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TILTING OBJECTS IN ABELIAN CATEGORIES
AND QUASITILTED RINGS

RICCARDO COLPI AND KENT R. FULLER

Abstract. D. Happel, I. Reiten and S. Smalø initiated an investigation of qu-
asitilted artin K-algebras that are the endomorphism rings of tilting objects
in hereditary abelian categories whose Hom and Ext groups are all finitely
generated over a commutative artinian ring K. Here, employing a notion of
∗-objects, tilting objects in arbitrary abelian categories are defined and are
shown to yield a version of the classical tilting theorem between the category
and the category of modules over their endomorphism rings. This leads to a
module theoretic notion of quasitilted rings and their characterization as endo-
morphism rings of tilting objects in hereditary cocomplete abelian categories.

Tilting modules for finite-dimensional and artin algebras A and the resulting
tilting theorem between mod-A and the finitely generated modules over the endo-
morphism ring of a tilting A-module were introduced by Brenner and Butler [3]
and Happel and Ringel [15] as a generalization of the Morita equivalence theorem
between categories of modules over a pair of algebras. A particularly tractable
account was given by Bongartz in [2]. Subsequently, Miyashita [19] and Colby and
Fuller [4] showed that if A is an arbitrary ring and VA is a tilting module, then
the tilting theorem holds between Mod-A and Mod-R, where R = End(VA). The
tilting theorem is basically a pair of equivalences T −→←− Y and F −→←− X between
the members of torsion pairs (T ,F) of A-modules and (X ,Y) of R-modules. Par-
ticularly useful, from a representation theory point of view, is the case in which A
is hereditary, for then (X ,Y) splits. In this case R is said to be tilted.

Given a commutative artinian ring K, a locally finite abelian K-category A is
an abelian category in which the Hom and Ext groups are K-modules of finite
length and composition of morphisms is K-bilinear. Happel, Reiten and Smalø [14]
defined a quasitilted (artin) algebra as the endomorphism algebra of a tilting object
in a hereditary locally finite abelian K-category. They characterized quasitilted
algebras as those with a split torsion pair (X ,Y) in mod-R such that RR ∈ Y
and proj dimY ≤ 1, and showed that then inj dimX ≤ 1 and gl dimR ≤ 2. They
also characterized these algebras as those with global dimension ≤ 2 such that
every finitely generated indecomposable module has either injective or projective
dimension ≤ 1.

Here, following [13], we say that R is a (right) quasitilted ring if it has split torsion
pair (X ,Y) in Mod-R such that RR ∈ Y and proj dimY ≤ 1. As we shall show,
quasitilted rings turn out to be precisely the endomorphism rings of tilting objects
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in hereditary cocomplete (i.e., with arbitrary coproducts) abelian categories, and
they satisfy inj dimX ≤ 1 and rt gl dimR ≤ 2.

When they introduced quasitilted algebras, Happel, Reiten and Smalø [14]
showed that a tilting object V in an abelian K-category A induces a pair of equiva-
lences between torsion theories in A and mod-R for the artin algebra R = EndA(V );
and, conversely, they proved that if R is an artin algebra and (X ,Y) is a torsion
theory in mod-R such that RR ∈ Y , then there is a locally finite abelian K-category
A with a tilting object V such that R = EndA(V ) and (X ,Y) is given by V .

In [7] Colpi, employing the notion of a ∗-object (a version of the ∗-modules of
Menini and Orsatti [17]), proved that a tilting object V in a Grothendieck category
G induces a tilting theorem between G and Mod-R, for R = EndG(V ). In order
to prove our characterization of quasitilted rings, we employ a similar approach
to show that a tilting object in a cocomplete abelian category A induces a tilting
theorem between A and the category of right modules over its endomorphism ring;
and using an argument similar to one in [14], we show conversely that if (X ,Y)
is a torsion theory in Mod-R with RR ∈ Y , then there is a tilting object V in a
cocomplete abelian category A such that R = EndA(V ) and (X ,Y) is given by V .

Our concluding sections contain an example of a non-noetherian quasitilted ring
that is not tilted, some open questions, and an appendix providing needed results
on the behavior of coproducts under the functor Ext1A(−, L) for an abelian category
A.

1. Maximal equivalences

In the sequel, A denotes a fixed abelian category and V an object of A such that
V (α) exists in A for any cardinal α.

Proposition 1.1. Let R = EndA(V ), HV = HomA(V,−) : A → Mod-R. Then
HV has a left adjoint additive functor TV : Mod-R → A such that TV (R) = V . Let
σ : 1Mod-R → HV TV and ρ : TV HV → 1A be respectively the unit and the counit of
the adjunction 〈TV , HV 〉. Let us define

TrV : A → A by TrV (M) =
∑

{Im f | f ∈ HomA(V, M)},

AnnV : Mod-R → Mod-R by AnnV (N) =
∑

{L | L
i

↪→ N, TV (i) = 0}

and

Gen V = {M ∈ A | TrV (M) = M}, Faith V = {N ∈ Mod-R | AnnV (N) = 0}.
Then:

a) The canonical inclusion TrV (M) ↪→ M induces a natural isomorphism
HV (TrV (M)) ∼= M , and the canonical projection N � N/ AnnV (N) in-
duces a natural isomorphism TV (N) ∼= TV (N/ AnnV (N)).

b) TrV is an idempotent preradical, and AnnV is a radical.
c) TrV (M) = Im ρM , and AnnV (N) = Ker σN .
d) TV (Mod-R) ⊆ Gen V , and HV (A) ⊆ Faith V .
e) Gen V is closed under (existing) coproducts and factors in A, and FaithV

is closed under products and submodules in Mod-R.

Proof. The first part of the statement was proved by Popescu in [20], Corollary 7.3
and Note 1 on page 109.
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a) The first part is clear, since Im(f) ⊆ TrV (M) for any f ∈ HomA(V, M). Now
let AnnV (N) =

∑
{Lλ | λ ∈ Λ}, with jλ : Lλ ↪→ AnnV (N), for each iλ : Lλ ↪→ N

with TV (iλ) = 0. Applying the functor TV to the commutative diagram

⊕Lλ

⊕jλ

�����������
⊕iλ

���
��

��
��

�

AnnV (N) �� i �� N

we immediately obtain TV (i) = 0, since ⊕jλ is an epimorphism and TV is right
exact and commutes with direct sums. Therefore, if we apply TV to the exact
sequence

0 → AnnV (N) i−→ N
π−→ N/ AnnV (N) → 0

we obtain the exact sequence

TV (AnnV (N)) 0→ TV (N)
TV (π)−−−−→ TV (N/ AnnV (N)) → 0

which shows that TV (π) is an isomorphism.
b) The first part is clear. Moreover, using the right exactness of TV and, for

iλ : Lλ ↪→ M and f : M → N , using the commutative diagram

Lλ

����
��

��
��

fiλ �� N

f(Lλ)

����������

it becomes clear that AnnV is a preradical. Let us prove that AnnV is a radical,
i.e., AnnV (N/ AnnV (N)) = 0. Let AnnV (N) ≤ L ≤ N such that TV (i) = 0 for
i : L/ AnnV (N) ↪→ N/ AnnV (N). Applying TV to the commutative diagram

L

πL

����

��
j

�� N

πN

����

L/ AnnV (N) �� i �� N/ AnnV (N)

we have 0 = TV (i)TV (πL) = TV (iπL) = TV (πNj) = TV (πN )TV (j), so that TV (j) =
0, since TV (πN ) is an isomorphism by a). This gives L ≤ AnnV (N), as desired.

c) Im ρM is a factor of TV HV (M), and TV HV (M) ∈ TV (Mod-R) = TV (Gen R)
⊆ Gen TV (R) = Gen V since TV is right exact and preserves coproducts. Therefore
Im ρM ∈ Gen V , i.e., Im ρM ⊆ TrV (M). Conversely, let V (α) ϕ→ M be a morphism
such that Imϕ = TrV (M). In the commutative diagram

V (α)
ϕ

�� M

TV HV (V (α))

ρ
V (α)

����

TV HV (ϕ)
�� TV HV (M)

ρM

��

ρV (α) is epi-split by adjointness, since V (α) = TV (R(α)). Thus TrV (M) = Im ϕ ≤
Im ρM , and so they are equal.
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Now let N ∈ Mod-R. From the commutative diagram

AnnV (N) �� i ��

σAnnV (N)

��

N

σN

��

HV TV (AnnV (N))
HV TV (i)

�� HV TV (N)

since TV (i) = 0 (as in the proof of a)), we see that σN i = 0, i.e., AnnV (N) ≤
Ker σN . Conversely, if i : KerσN ↪→ N is the canonical inclusion, then σN i = 0, so
that TV (σN )TV (i) = 0, and so TV (i) = 0, since TV (σN ) is mono-split by adjointness.
This proves that Ker σN ≤ AnnV (N), and so they are equal.

d) By c), it follows that M ∈ Gen V if and only if ρM is epic, and N ∈ FaithV
if and only if σN is monic. Since by adjointness ρM is epi-split for any M ∈
TV (Mod-R), and σN is mono-split for any N ∈ HV (A), d) follows.

e) follows from b), thanks to [22], Ch. VI, Proposition 1.4. �

Remark 1.2. From the statements a), b), c) and d) in Proposition 1.1 it follows
that GenV ⊆ A and FaithV ⊆ Mod-R are the largest full subcategories between
which the adjunction 〈TV , HV 〉 can induce an equivalence.

