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Introduction

Tilting and cotilting modules have been introduced by S. Brenner, M. Butler,
C. Ringel, D. Happel and others in the early eighties. Their definitions have been
extended to the case of infinitely generated modules over arbitrary rings by many
authors: K. Fuller, R. Colby, R. Colpi, J. Trlifaj, L. Angeleri Hügel, G. D’Este, A.
Tonolo. A generalization to modules of projective or injective dimension greater than
one was introduced by L. Angeleri Hügel and F. Coelho in [1]. So one can consider
n-tilting and n-cotilting modules where n denotes the projective, respectively, injective
dimension. Structure theorems for this type of modules are far from being known.
The first complete description of cotilting modules was given by R. Göbel and J.
Trlifaj [17] in the case of abelian groups. The author in [5], proved that cotilting
modules over arbitrary rings are pure injective and in [10]. R. Göbel, L. Strüngmann
and the author proved that over Prüfer domains n-cotilting modules have injective
dimension at most one and thus over such rings all n-cotilting modules are pure in-
jective. Very recently, after the submission of this paper, J. Šťovı́ček in [22] proved
that all n-cotilting modules over arbitrary rings are pure injective.

In this paper we characterize cotilting modules over Prüfer domains. In Section 2
we prove that they are equivalent to direct products of cotilting modules over the
localizations at the maximal ideals and in the remaining sections we characterize
cotilting modules over valuation domains. Some results on decomposition of pure
injective modules over a valuation domain are given in [16, XIII, 5.3], but about the
structure of super decomposable pure injective modules very little is known. It is

Research supported by PRIN 2002.

(AutoPDF V7 28/4/06 13:56) WDG (170�240mm) Tmath J-1468 Forum, : PMU:I(CKN)28/4/2006 pp. 1–23 1468_06-04 (p. 1)

(06/4-Gö79)



known that they exist if and only if the valuation domain is not strongly discrete, that
is if it has a non zero idempotent prime ideal. We will prove that over valuation do-
mains every cotilting module is equivalent to a direct product of suitable indecom-
posable pure injective modules, showing that even though there might exist super
decomposable pure injective modules, cotilting modules can be assumed to have no
super decomposable summands.
In Section 4 we characterize cotilting modules of cofinite type over valuation

domains and we prove that every cotilting module is of cofinite type if and only if
the valuation domain is strongly discrete. Thus we answer negatively the question
whether all n-cotilting modules are of cofinite type (see definitions below). Not sur-
prisingly, the description of cotilting modules over non strongly discrete valuation
domains is more complicated. The characterization will be achieved by means of
change of rings. Up to equivalence, we will reduce the problem to characterizing co-
tilting modules over suitable factors of localizations of the domain and also to the
case of maximal valuation domains.
In Section 7 we show that for the class of Prüfer domains it is easy to prove that

n-tilting modules are of projective dimension at most one and thus of finite type.
Added in proof. Recently, after this paper was submitted, it has been proved that

all n-tilting modules over arbitrary rings are of finite type. The result for 1-tilting
modules was obtained by D. Herbera and the author in [7]. The generalization to all
n-tilting modules is proved in the paper by J. Šťovı́ček and the author [8] by using the
results obtained by J. Šťovı́ček and J. Trlifaj [23].
Section 7 shows that in the case of Prüfer domains, the proof of the finite type of

n-tilting modules can be obtained in a pretty easier way.

1 Preliminaries and definitions

For any left R-module M we define the following classes:

?M ¼ fX A R-Mod jExt iRðX ;MÞ ¼ 0; Eib 1g;

TM ¼ fX A Mod-R jTorRi ðX ;MÞ ¼ 0; Eib 1g:

If M is a right R-module we define;

M T ¼ fX A R-Mod jTorRi ðM;X Þ ¼ 0; Eib 1g:

If M is an R-module, i.d. M will denote the injective dimension of M.
Over an arbitrary ring with 1 a R-module C is a n-cotilting module if the following

conditions hold ([1]):

(C1) i.d. Ca n;

(C2) Ext iRðC l;CÞ ¼ 0 for each i > 0 and for every cardinal l;

(C3) there exists a long exact sequence:
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0! Cr ! � � � ! C1 ! C0 � � � !W ! 0;

where Ci A ProdC, for every 0a ia r and W is an injective cogenerator of R-Mod.

If C is a n-cotilting module the class ?C is called a n-cotilting class. n-cotilting classes
have been characterized in [1]. In particular ?C is closed under direct products.

In case n ¼ 1 there is an alternative definition of 1-cotilting modules. A module C is
1-cotilting if and only if CogenC ¼ ?C, where CogenC denotes the class of modules
cogenerated by C (cf [3, Prop. 2.3], [12, Prop. 1.7]). Moreover, if C is a 1-cotilting
module, then CogenC is a torsion free class. For results on torsion and torsion free
classes we refer to [21].

Since every 1-cotilting module C is pure injective ([5]) we have that 1-cotilting
classes are closed under direct products, direct limits and pure submodules. In other
words they are definable classes, that is they are closed under elementary equivalence.
Thus, if C is 1-cotilting, a module belongs to ?C if and only if its pure injective en-
velope belongs to ?C (see [18] or [13]).

The notion of n-cotilting modules of cofinite type was introduced in [2]. Since
we will use this notion only for cotilting modules over Prüfer domains, we recall the
definition in this particular case.

