra of the group. The plane distribution spanned by X1 and X2 is the
horizontal bundle of H1. If Φ is a function of class C1 (here and in the sequel the
C1–smoothness is always referred to as the differential structure of R3), then we
write ∇0Φ(x) = (X1Φ(x), X2Φ(x)). The vector ∇0Φ is the horizontal gradient of
the function Φ.

The sub–Riemannian or Carnot–Carathéodory metric d on H1 is defined by using
the horizontal vector fields via admissible curves as follows. A Lipschitz curve
γ : [0, 1]→ R3 is called admissible if

γ̇(t) = h1(t)X1(γ(t)) + h2(t)X2(γ(t))

for a.e. t ∈ [0, 1], where h1, h2 ∈ L∞(0, 1).
Now consider the scalar product on the horizontal bundle which makes X1, X2

an orthonormal basis. With respect to this scalar product the sub–Riemannian
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length of an admissible curve γ is given by

length(γ) =
∫ 1

0

|h(s)| ds,

where |h(s)| =
√
h2

1(s) + h2
2(s). We can now define the sub–Riemannian length

metric d : H1 ×H1 → [0,+∞) by setting

d(x, y) = inf{length(γ) : γ : [0, 1]→ H1 is admissible and γ(0) = x, γ(1) = y}.

As the vector fields (2.2) satisfy the so–called maximal rank Chow–Hörmander
condition (because X1, X2 and [X1, X2] = −4∂3 are linearly independent at every
point), it follows that admissible connecting curves always exist and so for all
x, y ∈ H1 we have d(x, y) < +∞. By its definition it is clear that d is a left
invariant metric, i.e. d(z · x, z · y) = d(x, y) for all x, y, z ∈ H1. This metric
generates the same topology as the Euclidean one, however finer properties of the
two metrics are quite different. For recent results about Hausdorff measures and
dimensions with respect to the metric d we refer to [2].

In this paper we shall deal with the notion of rectifiable curves in terms of the
sub–Riemannian metric d. To formulate this precisely let γ : [0, 1] → H1 be a
continuous curve (curves will always be assumed to be continuous) and define its
total variation

Vard(γ) = sup
n∑
i=1

d(γ(ti), γ(ti−1)),

the sup being taken over all partitions 0 = t0 < t1 < ... < tn = 1, n ∈ N. The
curve γ is d–rectifiable if Vard(γ) < +∞. The following proposition establishes the
link between length and total variation, and states the existence of geodesics in the
metric space (H1, d).

Proposition 2.1. (i) A curve γ : [0, 1] → H1 is d–rectifiable if and only if it is
admissible and moreover length(γ) = Vard(γ).

(ii) For all x, y ∈ H1 there exists a d–rectifiable curve γ : [0, 1] → H1 such that
γ(0) = x, γ(1) = y and length(γ) = d(x, y).

According to the first statement above curves that are transversal to the horizon-
tal bundle are never d–rectifiable (no matter how smooth they are). For instance
the vertical axis in R3 is not d–rectifiable. The second statement says that d is a
geodesic metric.

Definition 2.2. Let Ω ⊂ H1 be an open domain and let x0 ∈ Ω be a fixed basepoint.
A point x ∈ ∂Ω is said to be accessible if there exists a d–rectifiable curve γ : [0, 1]→
H1 such that γ(0) = x0, γ(1) = x and γ(t) ∈ Ω for all t ∈ [0, 1). The boundary ∂Ω
is said to be accessible if all its points are accessible.

Now we can state our main theorem, which will be proved in section 4.

Theorem 2.3. Let Ω ⊂ H1 be a domain given by a C1–smooth defining function
Φ : H1 → R, Ω = {x ∈ H1 : Φ(x) < 0} and ∂Ω = {x ∈ H1 : Φ(x) = 0}. Assume
that ∂Ω is a regular surface, i.e. ∇Φ(x) 6= 0 for all x ∈ ∂Ω. For x ∈ ∂Ω let

(2.3) ωx(t) = sup
d(x,y)≤t

|∇0Φ(x) −∇0Φ(y)|.
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If the Dini–type condition

(2.4)
∫ δ

0

ωx(t)
t

dt < +∞

holds for some δ > 0, then x ∈ ∂Ω is accessible. Moreover, there are domains
Ω ⊂ H1 of class C1 with non-accessible boundary points.

