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Abstract

We discuss a particularly symmetric model of neutrino mixings where, with good accurac
atmospheric mixing angleθ23 is maximal,θ13 = 0 and the solar angle satisfies sin2 θ12 = 1/3
(Harrison–Perkins–Scott (HPS) matrix). The discrete symmetryA4 is a suitable symmetry grou
for the realization of this type of model. We construct a model where the HPS matrix is e
obtained in a first approximation without imposing ad hoc relations among parameters. The
issue of the required VEV alignment in the scalar sector is discussed and we present a natu
tion of this problem based on a formulation with extra dimensions. We study the corrections
higher dimensionality operators allowed by the symmetries of the model and discuss the con
on the cut-off scales and the VEVs in order for these corrections to be completely under c
Finally, the observed hierarchy of charged lepton masses is obtained by assuming a larger
symmetry. We also show that, under general conditions, a maximalθ23 can never arise from an exa
flavour symmetry.
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1. Introduction

By now there is convincing evidence for solar and atmospheric neutrino oscilla
The�m2 values and mixing angles are known with fair accuracy[1]. For �m2 we have:
�m2

atm ∼ 2.5 × 10−3 eV2 and �m2
sol ∼ 8 × 10−5 eV2. As for the mixing angles, two

are large and one is small. The atmospheric angleθ23 is large, actually compatible wit
maximal but not necessarily so: at 3σ : 0.31� sin2 θ23 � 0.72 with central value aroun
0.5. The solar angleθ12 is large, sin2 θ12 ∼ 0.3, but certainly not maximal (by about 5–6σ

now [2]). The third angleθ13 is strongly limited, mainly by the CHOOZ experiment, a
has at present a 3σ upper limit given by about sin2 θ13 � 0.08.

In spite of this experimental progress there are still many alternative routes in con
ing models of neutrino masses. This variety is mostly due to the considerable ambi
that remain. First of all, it is essential to know whether the LSND signal[3], which has not
been confirmed by KARMEN[4] and is currently being double-checked by MiniBoo
[5], will be confirmed or will be excluded. If LSND is right we probably need at le
four light neutrinos; if not we can do with only the three known ones, as we assume
in the following. As neutrino oscillations only determine mass squared differences
cial missing input is the absolute scale of neutrino masses (within the existing limits
terrestrial experiments and cosmology[6,7]). Even for three neutrinos the pattern of t
neutrino mass spectrum is still undetermined: it can be approximately degenerate
the inverse hierarchy type or normally hierarchical. Given for granted that neutrino
Majorana particles, their masses can still arise either from the see-saw mechanism
generic dimension-five non-renormalizable operators.

At a more direct level, we do not know how small the mixing angleθ13 is and how close
to maximal isθ23. One can make a distinction between “normal” and “special” mod
For normal modelsθ23 is not too close to maximal andθ13 is not too small, typically a
small power of the self-suggesting order parameter

√
r , with r = �m2

sol/�m2
atm ∼ 1/35.

Special models are those where some symmetry or dynamical feature assures in a
way the near vanishing ofθ13 and/or ofθ23 − π/4. Normal models are conceptually mo
economical and much simpler to construct. We expect that experiment will eventual
thatθ13 is not too small and thatθ23 is sizably not maximal. But if, on the contrary, eith
θ13 very small orθ23 very close to maximal will emerge from experiment, then the
will need to cope with this fact. Thus it is interesting to conceive and explore dyna
structures that could lead to special models in a natural way.

We want to discuss here some particularly special models where bothθ13 andθ23−π/4
exactly vanish.1 Then the neutrino mixing matrixUf i (f = e, µ, τ , i = 1,2,3), in the
basis of diagonal charged leptons, is given by, apart from sign convention redefinitio

(1)Uf i =

 c12 s12 0

−s12/
√

2 c12/
√

2 −1/
√

2

−s12/
√

2 c12/
√

2 1/
√

2


 ,

wherec12 and s12 stand for cosθ12 and sinθ12, respectively. It is much simpler to writ
natural models of this type withs12 small and thus many such attempts are present in
1 More precisely, they vanish in a suitable limit, with correction terms that can be made negligibly small.
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early literature. More recently, given the experimental value ofθ12, the more complicate
case ofs12 large was also attacked, using non-Abelian symmetries, either continuo
discrete[8–14]. In many examples the invoked symmetries are particularly ad hoc a
no sufficient attention is devoted to corrections from higher-dimensional operator
can spoil the pattern arranged at tree level and to the highly non-trivial vacuum alig
problems that arise if naturalness is required also at the level of vacuum expectation
(VEVs).

An interesting special case of Eq.(1) is obtained fors12 = 1/
√

3, i.e. the so-called tri
bimaximal or Harrison–Perkins–Scott mixing pattern (HPS)[13], with the entries in the
second column all equal to 1/

√
3 in absolute value:

(2)UHPS=




√
2
3

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2


 .

This matrix is a good approximation to present data.2 It would be interesting to find a
natural and appealing scheme that leads to this matrix with good accuracy. In fa
is a most special model where not onlyθ13 and θ23 − π/4 vanish but alsoθ12 assumes
a particular value. Clearly, in a natural realization of this model, a very constraining
predictive dynamics must be underlying. We think it is interesting to explore parti
structures giving rise to this very special set of models in a natural way. In this ca
have a maximum of “order” implying special values for all mixing angles: at the o
extreme, anarchical models have been proposed[15], where no structure at all is assum
in the lepton sector, so that, for example,θ13 andθ23 are predicted to be in no way speci
except that there must be a smallest angle (probably near to the present bound) and
angle (expected sizably different from maximal).

Interesting ideas on how to obtain the HPS mixing matrix have been discuss
Ref. [13]. The most attractive models are based on the discrete symmetryA4, which ap-
pears as particularly suitable for the purpose, and were presented in Refs.[10,11]. In the
present paper we start by discussing some general features of HPS models. We then
a new version of anA4 model, with (moderate) normal hierarchy, and discuss in deta
aspects of naturalness in this model, also considering effects beyond tree level a
problem of vacuum alignment. There are a number of substantial improvements in o
sion with respect to Ma in Ref.[11]. First, the HPS matrix is exactly obtained in a fi
approximation when higher-dimensional operators are neglected, without imposing
relations among parameters (in Ref.[11] the equality ofb andc is not guaranteed by th
symmetry). The observed hierarchy of charged lepton masses is obtained by assu
larger flavour symmetry. The crucial issue of the required VEV alignment in the scala
tor is considered with special attention and we present a natural solution of this pro
We also keep the flavour scalar fields distinct from the normal Higgs bosons (a prolife
of Higgs doublets is disfavoured by coupling unification) and singlets under the Sta

2 In the HPS scheme tan2 θ12 = 0.5, to be compared with the latest experimental determination[2]: tan2 θ12 =

0.45+0.09

−0.08.
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Model gauge group. Last not least, we study the corrections from higher dimensio
operators allowed by the symmetries of the model and discuss the conditions on the
scales and the VEVs in order for these corrections to be completely under control.

2. General considerations

The HPS mixing matrix implies that in a basis where charged lepton masses are di
the effective neutrino mass matrix is given bymν = UHPSdiag(m1,m2,m3)U

T
HPS:

(3)mν =
[

m3

2

(0 0 0
0 1 −1
0 −1 1

)
+ m2

3

(1 1 1
1 1 1
1 1 1

)
+ m1

6

( 4 −2 −2
−2 1 1
−2 1 1

)]
.

