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Abstract

We discuss a particularly symmetric model of neutrino mixings where, with good accuracy, the
atmospheric mixing anglé,3 is maximal,613 = 0 and the solar angle satisfies ?sﬂiz =1/3
(Harrison—Perkins—Scott (HPS) matrix). The discrete symmaiys a suitable symmetry group
for the realization of this type of model. We construct a model where the HPS matrix is exactly
obtained in a first approximation without imposing ad hoc relations among parameters. The crucial
issue of the required VEV alignment in the scalar sector is discussed and we present a natural solu-
tion of this problem based on a formulation with extra dimensions. We study the corrections from
higher dimensionality operators allowed by the symmetries of the model and discuss the conditions
on the cut-off scales and the VEVs in order for these corrections to be completely under control.
Finally, the observed hierarchy of charged lepton masses is obtained by assuming a larger flavour
symmetry. We also show that, under general conditions, a magigahn never arise from an exact
flavour symmetry.
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1. Introduction

By now there is convincing evidence for solar and atmospheric neutrino oscillations.
The Am? values and mixing angles are known with fair accurfidy For Am? we have:
AmZ,~ 2.5 x 1072 eV2 and Am2, ~ 8 x 1075 eV2. As for the mixing angles, two
are large and one is small. The atmospheric afgids large, actually compatible with
maximal but not necessarily so: at:30.31 < sin? #3 < 0.72 with central value around
0.5. The solar anglé1, is large, sif 61> ~ 0.3, but certainly not maximal (by about 5¢-6
now [2]). The third angled,3 is strongly limited, mainly by the CHOOZ experiment, and
has at present as3upper limit given by about sfr9;3 < 0.08.

In spite of this experimental progress there are still many alternative routes in construct-
ing models of neutrino masses. This variety is mostly due to the considerable ambiguities
that remain. First of all, it is essential to know whether the LSND sifjalwhich has not
been confirmed by KARMENA4] and is currently being double-checked by MiniBoone
[5], will be confirmed or will be excluded. If LSND is right we probably need at least
four light neutrinos; if not we can do with only the three known ones, as we assume here
in the following. As neutrino oscillations only determine mass squared differences a cru-
cial missing input is the absolute scale of neutrino masses (within the existing limits from
terrestrial experiments and cosmold@y7]). Even for three neutrinos the pattern of the
neutrino mass spectrum is still undetermined: it can be approximately degenerate, or of
the inverse hierarchy type or normally hierarchical. Given for granted that neutrinos are
Majorana particles, their masses can still arise either from the see-saw mechanism or from
generic dimension-five non-renormalizable operators.

At a more direct level, we do not know how small the mixing arfigleis and how close
to maximal isf>3. One can make a distinction between “normal” and “special” models.
For normal model®»3 is not too close to maximal angls is not too small, typically a
small power of the self-suggesting order parameter with r = Amgol/Amgtm ~ 1/35.
Special models are those where some symmetry or dynamical feature assures in a natural
way the near vanishing @k 3 and/or of6>3 — 7 /4. Normal models are conceptually more
economical and much simpler to construct. We expect that experiment will eventually find
thatf,3 is not too small and thakbs is sizably not maximal. But if, on the contrary, either
013 very small orfz3 very close to maximal will emerge from experiment, then theory
will need to cope with this fact. Thus it is interesting to conceive and explore dynamical
structures that could lead to special models in a natural way.

We want to discuss here some particularly special models wher@hodindooz — /4
exactly vanish. Then the neutrino mixing matrik/s; (f =e, n, v, 1 =1,2,3), in the
basis of diagonal charged leptons, is given by, apart from sign convention redefinitions:

€12 512 0
Usi = | —s12/v/2 c12/v/2 —1/v2 |, (1)
—512/v/2 c1p/v2  1/V2

whereci2 and sy stand for cosi12 and sirg;o, respectively. It is much simpler to write
natural models of this type withy» small and thus many such attempts are present in the

1 More precisely, they vanish in a suitable limit, with correction terms that can be made negligibly small.
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early literature. More recently, given the experimental valué;gfthe more complicated
case ofs12 large was also attacked, using non-Abelian symmetries, either continuous or
discrete[8—14]. In many examples the invoked symmetries are particularly ad hoc and/or
no sufficient attention is devoted to corrections from higher-dimensional operators that
can spoil the pattern arranged at tree level and to the highly non-trivial vacuum alignment
problems that arise if naturalness is required also at the level of vacuum expectation values
(VEVS).

An interesting special case of Eg.) is obtained fors12 = 1/+4/3, i.e. the so-called tri-
bimaximal or Harrison—Perkins—Scott mixing pattern (HPS3], with the entries in the
second column all equal tg/4/3 in absolute value:

2

1
3 5 0O
— 1 1 1
UHPS— —% ﬁ _ﬁ . (2)
-1 1 1
% B2

This matrix is a good approximation to present datawould be interesting to find a
natural and appealing scheme that leads to this matrix with good accuracy. In fact this
is a most special model where not orlys and 623 — /4 vanish but als@12 assumes
a particular value. Clearly, in a natural realization of this model, a very constraining and
predictive dynamics must be underlying. We think it is interesting to explore particular
structures giving rise to this very special set of models in a natural way. In this case we
have a maximum of “order” implying special values for all mixing angles: at the other
extreme, anarchical models have been prop§Egll where no structure at all is assumed
in the lepton sector, so that, for examme; andé,3 are predicted to be in no way special,
except that there must be a smallest angle (probably near to the present bound) and a largest
angle (expected sizably different from maximal).

Interesting ideas on how to obtain the HPS mixing matrix have been discussed in
Ref.[13]. The most attractive models are based on the discrete symmgtrayhich ap-
pears as particularly suitable for the purpose, and were presented ifReid] In the
present paper we start by discussing some general features of HPS models. We then present
a new version of a4 model, with (moderate) normal hierarchy, and discuss in detail all
aspects of naturalness in this model, also considering effects beyond tree level and the
problem of vacuum alignment. There are a number of substantial improvements in our ver-
sion with respect to Ma in Refl1]. First, the HPS matrix is exactly obtained in a first
approximation when higher-dimensional operators are neglected, without imposing ad hoc
relations among parameters (in REf1] the equality ofb andc is not guaranteed by the
symmetry). The observed hierarchy of charged lepton masses is obtained by assuming a
larger flavour symmetry. The crucial issue of the required VEV alignment in the scalar sec-
tor is considered with special attention and we present a natural solution of this problem.
We also keep the flavour scalar fields distinct from the normal Higgs bosons (a proliferation
of Higgs doublets is disfavoured by coupling unification) and singlets under the Standard

2 In the HPS scheme té#1» = 0.5, to be compared with the latest experimental determing@ipar? 015 =
5+009
0457 o8-
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Model gauge group. Last not least, we study the corrections from higher dimensionality
operators allowed by the symmetries of the model and discuss the conditions on the cut-off
scales and the VEVs in order for these corrections to be completely under control.