A 1-cotilting module C over a Prüfer domain R is of cofinite type provided there
exists a set S of finitely presented R-modules such that ?C ¼

T
S AS ST.

2 1-cotilting modules over commutative rings

In this section we prove that, up to equivalence, the study of 1-cotilting modules
over commutative rings can be restricted to the local case. Recall that two cotilting
modules C and C 0 are said to be equivalent if the corresponding cotilting classes, that
is if ?C and ?C 0, coincide.

The following easy lemma will show to be very useful in the sequel.

Lemma 2.1. Let 00 I be an ideal of a commutative ring R and M an R-module. Let E

be an injective module containing M and let M½I � denote the submodule of M consist-

ing of the elements annihilated by I , then:

(1) Ext1RðR=I ;MÞG
ðE=MÞ½I �

ðE½I � þMÞ=M .

(2) Ext1RðR=I ;MÞ ¼ 0, if I is idempotent and M½I � ¼M.

Proof. (1) Consider the exact sequence:

0!M ! E ! E=M ! 0;

and the induced sequence

HomðR=I ;EÞ !f HomðR=I ;E=MÞ ! Ext1RðR=I ;MÞ ! 0:
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Identifying HomðR=I ;XÞ with X ½I � for every R-module X , then the image of f is
ðE½I � þMÞ=M and the conclusion follows.
(2) Note that if xþM A ðE=MÞ½I �, then IxaM. Hence Ix ¼ I 2x ¼ 0, so that

xþM A ðE½I � þMÞ=M: r

Now we state a result which deals with properties of 1-cotilting modules with respect
to change of rings. In what follows, if R and S are two rings and f is a ring homo-
morphism f : R! S we will view S-modules as R-modules via f .

Proposition 2.2. Let R, S be commutative rings and let f : R! S be a ring homo-

morphism. If C is a 1-cotilting R-module such that Ext1RðS;CÞ ¼ 0, then HomRðS;CÞ
is a pure injective R-module and a 1-cotilting S-module.

Proof. HomRðS;CÞ is a pure injective R-module, since so is C. (See, for instance
[16, XIII, 2.1]). By a result of Fuller [15], HomRðS;CÞ is a 1-cotilting S-module
if Ext1RðS;CÞ ¼ 0 and HomRðS;CÞ is cogenerated by C. Clearly HomRðS;CÞ is co-
generated by C, since it is an R-submodule of CS, so C is a 1-cotilting S-module.

r

Useful tools in dealing with change of rings are the following homological formulas;
they can be found in the book by Cartan Eilenberg ([11, VI, 4.1.3, 4.1.4]).
Assume f : R! S is a ring homomorphism.
(a) for every left R-module RA and left S-module SB:

Ext1SðSnR A;BÞGExt1RðA;BÞ;

if TorRn ðS;AÞ ¼ 0 for every n.
(b) for every left R-module RB and left S-module SA:

Ext1SðA;HomRðS;BÞÞGExt1RðA;BÞ;

if ExtnRðS;BÞ ¼ 0 for every n.

The next result is an easy consequence of formula (b).

Lemma 2.3. Let I be an idempotent ideal of a commutative ring R. Let A, B be R=I-
modules with i.d. Ba 1 as an R-module, then

Ext1RðA;BÞGExt1R=I ðA;BÞ:

Proof. By Lemma 2.1 (2), Ext1RðR=I ;BÞ ¼ 0, hence formula (b) yields
Ext1R=I ðA;HomRðR=I ;BÞÞGExt1RðA;BÞ, and HomRðR=I ;BÞGB as R=I -modules.

r

Recalling that 1-cotilting modules are pure injective (by [5]), we will make use of the
following well known result by Auslander.
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Proposition 2.4 (Auslander [4]). If R is an arbitrary ring and C is a pure injective

R-module, then the functor Ext1Rð�;CÞ sends direct limits into inverse limits. In par-

ticular, ?C is closed under direct limits.

For every R-module M over a commutative ring R and every maximal ideal m of R
denote by Mm the Rm-module HomRðRm;MÞ.

Theorem 2.5. Let R be a commutative domain and let C be a 1-cotilting
R-module. Then for every maximal ideal m of R, Cm is a 1-cotilting Rm-module andQ

m AMaxR Cm is a 1-cotilting R-module equivalent to C.

Proof. For every maximal ideal m of R, Cm is a 1-cotilting Rm-module. In fact,
Proposition 2.2 applies, since Rm is a flat R-module and C is pure injective. Moreover
Cm is cogenerated by C as an R-module. Let E ¼

Q
m AMaxR Cm, then CogenEJ

CogenC ¼ ?C. We prove now that ?EJCogenE. In fact, a R-module M belongs
to ?E if and only if Ext1RðM;CmÞ ¼ 0 for every maximal ideal m and also, by
formula (a), if and only if Ext1Rm

ðRm nM;CmÞ ¼ 0, for every maximal ideal
m. Since Cm is a cotilting Rm-module, we conclude that M A ?E if and only if
Rm nM is cogenerated by Cm as a Rm-module. From the embedding 0!M !Q

m AMaxR Rm nM, we infer that M is cogenerated by E as a R-module. There-
fore we have proved ?EJCogenEJCogenC ¼ ?C. If we show that ?CJ ?E,
then the proof is complete. As noted above, M belongs to ?E if and only if
Ext1Rm