The eigenvalues ofmν arem1, m2, m3 with eigenvectors(−2,1,1)/
√

6, (1,1,1)/
√

3 and
(0,1,−1)/

√
2, respectively. In general, apart from phases, there are six parameters in

symmetric matrix likemν : here only three are left after the values of the three mixing
gles have been fixed à la HPS. For a hierarchical spectrumm3 � m2 � m1, m2

3 ∼ �m2
atm,

m2
2/m2

3 ∼ �m2
sol/�m2

atm andm1 could be negligible. But also degenerate masses an
verse hierarchy can be reproduced: for example, by takingm3 = −m2 = m1 we have a
degenerate model, while form1 = −m2 and m3 = 0 an inverse hierarchy case (stab
ity under renormalization group running strongly prefers opposite signs for the firs
the second eigenvalue which are related to solar oscillations and have the smalle
squared splitting). From the general expression of the eigenvectors one immediate
that this mass matrix, independent of the values ofmi , leads to the HPS mixing matrix.
is a curiosity that the eigenvectors are the same as in the case of the Fritzsch–Xin
matrix [16] but with the roles of the first and the third ones interchanged (so that for
θ23 is maximal while sin2 2θ12 = 8/9, while for FX the two mixing angles keep the sam
values but are interchanged).

If the atmospheric mixing angle is really maximal as in the HPS ansatz or clo
maximal, it seems quite natural to interpret this as the effect of a flavour symme
would be tempting to think of an approximate flavour symmetry such thatθ23 = π/4 arises
in the limit of exact symmetry, that is by neglecting all symmetry breaking effects.
we will show that this is not the case and that, under quite general conditions, we can
obtainθ23 = π/4 as a result of anexact flavour symmetry.3 We assume that this symmet
is a meaningful symmetry, that is it is only broken by small effects, in the real worl
other words here we exclude symmetries that need breaking terms of order one to d
the observed fermion masses and mixing angles. Apart from that the symmetry c
of whatever type, global or local, continuous or discrete. Being interested in the lim
exact symmetry, we can neglect the sector giving rise to flavour symmetry breakin
assume that the fields on which such symmetry acts are the fields of the standard
plus possibly the right-handed neutrinos, so that our results will also cover the se
case. Last, we assume canonical kinetic terms, so that the symmetry acts on the fi
the standard model through unitary transformations.
3 For related observations see Ref.[17].
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Since the flavour symmetry is broken only by small effects, the mass matrice
charged leptons and neutrinos can be written as:

(4)me = m0
e + · · · , mν = m0

ν + · · · ,
where dots denote symmetry breaking effects andm0

e has rank less or equal than on
Rank greater than one, as for instance, when both the tau and the muon have non-va
masses in the symmetry limit, is clearly an unacceptable starting point, since the diff
between the two non-vanishing masses can only be explained by large breaking
which we have excluded, or by a fine-tuning, which we wish to avoid. If the rank ome

vanishes, than all mixing angles in the charged lepton sector are undetermined in th
metry limit andθ23 is also completely undetermined. Therefore we can focus on the
whenm0

e has rank one. Ifm0
e has rank one, then by a unitary transformations we can alw

go to a field basis where

(5)m0
e =

(0 0 0
0 0 0
0 0 m0

τ

)
.

As in the original basis, the action of the flavour symmetry on the new field basis is
fectly defined. IfUν andUe are the unitary matrices that diagonalizem0

ν andm
0†
e m0

e , it
will be possible to adopt the parametrization[18]

(6)Uν = KνR23
(
θν

23

)
P †R13

(
θν

13

)
PR12

(
θν

12

)
,

where Rij is the orthogonal matrix representing a rotation in theij sector, P =
diag(1,1,exp(iδ)) andK = diag(exp(iα1),exp(iα2),exp(iα3)). Moreover:

(7)Ue = R12
(
θe

12

)
,

where the angleθe
12 is completely undetermined. The physical mixing matrix isUPMNS =

U
†
e Uν and we find:

(8)| tanθ23| =
∣∣∣∣cosθe

12tanθν
23e

iα2 + sinθe
12

tanθν
13

cosθν
23

ei(δ+α1)

∣∣∣∣.
Therefore, in general, the atmospheric mixing angle is always undetermined at the l
order. When small symmetry breaking terms are added tom0

e and m0
ν , it is possible to

obtainθ23 = π/4, provided these breaking terms have suitable orientations in the fl
space. If the breaking terms are produced by a spontaneous symmetry breaking
the minimization of the potential energy of the theory, in general two independent
sectors are needed. One of them communicates the breaking to charged fermions
other one feeds the breaking to neutrinos. In such a framework a maximal atmos
mixing angle is always the result of a special vacuum alignment.

In the literature there are symmetries predictingθ23 large, not necessarily maximal,
the limit of exact symmetry[19]. For instance, this is produced by U(1) flavour symme-
tries, when the U(1) charges of left-handed leptons and right-handed charged lepton

(q1,0,0) and(p1,p2,0), respectively, withq1 andp1,2 all non-vanishing and different. In
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the symmetry limit, such an assignment implies (me ∼ R̄L, mν ∼ LT L):

(9)m0†
e m0

e =

0 0 0

0 |α|2 ᾱβ

0 αβ̄ |β|2


 ,

and:

(10)m0†
ν m0

ν =

0 0 0

0 |α′|2 + |γ ′|2 ᾱ′γ ′ + γ̄ ′β ′

0 α′γ̄ ′ + γ ′β̄ ′ |β ′|2 + |γ ′|2


 ,

with α, β, α′, β ′ andγ ′ independent parameters of the same order of magnitude. If
is no conspiracy among these parameters, the resultingθ23 mixing is generically large.

In conclusion, a large lepton mixing in the 23 sector is possible as the result of a
act flavour symmetry. But if we want to reproduceθ23 = π/4 in some limit of our theory
necessarily this limit cannot correspond to an exact symmetry in flavour space. A
mal atmospheric mixing angle can only originate from breaking effects as a solutio
vacuum alignment problem.

3. Basic structure of the model

Our model is based on the discrete groupA4 following Refs.[10,11], where its structure
and representations are described in detail. Here we simply recall thatA4 is the discrete
symmetry group of the rotations that leave a tetrahedron invariant, or the group of th
permutations of 4 objects. It has 12 elements and 4 inequivalent irreducible repre
tions denoted 1, 1′, 1′′ and 3 in terms of their respective dimensions. Introducingω, the
cubic root of unity,ω = exp(i 2π

3 ), so that 1+ ω + ω2 = 0, the three one-dimensional re
resentations are obtained by dividing the 12 elements ofA4 in three classes, which a
determined by the multiplication rule, and assigning to (class 1, class 2, class 3)
tor (1,1,1) for 1, or (1,ω,ω2) for 1′ or (1,ω2,ω) for 1′′. The product of two 3 give
3 × 3 = 1 + 1′ + 1′′ + 3 + 3. Also 1′ × 1′ = 1′′, 1′ × 1′′ = 1, 1′′ × 1′′ = 1′, etc. For
3 ∼ (a1, a2, a3), 3′ ∼ (b1, b2, b3) the irreducible representations obtained from their pr
uct are:

(11)1= a1b1 + a2b2 + a3b3,

(12)1′ = a1b1 + ωa2b2 + ω2a3b3,

(13)1′′ = a1b1 + ω2a2b2 + ωa3b3,

(14)3∼ (a2b3, a3b1, a1b2),

(15)3∼ (a3b2, a1b3, a2b1).