2. General considerations

The HPS mixing matrix implies that in a basis where charged lepton masses are diagonal
the effective neutrino mass matrix is given by = Uppsdiag(m1, mo, m3)U,§PS:

ma (0 O 0N o1 1Ly /4 =2 -2
mv:[7<o 1 _1>+?(1 1 1>+€<—2 1 1)} 3)
0 -1 1 111 -2 1 1

The eigenvalues ofi, arems1, m», m3 with eigenvector§—2, 1, 1)/+/6, (1, 1, 1)/+/3 and

(0,1, —1)/+/2, respectively. In general, apart from phases, there are six parameters in a real
symmetric matrix liken,: here only three are left after the values of the three mixing an-
gles have been fixed a la HPS. For a hierarchical speatrany mo > m1, m% ~ Amgtm,

m3/m% ~ Am2,/ Am2,,, andm1 could be negligible. But also degenerate masses and in-
verse hierarchy can be reproduced: for example, by takigg= —mo = m1 we have a
degenerate model, while fary; = —m> andm3z = 0 an inverse hierarchy case (stabil-

ity under renormalization group running strongly prefers opposite signs for the first and
the second eigenvalue which are related to solar oscillations and have the smallest mass
squared splitting). From the general expression of the eigenvectors one immediately sees
that this mass matrix, independent of the valuesigfleads to the HPS mixing matrix. It

is a curiosity that the eigenvectors are the same as in the case of the Fritzsch—Xing (FX)
matrix [16] but with the roles of the first and the third ones interchanged (so that for HPS
623 is maximal while sif 201, = 8/9, while for FX the two mixing angles keep the same
values but are interchanged).

If the atmospheric mixing angle is really maximal as in the HPS ansatz or close to
maximal, it seems quite natural to interpret this as the effect of a flavour symmetry. It
would be tempting to think of an approximate flavour symmetry suchtthat /4 arises
in the limit of exact symmetry, that is by neglecting all symmetry breaking effects. Here
we will show that this is not the case and that, under quite general conditions, we can never
obtainé,3 = /4 as a result of aexact flavour symmetry We assume that this symmetry
is a meaningful symmetry, that is it is only broken by small effects, in the real world. In
other words here we exclude symmetries that need breaking terms of order one to describe
the observed fermion masses and mixing angles. Apart from that the symmetry can be
of whatever type, global or local, continuous or discrete. Being interested in the limit of
exact symmetry, we can neglect the sector giving rise to flavour symmetry breaking. We
assume that the fields on which such symmetry acts are the fields of the standard model,
plus possibly the right-handed neutrinos, so that our results will also cover the see-saw
case. Last, we assume canonical kinetic terms, so that the symmetry acts on the fields of
the standard model through unitary transformations.

3 For related observations see Ridf7].
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Since the flavour symmetry is broken only by small effects, the mass matrices for
charged leptons and neutrinos can be written as:

me=md+--, my=md+ .-, 4)

where dots denote symmetry breaking effects mj’dhas rank less or equal than one.
Rank greater than one, as for instance, when both the tau and the muon have non-vanishing
masses in the symmetry limit, is clearly an unacceptable starting point, since the difference
between the two non-vanishing masses can only be explained by large breaking effects,
which we have excluded, or by a fine-tuning, which we wish to avoid. If the rani,of
vanishes, than all mixing angles in the charged lepton sector are undetermined in the sym-
metry limit and6o3 is also completely undetermined. Therefore we can focus on the case
Whenmg has rank one. Iﬁa? has rank one, then by a unitary transformations we can always

go to a field basis where

0 0 O
m? = (o 0 0 ) . (5)
0 0 m
As in the original basis, the action of the flavour symmetry on the new field basis is per-

fectly defined. IfU, and U, are the unitary matrices that diagonal'mé andeTmS, it

will be possible to adopt the parametrizatid8]

Uy = K, R23(033) PT R13(0}3) P R12(61>). (6)

where R;; is the orthogonal matrix representing a rotation in thjesector, P =
diagl, 1, exp(i§)) andK = diaglexp(ia1), explic2), expliag)). Moreover:

Ue = Ri2(015). 0

where the anglé;, is completely undetermined. The physical mixing matrikigy ys =
UJUU and we find:
vV
| tanfzs| = |coshs, tandyqe’ ™2 + sinefZ%ei Ore)), (8)
23
Therefore, in general, the atmospheric mixing angle is always undetermined at the leading
order. When small symmetry breaking terms are adde;d?ccand mg, it is possible to
obtaind,3 = /4, provided these breaking terms have suitable orientations in the flavour
space. If the breaking terms are produced by a spontaneous symmetry breaking through
the minimization of the potential energy of the theory, in general two independent scalar
sectors are needed. One of them communicates the breaking to charged fermions and the
other one feeds the breaking to neutrinos. In such a framework a maximal atmospheric
mixing angle is always the result of a special vacuum alignment.
In the literature there are symmetries predictiag large, not necessarily maximal, in
the limit of exact symmetry19]. For instance, this is produced by1) flavour symme-
tries, when the (1) charges of left-handed leptons and right-handed charged leptons are
(g1, 0, 0) and(p1, p2, 0), respectively, withy1 and p1 2 all non-vanishing and different. In
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the symmetry limit, such an assignment implies ¢~ RL, m, ~ LT L):

0O O 0
mnggz 0 |oz|2 aB |, (9)
0 af |BI?
and:
0 0 0
mOml=|0 1P+ &y +78 |. (10)

0 a7 +y'B IB1P+ 1V
with «, 8, «’, 8’ andy’ independent parameters of the same order of magnitude. If there
is no conspiracy among these parameters, the resdigmixing is generically large.

In conclusion, a large lepton mixing in the 23 sector is possible as the result of an ex-
act flavour symmetry. But if we want to reproduge = 7z /4 in some limit of our theory,
necessarily this limit cannot correspond to an exact symmetry in flavour space. A maxi-
mal atmospheric mixing angle can only originate from breaking effects as a solution of a
vacuum alignment problem.