ðRm nM;CmÞ ¼ 0 for every maximal ideal m and so, by formula (b), M A ?E
if and only if Ext1RðRm nM;CÞ ¼ 0, or every maximal ideal m. So we must prove
that M A ?C implies Rm nM A ?C. Rm is isomorphic to the direct limit of s�1R
where s A Rnm. So, by Proposition 2.4 it is enough to show that M A ?C implies
s�1RnM A ?C, for every s A Rnm. But this is true, since s�1RGR implies
s�1RnMGM. r

In [10] it is proved that n-cotilting modules over Prüfer domains have injective di-
mension at most one. Thus, over such rings, we will simply write ‘‘cotilting modules’’
without any mention to the injective dimension. As an immediate consequence of the
preceding theorem we have:

Corollary 2.6. Let C be a cotilting module over a Prüfer domain R. Then for every

maximal ideal m of R, Cm is a cotilting module over the valuation domain Rm andQ
m AMaxR Cm is a cotilting R-module equivalent to C.

3 The set G associated to a cotilting module over a valuation domain

By Corollary 2.6 the study of cotilting modules over Prüfer domains can be restricted
to the case of valuation domains.

So we will consider a valuation domain R with maximal ideal P and quotient field
Q. For terminology and definitions on valuation domains and their modules, we refer
to [16].
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We state a result valid for all pure injective modules over valuation domains R;
recall that pure injective modules over Prüfer domains have i.d.a1.

Lemma 3.1. Let C a pure injective module over the valuation domain R. Then ?C is

determined by the cyclic modules that it contains. Moreover if R is an almost maximal

valuation domain a module M A ?C if and only if every cyclic submodule of M belongs

to ?C.

Proof. First of all notice that ?C contains the class of torsion free modules and that it
is closed under submodules, since i.d. Ca 1. Thus a module M A ?C if and only if its
torsion submodule belongs to ?C. Now writing a module as a direct limit of its fi-
nitely generated submodules and applying Proposition 2.4, we conclude that M A ?C
if and only if all of its finitely generated torsion submodules are in ?C. By [16, I, 7.8],
a finitely generated torsion module A over a valuation domain admits a finite chain
of pure submodules with cyclic successive factors. By the pure injectivity of C it is
immediate to conclude that A A ?C if and only if all the cyclic factors are in ?C. The
second statement follows analogously recalling that over almost maximal valuation
domains the finitely generated torsion modules are direct sums of cyclics (see [16,
V, 10.4]. r

Recall that a module C is 1-cotilting if and only if ?C ¼ CogenC. It is well known
that a 1-cotilting module C cogenerates a torsion theory whose torsion free class is
the class CogenC. Moreover, for every R-module M the torsion submodule of M is
the intersection of the kernels of all the homomorphisms from M to C. Thus, we
have the following.

Lemma 3.2. Let R be a valuation domain and C a cotilting module. For every ideal J of

R the torsion submodule of R=J with respect to the torsion theory cogenerated by C is

J 0=J where J 0 ¼
T
fI j Ja I aR;R=I A CogenCg.

In the case of cotilting modules C over a valuation domain, an important role will be
played by the set G defined as follows:

G ¼ fI < R jR=I A ?Cg ¼ fI < R jR=I A CogenCg:

So G consists of the non-zero ideals of R such that R=I is torsion free in the torsion
theory cogenerated by C. G will be called the set associated to C.
Recall that a module C is 1-cotilting if and only if ?C ¼ CogenC. In the case of

cotilting modules C over a valuation domain, an important role will be played by the
set G defined as follows:

G ¼ fI < R jR=I A ?Cg ¼ fI < R jR=I A CogenCg:

G will be called the set associated to C.
Recall that, if I is a non-zero ideal of a valuation domain R, Ia denotes the prime

ideal associated to I , that is Ia¼ fr A R j rI < Ig. Ia is the union of the proper
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ideals of R isomorphic to I (see [16, p. 70 (g)]). If I ; JaQ denote by J : I ¼
fx A Q j xI a Jg.

Lemma 3.3. Let C be a cotilting R-module. The set G defined above has the following

properties:

(1) G is closed under arbitrary sums and arbitrary intersections.

(2) G contains AnnðMÞ for every module M A ?C.

(3) If 00 I A G, then for every r A RnI , r�1I A G. Moreover, Ia A G and RIa=I
a A ?C.

(4) If rRL A G for some prime ideal L A G and some element r A L, then rL A G.

(5) If 00 I A G and I < Ia, then for every r A IanI , rRIa and rIa belong to G.

(6) If rI A G, for some I aR, then rnI A G for every n.

Proof. (1) Let Ia A G; then R=
P

Ia G lim�! R=Ia, since the ideals Ia are totally odered.
Hence

P
Ia A G, by Proposition 2.4. If Ia A G, then R=Ia embeds in a direct product

of copies of C. Let I ¼
T

a Ia; then also R=I embeds in a direct product of copies of
C, hence I A G.

(2) If M A ?C ¼ CogenC, the annihilators of the elements of M belong to G, since
CogenC is closed under submodules. AnnðMÞ is the intersection of the annihilators
of the elements of M; thus AnnðMÞ belongs to G by part 1.