This suggests the following.

Definition 1.3. V ∈ A is called a ∗-object if 〈TV , HV 〉 induces an equivalence

HV : Gen V −→←− FaithV : TV .

Note that GenV is closed under factors and coproducts, and FaithV is closed
under submodules and direct products, thanks to Proposition 1.1e). These proper-
ties, together with the equivalence, characterize ∗-objects, in view of the following
version of Menini and Orsatti’s theorem [17] (see also [5], section 2).

Theorem 1.4. Let A be a cocomplete abelian category, and let R be a ring. Let
G ⊆ A be a full subcategory closed under factors and coproducts, and let F ⊆ Mod-R
be a full subcategory closed under submodules and direct products, and suppose that
there is a category equivalence

H : G −→←− F : T.

Let R = R/ rR(F). Then RR is in F , and setting V = T (R) we have natural
isomorphisms H ∼= HV and T ∼= TV , and equalities G = Gen V and F = FaithV .
In particular, V is a ∗-object in A and R ∼= EndA(V ).

Proof. Since F is closed under submodules and products, RR is in F . For any
M ∈ G we have H(M) ∼= HomR(R, H(M)) ∼= HomA(V, M) canonically in Mod-R.
Moreover EndA(V ) ∼= EndR(R) ∼= R canonically. Given any N ∈ F ⊆ Mod-R, from
the exact sequence R

(α) → N → 0 we obtain the exact sequence V (α) → TV (N) → 0
which gives TV (N) ∈ G, since G is closed under coproducts and factors. Therefore
T ∼= TV , as both functors are left adjoint to H ∼= HV . From statement c) in
Proposition 1.1 we derive the inclusions G ⊆ Gen V and F ⊆ Faith V . On the
other hand, V ∈ G and the closure properties of G immediately give Gen V ⊆ G.
Moreover, if N ∈ FaithV , then from statements b) and c) in Proposition 1.1 we
derive N

σN
↪→ HV TV (N) ∈ HV (GenV ) = HV (G) = H(G) ⊆ F , hence N ∈ F by the

closure properties of F . This shows that Faith V ⊆ F . �
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For convenience, we restate [7], Lemma 1.5.

Lemma 1.5. Let A and B be abelian categories, and let G ⊆ A and F ⊆ B be full
subcategories, each one of which is either closed under subobjects or factor objects.

Let 〈T, H〉 be an adjoint pair of additive functors G
H−→←−
T

F , with unit σ : 1 → HT

and counit ρ : TH → 1. Then:
a) If ρM is an isomorphism for all M ∈ G, then T preserves the exactness of

short exact sequences with objects in H(G).
b) If σN is an isomorphism for all N ∈ F , then H preserves the exactness of

short exact sequences with objects in T (F).

2. Tilting objects

Let A be an abelian category. Following Dickson [9], a torsion theory in A is a
pair of classes of objects (T ,F) of A such that

(1) T = {T ∈ A | HomA(T, F ) = 0 ∀F ∈ F},
(2) F = {F ∈ A | HomA(T, F ) = 0 ∀T ∈ T },
(3) for each X ∈ A there is a short exact sequence 0 → T → X → F → 0, with

T ∈ T and F ∈ F .
Now let V be an object of A such that V (α) ∈ A for any cardinal α. We

shall denote by GenV the full subcategory of A generated by V and by Gen V the
closure of GenV under subobjects: Gen V is the smallest exact abelian subcategory
of A containing Gen V . Moreover we let PresV denote the full subcategory of
Gen V which consists of the objects in A presented by V , i.e., PresV = {M ∈ A |
∃ an exact sequence V (β) → V (α) → M → 0}. Finally, let R = EndA(V ) and

V ⊥ = Ker Ext1A(V,−), V⊥ = Ker HomA(V,−).

In this setting we have analogues of results regarding non-finitely generated tilt-
ing modules from [8] (see also [6], section 3.1).

Proposition 2.1. Let V ∈ A.
a) If Gen V ⊆ V ⊥, then TrV is a radical. In particular (GenV, V⊥) is a torsion

theory in A.
b) If Gen V = V ⊥, then Gen V = PresV .
c) If Gen V = A, then the equality Gen V = V ⊥ is equivalent to the following

conditions:
i) proj dim V ≤ 1,
ii) Ext1A(V, V (α)) = 0 for any cardinal α,
iii) if M ∈ A and HomA(V, M) = 0 = Ext1A(V, M), then M = 0.

Proof. a) Let M ∈ A and consider the canonical exact sequence

0 → TrV (M) → M → M/ TrV (M) → 0.

We obtain the exact sequence

0 → HV (TrV (M))
∼=→ HV (M) → HV (M/ TrV (M)) → Ext1A(V, TrV (M)) = 0

which shows that HV (M/ TrV (M)) = 0, i.e., TrV (M/ TrV (M)) = 0. This and
Proposition 1.1b) prove that TrV is an idempotent radical. This shows that for any
M ∈ A, TrV (M) is the unique subobject of M such that TrV (M) ∈ Gen V and
M/ TrV (M) ∈ V⊥, and so (GenV, V⊥) is a torsion theory in A.
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b) Let M ∈ Gen V and α = HomA(V, M). Then we have the exact sequences

0 → K → V (α) ϕ−→ M → 0

and
HV (V (α))

HV (ϕ)−−−−→ HV (M) → Ext1A(V, K) → 0
where the morphism HV (ϕ) is an epimorphism by construction. Therefore
Ext1A(V, K) = 0, so by assumption K ∈ Gen V . This proves that M ∈ PresV .

c) Let Gen V = A and GenV = V ⊥. Let us prove i), showing that Ext2A(V, M)
= 0 for any M ∈ A. Indeed, given a representative of an element ε ∈ Ext2A(V, M),
say

(ε) 0 → M → E1
f−→ E2 → V → 0,

let I = Im f . Embedding E1 in a suitable object X ∈ Gen V , we first have a
push-out diagram (dual to [22], Proposition 5.1, page 90)

0 �� M �� E1��

��

�� I��

��

�� 0

0 �� M �� X �� P ′ �� 0

(1)

where X, and so P ′, are in GenV . Then we have a second push-out diagram

0 �� I��

��

�� E2��

��

�� V �� 0

0 �� P ′ �� P ′′ �� V �� 0.

(2)

By glueing (1) and (2) together, we derive a commutative diagram with exact rows

0 �� M �� E1��

��

f
�� E2��

��

�� V �� 0

0 �� M �� X
g

�� P ′′ π �� V �� 0

(3)

where Im g = P ′ ∈ V ⊥. Then π is epi-split, and so ε ∼ 0. This proves i). Condi-
tion ii) is contained in the hypothesis, and condition iii) follows from a).

Conversely, let us assume that conditions i), ii) and iii) hold. The first condition
assures that V ⊥ is closed under factors. Therefore, using the second condition we
immediately see that GenV ⊆ V ⊥. In order to prove the opposite inclusion, given
any M ∈ V ⊥, from the exact sequence 0 → TrV (M) → M → M/ TrV (M) → 0 and
using condition i) we obtain the exact sequence

0 → HomA(V, TrV (M))
∼=−→ HomA(V, M) → HomA(V, M/ TrV (M))

→ Ext1A(V, TrV (M)) = 0 = Ext1A(V, M) → Ext1A(V, M/ TrV (M)) → 0.

Hence HomA(V, M/ TrV (M)) = 0 = Ext1A(V, M/ TrV (M)). Now condition iii)
gives M/ TrV (M) = 0, i.e., M = TrV (M) ∈ Gen V . This proves that V ⊥ ⊆
Gen V . �

Remark 2.2. If A is cocomplete with exact coproducts, or A has enough injectives,
then Gen V = A whenever GenV = V ⊥.
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Proof. If A has enough injectives, then every object of A embeds in an injective
object which, by definition, belongs to V ⊥ = Gen V . Let us assume, now, that A is
cocomplete with exact coproducts. Let M ∈ A and α be the cardinality of a span-
ning set for Ext1A(V, M) as a right R-module. Then, arguing as in [6], Lemma 3.4.4,
we can find an exact sequence

0 → M → X → V (α) → 0

such that the connecting homomorphism HomA(V, V (α)) → Ext1A(V, M) is onto.
This gives Ext1A(V, X) = 0, i.e., X ∈ V ⊥ = Gen V , and so it proves that Gen V =
A. �

In view of this last remark, we add a third condition to the Definition 2.3 of [7]
to obtain

Definition 2.3. An object V in an abelian category A that contains arbitrary
coproducts of copies of V is called a tilting object if:

i) V is selfsmall (i.e., HomA(V, V (α)) ∼= R(α) for any cardinal α);
ii) Gen V = V ⊥;
iii) Gen V = A.