3. Basic structure of the model

Our model is based on the discrete grotyfollowing Refs.[10,11] where its structure
and representations are described in detail. Here we simply recalijhiatthe discrete
symmetry group of the rotations that leave a tetrahedron invariant, or the group of the even
permutations of 4 objects. It has 12 elements and 4 inequivalent irreducible representa-
tions denoted 1,’11” and 3 in terms of their respective dimensions. Introducinghe
cubic root of unity,w = exp(i %”), so that 14+ w + w? = 0, the three one-dimensional rep-
resentations are obtained by dividing the 12 elementd poin three classes, which are
determined by the multiplication rule, and assigning to (class 1, class 2, class 3) a fac-
tor (1,1, 1) for 1, or (1, w, ®?) for 1’ or (1, w?, w) for 1”. The product of two 3 gives
3x3=1+1+1"+3+3. Also0 I x1=1',1x1"=1,1x1"=1, etc. For
3~ (a1, a2, a3), 3 ~ (b1, b2, b3) the irreducible representations obtained from their prod-
uct are:

1=a1b1 + a>bs + azbs, (11)
1 = a1b1 + wazbs + w?asbs, (12)
1" = a1b1 + w2azby + wazbs, (13)
3~ (azbs, agb1, a1by), (14)
3~ (asbz, a1bs, azb1). (15)

Following Ref.[11] we assigns leptons to the four inequivalent representatioAg:déft-
handed lepton doubletstransform as a triplet 3, while the right-handed charged leptons
e, u¢ andz¢ transform as 1,’land 1/, respectively. The flavour symmetry is broken by
two real tripletsp andg’ and by a real singlét. At variance with the choice made Fi/],
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these fields are gauge singlets. Hence we only need two Higgs doipletéot three
generations of them as in R¢11]), which we take invariant undets. We assume that
some mechanism produces and maintains the hierdighy) = v, 4 < A whereA is the
cut-off scale of the theoyThe Yukawa interactions in the lepton sector read:

Ly = yee (@) + yun(@D)" + yr t°(@l) + xa& D) + xa(¢'ll) +hCA----. (16)

In our notation,(33) transforms as 1(33)’ transforms as’land (33)” transforms as’\
Also, to keep our notation compact, we use a two-component notation for the fermion
fields and we set to 1 the Higgs fieldg ; and the cut-off scalet. For instancey.e(¢l)
stands fory.e€(¢l)ha/A, x,£(11) stands forx,&(Ih,lh,)/A? and so on. The Lagrangian
Ly contains the lowest order operators in an expansion in powerg/Afots stand for
higher-dimensional operators that will be discussed in Se&i@ome terms allowed by
the flavour symmetry, such as the terms obtained by the exchdnrgep, or the term(il)
are missing inCy. Their absence is crucial and will be motivated later on.

As we will demonstrate in Sectiof, the fieldsy’, ¢ and& develop a VEV along the
directions:

(¢)=(',0,0),
(@) = (v,v,v),
(&) =u. (17)

Therefore, at the leading order of thgAL expansion, the mass matrices andm, for
charged leptons and neutrinos are given by:

v [ e Ye Ye
my = UdZ Yu  Yuw yua)2 , (18)
Y yrwz Yy
02 (@ 0 0
my = Z“ (0 a d) , (29)
0 d a
where
u v/
ClEva, dzxdz. (20)
Charged leptons are diagonalized by
1 /1 11
- —|1 * o]l (21)
V3 <1 10} a)2>
and charged fermion masses are given by:
me:\/éyevd%v mﬂzﬁyﬂvd%v m'[:\/éyfvd%‘ (22)

4 This is the well-known hierarchy problem that can be solved, for instance, by realizing a supersymmetric
version of this model.
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We can easily obtain a natural hierarchy ameng m,, andm. by introducing an addi-
tional U(1) ¢ flavour symmetry under which only the right-handed lepton sector is charged.
We assignF-charges 0, 2 and 3—4 16, u© ande®, respectively. By assuming that a flavon

0, carrying a negative unit of, acquires a VEM0)/A = A < 1, the Yukawa couplings
become field dependent quantitigs, . = y..,..- (6) and we have

yerOM),  yu~0(3),  yer0(W¥). (23)

In the flavour basis the neutrino mass matrix réads

2 [a+2d/3 —d/3  —d/3
m, = -4 ( —d/3 2d/3 a —d/3) , (24)
AN _q/3 a—d/3 23
and is diagonalized by the transformation:
2
UTmyU = Z‘—“diag(a+d,a,—a+d), (25)
with
V2/3  1//3 0
U= (‘1/\/6 1/v/3 —1/~/§) . (26)
-1/v/6 1/V/3 +1/42

The leading order predictions are fahs = 1, tarf 61, = 0.5 andf13 = 0. The neutrino
masses ar@1 = a+d, m» =a andmsz = —a +d, in units ofvf/A. We can expresia|, |d|
interms ofr = Am2,/ Am%, = (Im2|? — [m1]?)/(Im3|? — |m1|?), Am3, = Im3|? — |m1|?
and cosA, A being the phase difference between the complex numbansid:

2 — Amzt
V20a| e = ¥ 0

A 2cosAVI—2r
2
v
\/i|d|X” =V1—2r\/Amd, (27)

To satisfy these relations a moderate tuning is needed in our model. Due to the absence of
(11) in EqQ. (16) which we will motivate in the next section,andd are of the same order

in 1/A, see Eq(20). Therefore we expect thai| and|d| are close to each other and, to
satisfy Eq.(27), cosA should be negative and of order one. We obtain:

1
my)?=|—r+—s—-—— Amitm,
8CoZ A(1—2r)
1 2

2
. SN
Ml = g g A 2 M Matm
1
2 2
e ——= |Am2,. 28
I3l [ r+8C0§A(l—2r)] Matm (28)

5 Notice that a unitary change of basis like the one in@®a) will in general change the relative phases of the
eigenvalues ofi,, .
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If cosA = —1, we have a neutrino spectrum close to hierarchical:
|m3] ~ 0.053 eV, |m1| ~ |m2| ~ 0.017 eV. (29)

In this case the sum of neutrino masses is about 0.087 eV. K é®accidentally small, the
neutrino spectrum becomes degenerate. The valye ©f, the parameter characterizing
the violation of total lepton number in neutrinoless double beta decay, is given by:

1+4r 1
2 2
=|- A . 30
el [ 9 T 8cog Al — 2r):| Matm (30)

For cosA = —1 we getm,.| = 0.005 eV, at the upper edge of the range allowed for normal
hierarchy, but unfortunately too small to be detected in a near future. Independently from
the value of the unknown phagewe get the relation:

10 r
Im3l? = Imeel? + 5 Amgm| 1= 5 ), (31)
9 2
which is a prediction of our model.
It is also important to get some constraint on the mass scales involved in our construc-
tion. From Eqs(27) and (20)by assuming; ~ 1v, ~ 250 GeV, we have

/
A~18x 1015(%) GeV. (32)

Since, to have a meaningful expansion, we expést A, we have the upper bound

A <1.8x 10" GeV. (33)

Beyond this energy scale, new physics should come into play. The smaller the'yatio

the smaller becomes the cut-off scale. For instance, whgn = 0.03, A should be
close to 1&* GeV. A complementary information comes from the charged lepton sec-
tor, Eq.(22). A lower bound orv/A can be derived from the requirement that the Yukawa
couplingy, remains in a perturbative regime. By asking, < 250 GeV, we get

Y - 0004 (34)
A

Finally, by assuming that all the VEVs fall in approximately the same range, which will be
shown in Sectior®, we obtain the range

/

0004< L~ o1 (35)
A A A

that will be useful to estimate the effects of higher-dimensional operators in Séction
Correspondingly the cut-off scale will range between abodi? 26d 18 x 10 GeV.

4. Vacuum alignment
In this section we investigate the problem of achieving the vacuum alignment of

Eq. (17). At the same time we should prevent, at least at some level, the interchange be-
tween the fieldg and¢’ to produce the desired mass matrices in the neutrino and charged
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lepton sectors. As we will see, there are several difficulties to naturally accomplish these
requirements. By minimizing the scalar potential of the theory with respegtand ¢’
we get six equations that we would like to satisfy in terms of the two unknoandv’.
Even though we expect that, due to the symmadigythe six minimum conditions are not
necessarily independent, such an expectation turns out to be wrong in the specific case,
unless some additional relation is enforced on the parameters of the scalar potential. These
additional relations are in general not natural. For instance, even by imposing them at the
tree level, they are expected to be violated at the one-loop order. Therefore, as we will now
illustrate, the minimum conditions cannot be all satisfied by our vacuum configuration.

As an example here we analyze the most general renormalizable scalar potential invari-
ant underA4 and depending upon the triplegsand¢’ of the LagrangianC in Eq. (16).
The term(ll) in £ can be forbidden by an additional symmetry, commuting wigh One
possibility is just the total lepton numbéror a discrete subgroup of it. Here we consider
a Z4 symmetry under whicly < transform into—i f¢ (f = e, u, t), [l into il, ¢ is invariant
and¢’ changes sign. This symmetry also explains whagnd¢’ cannot be interchanged.
The scalar potential contains bilinears;, trilinears7; and quartic termg);, invariant
under the groupls x Z4. A choice of independent invariants is:

2 2 2
B1 =91+ ¢5 + 93,
12 12 12
By = 1" + ¢3" + 937,
T1 = p1902¢3,
To = 919595 + 20501 + ©391¢5,
01= 0303 + 9205 + 3972,
2

3

Q2= [¢f + 0’03 + wp}
03 = 01?0 + 05205 + s,
Q4= |(p/12+w2(p/22+w¢éz 2
05 = Q1920105 + V2030503 + P301930]

Q6= (97 +¢5 +03) (01 + 92 + %),

07 = (92 + 0?03 + 03 (912 + Wi + W?P}?). (36)

The scalar potential reads:

2 2

Mi ., M5
V=7314‘732+M1T1+M2T2+ClQ1+02Q2+C3Q3+C4Q4

+ 505+ ceQp + (c707+C.C). (37)
We start by analyzing the field configuration:

() =(v,v,v), (¢)=(',0,0). (38)
The minimum conditions are:
A%

o = M2v 4 n1v? + 4erv® 4 2c6vv'2 + 2(c7 + E7)vv'2 =0,
?1
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A%
P M2y 4 p1v? + 4erv 4 2ce00'2 + 2(0)207 + a)57)vv’2 =0,
@2
A%
Son = M2v 4 p1v? + 4erv 4 2ce0v'2 + 2(we7 + w257)vv’2 =0,
@3
aV
— = Mzzv/ + 4cqv'® + 6cgv?y’ =0,
09
A%
— = vV’ + csv?y’ =0,
dpy
A%
7 = v’ + 5o’y =0. (39)
d¢pg

The equation$V /d¢; = 0 are clearly incompatible unlegs = 0. Even by forcinge
to vanish, we are left with three independent equations for the two unkmoamd v/,
which, for generic values of the coefficients, admit only the trivial solutica v’ = 0.
This negative results cannot be modified by addiny titne terms depending on the singlet
&. Also by investigating the problem in a slightly more general framework, witbal and
(¢, &) complex, we reach the same conclusion. Although we have not a no-go theorem,
these examples show the difficulty to obtain the desired alignment.

The difficulty illustrated above is hot common to all vacua. For instance, the other pos-
sible alignment:

(p)=(v,v,v), (@) =@ v, v) (40)
leads to the minimum conditions:

A4 2 2 /2 3 /2

3_(0‘ = M7v+ p1v° + p2v'c + 4cav® + (205 + 6eg)vv © =0,
l

av 2./ / /3 2./

8_90/ = M5V 4 2020V + 4c3v ® + (205 4 6eg)v v = 0. (42)
i

In a non-vanishing portion of the parameter space, these equations have non-trivial solution
with non-vanishing andv’.

It is possible to show that, by sufficiently restricting the form of the most general scalar
potential invariant unded,, the desired alignment can be obtained. Restrictions that are
unnatural in a generic model becomes technically natural in a supersymmetric (SUSY)
model. The well-known non-renormalization properties of the superpotential allow to ac-
cept, at least from a technical viewpoint, a restricted number of terms, compared to what
the A, symmetry would permit. Undesired terms of the superpotential that are set to zero
at the tree level are not generated at any order in perturbation theory. Indeed we have
produced a SUSY example of this type, where the alignment problem is solved and this
example is discussed in detail&ppendix A However, our real aim is to build a fully nat-
ural model, where all the terms allowed by the symmetries are present and where the only
deviations from the symmetry limit are provided by higher-dimensional operators, rather
than by small violations of ad-hoc imposed relations. As we will now see, there exist a
simple and economic solution in the context of theories with one extra spatial dimension.
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5. Az moddl in an extradimension

One of the problems we should overcome in the search for the correct alignment is that
of keeping neutrino and charged lepton sectors separate, including the respective symmetry
breaking sectors. Here we show that such a separation can be achieved by means of an extra
spatial dimension. The space—time is assumed to be five-dimensional, the product of the
four-dimensional Minkowski space—time times an interval going fsom0 toy = L. At
y =0 andy = L the space—time has two four-dimensional boundaries, which we will call
branes. Our idea is that matter SU(2) singlets such‘ag®, t¢ are localized aty = 0,
while SU(2) doublets, such alsare localized apy = L (seeFig. 1). Neutrino masses arise
from local operators ap = L. Charged lepton masses are produced by non-local effects
involving both branes. Later on we will see how such non-local effects can arise in this
theory. The simplest possibility is to introduce a bulk fermion, depending on all space—time
coordinates, that interacts with, 1, t¢ at y = 0 and with/ at y = L. The exchange of
such a fermion can provide the desired non-local coupling between right- and left-handed
ordinary fermions. Finally, assuming thatand(¢’, &) are localized respectively at=0
andy = L, we obtain a natural separation between the two sectors.