(3) Let 00 I A G; then there exists a cyclic module Rx A CogenC such that
I ¼ AnnðxÞ. If r A RnI , then 00Rrx A CogenC and AnnðrxÞ ¼ r�1I . Hence,
r�1I A G. Since Ia¼

P
r B I r

�1I , Ia A G by part 1; that is R=IaA ?C. Recalling that
r�1Ia¼ Ia for every r A RnIa we have that r�1R=IaA ?C. Moreover, RIa=I

a¼P
r ARnIa r�1R=Ia; thus RIa=I

a A ?C by Proposition 2.4.

(4) Note that if L is a prime ideal and r A L, then rRL aL. Consider the exact
sequence

0! rRL

rL
! R

rL
! R

rRL

! 0:

The first non-zero term is isomorphic to RL=L, hence it is in ?C by part 3; R=rRL

belongs to ?C by hypothesis, thus also the middle term is in ?C and we conclude that
rL A G.

(5) Let 00 I A G and let r A IanI ; then r�1I < R hence r�1I=I A CogenC. By part
2, Annðr�1I=IÞ ¼ I : r�1I ¼ rRIa A G. By part (3) and (4) rIaA G.

(6) Consider the exact sequence

0! rI=r2I ! R=r2I ! R=rI ! 0:

rI=r2I A ?C, since it is isomorphic to a submodule of R=rI which is in ?C by as-
sumption. Hence, R=r2I A ?C, too. An easy induction completes the proof. r
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In investigating the set G, it is convenient to define the following.

Definition 1. Let G be the set associated to a cotilting module. We denote by supG
the sum of all the ideals in G and, if G0 f0g, we denote by inf G the intersection of
the non-zero ideals in G. Moreover, we denote by G 0 the set of non-zero prime ideals
of G.

To every R-module M over a valuation domain R one can associate two prime
ideals:

Ma¼ fr A R j rM < Mg; Ma¼ fr A R j b00 x A M; rx ¼ 0g:

While over valuation domains Ma is crucial in characterizing tilting modules M (see
[19]), the role of Mawill be of relevance in studying cotilting modules. Note that Ma

is the union of the annihilators of the non zero elements of M.

Lemma 3.4. Let C be a cotilting R-module with associated set G. Then supG ¼ Ca and

inf G is an idempotent prime ideal.

Proof. By definition Ca¼
S

00c AC AnnðcÞ and AnnðcÞ A G for every 00 c A C, since
C cogenerates its submodules. Thus, Caa supG. If I A G, then R=I is cogenerated
by C, hence I is an intersection of annihilators of elements of C. Thus, I aCa and so
supG ¼ Ca. Suppose G0 f0g and let I0 ¼ inf G. Assume, by way of contradiction
that I0 is not a prime ideal. Let r A RnI0 and consider the exact sequence:

0! I0

rI0
! R

rI0
! R

I0
! 0:

By Lemma 3.3 (1) I0 A G, hence R=I0 A ?C. Moreover, I0=rI0 G r�1I0=I0 and r�1I0=I0
is a submodule of R=I0 A ?C. Hence the midddle term of the sequence is in ?C, so
rI0 A G. By the minimality of I0 we conclude that rI0 ¼ I0, that is I0 ¼ ðI0Þa and thus
I0 is a prime ideal. Assume now that I0 is not idempotent. Then I0 G rRI0 for some
r A I0. By Lemma 3.3 (4), rI0 A G, contradicting the minimality of I0. r

Lemma 3.5. Let C be a cotilting module with associated set G. For every L A G 0, let
J ¼

P
fa�1R j a�1R=L A ?Cg. Then there is an idempotent prime ideal L 0aL such

that J ¼ RL 0 and L 0 A G. Moreover, RL 0=L A ?C and L 0 ¼ inffN A G 0 jRN=L A ?Cg.

Proof. Let X ¼ fa A R j aL A Gg; then a�1R=L A ?C if and only if a A X . If a; b A X

the exact sequence

0! bL=abL! R=abL! R=bL! 0

implies that a�1b�1Ra J. Hence J is an overring of R, so J ¼ RL 0 for some prime
ideal L 0. By Lemma 3.3 (3), JbRL, hence L

0aL. By Proposition 2.4, RL 0=L A ?C;

8 S. Bazzoni
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moreover, L 0 ¼ AnnðRL 0=LÞ, hence L 0 A G, by Lemma 3.3 (2). Assume by way of
contradiction that L 0 is not idempotent, that is L 0 ¼ rRL 0 for some element r A L 0.
From the exact sequence 0! RL 0=L! r�1RL 0=L! RL 0=L

0 ! 0, it follows that
r�1RL 0=L A ?C, contradicting the maximality of J. The last statement follows by the
fact that NaN 0 implies RN bRN 0 . r

4 Cotilting modules of cofinite type over valuation domains

In this section R will always denote a valuation domain.

Recall that a cotilting module C over a valuation domain is of cofinite type if and
only if there exists a set S of finitely presented modules such that ?C ¼ ST ¼ fX A
R-Mod jTorR1 ðS;XÞ ¼ 0; ES A Sg. If this is the case, then S can be chosen to be the
intersection of Tð?CÞ with the class of finitely presented R-modules. In this section we
prove that a cotilting module over a valuation domain R is of cofinite type if and only
if R is strongly discrete.

For every R-module M, EðMÞ and M̂M denote the injective and the pure injective
envelope of M, respectively.