So, to any tilting object V ∈ A is naturally associated a torsion theory (T ,F)
in A, namely T = V ⊥ and F = V⊥.

Now we can extend [7], Theorem 3.2, as follows.

Theorem 2.4. Let A be an abelian category such that V (α) ∈ A for any cardinal
α. Then the following are equivalent:

(a) V is a ∗-object;
(b) V is a tilting object in Gen V ;
(c) ρ is monic in A and σ is epic in Mod-R;
(d) V is selfsmall, Gen V = PresV and HV preserves short exact sequences in

A with all terms in Gen V ;
(e) V is selfsmall, and for any short exact sequence 0 → L → M → N → 0

in A with M (and N) in Gen V , the sequence 0 → HV (L) → HV (M) →
HV (N) → 0 is exact if and only if L ∈ Gen V .

Proof. (a) ⇒ (b) We see that V is selfsmall, since HV (V (α)) = HV TV (R(α)) ∼=
R(α) = HV (V )(α) canonically. We can assume that A = Gen V . In order to prove
that GenV ⊆ V ⊥, given any M ∈ Gen V we show that any short exact sequence
in A,

(1) 0 → M → X
π−→ V → 0,

splits. Let X
i

↪→ L be a fixed embedding with L ∈ Gen V , and let us consider the
push-out diagram

0 �� M �� X
π ��

��

i

��

V ��
��

j

��

0

0 �� M �� L
p

�� P �� 0

(2)
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where the second row is in Gen V . From (2) we obtain the commutative diagram
with exact rows

0 �� HV (M) �� HV (X)

��

HV (π)
�� HV (V )

��

δ �� Ext1A(V, M)

0 �� HV (M) �� HV (L)
HV (p)

�� HV (P )
γ

�� Ext1A(V, M).

(3)

Since, from statement b) in Lemma 1.5, the morphism HV (p) in (3) is epic, we see
that γ = 0, so that δ = 0, too. This shows that HV (π) is epic, so that (1) splits.

Conversely, let us prove that V ⊥ ⊆ Gen V . Given any M ∈ V ⊥, let

0 → M → X0
ϕ−→ X1 → 0

be a fixed exact sequence with X0 (and X1) in GenV . Since Ext1A(V, M) = 0 by
assumption, HV (ϕ) is epic. Therefore we have the commutative diagram with exact
rows

0 �� M �� X0
ϕ

�� X1
�� 0

. . . �� TV HV (M)

ρM

��

�� TV HV (X0)

∼= ρX0

��

TV HV (ϕ)
�� TV HV (X1) ��

∼= ρX1

��

0

which shows that ρM is epic, i.e., M ∈ Gen V .
(b) ⇒ (e) Assume that 0 → L → M → N → 0 is an exact sequence in A with

M (and N) in GenV . Then, since by assumption GenV = V ⊥, the sequence 0 →
HV (L) → HV (M) → HV (N) → Ext1A(V, L) → 0 is exact, and so Ext1A(V, L) = 0 if
and only if L ∈ Gen V .

(e) ⇒ (d) Let M ∈ Gen V , and let α = HV (M). Then there is a short exact
sequence 0 → K → V (α) ϕ→ M → 0 such that HV (ϕ) is epic. By hypothesis, we
must have K ∈ Gen V . This shows that M ∈ PresV .

(d) ⇒ (c) Let N ∈ Mod-R and let R(β) → R(α) ϕ−→ N → 0 be exact. Since
HV is exact on Gen V by assumption, it preserves the exactness of the sequence

0 → K → TV (R(α))
TV (ϕ)−−−−→ TV (N) → 0. Thus we have a commutative diagram

with exact rows

R(α) ϕ−−−−→ N −−−−→ 0

∼=
⏐⏐�σ

R(α)

⏐⏐�σN

HV TV (R(α))
HV TV (ϕ)−−−−−−→ HV TV (N) −−−−→ 0

where σR(α) is an isomorphism, since V is selfsmall. This proves that σN is epic,
for any N ∈ Mod-R. In order to prove that ρ is monic in A, thanks to statement
a) in Proposition 1.1, it is sufficient to prove that ρ is monic in GenV = PresV .
Moreover, we see that ρ is monic in TV (Mod-R), since by adjunction ρTV (−) ◦
TV (σ−) = 1TV (−), and TV (σ−) is an isomorphism, since we have already proved
that σ−, and so TV (σ−), is an epimorphism in Mod-R. Therefore, it remains to be
proved that PresV ⊆ TV (Mod-R). Let M ∈ PresV and let V (β) → V (α) ϕ−→ M → 0
be exact. Applying TV to the exact sequence

HV (V (β)) → HV (V (α))
Coker HV (ϕ)−−−−−−−−→ C → 0
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we obtain the commutative diagram with exact rows

TV HV (V (β)) −−−−→ TV HV (V (α)) −−−−→ TV (C) −−−−→ 0

∼=
⏐⏐�ρ

V (β) ∼=
⏐⏐�ρ

V (α)

V (β) −−−−→ V (α) ϕ−−−−→ M −−−−→ 0
which proves that M ∼= TV (C) ∈ TV (Mod-R).

(c) ⇒ (a) This is an immediate consequence of Proposition 1.1. �

3. The tilting theorem

Here we shall obtain a tilting theorem in our present setting with the aid of

Lemma 3.1. Let V ∈ A be a tilting object, R = EndA(V ), and let T
(i)
V , i ≥ 1, be

the i-th left derived functor of TV . Then:
a) Faith V = Ker T ′

V ;
b) T

(i)
V = 0 for all i ≥ 2;

c) AnnV is an idempotent radical;
d) (KerTV , Ker T ′

V ) is a torsion theory in Mod-R;
e) for any N ∈ Mod-R the canonical inclusion AnnV (N) ↪→ N induces a

natural isomorphism T ′
V (AnnV (N)) ∼= T ′

V (N).

Proof. a) If N ∈ FaithV , then by d) and e) of Proposition 1.1 there is an exact
sequence in Faith V

0 → K → R(α) → N → 0.

On the one hand we have the exact sequence

0 → T ′
V (N) → TV (K) → TV (R(α)) → TV (N) → 0,

on the other hand, thanks to Theorem 2.4, we know that V is a ∗-object, and so
by Lemma 1.5 a) the functor TV preserves the exactness of sequences in Faith V .
Thus T ′

V (N) = 0, and the inclusion Faith V ⊆ KerT ′
V is proved. Conversely, for

any N ∈ Ker T ′
V we have a commutative diagram with exact rows

0 −−−−→ K −−−−→ R(α) −−−−→ N −−−−→ 0⏐⏐�∼=
⏐⏐�∼=

⏐⏐�σN

0 −−−−→ HV TV (K) −−−−→ HV TV (R(α)) −−−−→ HV TV (N)

where the first two vertical canonical maps are isomorphisms thanks to Theorem 2.4.
This shows that σN is monic, so that N ∈ FaithV by statement c) in Proposi-
tion 1.1.

b) Given any N ∈ Mod-R and short exact sequence

0 → K → R(α) → N → 0,

since K ∈ FaithV = Ker T ′
V , we see by induction that T (i+1)(N) ∼= T (i)(K) is zero

for any i ≥ 1.
c) We have already remarked in b) of Proposition 1.1 that AnnV is a radical.

Since by a) Faith V = KerT ′
V is obviously closed under extensions, we can conclude

that the associate radical AnnV is idempotent.
d) Thanks to c) we see that (T , Ker T ′

V ) is a torsion theory, where T = {N ∈
Mod-R | AnnV (N) = N}. It remains to be proved that T = KerTV . First, let
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N ∈ T . Then by a) in Proposition 1.1 we have TV (N) ∼= TV (N/ AnnV (N)) =
TV (0) = 0. Conversely, if N ∈ Ker TV , then for any embedding L ↪→ N we have
TV (i) = 0, which proves that AnnV (N) = N , i.e., N ∈ T .

e) Given any N ∈ Mod-R and the associated canonical exact sequence

0 → AnnV (N) → N → N/ AnnV (N) → 0,

employing a), b) and d) we see that T ′
V (AnnV (N)) ∼= T ′

V (N) canonically. �
Our Tilting Theorem follows. We note that several of the arguments are closely

related to those in the proofs of various less general versions, but we include them
for the sake of completeness.

Theorem 3.2. Let V be a tilting object in an abelian category A, R = EndA(V ),
HV = HomA(V,−), H ′

V = Ext1A(V,−), TV the left adjoint to HV , and T ′
V the first

left derived functor of TV . Set

T = Ker H ′
V , F = Ker HV , X = Ker TV , Y = Ker T ′

V .