5.1. Alignment in an extra dimension

Such a separation also greatly simplify the vacuum alignment problem. We can de-

termine the minima of two scalar potentidlts and V., depending only, respectively, on

¢ and (¢, £). Indeed, as we shall see, there are whole regions of the parameter space
whereVp(p) and V. (¢’, ) have the minima given in Eq17). Notice that in the present
setup dealing with a discrete symmetry suchdasprovides a great advantage as far as
the alignment problem is concerned. A continuous flavour symmetry such as, for instance,
SO(3) would need some extra structure to achieve the desired alignment. Indeed the poten-
tial energy [ d*x [Vo(e) + Vi(¢', £)] would be invariant under a much bigger symmetry,

E I o5
e, '

0,

ec bulk l.

K _ I, h,

TC F, F

q) 1 2 11; hd

o &

0 y L

Fig. 1. Fifth dimension and localization of scalar and fermion fields. The symmetry breaking sector includes the
A4 tripletsg andg’, localized at the opposite ends of the interval. Their VEVs are dynamically aligned along the
directions shown at the top of the figure.
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SO(3)p x SO3) ., with the SA@3)( acting ong and leaving¢’, £) invariant and vice-versa
for SO(3) .. This symmetry would remove any alignment between the VE\{sarid those
of (¢, &). If, for instance(17) is minimum of the potential energy, then any other config-
uration obtained by acting of17) with SO(3)p x SO(3);, would also be a minimum and
the relative orientation between the two sets of VEVs would be completely undetermined.
A discrete symmetry such a&, has not this problem, as we will show now.

Consider first the scalar potentig(¢):

2

Mz >

Vo(p) = 731 +u1T1+c1Q1+ 202, (42)
whereBj1, T1, Q1,2 are defined in Eg(36). The minimum conditions at = (v, v, v) are:

A%

5 0 =v(M12+,u1v+4clv2)=0 (i=1273), (43)

i

while the minimum condition ap = (v, 0, 0) is:

Vo 2 2

B_m:”(Ml +4cv%) =0, (44)

since in this caséd Vp/d¢2 3) = 0 are automatically satisfied. Bogh= (v, v, v) ande =
(v, 0, 0) can be local minima o¥y, depending on the parameters. The constanishould
be positive, to havéy bounded from below. We can look at the region whigrg < | M1].
Whency > ¢» and Mf < 0, the minimum aty = (v, 0, 0) is the absolute one, while for
o> andM12 < 0 Vg is minimized byg = (v, v, v). Therefore we have a large portion
of the parameter space where the minimum is of the desired form (v, v, v). To be
precise, in this region, there are four degenerate mingna:(v, v, v), ¢ = (v, —v, —v)
¢ =(—v,v,—v) ¢ = (—v, —v, v), related byA,4 transformations.

Now we turn toVy (¢’, &£). As we did in Sectior8, we assume both’ and& real and
odd under the action of a discretg symmetry. The most general renormalizable invariant
potential is a combination a8z, 03 4 in EQ. (36) and the following invariants:

B3=¢&2,

Qg =¢&",

Q9 =@ 0505,

Q10=E2(p1? + 95> + 03P). (45)
We have:

M2 M2

Vi, &) = 7232 + 7333 + 303+ 404+ cgQg + cgQo + c10Q10. (46)
We search for a minimum & = (v, 0, 0) and§ = u:

aV,

f = v’(M% + 4C4v/2 + 2610M2) =0,
0oy
A%Y3 _

5 = u(M3 + 4egu® + 2c10v'?) = 0, (47)
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while (3VL./d¢, 5) = 0 are always satisfied. There is a region of the parameter space
where the absolute minimum is of this type. Taking into accountAhesymmetry, in

all this region we have six degenerate minimgé:= (+v’,0,0), ¢’ = (0, +v/,0) and

¢ = (0,0, +v"). Putting together the minima dfy(¢) and V. (¢’, £) we have 24 degen-
erate minima of the potential energy, differing for signs or ordering. It can be shown that
these 24 minima produce exactly the same mass pattern discussed in Sgegfida field

and parameter redefinitions. Therefore, it is not restrictive to choose one of them, for in-
stancep = (v, v, v) andg’ = (v/, 0, 0), to analyze the property of this model.

The observed hierarchy among lepton masses can be efficiently described by an ad-
ditional U(1)r flavour symmetry, under which only right-handed charged leptons are
charged:F (e¢, u¢, t¢) = (4, 2, 0). To spontaneously break this symmetry and to produce
the desired hierarchy, we need a scalar fieldarrying a negative unit of and developing
aVEV (0)/A ~0.22. In our frameworl is localized on the brane at= 0 and the scalar
potentialVp of Eq. (42) is modified into:

Vo— Vo+ M7Bs+ c11011 + c12012, (48)
where

Ba=10/%,

011=101%

012=101%(¢? + 03 + ¥3). (49)
The minimum conditions ap = (v, v, v) and|f| = read:

oV

7> = v(MF + v +den® +2012°) =0 (1=1.2.3),

(%
Vi
Teﬁ = 2¢(MZ + 2c11? + 3c10%) = 0. (50)

These conditions are satisfied by non-vanishing) in a finite portion of the parameter
space. Therefore the inclusion of an Abelian flavour symmetry is fully compatible with the
mechanism for vacuum alignment discussed above.