Recall that a maximal immediate extension of a valuation domain R is a pure in-
jective envelope of R and for fractional ideals I , J of R, cJ=IJ=I G J cRLRL=I cRLRL where L

denotes the prime ideal JaW Ia (see [16, XIII, 5.5]). Moreover, for every prime ideal

L of R, EðQ=LÞGQcRLRL=LcRLRL G dQ=LQ=L (see [16, XIII, 4.3]).
The next results show that a cotilting module C of cofinite type is determined by

the prime ideal Ca.
We first consider the case in which C is a torsion free module. This is equivalent to

Ca¼ 0 and also to G ¼ 0.

Proposition 4.1. Let C be a torsion free cotilting module. Then ?C is the class of all

torsion free modules and C is equivalent to Ql P̂P. In particular C is of cofinite type.

Proof. Denote by TF the class of all torsion free modules. Since C A TF,
CogenCJTF. The inclusion TFJ ?C follows by the fact that C is pure injec-
tive. Consider the module C1 ¼ Ql P̂PGQlPR̂R. C1 is pure injective and clearly

CogenC1 ¼TF; moreover ?C1 ¼ ?PR̂R. If I is a non-zero ideal of R, then, by
Lemma 2.1, Ext1RðR=I ;PR̂RÞ ¼ 0 if and only if PR̂R : I ¼ PR̂R. But PR̂R : I b R̂R, thus
there are no cyclic torsion modules in ?C1. Hence we conclude that ?C1 ¼TF; so C

and C1 are equivalent cotilting modules. The last statement trivially follows by not-
ing that TF ¼ST, where S is the class of all finitely presented R-modules. r

Before passing to consider the case 00Cawe prove a lemma.

Lemma 4.2. Let L be a non-zero prime ideal of R and 00 I < R. The following hold.

(1) R=I A ? dP=LP=L if and only if IaaL.

(2) If L is idempotent, R=I A ?cRLRL if and only if I bL.

Cotilting and tilting modules over Prüfer domains 9
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Proof. (1) By [16, XIII, 5.5] dP=LP=LGPR̂R=LR̂R. Note that QR̂R=LR̂R is an injective R-
module containing PR̂R=LR̂R. Thus, by Lemma 2.1, Ext1RðR=I ;PR̂R=LR̂RÞ ¼ 0 if and
only if PR̂R : I ¼ LR̂R : I þ PR̂R as submodules of QR̂R. This happens exactly if IaaL.
In fact, if Ia> L the equality Ia¼

S
r ARnI r�1I implies the existence of an element

r B I such that r�1I > L. Hence r�1 A PR̂R : I , but r�1 B LR̂R : I þ PR̂R. Conversely, if
IaaL and r�1I A PR̂R, then r�1I a Ia, hence r�1 A LR̂R : I .
(2) By Lemma 2.1, R=I A ?cRLRL if and only if cRLRL : I ¼ cRLRL. This is equivalent to

I bL. In fact, if there exists r A LnI , then r�1I a cRLRL and r�1 B cRLRL. Conversely, if

I bL, then I cRLRL bLcRLRL, so cRLRL : I ¼ cRLRL, since L is an idempotent prime ideal. r

Proposition 4.3. Let C a cotilting module and let 0aL ¼ Ca. The following are

equivalent:

(1) C is of cofinite type.

(2) ?C ¼ fM A R-Mod j E00 x A M;AnnðxÞaLg:

(3) EðQ=LÞl dP=LP=L is a cotilting module equivalent to C.

Proof. ð1Þ , ð2Þ. Assume C is a cotilting module and let ?C ¼F. C is of cofinite
type if and only if F ¼ ST where S consists of the finitely presented modules which
belong to TF. Recalling that every finitely presented module over a valuation domain
is a direct sum of modules of the form R=rR for some r A R, we have that C is of
cofinite type if and only if F ¼S 0T where S 0 ¼ fR=tR jR=tR A TFg. We have that
R=tR A TF if and only if TorR1 ðR=tR;CÞ ¼ 0, since TorR1 ðR=tR;�Þ commutes with
direct products and TorR2 ðR=tR;�Þ ¼ 0. Note that, for every 00 t A R and every R-
module M, TorR1 ðR=tR;MÞGM½t�. It follows that R=tR A TF if and only if t A RnL.
Moreover, it follows that M A S 0T if and only if for every 00 x A M, AnnðxÞaL.
Thus the equivalence of conditions (1) and (2) is proved.

ð2Þ , ð3Þ. Let C1 ¼ EðQ=LÞl dP=LP=L. First we prove that CogenC1 ¼ fM A
R-Mod j E00 x A M;AnnðxÞaLg: By the description of the modules EðQ=LÞ anddP=LP=L given at the beginning of this section, it follows that the annihilators of non-zero
elements in EðQ=LÞ or in dP=LP=L are, either of the form rL for some r A R, or of the
form r�1L for some r B L. Hence the annihilators are always contained in L, since L
is a prime ideal. Consequently, if 00 x A C

g
1 for some cardinal g, then AnnðxÞaL.