Then:
a) (T ,F) is a torsion theory in A with T = Gen V , and (X ,Y) is a torsion

theory in Mod-R with Y = FaithV ;
b) the functors HV �T , TV �Y , H ′

V �F , T ′
V �X are exact, and they induce a pair

of category equivalences T
HV−→←−
TV

Y and F
H′

V−→←−
T ′

V

X ;

c) TV H ′
V = 0 = T ′

V HV and HV T ′
V = 0 = H ′

V TV ;
d) there are natural transformations θ and η that, together with the adjoint

transformations ρ and σ, yield exact sequences

0 → TV HV (M)
ρM−−→ M

ηM−−→ T ′
V H ′

V (M) → 0

and
0 → H ′

V T ′
V (N) θN−−→ N

σN−−→ HV TV (N) → 0
for each M ∈ A and for each N ∈ Mod-R.

Proof. Statement a) is contained in Proposition 2.1 and Lemma 3.1. The first part
of b) regarding the exactness of the four restricted functors and the existence of the
first equivalence is an immediate consequence of Theorem 2.4, Lemma 1.5, Propo-
sition 2.1c) and Lemma 3.1b). Moreover, part of d) is contained in Theorem 2.4
and Proposition 1.1.

In order to prove c), we start with an arbitrary object M ∈ A and a fixed
associated short exact sequence

(*) 0 → M → X0 → X1 → 0

with X0 and X1 objects of Gen(V ) = T . Applying HomA(V,−), we obtain the
exact sequence HV (X0) → HV (X1) → H ′

V (M) → H ′
V (X0) = 0. Applying TV we

obtain the commutative diagram with exact rows
X0 −−−−→ X1 −−−−→ 0

ρX0

�⏐⏐∼= ρX1

�⏐⏐∼=

TV HV (X0) −−−−→ TV HV (X1) −−−−→ TV H ′
V (M) −−−−→ 0

which shows that TV H ′
V (M) = 0. Moreover, thanks to Proposition 1.1d) and

Lemma 3.1a), we have HV (M) ∈ FaithV = Ker T ′
V , and so T ′

V HV (M) = 0.
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On the other hand, for any N ∈ Mod-R let us consider an exact sequence of the
form

(**) 0 → K → R(α) → N → 0.

Note that both R(α) and the submodule K belong to FaithV . Applying HV to
the exact sequence 0 = T ′

V (R(α)) → T ′
V (N) → TV (K) →V (R(α)), we obtain the

commutative diagram with exact rows

0 −−−−→ K −−−−→ R(α)

σK

⏐⏐�∼= σ
R(α)

⏐⏐�∼=

0 −−−−→ HV T ′
V (N) −−−−→ HV TV (K) −−−−→ HV TV (R(α))

which shows that HV T ′
V (N) = 0. Finally, by Proposition 1.1d) and hypothesis, we

have T (N) ∈ Gen(V ) = T = Ker H ′
V , therefore H ′

V TV (N) = 0. This completes the
proof of c).

In order to prove the second half of b), first we remark that the inclusion ImH ′
V ⊆

X follows from TV H ′
V = 0 and, similarly, the inclusion ImT ′

V ⊆ F follows from
HV T ′

V = 0.
Next, let M ∈ F . Applying HomA(V,−) to the exact sequence (*), we obtain

the exact sequence 0 → HV (X0) → HV (X1) → H ′
V (M) → 0, and applying TV to

this, we obtain the diagram with exact rows

0 −−−−→ M −−−−→ X0 −−−−→ X1 −−−−→ 0⏐⏐�ηM ρX0

�⏐⏐∼= ρX1

�⏐⏐∼=

0 −−−−→ T ′
V H ′

V (M) −−−−→ TV HV (X0) −−−−→ TV HV (X1) −−−−→ 0

where ηM is the unique isomorphism making the diagram commutative. Simi-
larly, given any N ∈ X and any exact sequence of the form (**), we define
θN : H ′

V T ′
V (N) → N as the unique isomorphism making commutative the dia-

gram

0 −−−−→ K −−−−→ R(α) −−−−→ N −−−−→ 0

σK

⏐⏐�∼= σ
R(α)

⏐⏐�∼=
�⏐⏐θN

0 −−−−→ HV TV (K) −−−−→ HV TV (R(α)) −−−−→ H ′
V T ′

V (N) −−−−→ 0

It can be shown that θN does not depend on the choice of (**), and that (ηM )M∈F
and (θN )N∈X are natural maps.

This proves that F
H′

V−→←−
T ′

V

X is an equivalence.

To complete the proof of d), we first recall that Lemma 3.1e) says that for any
N ∈ Mod-R the canonical inclusion AnnV (N) ↪→ N induces a natural isomor-
phism T ′

V (AnnV (N)) ∼= T ′
V (N). Second, since from Proposition 2.1c) we have

proj dim V ≤ 1, we can similarly prove that for any M ∈ A the canonical projec-
tion M � M/ TrV (M) induces a natural isomorphism H ′

V (M) ∼= H ′
V (M/ TrV (M)).
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Because of this, we can extend the definitions of η and θ to a pair of natural ho-
momorphisms defined in A and in Mod-R respectively, making the diagrams

M −−−−→ M/ TrV (M) −−−−→ 0⏐⏐�ηM ∼=
⏐⏐�ηM/ TrV (M)

T ′
V H ′

V (M)
∼=−−−−→ T ′

V H ′
V (M/ TrV (M))

and
0 −−−−→ AnnV (N) −−−−→ N

∼=
�⏐⏐θAnnV (N)

�⏐⏐θN

H ′
V T ′

V (AnnV (N))
∼=−−−−→ H ′

V T ′
V (N)

commutative for any M ∈ A and any N ∈ Mod-R. Thus we see that ηM is epic,

Ker(ηM ) = TrV (M), θN is monic and Im(θN ) = AnnV (N). Applying Proposi-
tion 1.1c), we complete the proof of d). �

4. Representing faithful torsion theories

Given any abelian category M, let us denote by Db(M) the bounded derived
category of M. If (X ,Y) is a torsion theory in M, then H(X ,Y) is the full sub-
category of Db(M) defined as

H(X ,Y) = {X ∈ Db(M) | H−1(X) ∈ Y , H0(X) ∈ X , Hi(X) = 0 ∀i �= −1, 0}.
H(X ,Y) is called the heart of the t-structure in Db(M) associated with (X ,Y).

Regarding a map X−1 x−→ X0 as a complex . . . 0 → X−1 x−→ X0 → 0 . . . , the
objects of H(X ,Y) are represented, up to isomorphism, by complexes of the form

X : X−1 x−→ X0 with Kerx ∈ Y and Coker x ∈ X .

A morphism in H(X ,Y) is a formal fraction ϕ = s−1f , where:

(1) X
f−→ Y is a representative of a homotopy class of complex maps

X

f

��

X−1 x ��

f−1

��

X0

f0

��

Y Y −1
y

�� Y 0

where X
f−→ Y is null-homotopic if there is a map r0 : X0 → Y −1 such

that
f0 = yr0 and f−1 = r0x;

(2) X
s−→ Y is a quasi-isomorphism, i.e., there are isomorphisms making the

diagrams

0 �� Ker x ��

∼=
��

X−1 x ��

s−1

��

X0 ��

s0

��

Cokerx ��

∼=
��

0

0 �� Ker y �� Y −1
y

�� Y 0 �� Coker y �� 0

commute: quasi-isomorphisms are invertible in H(X ,Y).
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It turns out that H(X ,Y) is an abelian category, and setting

T = Y [1] = {Y → 0 | Y ∈ Y} and F = X = {0 → X | X ∈ X}

the pair (T ,F) is a torsion theory in H(X ,Y) with category equivalences T ∼= Y
and F ∼= X .

An exhaustive description of H(X ,Y) is contained in [14], Chapter 1.
If M has products and coproducts with good behaviour, as in the case of Mod-R,

then H(X ,Y) is cocomplete.

Lemma 4.1. Let M be a complete and cocomplete abelian category with exact co-
products, such that for any family of objects the canonical map from their coproduct
to their product is monic. Then for any torsion theory (X ,Y) in M the associated
heart H(X ,Y) is cocomplete.