3. Accessibility for a model domain

In this section we study accessibility in a model case which will serve both as
a key step for the proof of Theorem 2.3 and as an example showing the sharpness
of condition (2.4). Our main technical device is the so-called Box–Ball estimate,
which relates sub–Riemannian metric balls to flat Euclidean boxes.

We shall denote by B(x, r) = {y ∈ H1 : d(x, y) ≤ r} the Carnot–Carathéodory
ball centered at x having radius r > 0. For any x ∈ H1 define the homogeneous
norm ‖x‖ = max{(x2

1 + x2
2)1/2, |x3|1/2} and for r > 0 introduce the “box”

Box(x, r) = {x · y : ‖y‖ ≤ r}.

The statement of the Box–Ball estimate is as follows.

Proposition 3.1. There exists a constant λ ∈ (0, 1) such that:

(i) ‖y−1 · x‖ ≤ d(x, y) ≤ λ−1‖y−1 · x‖ for all x, y ∈ H1; or, equivalently,
(ii) Box(x, λr) ⊂ B(x, r) ⊂ Box(x, r) for all x ∈ H1 and r > 0.

The main result of this section is the following:

Proposition 3.2. For any α ≥ 1 let Ω = {x ∈ H1 :
√
x2

1 + x2
2 < x3| log x3|α}. The

boundary point 0 ∈ ∂Ω is accessible if and only if α > 1.

Proof. We begin by proving that 0 is accessible if α > 1. The function ψ(t) =
t| log t|α is continuous on [0, 1] and enjoys the following properties:

(3.5) ψ(0) = 0, ψ is increasing in (0, δ),
∫ δ

0

1
ψ(t)

dt < +∞,

for some δ > 0. The crucial last integral condition fails exactly when α = 1.
For all k ∈ N define tk = 2−k and let pk = (0, 0, tk) ∈ Ω. Let 0 < rk <

√
tk be

the unique solution of the equation ψ(tk− r2
k) = 2rk/λ. The real number λ ∈ (0, 1)

is a fixed constant given by Proposition 3.1. With such a choice we have

(3.6) Box((0, 0, t), rk/λ) ⊂ Ω for all t ≥ tk.

Let [pk, pk−1] be the line segment having as extremals pk and pk−1. Since the
Euclidean vertical size of the boxes centered on the x3–axis and with radius rk is
2r2
k, we need at most [Nk] + 1 such piled boxes to cover this segment, where the

number Nk is given by the condition

(3.7) 2Nkr2
k = tk−1 − tk = tk.

We denote these boxes by Boxkj = Box(pkj , rk), with pkj suitable points belonging
to the x3–axis and j = 1, ..., [Nk]+1. We also assume that Boxk,j+1 lies immediately
below Boxkj in such a way that the top part of ∂Boxk,j+1 is the bottom part of
∂Boxkj .
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Let p+
kj and p−kj be the two intersection points of ∂Boxkj with the x3–axis, p+

kj

belonging to the top part of ∂Boxkj and p−kj belonging to the bottom one. In this
way we have that p−kj = p+

k,j+1. By Proposition 3.1(ii) and (3.6)

p+
kj , p

−
kj ∈ Box(pkj , rk) ⊂ B(pkj , rk/λ) ⊂ Box(pkj , rk/λ) ⊂ Ω,

and thus by Proposition 2.1(ii) there exists a d–rectifiable curve γkj : [0, 1] → Ω
such that γjk(0) = p+

kj , γjk(1) = p−kj and

(3.8) length(γkj) ≤ 2rk/λ.

We denote by γk the d–rectifiable curve obtained by joining all the curves γkj ,
and we denote by γ : [0, 1]→ H1 the curve obtained by joining the curves γk (and
reparameterizing). Clearly, γ is continuous, γ(t) ∈ Ω for all t ∈ [0, 1) and γ(0) = 0
(by definition). We show that length(γ) < +∞. Indeed by (3.8) and (3.7) we find
(we assume Nk ≥ 1)

length(γ) =
∞∑
k=1

length(γk) ≤
∞∑
k=1

2(1 + [Nk])rk/λ ≤
4
λ

∞∑
k=1

Nkrk =
2
λ

∞∑
k=1

tk
rk
,

and using the identity ψ(tk − r2
k) = 2rk/λ we get

length(γ) ≤ 4
λ2

∞∑
k=1

tk
ψ(tk − r2

k)
.