Following Ref.[11] we assigns leptons to the four inequivalent representations ofA4: left-
handed lepton doubletsl transform as a triplet 3, while the right-handed charged lep
ec, µc andτ c transform as 1, 1′ and 1′′, respectively. The flavour symmetry is broken

two real tripletsϕ andϕ′ and by a real singletξ . At variance with the choice made by[11],
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these fields are gauge singlets. Hence we only need two Higgs doubletshu,d (not three
generations of them as in Ref.[11]), which we take invariant underA4. We assume tha
some mechanism produces and maintains the hierarchy〈hu,d〉 = vu,d � Λ whereΛ is the
cut-off scale of the theory.4 The Yukawa interactions in the lepton sector read:

(16)LY = yee
c(ϕl) + yµµc(ϕl)′′ + yτ τ

c(ϕl)′ + xaξ(ll) + xd(ϕ′ll) + h.c.+ · · · .
In our notation,(33) transforms as 1,(33)′ transforms as 1′ and(33)′′ transforms as 1′′.
Also, to keep our notation compact, we use a two-component notation for the fe
fields and we set to 1 the Higgs fieldshu,d and the cut-off scaleΛ. For instance,yee

c(ϕl)

stands foryee
c(ϕl)hd/Λ, xaξ(ll) stands forxaξ(lhulhu)/Λ

2 and so on. The Lagrangia
LY contains the lowest order operators in an expansion in powers of 1/Λ. Dots stand for
higher-dimensional operators that will be discussed in Section6. Some terms allowed b
the flavour symmetry, such as the terms obtained by the exchangeϕ′ ↔ ϕ, or the term(ll)

are missing inLY . Their absence is crucial and will be motivated later on.
As we will demonstrate in Section5, the fieldsϕ′, ϕ andξ develop a VEV along the

directions:

〈ϕ′〉 = (v′,0,0),

〈ϕ〉 = (v, v, v),

(17)〈ξ 〉 = u.

Therefore, at the leading order of the 1/Λ expansion, the mass matricesml andmν for
charged leptons and neutrinos are given by:

(18)ml = vd

v

Λ

(
ye ye ye

yµ yµω yµω2

yτ yτω
2 yτω

)
,

(19)mν = v2
u

Λ

(
a 0 0
0 a d

0 d a

)
,

where

(20)a ≡ xa

u

Λ
, d ≡ xd

v′

Λ
.

Charged leptons are diagonalized by

(21)l → 1√
3

(1 1 1
1 ω2 ω

1 ω ω2

)
l,

and charged fermion masses are given by:

(22)me = √
3yevd

v

Λ
, mµ = √

3yµvd

v

Λ
, mτ = √

3yτ vd

v

Λ
.

4 This is the well-known hierarchy problem that can be solved, for instance, by realizing a supersym

version of this model.
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We can easily obtain a natural hierarchy amongme, mµ andmτ by introducing an addi
tional U(1)F flavour symmetry under which only the right-handed lepton sector is cha
We assignF -charges 0, 2 and 3–4 toτ c, µc andεc, respectively. By assuming that a flav
θ , carrying a negative unit ofF , acquires a VEV〈θ〉/Λ ≡ λ < 1, the Yukawa coupling
become field dependent quantitiesye,µ,τ = ye,µ,τ (θ) and we have

(23)yτ ≈ O(1), yµ ≈ O
(
λ2), ye ≈ O

(
λ3–4).

In the flavour basis the neutrino mass matrix reads5:

(24)mν = v2
u

Λ

(
a + 2d/3 −d/3 −d/3

−d/3 2d/3 a − d/3
−d/3 a − d/3 2d/3

)
,

and is diagonalized by the transformation:

(25)UT mνU = v2
u

Λ
diag(a + d, a,−a + d),

with

(26)U =
( √

2/3 1/
√

3 0
−1/

√
6 1/

√
3 −1/

√
2

−1/
√

6 1/
√

3 +1/
√

2

)
.

The leading order predictions are tan2 θ23 = 1, tan2 θ12 = 0.5 andθ13 = 0. The neutrino
masses arem1 = a+d , m2 = a andm3 = −a+d , in units ofv2

u/Λ. We can express|a|, |d|
in terms ofr ≡ �m2

sol/�m2
atm≡ (|m2|2 −|m1|2)/(|m3|2 −|m1|2), �m2

atm≡ |m3|2 −|m1|2
and cos�, � being the phase difference between the complex numbersa andd :

√
2|a|v

2
u

Λ
=

−
√

�m2
atm

2 cos�
√

1− 2r
,

(27)
√

2|d|v
2
u

Λ
= √

1− 2r

√
�m2

atm.

To satisfy these relations a moderate tuning is needed in our model. Due to the abs
(ll) in Eq. (16) which we will motivate in the next section,a andd are of the same orde
in 1/Λ, see Eq.(20). Therefore we expect that|a| and|d| are close to each other and,
satisfy Eq.(27), cos� should be negative and of order one. We obtain:

|m1|2 =
[
−r + 1

8 cos2 �(1− 2r)

]
�m2

atm,

|m2|2 = 1

8 cos2 �(1− 2r)
�m2

atm,

(28)|m3|2 =
[
1− r + 1

8 cos2 �(1− 2r)

]
�m2

atm.

5 Notice that a unitary change of basis like the one in Eq.(21)will in general change the relative phases of

eigenvalues ofmν .
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If cos� = −1, we have a neutrino spectrum close to hierarchical:

(29)|m3| ≈ 0.053 eV, |m1| ≈ |m2| ≈ 0.017 eV.

In this case the sum of neutrino masses is about 0.087 eV. If cos� is accidentally small, the
neutrino spectrum becomes degenerate. The value of|mee|, the parameter characterizin
the violation of total lepton number in neutrinoless double beta decay, is given by:

(30)|mee|2 =
[
−1+ 4r

9
+ 1

8 cos2 �(1− 2r)

]
�m2

atm.

For cos� = −1 we get|mee| ≈ 0.005 eV, at the upper edge of the range allowed for nor
hierarchy, but unfortunately too small to be detected in a near future. Independentl
the value of the unknown phase� we get the relation:

(31)|m3|2 = |mee|2 + 10

9
�m2

atm

(
1− r

2

)
,

which is a prediction of our model.
It is also important to get some constraint on the mass scales involved in our con

tion. From Eqs.(27) and (20), by assumingxd ≈ 1vu ≈ 250 GeV, we have

(32)Λ ≈ 1.8× 1015
(

v′

Λ

)
GeV.

Since, to have a meaningful expansion, we expectv′ � Λ, we have the upper bound

(33)Λ < 1.8× 1015 GeV.

Beyond this energy scale, new physics should come into play. The smaller the ratiov′/Λ,
the smaller becomes the cut-off scale. For instance, whenv′/Λ = 0.03, Λ should be
close to 1014 GeV. A complementary information comes from the charged lepton
tor, Eq.(22). A lower bound onv/Λ can be derived from the requirement that the Yuka
couplingyτ remains in a perturbative regime. By askingyτ vd < 250 GeV, we get

(34)
v

Λ
> 0.004.

Finally, by assuming that all the VEVs fall in approximately the same range, which w
shown in Section5, we obtain the range

(35)0.004<
v′

Λ
≈ v

Λ
≈ u

Λ
< 1,

that will be useful to estimate the effects of higher-dimensional operators in Sect6.
Correspondingly the cut-off scale will range between about 1013 and 1.8× 1015 GeV.