Furthermore, if M is a module all of whose elements have annihilator contained in
L, then M is an R-submodule of MnRL. Since EðQ=LÞ is isomorphic to the RL-
injective envelope of the simple RL-module RL=L, C1 cogenerates every RL-module,
thus in particular it cogenerates M as an R-module. We conclude that CogenC1 ¼
fM A R-Mod j E00 x A M;AnnðxÞaLg. Thus, assuming (3), condition (2) follows
immediately.
Assume now that condition (2) holds. Then, CogenC1 ¼ CogenC ¼ ?C. So con-

dition (3) holds if and only ?C1 ¼ ?C. Since EðQ=LÞ is an injective R-module, ?C1 ¼
?dP=LP=L and by Lemma 3.1 it is enough to show that ? dP=LP=L and ?C contain the same
torsion cyclic modules. By Lemma 4.2, for every 00 I aR, R=I A ? dP=LP=L if and only
if IaaL. By hypothesis, a cyclic torsion module R=I is in ?C if and only if the
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annihilator of every non-zero element rþ I A R=I is contained in L. If r B I , then
Annðrþ IÞ ¼ r�1I ; so R=I A ?C if and only if r�1I aL, for every r B I , that is if and
only if IaaL. Hence we conclude that ?C1 ¼ ?C. r

As an application of the preceding results we obtain a characterization of cotilting
modules over strongly discrete valuation domains. Recall that a valuation domain is
called strongly discrete if every non-zero prime ideal is not idempotent; equivalently
if every non-zero prime ideal L is a principal ideal of the localization RL.

Proposition 4.4. Let R be a strongly discrete valuation domain. Then every cotilting

module C is of cofinite type. In particular C is equivalent to EðQ=LÞl dP=LP=L, where
L ¼ Ca.

Proof. Let G be the set associated to C. If G ¼ f0g, then the conclusion follows by
Proposition 4.1. If G0 f0g, let L ¼ supG. Then, L ¼ Ca by Lemma 3.4. Since there
are no non-zero idempotent prime ideals, Lemma 3.5 yields that Q=L A ?C. As noted

in Section 1, ?C is closed under pure injective envelopes; thus dQ=LQ=L belongs to ?C.dQ=LQ=L coincides with the injective envelope of Q=L and also with the RL-injective
envelope of the simple RL-module RL=L. We conclude that CogenC contains all
the RL-modules. Let A ¼ fM A R-Mod j E00 x A M;AnnðxÞaLg. If M A A, then
M is a R-submodule of RL nM, hence M is cogenerated by C. Conversely,
CogenCJA, since L ¼ Ca. Thus, condition 2 of Proposition 4.3 is satisfied and the
conclusion follows. r

We are now in a position to show that over non strongly discrete valuation domains
there exist cotilting modules which are not of cofinite type.

Proposition 4.5. Let L be a non-zero idempotent prime ideal of R. The module

C ¼ Ql cRLRL l dRL=LRL=Ll dP=LP=L

is a cotilting module and

?C ¼ fM A R-Mod j E00 x A M;AnnðxÞ ¼ 0 or AnnðxÞ ¼ Lg:

In particular C is not of cofinite type.

Proof. Let A ¼ fM A R-Mod j E00 x A M;AnnðxÞ ¼ 0 or AnnðxÞ ¼ Lg. We show
first that ?CJA. Let M A ?C and let 00 I ¼ AnnðxÞ for some 00 x A M. Then

R=I A ?C; in particular R=I A ?cRLRL and R=I A ? dP=LP=L. By Lemma 4.2, I ¼ L, so
?CJA. To prove the inclusion AJ ?C, it is enough to show that every torsion
module M A A belongs to ?C, since C is pure injective and A is closed under sub-
modules. If M is a non zero torsion module in A, then M is an R-submodule of the
localization MnRL. We show that MnRL A ?C, so M A ?C, too. MnRL is a
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RL=L-module; hence isomorphic to a direct sum of copies of the field RL=L. The R-
module RL=L is a direct limit of modules of the form s�1R=L, s B L, thus isomorphic
to R=sL ¼ R=L. Therefore, by Proposition 2.4 we are led to show that R=L A ?C.

By Lemma 4.2, R=L A ?cRLRL X ? dP=LP=L. It remains to show that R=L A ?ð dRL=LRL=LÞ. SincedRL=LRL=LG cRLRL=LcRLRL, we consider the exact sequence

0! LcRLRL ! cRLRL ! cRLRL=LcRLRL ! 0:

Since LcRLRL is the pure injective envelope of L, i.d. LcRLRL a 1; thus from the above

exact sequence we infer that ?cRLRL J ?ðcRLRL=LcRLRLÞ, hence R=L A ?ðcRLRL=LcRLRLÞ and we
conclude that ?C ¼A. We proceed now to check that CogenC ¼A. It is easy to
see that C A A, since L is a prime ideal; thus also CogenCJA ¼ ?C. In particular
we obtain that CogenC is closed under extensions and clearly CogenC contains all
torsion free modules. So, to prove that AJCogenC it is enough to verify that C
cogenerates every torsion module M A A. By the above argument M is an R-
submodule of a direct sum of copies of RL=L and RL=L is cogenerated by C, since it
is a submodule of dRL=LRL=L. Thus we conclude that

?C ¼A ¼ CogenC. Proposition 4.3
implies that C is not of cofinite type. r

Propositions 4.4 and 4.5 imply the following result.

Corollary 4.6. Let R be a valuation domain. Then every cotilting module is of cofinite

type if and only if R is strongly discrete.

5 Cotilting modules under change of rings

In this section we investigate the properties of cotilting modules over a valuation
domain R with respect to localizations or factors of R.