Proof. Let α be any cardinal. By hypothesis, the diagram

� :
∏
α

M −→←− M : ∆,

where � is the coproduct functor and ∆ is the diagonal functor, defines an adjoint
pair 〈�, ∆〉. This adjunction naturally extends componentwise to the corresponding
homotopy categories. Moreover, since both � and ∆ are exact, they extend to a
pair of functors �̂ and ∆̂ between the corresponding derived categories. Moreover,
thanks to [16], Section 3, the diagram

�̂ : Db(
∏
α

M) ∼=
∏
α

Db(M) −→←− Db(M) : ∆̂

still defines an adjoint pair 〈�̂, ∆̂〉. This shows that Db(M) admits arbitrary co-
products, and that they are defined componentwise. Moreover, since the assump-
tions on M guarantee that both X and Y are closed under arbitrary coproducts,
we see that H(X ,Y) is closed under coproducts in Db(M). �

Thus by Theorem 1.4 we immediately have:

Proposition 4.2. If (X ,Y) is a torsion theory in Mod-R there is a ∗-object V =
(R/ rR(Y))[1] in H(X ,Y) that induces an equivalence

HV : T � Y : TV .

Definition 4.3. A torsion theory (X ,Y) in Mod-R is faithful if rR(Y) = 0.

Note that (X ,Y) is faithful if and only if RR ∈ Y or, equivalently, if Y generates
Mod-R.

We shall show that when (X ,Y) is faithful in Mod-R, the equivalence HV :
T � Y : TV in Proposition 4.2 is actually induced by a tilting object V with
EndH(V ) = R. To do so we need

Lemma 4.4. If Y generates M, then every object of H(X ,Y) is isomorphic to a
complex of the form Y −1 → Y 0, with Y −1, Y 0 ∈ Y.

Proof. Let Z−1 z−→ Z0 ∈ H(X ,Y) to obtain exact sequences

0 → Y → Z−1 → I → 0 and 0 → I → Z0 → X → 0
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with I = Im z, Y ∈ Y and X ∈ X . Then there are an object Y 0 ∈ Y , an
epimorphism Y 0 → Z0 and a pullback diagram

0 �� P ��

��

Y 0 ��

��

X �� 0

0 �� I ��

��

Z0 ��

��

X �� 0

0 0

(1)

where P is in Y , since Y is closed under subobjects. Then we obtain a further
pullback diagram

0 �� Y �� Y −1 ��

��

P ��

��

0

0 �� Y �� Z−1 ��

��

I ��

��

0

0 0

(2)

where Y −1 is in Y , since Y is closed under extensions. Now (1) and (2) combine to
give a commutative diagram with exact rows

0 �� Y �� Y −1 ��

��

Y 0 ��

��

X �� 0

0 �� Y �� Z−1 �� Z0 �� X �� 0

and so the desired quasi-isomorphism. �
This allows us to prove the following version of Proposition 3.2(ii) on page 17 of

[14].

Proposition 4.5. If Y generates M, then T = Y [1] cogenerates H(X ,Y).

Proof. By the last lemma, we know that every object in H(X ,Y) is isomorphic to
a complex of the form Y −1 y→ Y 0 with Y −1, Y 0 ∈ Y . We shall show that

Y −1
y

�� Y 0

��

Y −1 �� 0

is a monomorphism. So suppose that the commutative diagram

Z−1 z ��

ϕ−1

��

Z0

ϕ0

��

Y −1
y

�� Y 0

��

Y −1 �� 0
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yields a null-homotopic map, i.e., that there is a map r0 : Z0 → Y −1 such that

ϕ−1 = r0z.

Let γ = yr0 − ϕ0 : Z0 → Y 0 so that

γz = yr0z − ϕ0z = yϕ−1 − yϕ−1 = 0

and hence Im z ⊆ Ker γ. But Z0/ Im z ∈ X and Z0/ Ker γ ∈ Y . Thus γ = 0 and so

ϕ0 = yr0.

In other words the map

Z−1 z ��

ϕ−1

��

Z0

ϕ0

��

Y −1
y

�� Y 0

is zero in H(X ,Y), which proves our assertion. �

Now we have the needed results to prove

Theorem 4.6. A torsion theory (X ,Y) in Mod-R is faithful if and only if there is
a cocomplete abelian category H and a tilting object V of H such that R = EndH(V )
and Y = FaithV .

Proof. The condition is sufficient by Theorem 3.2. Necessity follows from Proposi-
tions 4.2 and 4.5, and from Theorem 2.4. �

5. The hereditary case

Throughout this section A is a fixed hereditary cocomplete abelian category, V is
a tilting object in A with R = EndA(V ), and (T ,F), (X ,Y) are the induced torsion
theories in A and Mod-R, respectively. Here we shall show that R is quasitilted,
and verify that it satisfies key properties of quasitilted algebras.

Lemma 5.1. proj dim N ≤ 1 for any N ∈ Y.

Proof. Let N ∈ Y and consider an exact sequence in Mod-R,

0 → K → P → N → 0,

with P projective. Since this sequence is exact in Y we have

(*) 0 → TV (K) → TV (P ) → TV (N) → 0

exact in T . Since T = PresV , there is an exact sequence

(**) 0 → L → V (α) → TV (K) → 0

in T . Now apply HomA(−, L) to (*) to obtain

Ext1A(TV (P ), L) → Ext1A(TV (K), L) → 0 = Ext2A(TV (N), L).

But, since TV (P ) ∈ AddV and L ∈ T , Ext1A(TV (P ), L) = 0 (see Corollary 8.3),
and hence Ext1A(TV (K), L) = 0. Thus (**) splits, so TV (K) ∈ AddV and K ∼=
HV TV (K) is projective. �

Proposition 5.2. The torsion theory (X ,Y) splits in Mod-R.
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Proof. Let A ∈ T and B ∈ F . Then, since Gen V = A, there is an exact sequence

0 → B
f−→ A1

g−→ A2 → 0

with A1, A2 ∈ T . Applying H = HV we obtain an exact sequence

0 → HA1
Hg−−→ HA2

∂−→ H ′B → 0

since H ′A1 = 0. Now, from these two exact sequences we obtain a commutative
diagram

Ext1A(A, A1)
Ext1A(A,g)
−−−−−−−−→ Ext1A(A, A2)

∂′
−−−−−−→ 0

∼=
⏐⏐� ∼=

⏐⏐�
Ext1R(HA, HA1)

Ext1R(HA,Hg)
−−−−−−−−−−→ Ext1R(HA, HA2)

Ext1R(HA,∂)
−−−−−−−−−→ Ext1R(HA, H′B)

∂′′
−−−−−−→ 0

with exact rows, noting that ∂′ = 0 since A is hereditary, and ∂′′ = 0 by Lemma 5.1.
Also, the vertical maps are isomorphisms, since T and Y are closed under exten-
sions, and HV is exact on T and TV is exact on Y . Thus Ext1R(HA, H ′B) = 0, and
so the exact sequence

0 → H ′
V T ′

V (N) θN−−→ N
σN−−→ HV TV (N) → 0

splits for all N ∈ Mod-R. �

Thus, using the Tilting Theorem, Theorem 3.2, we have shown that R is a
quasitilted ring. We shall conclude this section by showing that R enjoys two
further properties possessed by the quasitilted algebras of [14].

Proposition 5.3. rt gl dimR ≤ 2.

Proof. Suppose

0 → K → P1
d−→ P0 → M → 0

exact with P0 and P1 projective in Mod-R. Let I = Im d, so that

0 → K → P1 → I → 0

is exact in Y . Now apply Lemma 5.1. �

Note that this last argument can be modified to show that an arbitrary ring R
with faithful torsion theory (X ,Y) in Mod-R satisfies

rt gl dimR ≤ proj dimY + 1.

Proposition 5.4. inj dimN ≤ 1 for any N ∈ X .

Proof. If N ∈ X , then so is E(N), since from Proposition 5.2 we know that the
torsion theory (X ,Y) splits. Thus there is an exact sequence in X

(K) 0 → N
d0−→ E0

d1−→ E1
d−→ C → 0

in which each Im di is essential in the injective module Ei and

(T ′
V K) 0 → T ′

V (N)
T ′

V (d0)−−−−→ T ′
V (E0)

T ′
V (d1)−−−−→ T ′

V (E1)
T ′

V (d)−−−−→ T ′
V (C) → 0
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represents the zero element in Ext2A(T ′
V (C), T ′

V (N)). Let

E0

p
��

��
��

��
��

d1 �� E1

I

i

		��������

be the epi-monic factorization through I = Im d1 ∈ X , to obtain short exact se-
quences

(T ′
V E) 0 → T ′

V (N)
T ′

V (d0)−−−−→ T ′
V (E0)

T ′
V (p)−−−−→ T ′

V (I) → 0

and

(T ′
V F ) 0 → T ′

V (I)
T ′

V (i)−−−→ T ′
V (E1)

T ′
V (d)−−−−→ T ′

V (C) → 0

then, according to [18], page 175, Lemma 4.1, T ′
V K ∼ 0 if and only if there is a

short exact sequence L in A such that T ′
V F ∼ T ′

V (p)L and T ′
V ET ′

V (p) ∼ 0. In
particular the first condition gives a commutative diagram with exact rows

(L) 0 −−−−→ T ′
V (E0) −−−−→ D −−−−→ T ′

V (C) −−−−→ 0

T ′
V (p)

⏐⏐� ⏐⏐� ∥∥∥
(T ′

V F ) 0 −−−−→ T ′
V (I)

T ′
V (i)−−−−→ T ′

V (E1) −−−−→ T ′
V (C) −−−−→ 0

Now, since F is closed under extensions, all the previous diagrams belong to F ,
and so we can apply H ′

V to see that there is a commutative diagram with exact
rows in Mod-R

(H ′
V L) 0 −−−−→ E0 −−−−→ H ′

V (D) δ−−−−→ C −−−−→ 0

p

⏐⏐� ⏐⏐� ∥∥∥
(F ) 0 −−−−→ I

T ′
V (i)−−−−→ E1

d−−−−→ C −−−−→ 0

in which, since E0 is injective, δ is epi-split, and so d is such. Thus F splits, I is
injective, and

0 → N
d0−→ E0

p−→ I → 0

is an injective resolution of N . �

6. Quasitilted rings characterized

We reiterate from the Introduction:

Definition 6.1. A ring R is called a right quasitilted ring if there is a faithful
splitting torsion theory (X ,Y) in Mod-R such that proj dimY ≤ 1.