4. Vacuum alignment

In this section we investigate the problem of achieving the vacuum alignme
Eq. (17). At the same time we should prevent, at least at some level, the interchan

tween the fieldsϕ andϕ′ to produce the desired mass matrices in the neutrino and charged
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lepton sectors. As we will see, there are several difficulties to naturally accomplish
requirements. By minimizing the scalar potential of the theory with respect toϕ andϕ′
we get six equations that we would like to satisfy in terms of the two unknownv andv′.
Even though we expect that, due to the symmetryA4, the six minimum conditions are no
necessarily independent, such an expectation turns out to be wrong in the specifi
unless some additional relation is enforced on the parameters of the scalar potentia
additional relations are in general not natural. For instance, even by imposing them
tree level, they are expected to be violated at the one-loop order. Therefore, as we w
illustrate, the minimum conditions cannot be all satisfied by our vacuum configuratio

As an example here we analyze the most general renormalizable scalar potentia
ant underA4 and depending upon the tripletsϕ andϕ′ of the LagrangianL in Eq. (16).
The term(ll) in L can be forbidden by an additional symmetry, commuting withA4. One
possibility is just the total lepton numberL or a discrete subgroup of it. Here we consid
aZ4 symmetry under whichf c transform into−if c (f = e,µ, τ), l into il, ϕ is invariant
andϕ′ changes sign. This symmetry also explains whyϕ andϕ′ cannot be interchange
The scalar potentialV contains bilinearsBi , trilinearsTi and quartic termsQi , invariant
under the groupA4 × Z4. A choice of independent invariants is:

B1 = ϕ2
1 + ϕ2

2 + ϕ2
3,

B2 = ϕ′2
1 + ϕ′2

2 + ϕ′2
3 ,

T1 = ϕ1ϕ2ϕ3,

T2 = ϕ1ϕ
′
2ϕ

′
3 + ϕ2ϕ

′
3ϕ

′
1 + ϕ3ϕ

′
1ϕ

′
2,

Q1 = ϕ2
1ϕ2

2 + ϕ2
2ϕ2

3 + ϕ2
3ϕ2

1,

Q2 = ∣∣ϕ2
1 + ω2ϕ2

2 + ωϕ2
3

∣∣2,
Q3 = ϕ′2

1 ϕ′2
2 + ϕ′2

2 ϕ′2
3 + ϕ′2

3 ϕ′2
1 ,

Q4 = ∣∣ϕ′2
1 + ω2ϕ′2

2 + ωϕ′2
3

∣∣2,
Q5 = ϕ1ϕ2ϕ

′
1ϕ

′
2 + ϕ2ϕ3ϕ

′
2ϕ

′
3 + ϕ3ϕ1ϕ

′
3ϕ

′
1,

Q6 = (
ϕ2

1 + ϕ2
2 + ϕ2

3

)(
ϕ′2

1 + ϕ′2
2 + ϕ′2

3

)
,

(36)Q7 = (
ϕ2

1 + ω2ϕ2
2 + ωϕ2

3

)(
ϕ′2

1 + ωϕ′2
2 + ω2ϕ′2

3

)
.

The scalar potential reads:

V = M2
1

2
B2

1 + M2
2

2
B2

2 + µ1T1 + µ2T2 + c1Q1 + c2Q2 + c3Q3 + c4Q4

(37)+ c5Q5 + c6Q6 + (c7Q7 + c.c.).

We start by analyzing the field configuration:

(38)〈ϕ〉 = (v, v, v), 〈ϕ′〉 = (v′,0,0).

The minimum conditions are:

∂V 2 2 3 ′2 ′2

∂ϕ1

= M1v + µ1v + 4c1v + 2c6vv + 2(c7 + c̄7)vv = 0,
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∂V

∂ϕ2
= M2

1v + µ1v
2 + 4c1v

3 + 2c6vv′2 + 2
(
ω2c7 + ωc̄7

)
vv′2 = 0,

∂V

∂ϕ3
= M2

1v + µ1v
2 + 4c1v

3 + 2c6vv′2 + 2
(
ωc7 + ω2c̄7

)
vv′2 = 0,

∂V

∂ϕ′
1

= M2
2v′ + 4c4v

′3 + 6c6v
2v′ = 0,

∂V

∂ϕ′
2

= µ2vv′ + c5v
2v′ = 0,

(39)
∂V

∂ϕ′
3

= µ2vv′ + c5v
2v′ = 0.

The equations∂V/∂ϕi = 0 are clearly incompatible unlessc7 = 0. Even by forcingc7
to vanish, we are left with three independent equations for the two unknownv and v′,
which, for generic values of the coefficients, admit only the trivial solutionv = v′ = 0.
This negative results cannot be modified by adding toV the terms depending on the sing
ξ . Also by investigating the problem in a slightly more general framework, withϕ real and
(ϕ′, ξ) complex, we reach the same conclusion. Although we have not a no-go the
these examples show the difficulty to obtain the desired alignment.

The difficulty illustrated above is not common to all vacua. For instance, the othe
sible alignment:

(40)〈ϕ〉 = (v, v, v), 〈ϕ′〉 = (v′, v′, v′)

leads to the minimum conditions:

∂V

∂ϕi

= M2
1v + µ1v

2 + µ2v
′2 + 4c1v

3 + (2c5 + 6c6)vv′2 = 0,

(41)
∂V

∂ϕ′
i

= M2
2v′ + 2µ2vv′ + 4c3v

′3 + (2c5 + 6c6)v
2v′ = 0.

In a non-vanishing portion of the parameter space, these equations have non-trivial s
with non-vanishingv andv′.

It is possible to show that, by sufficiently restricting the form of the most general s
potential invariant underA4, the desired alignment can be obtained. Restrictions tha
unnatural in a generic model becomes technically natural in a supersymmetric (S
model. The well-known non-renormalization properties of the superpotential allow t
cept, at least from a technical viewpoint, a restricted number of terms, compared to
theA4 symmetry would permit. Undesired terms of the superpotential that are set to
at the tree level are not generated at any order in perturbation theory. Indeed w
produced a SUSY example of this type, where the alignment problem is solved an
example is discussed in detail inAppendix A. However, our real aim is to build a fully na
ural model, where all the terms allowed by the symmetries are present and where th
deviations from the symmetry limit are provided by higher-dimensional operators, r
than by small violations of ad-hoc imposed relations. As we will now see, there e

simple and economic solution in the context of theories with one extra spatial dimension.
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5. A4 model in an extra dimension

One of the problems we should overcome in the search for the correct alignment
of keeping neutrino and charged lepton sectors separate, including the respective sy
breaking sectors. Here we show that such a separation can be achieved by means of
spatial dimension. The space–time is assumed to be five-dimensional, the produc
four-dimensional Minkowski space–time times an interval going fromy = 0 to y = L. At
y = 0 andy = L the space–time has two four-dimensional boundaries, which we wil
branes. Our idea is that matter SU(2) singlets such asec,µc, τ c are localized aty = 0,
while SU(2) doublets, such asl are localized aty = L (seeFig. 1). Neutrino masses aris
from local operators aty = L. Charged lepton masses are produced by non-local ef
involving both branes. Later on we will see how such non-local effects can arise i
theory. The simplest possibility is to introduce a bulk fermion, depending on all space
coordinates, that interacts withec,µc, τ c at y = 0 and withl at y = L. The exchange o
such a fermion can provide the desired non-local coupling between right- and left-h
ordinary fermions. Finally, assuming thatϕ and(ϕ′, ξ) are localized respectively aty = 0
andy = L, we obtain a natural separation between the two sectors.