Since r2
k = tk/(2Nk) ≤ tk/2 = tk+1, we have tk − r2

k ≥ tk+1 and thus ψ(tk − r2
k) ≥

ψ(tk+1), because ψ is increasing. We finally get

length(γ) ≤ 16
λ2

∞∑
k=1

(tk+1 − tk+2)
ψ(tk+1)

≤ 16
λ2

∫ 1/4

0

1
ψ(t)

dt < +∞.

This proves the first statement of the proposition.
Now consider the case α = 1 and let ψ(t) = t| log t|. Notice that∫ δ

0

1
ψ(t)

dt = +∞

for any δ > 0. We show that the boundary point 0 ∈ ∂Ω is not accessible from the
domain Ω = {x ∈ H1 :

√
x2

1 + x2
2 < ψ(x3)}.

For any k ∈ N define tk = 2−k, pk = (0, 0, tk) ∈ Ω and rk = 4ψ(tk). The number
of piled boxes centered on the x3–axis and having radius rk necessary to cover the
line segment [pk, pk+1] is at least [Nk], where Nk is given by the condition

2Nkr2
k = tk − tk+1 = tk+1 ⇔ Nk =

tk+1

2r2
k

.

We again call these boxes Boxkj , j = 1, ..., [Nk], and we assume, as above, that
Boxk,j+1 lies immediately below Boxkj . Different from the boxes considered in the
first part of the proof such boxes are wider: their union covers in fact the domain
Ω in a neighborhood of 0 ∈ ∂Ω. In this way any continuous curve γ : [0, 1] → H1

such that γ(1) = 0 and γ(t) ∈ Ω for all t ∈ [0, 1) must travel through all the boxes
Boxkj , but at most a finite number. Let us denote by γkj the intersection of γ with
Boxkj .

As before let p+
kj and p−kj be the intersection points of ∂Boxkj with the x3–axis,

and let q+
kj and q−kj be two intersection points of ∂Boxkj with γkj . Our aim is to
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estimate the length of γkj by using the points p+
kj and p−kj . The first step in this

direction is the triangle inequality

length(γkj) ≥ d(q−kj , q
+
kj) ≥ d(p−kj , p

+
kj)− d(p−kj , q

−
kj)− d(q+

kj , p
+
kj).

Now notice that d(p−kj , p
+
kj) ≥ ‖(p

+
kj)
−1 ·p−kj‖ ≥ rk = 4ψ(tk), d(p−kj , q

−
kj) ≤ ψ(tk) and

d(p+
kj , q

+
kj) ≤ ψ(tk). The last two statements follow from the fact that γkj lies inside

Ω. After all, we obtain the estimate length(γkj) ≥ 2ψ(tk) for all j = 1, ..., [Nk].
If γk denotes the intersection of γ with the union

⋃[Nk]
j=1 Boxkj , then

length(γk) ≥ [Nk]length(γkj) ≥
Nk
2

length(γkj)

≥ Nkψ(tk) =
tk+1ψ(tk)

2r2
k

=
tk+1

25ψ(tk)
.

We used the choice of rk = 4ψ(tk).
It is now clear that the length of any continuous curve γ contained in Ω and

reaching the origin is estimated from below by the sum of the γk as follows (for
some k0 ∈ N and δ > 0):

length(γ) ≥
+∞∑
k=k0

length(γk) ≥ 1
25

+∞∑
k=k0

tk+1

ψ(tk)

≥ 1
25

+∞∑
k=k0

(tk − tk+1)
ψ(tk)

≥ 1
25

∫ δ

0

1
ψ(t)

dt = +∞.

This shows that curve γ is not d–rectifiable and thus 0 ∈ ∂Ω is not accessible. �

We conclude this section with two remarks.

Remark 3.3. From the above proof it is clear that the exact formula ψ(t) = t| log t|α
was not really essential. Indeed, if Ω = {x ∈ H1 :

√
x2

1 + x2
2 < ψ(x3)} is an open

set defined by a continuous function ψ : [0,+∞) → R satisfying conditions (3.5),
then the boundary point 0 ∈ ∂Ω is accessible. The second part of the proof shows
the sharpness of (3.5).