The results from Section 5 can be summarized in the following.

Proposition 6.2. If V is a tilting object in a hereditary cocomplete abelian category
A, then R = EndA(V ) is a quasitilted ring with X = Ker TV and Y = FaithV .
Moreover inj dimX ≤ 1 and rt gl dimR ≤ 2.

This section is devoted to proving the converse of Proposition 6.2. To do so, we
need one more lemma.
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Lemma 6.3. Let V be a tilting object in an abelian category A, and let R =
EndA(V ). Then for all L, M ∈ T = Gen V and for all i ≥ 0,

Exti
R(HV (L), HV (M)) ∼= Exti

A(L, M).

Proof. The same proof as in [6], Lemma 3.6.2, works in this general setting. �

Theorem 6.4. A ring R is right quasitilted via the torsion theory (X ,Y) if and only
if there exist a hereditary cocomplete abelian category A and a tilting object V in A
such that R ∼= EndA(V ). Moreover in this case inj dimX ≤ 1 and rt gl dimR ≤ 2.

Proof. Thanks to Proposition 6.2 it remains to be proved that any quasitilted ring
R is isomorphic to EndA(V ) for a tilting object in a suitable hereditary cocomplete
abelian category. Now let H, V and (T ,F) as in Theorem 4.6. To finish the proof,
we have to show that H is hereditary. First, since by Proposition 4.5 any object M
in H admits an exact sequence

(*) 0 → M → X0 → X1 → 0

with X0, X1 ∈ T , for any L ∈ H we have an exact sequence

Ext2H(X0, L) → Ext2H(M, L) → Ext3H(X1, L).

Therefore it is enough to prove that Ext2H(T ,H) = 0 (from which it follows easily
from [18], Lemma 4.1, page 75, that even Ext3H(T ,H) = 0) in order to see that
Ext2H(H,H) = 0. Moreover, since (T ,F) is a torsion theory in H, we see that
Ext2H(T ,H) = 0 if and only if Ext2H(T , T ) = 0 and Ext2H(T ,F) = 0. The first
Ext-vanishing is an immediate consequence of Lemma 6.3 in the case of i = 2, since
proj dimY ≤ 1 by assumption. In order to prove the second Ext-vanishing, let us
consider L ∈ T and M ∈ F . Given an exact sequence (*) for M , applying H = HV ,
since HM = 0 and H ′X0 = 0, we obtain an exact sequence

(**) 0 → HX0 → HX1 → H ′M → 0,

and from (*) and (**) we obtain a commutative diagram with exact rows

Ext1H(L, X0) −→ Ext1H(L, X1) −→ Ext2H(L, M) −→ Ext2H(L, X0)
↓ ∼= ↓ ∼=

Ext1R(HL, HX0) −→ Ext1R(HL, HX1) −→ Ext1R(HL, H ′M)

where Ext2H(L, X0) = 0 since L and X0 belong to T , and Ext1R(HL, H ′M) = 0
since HL ∈ Y , H ′M ∈ X and (X ,Y) splits by assumption. Thus Ext2H(L, M) = 0,
and the proof is complete. �

7. An example and two questions

Following the artin algebra tradition, we say that a ring R is right tilted if there
is a right hereditary ring S with a finitely generated tilting module VS such that
R = End(VS) (see [4] for noetherian examples of such rings). Now, Theorem 6.4
shows that tilted rings are particular cases of quasitilted rings. In this section
we will see that the class of (right) quasitilted rings properly extends the class of
(right) tilted rings, and we shall discuss two problems that arise in connection with
quasitilted algebras.

In the following,

R =
[

Q Q
0 Z

]
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denotes the ring of upper triangular 2 × 2 matrices over Q with 2, 2-entries in Z.
We let

e =
[

1 0
0 0

]
and f =

[
0 0
0 1

]
in R, and we note that if J = J(R), then

fRe = 0, fR = fRf ∼= Z, eRe ∼= Q, eRf = eJ = J ∼= QQZ.

We shall show that R is right quasitilted.
The ring R is left, but not right hereditary, as observed by L. Small in [21].

Indeed according to a well-known result from [12]

rt gl dimR ≤ rt gl dim eRe + rt gl dim fRf + 1 = 2.

However there is an exact sequence

0 → K −→ fR(α) −→ eR −→ eR/eJ → 0,

so we see that proj dim eR/eJ = 2.
To prove that R is quasitilted, we shall employ the following lemmas.

Lemma 7.1. All direct sums of copies of eR/eJ and of eR are injective.

Proof. To see that eR/eJ is injective, let I ≤ RR and γ : I → eR/eJ. If I ≤ Rf,
then γ = 0. Otherwise e ∈ I = eR + If , and one can show that Baer’s Criterion
applies.

Next we will show that eR is injective relative to both fR and eR, so [1],
Proposition 16.12, applies. The former follows since J = eRffRf

∼= QZ and
fR = fRffRf

∼= ZZ. For the latter, suppose that I < eR, γ : I → eR. Then
I = eIf and again γ(I) ≤ eRf which is injective over fRf . Thus there is a
map γ : eRf → eRf that extends γ. Identifying eRf = QZ we see that there
is a x ∈ Q such that γ(erf) = xerf for all erf ∈ eRf . Now multiplication by
xe ∈ eRe ∼= End(eRR) extends γ.

Clearly eReeR and eR/eJ have the d.c.c. on submodules, and in particular on
annihilators of subsets of R. Thus (see [11], page 181) R has a.c.c. on annihilators
of subsets of eR and eR/eJ. Now, since eR/eJ and eR are injective, the result
follows from [11], Proposition 3, page 184. �

Let C = {eR/K | 0 �= K ≤ eR} and let (X ,Y) be the torsion theory generated
by C. Thus, letting

Y = {YR | HomR(C, Y ) = 0 for all C ∈ C}
we have

X = {XR | HomR(X, Y ) = 0 for all Y ∈ Y}.

Lemma 7.2. Y = {eR(α) ⊕ N | N = Nf}.

Proof. Let Y ∈ Y . Since HomR(eR/K, Y ) = 0 whenever 0 �= K ≤ eR, it follows
for x ∈ Y that xe �= 0 implies xeR ∼= eR. Thus,

Y =
∑

I

wαeR +
∑
L

bλfR

with each wαeR ∼= eR. Now let H ⊆ I be maximal with {wαeR | α ∈ H} indepen-
dent, so that P =

⊕
H wαeR ∼= eR(H) is an (injective by Lemma 7.1) projective

direct summand of
∑

I wαeR. One easily checks that Y ∼= eR(H)⊕N with N = Nf .
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Suppose that M = eR(α) ⊕ N with N = Nf. If 0 �= γ ∈ HomR(eR/K, M), then
Im γ ⊆ eR(α) and Im γ � eJ (α) = eJ (α)f, and so some παγ : eR/K → eR is a split
epimorphism. Thus K = 0 and M ∈ Y . �
Corollary 7.3. R ∈ Y and proj dimY ≤ 1.

Proof. Clearly R ∈ Y , and proj dim(eR(α) ⊕Nf) ≤ 1 since eR(α) is projective and
proj dim Nf ≤ 1 as it is an fR = fRf ∼= Z-module. �

It only remains to show that (X ,Y) splits. To do so we need

Lemma 7.4. X = Gen C.

Proof. Clearly Gen C ⊆ X . So let X ∈ X and consider X/XJ . Since every direct
sum of copies of eR/eJ is injective by Lemma 7.1, as in the proof of Lemma 7.2,
X/XJ ∼= eR/eJ (α) ⊕ N with N = Nf. But then N ∈ X ∩ Y = 0. Thus, since J
is nilpotent, there exist tα ∈ X � XJ such that

∑
tαeR = X, and by Lemmas 7.1

and 7.2, each tαeR ∼= eR/Kα with Kα �= 0. �
Proposition 7.5. R is right quasitilted with torsion theory (X ,Y).