5.1. Alignment in an extra dimension

Such a separation also greatly simplify the vacuum alignment problem. We ca
termine the minima of two scalar potentialsV0 andVL, depending only, respectively, o
ϕ and (ϕ′, ξ). Indeed, as we shall see, there are whole regions of the parameter
whereV0(ϕ) andVL(ϕ′, ξ) have the minima given in Eq.(17). Notice that in the presen
setup dealing with a discrete symmetry such asA4 provides a great advantage as far
the alignment problem is concerned. A continuous flavour symmetry such as, for ins
SO(3) would need some extra structure to achieve the desired alignment. Indeed the
tial energy

∫
d4x [V0(ϕ) + VL(ϕ′, ξ)] would be invariant under a much bigger symme

Fig. 1. Fifth dimension and localization of scalar and fermion fields. The symmetry breaking sector inclu
A4 tripletsϕ andϕ′, localized at the opposite ends of the interval. Their VEVs are dynamically aligned alon

directions shown at the top of the figure.
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SO(3)0×SO(3)L, with the SO(3)0 acting onϕ and leaving(ϕ′, ξ) invariant and vice-vers
for SO(3)L. This symmetry would remove any alignment between the VEVs ofϕ and those
of (ϕ′, ξ). If, for instance,(17) is minimum of the potential energy, then any other con
uration obtained by acting on(17) with SO(3)0 × SO(3)L would also be a minimum an
the relative orientation between the two sets of VEVs would be completely undeterm
A discrete symmetry such asA4 has not this problem, as we will show now.

Consider first the scalar potentialV0(ϕ):

(42)V0(ϕ) = M2
1

2
B2

1 + µ1T1 + c1Q1 + c2Q2,

whereB1, T1, Q1,2 are defined in Eq.(36). The minimum conditions atϕ = (v, v, v) are:

(43)
∂V0

∂ϕi

= v
(
M2

1 + µ1v + 4c1v
2) = 0 (i = 1,2,3),

while the minimum condition atϕ = (v,0,0) is:

(44)
∂V0

∂ϕ1
= v

(
M2

1 + 4c2v
2) = 0,

since in this case(∂V0/∂ϕ2,3) = 0 are automatically satisfied. Bothϕ = (v, v, v) andϕ =
(v,0,0) can be local minima ofV0, depending on the parameters. The constantsc1,2 should
be positive, to haveV0 bounded from below. We can look at the region where|µ1| � |M1|.
Whenc1 � c2 andM2

1 < 0, the minimum atϕ = (v,0,0) is the absolute one, while fo
c2 � c1 andM2

1 < 0 V0 is minimized byϕ = (v, v, v). Therefore we have a large portio
of the parameter space where the minimum is of the desired form:ϕ = (v, v, v). To be
precise, in this region, there are four degenerate minima:ϕ = (v, v, v), ϕ = (v,−v,−v)

ϕ = (−v, v,−v) ϕ = (−v,−v, v), related byA4 transformations.
Now we turn toVL(ϕ′, ξ). As we did in Section3, we assume bothϕ′ andξ real and

odd under the action of a discreteZ4 symmetry. The most general renormalizable invar
potential is a combination ofB2, Q3,4 in Eq.(36)and the following invariants:

B3 = ξ2,

Q8 = ξ4,

Q9 = ξϕ′
1ϕ

′
2ϕ

′
3,

(45)Q10 = ξ2(ϕ′2
1 + ϕ′2

2 + ϕ′2
3

)
.

We have:

(46)VL(ϕ′, ξ) = M2
2

2
B2 + M2

3

2
B3 + c3Q3 + c4Q4 + c8Q8 + c9Q9 + c10Q10.

We search for a minimum atϕ′ = (v′,0,0) andξ = u:

∂VL

∂ϕ′
1

= v′(M2
2 + 4c4v

′2 + 2c10u
2) = 0,

(47)
∂VL = u

(
M2

3 + 4c8u
2 + 2c10v

′2) = 0,

∂ξ
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while (∂VL/∂ϕ′
2,3) = 0 are always satisfied. There is a region of the parameter s

where the absolute minimum is of this type. Taking into account theA4 symmetry, in
all this region we have six degenerate minima:ϕ′ = (±v′,0,0), ϕ′ = (0,±v′,0) and
ϕ′ = (0,0,±v′). Putting together the minima ofV0(ϕ) andVL(ϕ′, ξ) we have 24 degen
erate minima of the potential energy, differing for signs or ordering. It can be shown
these 24 minima produce exactly the same mass pattern discussed in Section3, up to field
and parameter redefinitions. Therefore, it is not restrictive to choose one of them,
stance,ϕ = (v, v, v) andϕ′ = (v′,0,0), to analyze the property of this model.

The observed hierarchy among lepton masses can be efficiently described by
ditional U(1)F flavour symmetry, under which only right-handed charged leptons
charged:F(ec,µc, τ c) = (4,2,0). To spontaneously break this symmetry and to prod
the desired hierarchy, we need a scalar fieldθ , carrying a negative unit ofF and developing
a VEV 〈θ〉/Λ ≈ 0.22. In our frameworkθ is localized on the brane aty = 0 and the scala
potentialV0 of Eq.(42) is modified into:

(48)V0 → V0 + M2
4B4 + c11Q11 + c12Q12,

where

B4 = |θ |2,
Q11 = |θ |4,

(49)Q12 = |θ |2(ϕ2
1 + ϕ2

2 + ϕ2
3

)
.

The minimum conditions atϕ = (v, v, v) and|θ | = t read:

∂V0

∂ϕi

= v
(
M2

1 + µ1v + 4c1v
2 + 2c12t

2) = 0 (i = 1,2,3),

(50)
∂V0

∂|θ | = 2t
(
M2

4 + 2c11t
2 + 3c12v

2) = 0.

These conditions are satisfied by non-vanishing(t, v) in a finite portion of the paramete
space. Therefore the inclusion of an Abelian flavour symmetry is fully compatible wit
mechanism for vacuum alignment discussed above.

5.2. Lepton masses and mixing angles

We now show how it is possible to take advantage of above results to obtain the d
lepton masses. To this purpose we introduce a bulk fermion fieldF(x, y) = (F1, F̄2), sin-
glet under SU(2) with hyperchargeY = −1 and transforming as a triplet ofA4. We also
impose the discreteZ4 symmetry introduced in Section4 under which(f c, l,F,ϕ,ϕ′, ξ)

transform into(−if c, il, iF,ϕ,−ϕ′,−ξ). The action is

S =
∫

d4x dy

{[
iF1σ

µ∂µF̄1 + iF2σ
µ∂µF̄2 + 1

2
(F2∂yF1 − ∂yF2F1 + h.c.)

]
− M(F1F2 + F̄1F̄2)
+ V0(ϕ)δ(y) + VL(ϕ′, ξ)δ(y − L)
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+ [
Yee

c(ϕF1) + Yµµc(ϕF1)
′′ + Yτ τ

c(ϕF1)
′ + h.c.

]
δ(y)

(51)

+
[

xa

Λ2
ξ(ll)huhu + xd

Λ2
(ϕ′ll)huhu + YL(F2l)hd + h.c.