5.2. Lepton masses and mixing angles

We now show how it is possible to take advantage of above results to obtain the desired
lepton masses. To this purpose we introduce a bulk fermion fiéld y) = (F1, F>), sin-
glet under SW2) with hypercharge = —1 and transforming as a triplet af4. We also
impose the discret&4 symmetry introduced in Sectichunder which( /¢, 1, F, ¢, ¢', )
transform into(—if<, il, i F, ¢, —¢’, —&). The action is

_ _ 1
S= /d4x dy{ |:iF1c7“8MF1 +iFo0" 0y Fo + 5 (Fady FL — 8y FoFy + h.c.):|

— M(F1F2 + F1F)
+ Vo(@)8(y) + VL (¢',&)8(y — L)
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+ [Yee® (@F1) + Yuu(9F1)" + Yo 1¢(0F1) 4+ h.c]s(y)

xa -xd /
+ [Fé(ll)huhu + 22 @ IDhuhy + YL (Fohha + h.c.}S(y - L)} +-

(51)
where the constants have mass dimensionl/2. The first two lines represent the five-
dimensional kinetic and mass terms of the bulk fiBldl he third line is the scalar potential
and the remaining terms are the lowest order invariant operators localized at the two branes.
Dots stand for the kinetic terms of¢, [, ¢, ¢’, & and for higher-dimensional operators,
which will be classified in Sectio6.
The potential energy is given, at lowest order by:

U= / d*x [Volp) + Vi@, €], (52)

and, under the conditions discussed above, is minimized by(Egslt is clear thaty and
(¢', &) are strictly separated only at lowest order. Indeed higher-dimensional brane interac-
tions like, for instance(pg F1F>)/A?, (¢'¢' F1F>)/A? are allowed. At the one-loop level,
the exchange of the bulk fermiaf will give rise to the structuregs g 7 of EQ. (36) and
this will necessarily deform the vacuuih7). Here we will assume that such a deformation
is sufficiently small. Indeed, as we shall see in Sedfiche operators of the typg@e¢’¢’)
arising from one-loogF-exchange, are suppressed byt4L4.
We now discuss the effects of the tree-level exchange.d this purpose we consider
the equations of motion faiFy, F»):

iohd, Fa+dyF1 — MF; =0,

iohd,F1—dyF2 — MF,=0. (53)
If M is large and positive, we can prove that all the modes containéginF») become
heavy, at a scale greater than or comparable/fo fvhich we assume to be much higher
than the electroweak scale. If we are only interested in energies much lower than 1
we can solve the equations of motion in the static approximation, by neglecting the four-
dimensional kinetic term:

Fi(y) = Fi(L)eMP),

Fa(y) = F2(0)e ™. (54)
These equations must be supplemented with appropriate boundary conditions, which we

can identify by varying the actiofi with respect the fieldéFi, F>). The boundary terms
read

1 1
(8S)boundary= / d4x{8F1(L)|:§F2(L)] +38F2(L) |:—§F1(L) + YLlhd:|
1
+8F1(0) |:_§F2(O) +YeeCp+ Y,uﬂc(pu + thc(pr]

+ 8 F2(0) BFKO)} } (55)
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whereg, = (p1, w2, w?p3) andg; = (g1, w20, wes). We can chose as boundary condi-
tions:

Fi(L) =2Ylhg,
F2(0) = Z(Yeec(p + Yuiou + ercy¢r)~ (56)

SincedF1(L) = §F2(0) = 0, we have(3S)noundary= 0, as desired. By substituting back
Egs.(54) and (56)nto the actionS we get

S=U+/d4 [ye ¢ (phhg + 22 i ((ﬂl)”hd‘l‘yt t“(pl)'hyq

4 —Zé(ll)h B + 2(g0 1D)h,h ]+ , (57)
with
yXf =4y Yre ML (f=e 7). (58)

Therefore, in lowest order approximation we have reproduced the Lagrangiaof
Eg. (16) and the discussion of Secti@uapplies.
We also recall that, to account for the observed hierarchy of the charged lepton masses,
we have included an additional(l) flavour symmetry. Therefore, in the present picture,
the quantities, , . stand for:

- /0\* . [ 0)\? N
Y, = Ye(z) , Y, = YM<Z> , Y, =Y, (59)
where 176,,“ are field-independent constants having similar values. After spontaneous
breaking of U1), the Yukawa couplings s possess the desired hierarchy.

6. Higher-order corrections

The results of the previous section hold to first approximation. Higher-dimensional op-
erators, suppressed by additional powers of the cuttpffan be added to the leading terms
in Egs.(42), (46), (52), (57), (58Here we will classify these terms and analyze their phys-
ical effects. In particular we will show that these corrections are completely under control
in our model and that they can be made negligibly small without any fine-tuning. We can
order higher-order operators into three groups.

6.1. Local correctionsto m,,

There are higher-order operators that are local in the five-dimensional theory and do
not depend upon the heavy fermion sectbr, F»). As we have seen, at leading order, the
neutrino mass matrix:, arises entirely from operators of this type that are localized at
y = L. On this brane we only have scalar fiel@s¢’), odd underZ4. Therefore, higher-
dimensional operators modifying, and localized ay = L are down by two powers of
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the cut-off, compared to the leading ones. Aftey breaking, the only two operators that
cannot be absorbed by a redefinition of the parametgysare:

X
A—Zs«p%p/)’(ll)”huhu,

%sw’w”(u)’huhw (60)

After adding these operators localizedyat L to the five-dimensional action of E¢p1),
we get a neutrino mass matrix

2 a+b+c 0 0
mv:j‘( 0 a + wb + w?c d ), (61)
0 d a+ ?b + wc
where
uv/Z uv/2
bE)CbF, CEXCF, (62)

to be compared with andd of Eq. (20).
6.2. Correctionsfromtree-level F-exchange

Another set of higher-dimensional operators arise from the exchange of the heavy
fermion (Fy, F») in the static limit and in the tree-level approximation. To classify them,
we should list all operators localized at the two branes that are linear in the bulk fermion
(F1, F»). At y = 0 such operators have the generic structure

c YI(}) c, 2 Y;Z) c 3

After spontaneougi 4 breaking, the effect of these operators can be absorbed by redefin-
ing the coupling constantgs, (f = e, u, 7), at least up to ordep®. Thus the leading
interactions betweepi¢ and F,

[Yee®(@F1) + Yun(@F1)" + Y. 1¢(0F1) 4+ h.c]s(y) (64)
are unchanged up to relative ordetA®. We are left with the couplings df> at the brane
y = L. Neglecting all operators that, aftdy breaking, only lead to a renormalization of
the parameteY;, we find four new terms:

Z1

F(Qﬂ/@/)/(FZI)th,

Z2

F((ﬁ’w’)"(le)’hd,

Z3 / / /

“26 [P (F2l3+ 9a(F)als + pa(Fila]ha,

Z / /
A—‘;s [01(F2)3l2 + ¢5(F2)1l3 + 05(F2)2l1]ha. (65)
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After the breaking ofd4, the leading order interaction @, at y = L is modified by the
operatorg65)to