Proof. If X ∈ X and (see Lemma 7.2) Y = eR(α) ⊕ Nf, then Ext1R(Y, X) =
Ext1R(Nf, X). To show that the latter is 0, noting that by Lemma 7.4, X ⊆ Gen eR,
we will actually show that Ext1R(N, G) = 0 for any G ∈ Gen eR and N = Nf in
Mod−R. So suppose that

0 → K −→ eR(α) −→ G → 0

is exact, to obtain an exact sequence

0 = Ext1R(N, eR(α)) −→ Ext1R(N, G) −→ Ext2R(N, K) = 0.

Here the first equality is by Lemma 7.1 and the second is because N = Nf has
projective dimension ≤ 1. �

Now, if R is any right tilted ring with torsion theory (X ,Y) in Mod-R, then
there is a right hereditary ring S with a (finitely generated) tilting module VS such
that R = End(VS) and X = Ker(− ⊗R V ). In any case if VS is a tilting module
with R = End(VS), then RV is a tilting module and so is finitely presented, so
that Ker(−⊗R V ) is closed under direct products. As pointed out to us by Enrico
Gregorio, the torsion theory (X ,Y) of Proposition 7.5 cannot result from any tilting
module, because the torsion-free injective module eR embeds as a direct summand
in

∏
0�=K≤eR eR/K, so X is not closed under direct products. In a forthcoming

article with Gregorio, we shall prove that R is actually not a tilted ring.
A quasitilted artin algebra in the sense of Happel, Reiten and Smalø [14] is one

that has a split torsion theory (X0,Y0) in mod-R such that proj dimY0 ≤ 1 and
R ∈ Y0, and, necessarily, inj dimX0 ≤ 1. Clearly a quasitilted ring that happens to
be an artin algebra is quasitilted in their sense. We wonder if the converse is true,
and we shall next present some observations that suggest that it may be true.

Let R be a quasitilted artin algebra with torsion theory (X0,Y0) in mod-R, and
let (X ,Y) be the torsion theory in Mod-R generated by X0. Then, according to
[22], Proposition 2.5, page 140,

X = {X ∈ Mod-R | non-zero factors of X have non-zero submodules in X0}.

Claim 7.6. inj dimX ≤ 1.
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Proof. If X ∈ X there is a non-zero submodule X0 ≤ X with inj dimX0 ≤ 1, so
that given any simple module SR we have Ext2R(S, X0) = 0. But then we have
X1/X0 ≤ X/X0 with Ext2R(S, X1/X0) = 0, and so Ext2R(S, X1) = 0. Continue this
way transfinitely to see that X is a direct limit of modules of injective dimension ≤ 1,
and use [10], Lemma 3.1.16, to get Ext2R(S, X) = 0 for each simple SR. But then
for any M ∈ Mod-R, considering the Loewy series of M , we have Ext2R(M, X) = 0.
Thus inj dimX ≤ 1. �

Now

Y = {YR | HomR(X0, Y ) = 0} = {YR | every fin. gen. submodule of Y is in Y0},

and, of course, RR ∈ Y .

Claim 7.7. proj dimY ≤ 1.

Proof. To show that Y ∈ Y has proj dim Y ≤ 1, consider an exact sequence

0 → K → P
f→ Y → 0

where P is projective. Since R is semiperfect, P =
⊕

I Pα, where each Pα is finitely
generated. Now, for each finite subset F ⊆ I, let KF = Ker f �⊕F Pα

, so that each
KF is projective, since f(

⊕
F Pα) ∈ Y0. But then K =

⋃
F⊆I KF is a direct limit of

projective modules, and so is projective since R is perfect. Thus proj dimY ≤ 1. �

We also note that a proof similar to the one for Claim 7.6 yields

Claim 7.8. Ext1R(Y0,X ) = 0.

So our question becomes one of extending this to Ext1R(Y ,X ) = 0.
As we mentioned in our introductory remarks, Happel, Reiten and Smalø [14]

also characterized quasitilted artin algebras as those of global dimension ≤ 2 whose
finitely generated indecomposable right modules each have either injective or pro-
jective dimension at most 1 (so, by duality, any right quasitilted artin algebra is
also left quasitilted). Thus we are led to question whether a ring of right global
dimension ≤ 2, each of whose right modules is a direct sum of a module of injective
dimension ≤ 1 and a module of projective dimension ≤ 1, is a quasitilted ring.

8. Appendix: Ext and direct sums

We do not know if the analogue of the natural isomorphism Ext1R(
⊕

I Mα, L) ∼=
ΠI Ext1R(Mα, L) for R-modules is valid for infinite sets I and cocomplete abelian
categories. However, for the purpose of this paper it will suffice to show that there
is an embedding Ext1A(

⊕
I Mα, L) � ΠI Ext1A(Mα, L). To this end, assume A is a

cocomplete abelian category and consider an exact sequence

E : 0 → L
f−→ N

g−→
⊕

I

Mα → 0



762 RICCARDO COLPI AND KENT R. FULLER

with injections ιa : Ma →
⊕

I Mα, representing an element of Ext1A(
⊕

I Mα, L),
also consider the pullback diagrams

0 �� L
f

�� N
g

��
⊕

I Mα
�� 0

0 �� L
fα �� Bα

gα ��

jα

��

Mα

ια

��

�� 0

0

��

0

��

(∗)

to obtain representatives

Eα : 0 → L
fα−→ Bα

gα−→ Mα → 0

of Ext1A(Mα, L), and let Θ(E) = (Eα)I ∈ ΠI Ext1A(Mα, L).
To see that Θ is additive, consider the commutative diagram

0→ L ⊕ L
fα⊕f ′

α−→ Bα ⊕ B′
α

gα⊕g′
α−→ Mα ⊕ Mα →0

‖ jα⊕j′α ↓ ια⊕ι′α ↓
0→ L ⊕ L

f⊕f ′
−→ N ⊕ N ′ g⊕g′

−→ (
⊕

I Mα) ⊕ (
⊕

I Mα)→0
∇L ↓ ↓ ‖

0→ L −→ Po −→ (
⊕

I Mα) ⊕ (
⊕

I Mα)→0
‖ ↑ ↑ ∆⊕

I Mα

E + E′ : 0→ L −→ Pb −→
⊕

I Mα →0
‖ ↑ ιa ↑

παΘ(E + E′) : 0→ L −→ Cα −→ Mα →0

Since ∆⊕
I Mα

◦ ια = ∆Mα
and Im ια ⊕ ι′α ⊇ Im ∆Mα

, we see that παΘ(E + E′) ∼
παΘ(E) + παΘ(E′), and so Θ is indeed additive.

To show that Θ is well defined, suppose that E splits with gi = 1⊕
I Mα

. Then

iια : Mα → N and 1Mα
: Mα → Mα

with
giια = ια1Mα

.

Thus there is a unique morphism kα : Mα → Bα with

ιαkα = 1Mα

(and jαkα = iια) and so every Eα splits. Thus Θ is well defined.
Now suppose that each

Eα : 0 → L
fα−→ Bα

gα−→ Mα → 0

splits with some kα : Mα → Bα such that

gαkα = 1Mα
.

Then there is a unique morphism

i :
⊕

I

Mα → N

with
iια = jαkα
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and hence
giiα = gjαkα = ιαgαkα = ιa.

Thus gi = 1⊕
I Mα

, and so E splits.
Now we have proved

Proposition 8.1. Θ : Ext1A(
⊕

I Mα, L) → ΠI Ext1A(Mα, L) is a monomorphism
of abelian groups.

If I is finite then Θ is an isomorphism.

Proposition 8.2. If F is a finite set and A is an arbitrary abelian category, then
Θ : Ext1A(

⊕
F Mα, L) → ΠF Ext1A(Mα, L) is a isomorphism of abelian groups.

Proof. Given exact sequences

Eα : 0 → L
fα−→ Bα

gα−→ Mα → 0

for α = 1, 2, consider the pushout diagram

0

��

0

��

0 �� L
f1 ��

f2

��

B1
g1 ��

ϕ2

��

M1
�� 0

0 �� B2
ϕ1 ��

g2

��

B
p1 ��

p2

��

M1
�� 0

M2

��

M2

��

0 0

(#)

and let p be the product morphism

B
p−→ M1ΠM2

pα
↘ ↙πα

Mi

Then π1pϕ2f1 = p1ϕ1f2 = 0, and similarly π2pϕ1f2 = 0. Thus Im ϕ2f1 ⊆ Ker p.