]
δ(y − L)

}
+ · · · ,

where the constantsY have mass dimension−1/2. The first two lines represent the fiv
dimensional kinetic and mass terms of the bulk fieldF . The third line is the scalar potenti
and the remaining terms are the lowest order invariant operators localized at the two
Dots stand for the kinetic terms off c, l, ϕ,ϕ′, ξ and for higher-dimensional operato
which will be classified in Section6.

The potential energy is given, at lowest order by:

(52)U =
∫

d4x
[
V0(ϕ) + VL(ϕ′, ξ)

]
,

and, under the conditions discussed above, is minimized by Eqs.(17). It is clear thatϕ and
(ϕ′, ξ) are strictly separated only at lowest order. Indeed higher-dimensional brane in
tions like, for instance,(ϕϕF1F2)/Λ

2, (ϕ′ϕ′F1F2)/Λ
2 are allowed. At the one-loop leve

the exchange of the bulk fermionF will give rise to the structuresQ5,6,7 of Eq. (36) and
this will necessarily deform the vacuum(17). Here we will assume that such a deformat
is sufficiently small. Indeed, as we shall see in Section6, the operators of the type(ϕϕϕ′ϕ′)
arising from one-loopF -exchange, are suppressed by 1/Λ4L4.

We now discuss the effects of the tree-level exchange ofF . To this purpose we conside
the equations of motion for(F1,F2):

iσµ∂µF̄2 + ∂yF1 − MF1 = 0,

(53)iσµ∂µF̄1 − ∂yF2 − MF2 = 0.

If M is large and positive, we can prove that all the modes contained in(F1,F2) become
heavy, at a scale greater than or comparable to 1/L, which we assume to be much high
than the electroweak scale. If we are only interested in energies much lower than/L,
we can solve the equations of motion in the static approximation, by neglecting the
dimensional kinetic term:

F1(y) = F1(L)eM(y−L),

(54)F2(y) = F2(0)e−My.

These equations must be supplemented with appropriate boundary conditions, wh
can identify by varying the actionS with respect the fields(F1,F2). The boundary term
read

(δS)boundary=
∫

d4x

{
δF1(L)

[
1

2
F2(L)

]
+ δF2(L)

[
−1

2
F1(L) + YLlhd

]

+ δF1(0)

[
−1

2
F2(0) + Yee

cϕ + Yµµcϕµ + Yτ τ
cϕτ

]

(55)+ δF2(0)

[
1
F1(0)

]}
,

2
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whereϕµ = (ϕ1,ωϕ2,ω
2ϕ3) andϕτ = (ϕ1,ω

2ϕ2,ωϕ3). We can chose as boundary con
tions:

F1(L) = 2YLlhd,

(56)F2(0) = 2
(
Yee

cϕ + Yµµcϕµ + Yτ τ
cϕτ

)
.

SinceδF1(L) = δF2(0) = 0, we have(δS)boundary= 0, as desired. By substituting ba
Eqs.(54) and (56)into the actionS we get

S = U +
∫

d4x

[
ye

Λ
ec(ϕl)hd + yµ

Λ
µc(ϕl)′′hd + yτ

Λ
τc(ϕl)′hd

(57)+ xa

Λ2
ξ(ll)huhu + xd

Λ2
(ϕ′ll)huhu

]
+ · · · ,

with

(58)
yf

Λ
= 4YLYf e−ML (f = e,µ, τ).

Therefore, in lowest order approximation we have reproduced the LagrangianLY of
Eq.(16)and the discussion of Section3 applies.

We also recall that, to account for the observed hierarchy of the charged lepton m
we have included an additional U(1) flavour symmetry. Therefore, in the present pictu
the quantitiesYe,µ,τ stand for:

(59)Ye = Ỹe

(
θ

Λ

)4

, Yµ = Ỹµ

(
θ

Λ

)2

, Yτ = Ỹτ ,

where Ỹe,µ,τ are field-independent constants having similar values. After spontan
breaking of U(1), the Yukawa couplingsyf possess the desired hierarchy.

6. Higher-order corrections

The results of the previous section hold to first approximation. Higher-dimensiona
erators, suppressed by additional powers of the cut-offΛ, can be added to the leading term
in Eqs.(42), (46), (52), (57), (58). Here we will classify these terms and analyze their ph
ical effects. In particular we will show that these corrections are completely under c
in our model and that they can be made negligibly small without any fine-tuning. W
order higher-order operators into three groups.

6.1. Local corrections to mν

There are higher-order operators that are local in the five-dimensional theory a
not depend upon the heavy fermion sector(F1, F̄2). As we have seen, at leading order,
neutrino mass matrixmν arises entirely from operators of this type that are localize
y = L. On this brane we only have scalar fields(ξ,ϕ′), odd underZ4. Therefore, higher

dimensional operators modifyingmν and localized aty = L are down by two powers of
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the cut-off, compared to the leading ones. AfterA4 breaking, the only two operators th
cannot be absorbed by a redefinition of the parametersxa,d are:

xb

Λ4
ξ(ϕ′ϕ′)′(ll)′′huhu,

(60)
xc

Λ4
ξ(ϕ′ϕ′)′′(ll)′huhu.

After adding these operators localized aty = L to the five-dimensional action of Eq.(51),
we get a neutrino mass matrix

(61)mν = v2
u

Λ

(
a + b + c 0 0

0 a + ωb + ω2c d

0 d a + ω2b + ωc

)
,

where

(62)b ≡ xb

uv′2

Λ3
, c ≡ xc

uv′2

Λ3
,

to be compared witha andd of Eq.(20).

6.2. Corrections from tree-level F -exchange

Another set of higher-dimensional operators arise from the exchange of the
fermion (F1, F̄2) in the static limit and in the tree-level approximation. To classify th
we should list all operators localized at the two branes that are linear in the bulk fe
(F1, F̄2). At y = 0 such operators have the generic structure

(63)Yf f cϕF1,
Y

(1)
f

Λ
f cϕ2F1,

Y
(2)
f

Λ2
f cϕ3F1, . . . (f = e,µ, τ).

After spontaneousA4 breaking, the effect of these operators can be absorbed by re
ing the coupling constantsYf , (f = e,µ, τ), at least up to orderϕ3. Thus the leading
interactions betweenf c andF1

(64)
[
Yee

c(ϕF1) + Yµµc(ϕF1)
′′ + Yτ τ

c(ϕF1)
′ + h.c.

]
δ(y)

are unchanged up to relative order 1/Λ2. We are left with the couplings ofF2 at the brane
y = L. Neglecting all operators that, afterA4 breaking, only lead to a renormalization
the parameterYL, we find four new terms:

Z1

Λ2
(ϕ′ϕ′)′(F2l)

′′hd,

Z2

Λ2
(ϕ′ϕ′)′′(F2l)

′hd,

Z3

Λ2
ξ
[
ϕ′

1(F2)2l3 + ϕ′
2(F2)3l1 + ϕ′

3(F2)1l2
]
hd,

(65)
Z4

ξ
[
ϕ′ (F2)3l2 + ϕ′ (F2)1l3 + ϕ′ (F2)2l1

]
hd.
Λ2 1 2 3
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to:
After the breaking ofA4, the leading order interaction ofF2 at y = L is modified by the
operators(65) to

(66)
[
YL(F2l̃)hd + h.c.