[YL(FaDhg +h.c]s(y — L), (66)
where

1:1 1+z1+22 0 0 I
<l~2>=< 0 1+ w21+ 022 24 ) (12)7 (67)

I3 0 23 1+ w?z1+wz2/ \I3

Z120'2 Z3quv'
== =" 68

71,2 Y, AZ 23,4 Y, A2 ( )

After integrating out the heavy modes (i1, F») in the limit of vanishing external mo-
menta for the light modes, we obtain the effective four-dimensional Lagrangian

—e “(phhg + 2 e (@lY'hg + 2 —T “(¢l) ha, (69)
%:4YLYJ£€_ L (f:e,y,,‘r). (70)

The mass matrix for the charged leptons becomes

. Ye(1+ 21+ 22) ye(1+wz1+w212+13) )75(1+a)221+wzz+Z4)
m;=vg— (yu(l +21+22) ypo(d+wzy+ w2Z2 + wz3) yuwz(l + w2z1 +wzo+ w224) )

yr(14+2z1+22) yfwz(l +wz1+ a)222 + cozz3) yro(l+ wzzl + wzp + wz4)
(71)
6.3. Effects on masses and mixing angles

To first order in the small parametédrsc andz;, the neutrino masses are modified into:
2

— d 1(b ) vu
mi=\a-+ 2 +c Ve

v2
= b —M’
mo = (a+ +C)A
= +d+l(b+ ) U'f (72)
m3=|—a > c e

and the charged lepton masses are changed into

73 24 v
nme =\/§ye<1+ E + E)vdxa

my = \/éyu (1+a)— +602Z—4)Ud

’

S e

3 3

er«/éyr<1+wZZ—3+w3)vd (73)

3

>|':
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To the same order, but neglecting terms like, . /y., we get:

b-0d-a)+b-od+a) 1
Uesl = - _ L
|Ues ‘ > 3ad + ad) +J§( z1+zz+f \/_Z4>
!tan2¢923|:1+(b_C)cg+(_b_C)d+2|:22+22+}(Z3+Z3+Z4+Z4)],
(ad + ad) 3

(74)

1 3 _ - 3+2 4+2Z
|tarf 01| = [1—1-2( Zl—Zl—ZZ—ZZ-Fg-l-u)].

3 3
These relations explicitly show that the corrections induced by the higher-dimensional op-
erators are of ordeiv’/A2 or v'2/A2. From our estimate in Eq35) we see that these
parameters can be as small as 207°. If the cut-off A is one order of magnitude larger

that the VEVs of the model, the resulting corrections are at the level of one percent, al-
ready beyond any planned experimental test. If on the contrary, the VEVs are anomalously
close to the cut-offA, then Eq.(74) show that deviations roughly of the same size are
expected ir’/,3, tarf 623 and tarf 612. How much close tol can the VEVs be? We expect

that the subleading corrections do not spoil the leading order form of the neutrino mass
spectrum, Eq(28). This implies that'2/A2 « r, so that- sets the natural upper bound to

the expected deviations from the leading order results.

6.4. Corrections from one-loop F-exchange

Further corrections to lepton mass matrices and to the scalar potential can arise from
one-loop exchange off1, F») in the static limit. Consider, for instance, the following
operators localized at=0 and aty = L:

1 1
Z¢F1F28(y), FéllFlehuhMS(y - L. (75)
By integrating out, at one-loop order, the heavy modes containginf,) we get:
1
“peelthuh, [ d%ArGL0. L)AL, L.0) (76)

wherek is the four-momentum running in the loop awnd-(k, y, y') is the adimensional
propagator of F1, F») in a mixed momentum-space representation. Since the loop integral
is convergent, we get
A13 f/(xiviﬁ)swllh Ry, (77)

where f (M L) is a function of the adimensional combinati®fl. Thus the resulting local
operator is suppressed by four additional powers of the cut-off scale. This behavior is quite
generic and similar suppressions are found for other operators originating from one-loop
exchange of Fy, ).

The corrections that modify the scalar potential discussed in the previous section are of
this type. As an example, consider the localized interactions:

1 1,
ﬁwaleS(y), YA F1F28(y — L). (78)
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Also in this case, after integrating ov@r, F») in the limit of vanishing external momenta,
we get:

fumry

R4 (79)

Due to their large suppression, these corrections are negligible compared to those discussed
above.

7. Conclusion

There are by now several theoretical mechanisms that can qualitatively explain the
observed large lepton mixing angld®]. They are sufficiently flexible to quantitatively ac-
commodate the measured parameters. They are also compatible with our ideas on quarks
masses and mixing angles so that they can be nicely embedded into a unified picture of
fermion properties, such as, for instance, a grand unified theory. Many of these mecha-
nisms predict a generically large atmospheric mixing angle and a generically &mall
angle, without favouring any specific value for these parameters. The best values of global
fits are currently very close téys = /4 andf;3 = 0, but the experimental errors still al-
low for large deviations from these remarkable values. Indeed, according to many of the
above mentioned mechanisms, deviations ftbg= /4 andd13 = 0 are expected at the
observable level. It may take a long time before such deviations can be actually observed.
A sensitivity on613 around 005 is foreseen in about ten years from now, with the full
exploitation of high-intensity neutrino beams. A reduction by a factor of two of the present
error ond»3 will also require special neutrino beams and a similar time scale.

It might happen that after all this experimental effqéas — 7 /4) and6,3 still remain
close to zero, within errors. At this point it would be legitimate to suspect that such special
values are produced by a highly symmetric flavour dynamics. Given the already good ex-
perimental precision o#2, the so-called Harrison—Perkins—Scott mixing scheme, where
023 =m/4, 613=0 and Sif 010 = 1/3, would fit very well the data. In this paper we
have proposed a model that reproduces accurately the HPS mixing pattern. We started
by discussing whether such a pattern can be obtained from an exact flavour symmetry.
We showed that, under general conditions, an exactly maximal atmospheric mixing angle
cannot arise from an exact flavour symmetry. The flavour symmetry should be necessarily
broken and a maximahbs is the result of a special alignment between the breaking effects
in the neutrino sector and those occurring in the charged lepton sector. If the flavour sym-
metry is spontaneously broken, this corresponds to a non-trivial vacuum alignment. Our
model gives rise to the HPS mixing scheme in the context of a spontaneously btgken
flavour symmetryA4 being the discrete subgroup of &)leaving a tetrahedron invariant.