On the other hand, if K
ϕ−→ B is the kernel of p, then, since B1

ϕ2−→ B is the kernel
of p2 and p2ϕ = 0 there is a commutative diagram

B1
ϕ2−→ B

λ ↖ ↗ϕ

Mi

(with unique λ). Now
0 = p1ϕ = p1ϕ2λ = g1λ

so, since L
f1−→ B1 is the kernel of g1, there is a unique λ′ : K → L with f1λ

′ = λ.
Thus

ϕ2f1λ
′ = ϕ2λ = ϕ

and
Im ϕ2f1 ⊇ Im ϕ2f1λ

′ = Im ϕ = Ker p.
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So we have an exact sequence

E : 0 → L
ϕ2f1−→ B

p−→ M1 ⊕ M2 → 0

with E ∈ Ext1A(M1 ⊕ M2). Finally, upon checking that the diagram

E1 : 0 �� L
f1 �� B1

g1 ��

ϕ2

��

M1
��

ι1

��

0

E1 : 0 �� L
ϕ2◦f1 �� B

p
�� M1 ⊕ M1

�� 0

commutes, we see that π1ΘE ∼ E1, and similarly π2ΘE ∼ E2. �

Corollary 8.3. Let A be a cocomplete abelian category. If Ext1A(V, L) = 0 and
P ∈ Add(V ), then Ext1A(P, L) = 0.

Added in proof

(1) The article with E. Gregorio mentioned in the paragraph following the proof
of Proposition 7.5 has appeared in Colloq. Math., 104, 151–156, 2006, MR2195804.

(2) In Symposia Mathematica, vol. XXIII, 321–412, Instituto Naz. Alta Mat.,
1979, MR0565613 (81i:16032), C. M. Ringel proved that if R is a finite-dimensional
hereditary algebra, the preinjective modules form a torsion class X0 in mod-R that
generates a torsion theory (X ,Y) in Mod-R that splits if and only if R is tame.
This fact provides a negative answer to our question preceding Claim 7.6.

References

[1] F. W. Anderson and K. R. Fuller. Rings and Categories of Modules. Springer-Verlag, Inc.,
New York, Heidelberg, Berlin, second edition, 1992. MR1245487 (94i:16001)

[2] K. Bongartz. Tilted algebras. “Proc. ICRA III (Puebla, 1980)”, LNM 903, Springer, 26–38,
1981. MR0654701 (83g:16053)

[3] S. Brenner and M. Butler. Generalizations of the Bernstein-Gelfand-Ponomarev reflection
functors. “Proc. ICRA II (Ottawa, 1979)”, LNM 832, Springer, 103–169, 1980. MR0607151
(83e:16031)

[4] R. R. Colby and K. R. Fuller. Tilting, cotilting and serially tilted rings. Comm. Algebra, 18,
1585–1615, 1990. MR1059750 (91h:16011)

[5] R. R. Colby and K. R. Fuller. Tilting and torsion theory counter equivalences. Comm. Algebra,
23, 4833–4849, 1995. MR1356105 (96k:16015)

[6] R. R. Colby and K. R. Fuller. Equivalence and Duality for Module Categories. Cambridge
University Press, 2004. MR2048277 (2005d:16001)

[7] R. Colpi. Tilting in Grothendieck Categories. Forum Math., 11, 735–759, 1999. MR1725595

(2000h:18018)
[8] R. Colpi and J. Trlifaj. Tilting modules and tilting torsion theories. J. Algebra, 178, 614–634,

1995. MR1359905 (97e:16003)
[9] S. E. Dickson. A torsion theory for abelian categories. Trans. Amer. Math. Soc., 121, 223–235,

1966. MR0191935 (33:162)
[10] E. E. Enochs and O. M. Jenda. Relative homological algebra. Walter de Gruyter & Co., Berlin,

2000. MR1753146 (2001h:16013)
[11] C. Faith. Rings with ascending condition on annihilators. Nagoya Math. J., 27, 179–191,

1966. MR0193107 (33:1328)
[12] R. Fossum, P. Griffith, I. Reiten. Trivial Extensions of Abelian Categories. Springer-Verlag

Lect. Notes in Math. 456, 1975. MR0389981 (52:10810)
[13] D. Happel and I. Reiten. An introduction to quasitilted algebras. An. St. Univ. Ovidius

Constanta, 4, 137–149, 1996. MR1428462 (98g:16009)
[14] D. Happel, I. Reiten, S. O. Smalø. Tilting in Abelian Categories and Quasitilted Algebras.

Memoirs of the A.M.S., vol. 575, 1996. MR1327209 (97j:16009)

http://www.ams.org/mathscinet-getitem?mr=2195804
http://www.ams.org/mathscinet-getitem?mr=0565613
http://www.ams.org/mathscinet-getitem?mr=0565613
http://www.ams.org/mathscinet-getitem?mr=1245487
http://www.ams.org/mathscinet-getitem?mr=1245487
http://www.ams.org/mathscinet-getitem?mr=0654701
http://www.ams.org/mathscinet-getitem?mr=0654701
http://www.ams.org/mathscinet-getitem?mr=0607151
http://www.ams.org/mathscinet-getitem?mr=0607151
http://www.ams.org/mathscinet-getitem?mr=1059750
http://www.ams.org/mathscinet-getitem?mr=1059750
http://www.ams.org/mathscinet-getitem?mr=1356105
http://www.ams.org/mathscinet-getitem?mr=1356105
http://www.ams.org/mathscinet-getitem?mr=2048277
http://www.ams.org/mathscinet-getitem?mr=2048277
http://www.ams.org/mathscinet-getitem?mr=1725595
http://www.ams.org/mathscinet-getitem?mr=1725595
http://www.ams.org/mathscinet-getitem?mr=1359905
http://www.ams.org/mathscinet-getitem?mr=1359905
http://www.ams.org/mathscinet-getitem?mr=0191935
http://www.ams.org/mathscinet-getitem?mr=0191935
http://www.ams.org/mathscinet-getitem?mr=1753146
http://www.ams.org/mathscinet-getitem?mr=1753146
http://www.ams.org/mathscinet-getitem?mr=0193107
http://www.ams.org/mathscinet-getitem?mr=0193107
http://www.ams.org/mathscinet-getitem?mr=0389981
http://www.ams.org/mathscinet-getitem?mr=0389981
http://www.ams.org/mathscinet-getitem?mr=1428462
http://www.ams.org/mathscinet-getitem?mr=1428462
http://www.ams.org/mathscinet-getitem?mr=1327209
http://www.ams.org/mathscinet-getitem?mr=1327209


TILTING OBJECTS 765

[15] D. Happel and C. M. Ringel. Tilted algebras. Trans. Amer. Math. Soc., 274, 399–443, 1982.
MR0675063 (84d:16027)

[16] B. Keller. Derived Categories and Tilting (to appear in Handbook of Tilting Theory).
[17] C. Menini and A. Orsatti. Representable equivalences between categories of modules and

applications. Rend. Sem. Mat. Univ. Padova, 82, 203–231, 1989. MR1049594 (91h:16026)
[18] B. Mitchell. Theory of Categories. Academic Press, London and New York, 1965. MR0202787

(34:2647)

[19] Y. Miyashita. Tilting modules of finite projective dimension. Math. Z., 193, 113–146, 1986.
MR0852914 (87m:16055)

[20] N. Popescu. Abelian Categories with applications to Rings and Modules. Academic Press,
London and New York, 1973. MR0340375 (49:5130)

[21] L. Small. An example in noetherian rings. Proc. Natl. Acad. Sci. USA, 54, 1035–1036, 1965.
MR0188252 (32:5691)

[22] Bo Stentröm. Rings of Quotients. Springer-Verlag, Berlin, Heidelberg, New York, 1975.
MR0389953 (52:10782)

Department of Pure and Applied Mathematics, University of Padova, via Belzoni 7,

I 35100 Padova, Italy

E-mail address: colpi@math.unipd.it

Department of Mathematics, University of Iowa, Iowa City, Iowa 52242-1419

E-mail address: kfuller@math.uiowa.edu

http://www.ams.org/mathscinet-getitem?mr=0675063
http://www.ams.org/mathscinet-getitem?mr=0675063
http://www.ams.org/mathscinet-getitem?mr=1049594
http://www.ams.org/mathscinet-getitem?mr=1049594
http://www.ams.org/mathscinet-getitem?mr=0202787
http://www.ams.org/mathscinet-getitem?mr=0202787
http://www.ams.org/mathscinet-getitem?mr=0852914
http://www.ams.org/mathscinet-getitem?mr=0852914
http://www.ams.org/mathscinet-getitem?mr=0340375
http://www.ams.org/mathscinet-getitem?mr=0340375
http://www.ams.org/mathscinet-getitem?mr=0188252
http://www.ams.org/mathscinet-getitem?mr=0188252
http://www.ams.org/mathscinet-getitem?mr=0389953
http://www.ams.org/mathscinet-getitem?mr=0389953

	1. Maximal equivalences
	2. Tilting objects
	3. The tilting theorem
	4. Representing faithful torsion theories
	5. The hereditary case
	6. Quasitilted rings characterized
	7. An example and two questions
	8. Appendix: Ext and direct sums
	Added in proof
	References