]
δ(y − L),

where

(67)

(
l̃1
l̃2
l̃3

)
=

(1+ z1 + z2 0 0
0 1+ ωz1 + ω2z2 z4
0 z3 1+ ω2z1 + ωz2

)(
l1
l2
l3

)
,

(68)z1,2 ≡ Z1,2

YL

v′2

Λ2
, z3,4 ≡ Z3,4

YL

uv′

Λ2
.

After integrating out the heavy modes in(F1, F̄2) in the limit of vanishing external mo
menta for the light modes, we obtain the effective four-dimensional Lagrangian

(69)
ye

Λ
ec(ϕl̃)hd + yµ

Λ
µc(ϕl̃)′′hd + yτ

Λ
τc(ϕl̃)′hd,

(70)
yf

Λ
= 4YLYf e−ML (f = e,µ, τ).

The mass matrix for the charged leptons becomes

(71)

ml = vd

v

Λ

(
ye(1+ z1 + z2) ye(1+ ωz1 + ω2z2 + z3) ye(1+ ω2z1 + ωz2 + z4)

yµ(1+ z1 + z2) yµω(1+ ωz1 + ω2z2 + ωz3) yµω2(1+ ω2z1 + ωz2 + ω2z4)

yτ (1+ z1 + z2) yτ ω2(1+ ωz1 + ω2z2 + ω2z3) yτ ω(1+ ω2z1 + ωz2 + ωz4)

)
.

6.3. Effects on masses and mixing angles

To first order in the small parametersb, c andzi , the neutrino masses are modified in

m1 =
(

a + d − 1

2
(b + c)

)
v2
u

Λ
,

m2 = (a + b + c)
v2
u

Λ
,

(72)m3 =
(

−a + d + 1

2
(b + c)

)
v2
u

Λ
,

and the charged lepton masses are changed into

me = √
3ye

(
1+ z3

3
+ z4

3

)
vd

v

Λ
,

mµ = √
3yµ

(
1+ ω

z3

3
+ ω2z4

3

)
vd

v

Λ
,

(73)mτ = √
3yτ

(
1+ ω2z3 + ω

z4
)

vd

v
.

3 3 Λ
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To the same order, but neglecting terms likeziye,µ/yτ , we get:

|Ue3| =
∣∣∣∣ (b̄ − c̄)(d − a) + (b − c)(d̄ + ā)

2
√

2(ad̄ + ād)
+ 1√

2

(
−z̄1 + z̄2 + i√

3
z3 − i√

3
z4

)∣∣∣∣,
∣∣tan2 θ23

∣∣ = 1+ (b̄ − c̄)d + (b − c)d̄

(ad̄ + ād)
+ 2

[
z2 + z̄2 + 1

3
(z3 + z̄3 + z4 + z̄4)

]
,

(74)
∣∣tan2 θ12

∣∣ = 1

2

[
1+ 3

2

(
−z1 − z̄1 − z2 − z̄2 + z3 + z̄3

3
+ z4 + z̄4

3

)]
.

These relations explicitly show that the corrections induced by the higher-dimension
erators are of orderuv′/Λ2 or v′2/Λ2. From our estimate in Eq.(35) we see that thes
parameters can be as small as 2× 10−5. If the cut-offΛ is one order of magnitude large
that the VEVs of the model, the resulting corrections are at the level of one perce
ready beyond any planned experimental test. If on the contrary, the VEVs are anoma
close to the cut-offΛ, then Eq.(74) show that deviations roughly of the same size
expected inUe3, tan2 θ23 and tan2 θ12. How much close toΛ can the VEVs be? We expe
that the subleading corrections do not spoil the leading order form of the neutrino
spectrum, Eq.(28). This implies thatv′2/Λ2 � r , so thatr sets the natural upper bound
the expected deviations from the leading order results.

6.4. Corrections from one-loop F -exchange

Further corrections to lepton mass matrices and to the scalar potential can aris
one-loop exchange of(F1, F̄2) in the static limit. Consider, for instance, the followin
operators localized aty = 0 and aty = L:

(75)
1

Λ
ϕF1F2δ(y),

1

Λ6
ξ llF1F2huhuδ(y − L).

By integrating out, at one-loop order, the heavy modes contained in(F1, F̄2) we get:

(76)
1

Λ7ξϕllhuhu

∫
d4k∆F (k,0,L)∆F (k,L,0),

wherek is the four-momentum running in the loop and∆F (k, y, y′) is the adimensiona
propagator of(F1, F̄2) in a mixed momentum-space representation. Since the loop int
is convergent, we get

(77)
1

Λ3

f (ML)

Λ4L4
ξϕllhuhu,

wheref (ML) is a function of the adimensional combinationML. Thus the resulting loca
operator is suppressed by four additional powers of the cut-off scale. This behavior i
generic and similar suppressions are found for other operators originating from on
exchange of(F1, F̄2).

The corrections that modify the scalar potential discussed in the previous section
this type. As an example, consider the localized interactions:

1 1

(78)

Λ2
ϕϕF1F2δ(y),

Λ2
ϕ′ϕ′F1F2δ(y − L).
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Also in this case, after integrating over(F1, F̄2) in the limit of vanishing external moment
we get:

(79)
f (ML)

Λ4L4
ϕϕϕ′ϕ′.

Due to their large suppression, these corrections are negligible compared to those di
above.

7. Conclusion

There are by now several theoretical mechanisms that can qualitatively expla
observed large lepton mixing angles[19]. They are sufficiently flexible to quantitatively a
commodate the measured parameters. They are also compatible with our ideas on
masses and mixing angles so that they can be nicely embedded into a unified pic
fermion properties, such as, for instance, a grand unified theory. Many of these m
nisms predict a generically large atmospheric mixing angle and a generically smaθ13
angle, without favouring any specific value for these parameters. The best values of
fits are currently very close toθ23 = π/4 andθ13 = 0, but the experimental errors still a
low for large deviations from these remarkable values. Indeed, according to many
above mentioned mechanisms, deviations fromθ23 = π/4 andθ13 = 0 are expected at th
observable level. It may take a long time before such deviations can be actually obs
A sensitivity onθ13 around 0.05 is foreseen in about ten years from now, with the
exploitation of high-intensity neutrino beams. A reduction by a factor of two of the pre
error onθ23 will also require special neutrino beams and a similar time scale.

It might happen that after all this experimental effort,(θ23 − π/4) andθ13 still remain
close to zero, within errors. At this point it would be legitimate to suspect that such sp
values are produced by a highly symmetric flavour dynamics. Given the already go
perimental precision onθ12, the so-called Harrison–Perkins–Scott mixing scheme, w
θ23 = π/4, θ13 = 0 and sin2 θ12 = 1/3, would fit very well the data. In this paper w
have proposed a model that reproduces accurately the HPS mixing pattern. We
by discussing whether such a pattern can be obtained from an exact flavour sym
We showed that, under general conditions, an exactly maximal atmospheric mixing
cannot arise from an exact flavour symmetry. The flavour symmetry should be nece
broken and a maximalθ23 is the result of a special alignment between the breaking ef
in the neutrino sector and those occurring in the charged lepton sector. If the flavou
metry is spontaneously broken, this corresponds to a non-trivial vacuum alignmen
model gives rise to the HPS mixing scheme in the context of a spontaneously brokA4
flavour symmetry,A4 being the discrete subgroup of SO(3) leaving a tetrahedron invarian