Definition 2. Let L0 aL be two prime ideals of a valuation domain R. We let

hL0;Li ¼ fI aR jL0 a I a IaaLg:

In particular I A hL0;Li if and only if I bL0 and I is an ideal of RL.

Lemma 5.1. Let L0 aL be two prime ideals of the valuation domain R with L0 idem-

potent. Assume D is a RL=L0-module such that i.d. Da 1 as a R-module. Then, for

every ideal I A hL0;Li

Ext1RðR=I ;DÞGExt1RL=L0
ðRL=I ;DÞ:

Proof. By formula (a) in Section 2 we have Ext1RðR=I ;DÞGExt1RL
ðRL=I ;DÞ. Since L0

is idempotent, Lemma 2.3 yields Ext1RL
ðRL=I ;DÞGExt1RL=L0

ðRL=I ;DÞ. r

12 S. Bazzoni

(AutoPDF V7 28/4/06 13:56) WDG (170�240mm) Tmath J-1468 Forum, : PMU:I(CKN)28/4/2006 pp. 1–23 1468_06-04 (p. 12)



Proposition 5.2. Let C be a cotilting R-module with associated set G. Let 00L ¼
supG and inf G ¼ L0. Then C is equivalent to the cotilting module

Ql dRL0
RL0

lHomR

RL

L0
;C

� �
l dP=LP=L:

Moreover, HomRðRL=L0;CÞ is a RL=L0-cotilting module.

Proof. Let R 0 ¼ RL=L0. First of all notice that Ext1RðR 0;CÞ ¼ 0. In fact, by Lemma
3.3, L0 A G and RL0

=L0 A CogenC, thus also RL=L0 A CogenC, since RL aRL0
. Let

D ¼ HomRðR 0;CÞ. By Proposition 2.2, D is a pure injective R-module and a cotilting
R 0-module. Let C1 ¼ Ql dRL0

RL0
lDl dP=LP=L; C1 is a pure injective R-module and

we have to prove that C1 is a cotilting module equivalent to C. We first show that
?C ¼ ?C1. By Lemma 3.1 it is enough to check that the two classes contain the same
cyclic modules. By Lemma 4.2 and Lemma 5.1, R=I A ?C1 if and only if I A hL0;Li
and Ext1R 0 ðRL=I ;DÞ ¼ 0. Let now R=I A ?C for a nonzero ideal I aR; since L ¼
supG and L0 ¼ inf G, I A hL0;Li. Moreover, R=I A ?C if and only if RL=I A ?C. In
fact, if R=I A ?C then Lemma 3.3 (3) implies RL=I

a A ?C, since RL aRIa. From the
exact sequence 0! Ia=I ! RL=I ! RL=I

a! 0 we conclude that RL=I A ?C. By
formula (b), Ext1RðRL=I ;CÞGExt1R 0 ðRL=I ;DÞ. Thus, we conclude that R=I A ?C if
and only if R=I A ?C1.

The summands Q, dRL0
RL0

and HomR

RL

L0
;C

� �
of C1 are clearly cogenerated by C as

R-modules. By Lemma 3.3 L A G, so P=L A CogenC and thus dP=LP=L is cogenerated
by C, since the class CogenC is closed under pure injective envelopes. So CogenC1 J
CogenC. It remains to show that C is cogenerated by C1. CogenC1 contains all
the torsion free modules and the inclusions CogenC1 aCogenC ¼ ?C ¼ ?C1 imply
that CogenC1 is closed under extensions. Thus it is enough to show that the torsion
submodule T of C is cogenerated by C1. By assumption the annihilator of every
non-zero torsion element of C contains L0, thus T is an R=L0-module. By Lemma
3.4 L0 is idempotent, so (a) and Lemma 2.3 imply Ext1RðT ;DÞGExt1R=L0

ðT ;DÞG
Ext1R 0 ðT nR=L0

R 0;DÞ. Now, Ext1RðT ;DÞ ¼ 0 since T A ?C ¼ ?C1 J ?D. Thus
T nR=L0

R 0, is cogenerated by D as an R 0-module, since D is R 0-cotilting. Moreover,
TaaL yields an exact sequence 0! T ! T nR=L0

R 0 which shows that T is an
R-submodule of a product of copies of D. Thus T is cogenerated by D, hence by C1

and we conclude that CogenC ¼ CogenC1. r

Remark 1. By the preceding result the investigation of cotilting modules over valua-
tion domains can be reduced to the case in which supG ¼ P and inf G ¼ 0. In fact,
the proof above shows that the set G1 associated to the RL=L0-cotilting module
HomRðRL=L0;CÞ has inf 0 and sup the maximal ideal of RL=L0.

The next lemma shows that to characterize cotilting modules over a valuation do-
main R it is possible to assume that R is a maximal valuation domain.
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Lemma 5.3. Let C be a cotilting R-module and let S be a maximal immediate extension

of R. Consider D ¼ HomRðS;CÞ. Then D is both a S- and a R-cotilting module; more-

over C and D are equivalent cotilting R-modules.