Remark 3.4. Notice that ∂Ω given by
√
x2

1 + x2
2 = ψ(x3) = x3| log x3|α, α > 0, is in

fact a C1–smooth regular surface. To see this let ϕ : [0, δ)→ [0, ε) be a local inverse
of ψ and observe that ϕ is a C1–smooth function with ϕ′(0) = 0. In a neighborhood
of 0 ∈ ∂Ω the boundary ∂Ω is now given by Φ(x) = x3 − ϕ(

√
x2

1 + x2
2) = 0.

4. Proof of the main theorem

In this section we prove Theorem 2.3. We have a domain Ω ⊂ H1 of class
C1 given by Ω = {x ∈ H1 : Φ(x) < 0}. The function Φ is of class C1 in the
usual sense and satisfies ∇Φ(x) 6= 0 for all x ∈ ∂Ω. A boundary point x ∈ ∂Ω is
said to be non-characteristic if ∇0Φ(x) 6= 0, while it is said to be characteristic if
X1Φ(x) = X2Φ(x) = 0.

Non-characteristic points are always accessible. Assume, for instance, that x ∈
∂Ω and X1Φ(x) < 0. The curve γ(t) = exp(tX1)(x) is d–rectifiable and satisfies
γ(0) = x and γ(t) ∈ Ω for t ∈ (0, δ).

Characteristic points are notoriously difficult to handle. Such difficulties arise
in various problems related to hypoelliptic partial differential equations (see [12],
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[11] and [8]) or to geometric measure theory (see [7] and [6]). The size of the
characteristic set in terms of Hausdorff measures was recently studied in [1]. Notice
that in the domains Ω considered in the previous section the point 0 ∈ ∂Ω was
characteristic. Proposition 3.2 shows that accessibility may fail at characteristic
points.

If x ∈ ∂Ω is characteristic, then ∂3Φ(x) 6= 0, because∇0Φ(x) = 0 but∇Φ(x) 6= 0.
Therefore, by the implicit function theorem the boundary ∂Ω can be represented
in parametric form in a neighborhood of x by a function x3 = f(x1, x2). Without
loss of generality we can assume that Φ(x) = f(x1, x2)− x3 for some function f of
class C1. Furthermore, both the horizontal gradient and the Heisenberg metric are
invariant under group translations and so we can assume without loss of generality
that our boundary point is x = 0.

Proof of Theorem 2.3. Let 0 ∈ ∂Ω be a characteristic point of the boundary of
Ω = {x ∈ H1 : Φ(x) < 0}. Define

ω(t) = sup
d(x,0)≤t

|∇0Φ(x)|.

We have to prove that if the following Dini condition holds (we assume δ = 1 in
(2.4)):

(4.9)
∫ 1

0

ω(t)
t
dt < +∞,

then the boundary point 0 ∈ ∂Ω is accessible.
We can assume that Φ(x) = x3 − f(x1, x2) where f ∈ C1(R2) is a function such

that f(0) = 0 and ∇f(0) = 0 (because ∇0Φ(0) = 0). We write z = (x1, x2) and
define

ω̄(t) = sup
|z|≤t
|∇f(z)| and ϕ(t) =

∫ t

0

ω̄(s)ds.

The function ϕ : [0,+∞) → R so defined is continuous, differentiable, ϕ(0) =
ϕ′(0) = 0, and t 7→ ϕ′(t) = ω̄(t) is non-decreasing. Moreover

|f(z)| =
∣∣∣ ∫ 1

0

〈∇f(sz), z〉ds
∣∣∣ ≤ |z| ∫ 1

0

|∇f(sz)|ds

≤ |z|
∫ 1

0

ω̄(s|z|)ds =
∫ |z|

0

ω̄(s)ds = ϕ(|z|).
(4.10)

We distinguish two cases. First case: there exists η > 0 such that ω̄(t) = ϕ′(t) =
0 for 0 ≤ t ≤ η. In this case (4.10) yields that f(z) = 0 for |z| < η and the
accessibility of 0 ∈ ∂Ω easily follows.