At leading order, that is by neglecting symmetric operators of higher dimension,
trino masses only depend on two complex Yukawa coupling constants. Due to th
known phase difference between these two constants, we cannot determine the a
scale of neutrino masses. We expect that the neutrino spectrum is of the normal
chy type but not too far from degenerate. At leading order the model predicts|m3|2 =

|mee|2 + 10/9�m2

atm(1 − r/2). A remarkable feature of our model is that at the leading
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order the lepton mixing angles are completely independent from these two parame
that the HPS mixing pattern is always obtained. The lepton mixing depends entirely
relative alignment between the VEVs giving masses to the neutrino sector and those
masses to the lepton sector. We discuss in detail the problem of vacuum alignment. T
the proliferation of Higgs doublets, the scalar fields breakingA4 are gauge singlets in ou
model. We propose an unconventional solution to the vacuum alignment problem, wh
extra dimension described by a spatial interval plays an important role. Two scalar s
live at the opposite ends of the interval and their respective scalar potentials are min
by the desired field configurations, for natural values of the implied parameters. S
mechanism only works in the case of discrete symmetries, since in the continuous c
large symmetry of the total potential energy would make the relative orientations o
two scalar sectors undetermined. We have also extensively discussed how this lowe
picture is modified by the introduction of higher-dimensional operators. The induced
rections are parametrically small, of second order in the expansion parameter VEV/Λ, Λ

being the cut-off of the theory, and they can be made numerically negligible. Last b
least, the hierarchy of the charged lepton masses can be reproduced by the usual F
Nielsen mechanism within the context of an Abelian flavour symmetry, which turns o
be fully compatible with the present scheme.

We believe that, from a purely technical point of view, we have fulfilled our goa
realize a completely natural construction of the HPS mixing scheme. But to constru
model we had to introduce a number of special dynamical tricks (like a peculiar s
discrete symmetries in extra dimensions). Apparently this is the price to pay for a “sp
model where all mixing angles are fixed to particular values. Perhaps this exercise
taken as a hint that it is more plausible to expect that, in the end, experiment will se
“normal” model withθ13 not too small andθ23 not too close to maximal.
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Appendix A

Here we discuss a SUSY solution to the vacuum alignment problem. In a supersy
ric context, the right-hand side of Eq.(16) should be interpreted as the superpotentiawl

of the theory, in the lepton sector. A key observation is that this superpotential is i
ant not only with respect to the gauge symmetry SU(2) × U(1) and the flavour symmetr
U(1)F × A4, but also under a discreteZ3 symmetry and a continuous U(1)R symmetry
under which the fields transform as shown inTable 1.

We see that theZ3 symmetry explains the absence of the term(ll) in wl : such a term

transforms asω2 underZ3 and need to be compensated by the fieldξ in our construction.
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Table 1

Field l ec µc τc hu,d ϕ ϕ′ ξ ϕ0 ϕ′
0 ξ0

A4 3 1 1′ 1′′ 1 3 3 1 3 3 1
Z3 ω ω2 ω2 ω2 1 1 ω ω 1 ω ω

U(1)R 1 1 1 1 0 0 0 0 2 2 2

At the same timeZ3 does not allow the interchange betweenϕ′ andϕ, which transform
differently underZ3. Charged leptons and neutrinos acquire masses from two indepe
sets of fields. If the two sets of fields develop VEVs according to the alignment desc
in Eq.(17), then the desired mass matrices follow.

Finally, there is a continuous U(1)R symmetry that contains the usualR-parity as a
subgroup. Suitably extended to the quark sector, this symmetry forbids the unwan
mension two and three terms in the superpotential that violate baryon and lepton n
at the renormalizable level. The U(1)R symmetry allows us to classify fields into thr
sectors. There are “matter fields” such as the leptonsl, ec, µc andτ c, which occur in the
superpotential through bilinear combinations. There is a “symmetry breaking secto
cluding the Higgs doubletshu,d and the flavonsϕ′, ϕ andξ . As we will see these field
acquire non-vanishing vacuum expectation values (VEVs) and break the symmetries
model. Finally, there are “driving fields” such asϕ′

0, ϕ0 andξ0 that allows to build a non
trivial scalar potential in the symmetry breaking sector. Since driving fields haveR-charge
equal to two, the superpotential is linear in these fields.

The full superpotential of the model is

(A.1)w = wl + wd,

where, at leading order in a 1/Λ expansion,wl is given by the right-hand side of Eq.(16)
and the “driving” termwd reads:

wd = M(ϕ0ϕ) + g(ϕ0ϕϕ) + g1(ϕ
′
0ϕ

′ϕ′) + g2ξ(ϕ′
0ϕ

′) + g3ξ0(ϕ
′ϕ′)

(A.2)+ g4ξ0ξ
2.

We notice that at the leading order there are no terms involving the Higgs fieldshu,d . We
assume that the electroweak symmetry is broken by some mechanism, such as r
effects when supersymmetry (SUSY) is broken. It is interesting that at the leading
the electroweak scale does not mix with the potentially large scalesu, v andv′. The scalar
potential is given by:

(A.3)V =
∑

i

∣∣∣∣ ∂w

∂φi

∣∣∣∣
2

+ m2
i |φi |2 + · · · ,

whereφi denote collectively all the scalar fields of the theory,m2
i are soft masses and do

stand forD-terms for the fields charged under the gauge group and possible addition
breaking terms. Sincemi are expected to be much smaller than the mass scales inv
in wd , it makes sense to minimizeV in the supersymmetric limit and to account for s
breaking effects subsequently. From the driving sector we have:

∂w
∂ϕ01
= Mϕ1 + gϕ2ϕ3 = 0,
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metric
st from
table.

003,
∂w

∂ϕ02
= Mϕ2 + gϕ3ϕ1 = 0,

∂w

∂ϕ03
= Mϕ3 + gϕ1ϕ2 = 0,

∂w

∂ϕ′
01

= g1ϕ
′
2ϕ

′
3 + g2ξϕ′

1 = 0,

∂w

∂ϕ′
02

= g1ϕ
′
3ϕ

′
1 + g2ξϕ′

2 = 0,

∂w

∂ϕ′
03

= g1ϕ
′
1ϕ

′
2 + g2ξϕ′

3 = 0,

(A.4)
∂w

∂ξ0
= g3(ϕ

′ϕ′) + g4ξ
2 = 0.

The first three equations are solved by (up to irrelevant sign ambiguities):

(A.5)ϕ = (v, v, v), v = −M

g
.

The remaining equations are solved, in general, by:

(A.6)ϕ′ = (0,0,0), ξ = 0,

unless some further relation is imposed on the coefficientsg1, . . . , g4. If g2 = 0, then, up
to an irrelevant reordering, we have

(A.7)ϕ′ = (v′,0,0), ξ = u = −g3

g4
(ϕ′ϕ′)

with v′ andu undetermined. In this case we find that, form2
ϕ0

,m2
ϕ′

0
,m2

ξ0
> 0, the driving

fieldsϕ0, ϕ′
0 andξ0 vanish at the minimum. Moreover, ifm2

ϕ′ ,m2
ξ < 0, thenu andv′ slide to

large scales, eventually stabilized by one-loop radiative corrections. The supersym
case is better than the non-supersymmetric case in two respects. First of all, at lea
a technical viewpoint, the absence of a term in the superpotential is radiatively s
Moreover, as we have seen, onceg2 has been set to zero, the equations selecting(17) as
the correct minimum are consistent.
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