At leading order, that is by neglecting symmetric operators of higher dimension, neu-
trino masses only depend on two complex Yukawa coupling constants. Due to the un-
known phase difference between these two constants, we cannot determine the absolute
scale of neutrino masses. We expect that the neutrino spectrum is of the normal hierar-
chy type but not too far from degenerate. At leading order the model predigts =
|Mee|? + 10/9Am§tm(1 —r/2). A remarkable feature of our model is that at the leading
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order the lepton mixing angles are completely independent from these two parameters, so
that the HPS mixing pattern is always obtained. The lepton mixing depends entirely on the
relative alignment between the VEVs giving masses to the neutrino sector and those giving
masses to the lepton sector. We discuss in detail the problem of vacuum alignment. To avoid
the proliferation of Higgs doublets, the scalar fields breakingre gauge singlets in our
model. We propose an unconventional solution to the vacuum alignment problem, where an
extra dimension described by a spatial interval plays an important role. Two scalar sectors
live at the opposite ends of the interval and their respective scalar potentials are minimized
by the desired field configurations, for natural values of the implied parameters. Such a
mechanism only works in the case of discrete symmetries, since in the continuous case the
large symmetry of the total potential energy would make the relative orientations of the
two scalar sectors undetermined. We have also extensively discussed how this lowest order
picture is modified by the introduction of higher-dimensional operators. The induced cor-
rections are parametrically small, of second order in the expansion parametgrty BV

being the cut-off of the theory, and they can be made numerically negligible. Last but not
least, the hierarchy of the charged lepton masses can be reproduced by the usual Froggatt
Nielsen mechanism within the context of an Abelian flavour symmetry, which turns out to
be fully compatible with the present scheme.

We believe that, from a purely technical point of view, we have fulfilled our goal to
realize a completely natural construction of the HPS mixing scheme. But to construct our
model we had to introduce a number of special dynamical tricks (like a peculiar set of
discrete symmetries in extra dimensions). Apparently this is the price to pay for a “special”
model where all mixing angles are fixed to particular values. Perhaps this exercise can be
taken as a hint that it is more plausible to expect that, in the end, experiment will select a
“normal” model with8,3 not too small and,3 not too close to maximal.
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Appendix A

Here we discuss a SUSY solution to the vacuum alignment problem. In a supersymmet-
ric context, the right-hand side of E({L6) should be interpreted as the superpotential
of the theory, in the lepton sector. A key observation is that this superpotential is invari-
ant not only with respect to the gauge symmetry @k U(1) and the flavour symmetry
U F x Ag, but also under a discretés symmetry and a continuous(l)  symmetry
under which the fields transform as showrTable 1

We see that th&’3 symmetry explains the absence of the tefi in w;: such a term
transforms as? underZz and need to be compensated by the field our construction.
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Table 1

Field [ €€ ué 7€ hy.q @ o £ %0 % £o
Ag 3 1 v 17 1 3 3 1 3 3 1
Z3 ® w? w? w? 1 1 ® ® 1 ® ®

UDr 1 1 1 1 0 0 0 0 2 2 2

At the same timeZz does not allow the interchange betwegnand ¢, which transform
differently underZ3. Charged leptons and neutrinos acquire masses from two independent
sets of fields. If the two sets of fields develop VEVs according to the alignment described
in Eq. (17), then the desired mass matrices follow.

Finally, there is a continuous () symmetry that contains the usuRtparity as a
subgroup. Suitably extended to the quark sector, this symmetry forbids the unwanted di-
mension two and three terms in the superpotential that violate baryon and lepton number
at the renormalizable level. The(l) x symmetry allows us to classify fields into three
sectors. There are “matter fields” such as the leptpag u© andt¢, which occur in the
superpotential through bilinear combinations. There is a “symmetry breaking sector” in-
cluding the Higgs doublets, ; and the flavong’, ¢ andé. As we will see these fields
acquire non-vanishing vacuum expectation values (VEVs) and break the symmetries of the
model. Finally, there are “driving fields” such a§, ¢o andéo that allows to build a non-
trivial scalar potential in the symmetry breaking sector. Since driving fields Reclearge
equal to two, the superpotential is linear in these fields.

The full superpotential of the model is

w=w; + wy, (A1)

where, at leading order in g 4 expansionw; is given by the right-hand side of E(L6)
and the “driving” termw, reads:

wq = M (po9) + g(pope) + g1(po@'¢") + 826 (wpe’) + g360(¢'¢")
+ 840k, (A.2)

We notice that at the leading order there are no terms involving the Higgs figldswWe
assume that the electroweak symmetry is broken by some mechanism, such as radiative
effects when supersymmetry (SUSY) is broken. It is interesting that at the leading order
the electroweak scale does not mix with the potentially large sealeandv’. The scalar
potential is given by:

V:Xi:‘

whereg; denote collectively all the scalar fields of the thecmzﬁ, are soft masses and dots
stand forD-terms for the fields charged under the gauge group and possible additional soft
breaking terms. Since:; are expected to be much smaller than the mass scales involved
in wy, it makes sense to minimizé in the supersymmetric limit and to account for soft
breaking effects subsequently. From the driving sector we have:

Jw

—— =M1+ gp2p3=0,
001

2
+mPlgil P+ (A.3)

Jw
0¢;
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Jw
—— =Mg2+ 89301 =0,
d¢02
Jw
—— =Myp3+gp192=0,
9903
Jw
— = 819293 + 82591 =0,
901
Jw
— = 81951 + 82595 =0,
3902
8w AN /
T = 81919 + 82693 =0,
3903
Jw
— =g3(¢'¢)) + gaE? =0. (A.4)
950
The first three equations are solved by (up to irrelevant sign ambiguities):
M
p=(,v,v), v=——. (A.5)
8
The remaining equations are solved, in general, by:
¢’ =(0,0,0), £§=0, (A.6)

unless some further relation is imposed on the coefficignts.., g4. If g2 =0, then, up
to an irrelevant reordering, we have

83

(p/ = (U/v Ov O)v %' =Uu= __((p/(p/) (A7)
g4

with v andu undetermined. In this case we find that, fof . mi, ,m2 > 0, the driving
0

fieldsgo, ¢y andéo vanish at the minimum. Moreover,if2,, mZ < 0, thenu andv’ slide to

large scales, eventually stabilized by one-loop radiative corrections. The supersymmetric
case is better than the non-supersymmetric case in two respects. First of all, at least from
a technical viewpoint, the absence of a term in the superpotential is radiatively stable.
Moreover, as we have seen, ongehas been set to zero, the equations sele¢tiiyas

the correct minimum are consistent.
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