Second case: ϕ′(t) > 0 for all t > 0. The function ϕ is increasing and thus
invertible. We denote by ψ = ϕ−1 the inverse function. For the sake of simplicity
we shall use the notation (x1, x2) = z and x3 = t. Let

D = {(z, t) ∈ H1 : |z| < ψ(t)} = {(z, t) ∈ H1 : t > ϕ(|z|)}.

Because of (4.10) D ⊂ Ω = {(z, t) ∈ H1 : t > f(z)} and moreover 0 ∈ ∂D. If 0 is
accessible from D it is also accessible from Ω and the theorem will be proved.
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The function ψ : [0,+∞) → R is continuous, increasing and ψ(0) = 0. If we
show that for some δ > 0

(4.11)
∫ δ

0

1
ψ(t)

dt < +∞,

then all the hypotheses in (3.5) are satisfied, and the boundary point 0 ∈ ∂D is
accessible from D. Our goal is to prove that (4.9) implies (4.11). To this aim let
us introduce

β(t) := sup
0≤s≤t, ϕ(s)≤t2

ϕ′(s),

and notice that
β(t) = sup

0≤s≤t, ϕ(s)≤t2
ω̄(s) = sup

0≤s≤t, ϕ(s)≤t2
sup
|z|≤s

|∇f(z)|

= sup
|z|≤t, ϕ(|z|)≤t2

|∇f(z)| ≤ sup
|z|≤t, |f(z)|≤t2

|∇f(z)|.

The last inequality is implied by (4.10).
By the definition of horizontal gradient we have

∇0Φ = (∂1f + 2x2, ∂2f − 2x1) = ∇f + 2(x2,−x1),

and this yields |∇f(z)| ≤ |∇0Φ(z, f(z))|+ 2|z|. Since |z| ≤ t and |f(z)| ≤ t2 mean
(z, f(z)) ∈ Box(0, t) ⊂ B(0, t/λ) we have

β(t) ≤ 2t+ sup
d(x,0)≤t/λ

|∇0Φ(x)| = 2t+ ω(t/λ),

and by (4.9) it follows that

(4.12)
∫ λ

0

β(t)
t
dt < +∞.

We claim that (4.12) implies (4.11). Without loss of generality assume λ = 1,
ϕ(1) = 1 and let I = {t ∈ [0, 1] : ϕ(t) > t2}. Then, using the fact that ϕ′ is
non-decreasing, we have for t ∈ [0, 1]

β(t) =

{
ϕ′(ψ(t2)) if t ∈ I,
ϕ′(t) if t ∈ [0, 1] \ I.

The set I is open and can be written as an at most countable union of disjoint
open intervals I =

⋃+∞
k=1 Ik, where each interval is of the form Ik = (t1k, t2k) with

ϕ(t1k) = t21k and ϕ(t2k) = t22k (by continuity). Using this notation write∫ 1

0

β(t)
t
dt =

∫
[0,1]\I

ϕ′(t)
t

dt+
+∞∑
k=1

∫ t2k

t1k

ϕ′(ψ(t2))
t

dt.

Performing the change of variable τ = ψ(t2) in each integral in the sum we find∫ t2k

t1k

ϕ′(ψ(t2))
t

dt =
1
2

∫ t2k

t1k

(ϕ′(τ))2

ϕ(τ)
dτ.

The integration interval does not change. By the mean value theorem ϕ(τ) = τϕ′(τ̄ )
for some τ̄ ∈ (0, τ). Since ϕ′ is non-decreasing we get ϕ(τ) ≤ τϕ′(τ). As a
consequence

(ϕ′(τ))2

ϕ(τ)
≥ ϕ′(τ)

τ
,
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and all together we obtain∫ 1

0

β(t)
t
dt ≥

∫
[0,1]\I

ϕ′(t)
t

dt+
1
2

+∞∑
k=1

∫ t2k

t1k

ϕ′(t)
t

dt ≥ 1
2

∫ 1

0

ϕ′(t)
t

dt =
1
2

∫ 1

0

1
ψ(s)

ds.

This proves (4.11) and thus the accessibility of 0. The main statement of Theorem
2.3 is proved.

As far as the statement concerning the sharpness of condition (2.4) is concerned
notice that the open set Ω = {x ∈ H1 :

√
x2

1 + x2
2 < x3| logx3|} is of class C1

(see Remark 3.4), but the boundary point 0 ∈ ∂Ω is not accessible from Ω by
Proposition 3.2. �
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