Proof. S is torsion free, hence S A ?C ¼ CogenC. Thus, by Proposition 2.2, D is a
S-cotilting module and a pure injective R-module. We show that D is also a cotilting
R-module. By formula (a) we have Ext1RðR=I ;DÞ ¼ 0 if and only if Ext1SðS=IS;DÞ ¼
0 and, by (b) if and only Ext1RðS=IS;CÞ ¼ 0. Now Ext1RðS=IS;CÞ ¼ 0 if and only if
Ext1RðR=I ;CÞ ¼ 0, since S=IS is isomorphic to the pure injective envelope of R=I and
?C is closed under submodules and pure injective envelopes. By Lemma 3.1 we con-
clude that ?C ¼ ?D (as R-modules). D is clearly cogenerated by C and we show
now that C is cogenerated by D. In fact, by (a) Ext1SðCnS;DÞGExt1RðC;DÞ and
Ext1RðC;DÞ ¼ 0 since C A ?C ¼ ?D. Thus CnS is cogenerated by the D as an S-
module, since D is S-cotilting. By the purity of the exact sequence 0! R! S !
S=R! 0 we obtain the monomorphism 0! C ! CnS, which shows that C is an
R-submodule of a product of copies of D. Thus we conclude that, as R-modules,
?D ¼ ?C ¼ CogenC ¼ CogenD. r

6 A classification of cotilting modules over valuation domains

In order to complete the characterization of cotilting modules over valuation do-
mains we need a more detailed investigation of the set G associated to a cotilting
module (see Section 3). We will see that the complexity of the set G depends on the
abundance of non-zero idempotent prime ideals that it contains. Recall that G 0 de-
notes the set of non-zero prime ideals of G.

Definition 3. Let C be a cotilting module with associated set G. Define

f : G 0 ! G; fðLÞ ¼ inffN A G 0 jRN=L A ?Cg;

c : G 0 ! G 0; cðLÞ ¼ supfN A G 0 jRfðLÞ=N A ?Cg:

By Lemma 3.3 and 3.5 the two maps are well defined; by Lemma 3.5 is fðLÞ is an
idempotent prime ideal and it might be 0.
The two maps f and c satisfy the following properties.

Lemma 6.1. Let f, c be defined as above. Then the following hold:

(1) For every L A G 0, RfðLÞ=L and RfðLÞ=cðLÞ belong to ?C;

(2) f, c are increasing maps; fðLÞaL and LacðLÞ;

(3) fðcðLÞÞ ¼ fðLÞ and fðfðLÞÞ ¼ fðLÞ;

(4) cðfðLÞÞ ¼ cðLÞ and cðcðLÞÞ ¼ cðLÞ.
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Proof. (1) By Lemma 3.5, RfðLÞ=L A ?C. Let A ¼ fN A G 0 jRfðLÞ=N A ?Cg.
Then RfðLÞ=cðLÞ is isomorphic to lim�!fRfðLÞ=N jN A Ag, hence RfðLÞ=cðLÞ A ?C by
Proposition 2.4.

(2) fðLÞaL and LacðLÞ by Lemma 3.3 (3) and by (1) above.
Let L1 aL2 A G 0. Consider the exact sequence

0! L2

L1
!

RfðL2Þ
L1

!
RfðL2Þ
L2

! 0:

The two outer terms belong to ?C, hence RfðL2Þ=L1 A ?C; thus fðL1Þa fðL2Þ
by definition of f. Moreover, RfðL2ÞaRfðL1Þ. By (1), RfðL1Þ=cðL1Þ A ?C; thus also
RfðL2Þ=cðL1Þ A ?C. By definition of the map c we conclude that cðL1ÞacðL2Þ.

(3) By (2) LacðLÞ, so fðLÞa fðcðLÞÞ. By (1), RfðLÞ=cðLÞ A ?C; thus, by the
definition of f we have fðLÞb fðcðLÞÞ. So fðcðLÞÞ ¼ fðLÞ.

Clearly fðfðLÞÞa fðLÞ. By Lemma 3.5, r A fðLÞ if and only r�1R=L B ?C, hence
if and only if rL B G. Assume fðfðLÞÞ < fðLÞ and choose r A fðLÞnfðfðLÞÞ. Then
rfðLÞ A G and rL B G. Since r B rfðLÞ, Lemma 3.3 (5) yields rRfðLÞ A G. Moreover,

rLa rRfðLÞaR. So, by Lemma 3.2 the torsion submodule of R=rL with respect to
the torsion theory induced by C is contained in rRfðLÞ=rL. But by (1), RfðLÞ=L is
torsion free. So R=rL is torsion free, contradicting the hypothesis rL B G.

(4) By (2) fðLÞaL, so cðfðLÞÞacðLÞ. By (1), RfðLÞ=cðLÞ A ?C; thus, by
the definition of c and by the fact that f2 ¼ f, we have cðLÞbcðfðLÞÞ. So
cðfðLÞÞ ¼ cðLÞ.

Let cðLÞ ¼ N; by (2) cðLÞacðNÞ. Using (3) we have fðLÞ ¼ fðNÞ; therefore
RfðLÞ=cðNÞ A ?C, by (1). By the definition of c we conclude that cðNÞacðLÞ,
hence cðcðLÞÞ ¼ cðNÞ ¼ cðLÞ. r

The following easy result on totally ordered sets will be useful.

Lemma 6.2. Let X be a totally ordered set. Assume f;c : X ! X are two increasing

functions such that:

(1) for every x A X, fðxÞa x and xacðxÞ;

(2) f � f ¼ f; c � c ¼ c; f � c ¼ f; c � f ¼ c.

Then, for every a A X, the pre-image f ðfðaÞÞ of fðaÞ is the interval ½fðaÞ;cðaÞ� ¼
fx A X j fðaÞa xacðaÞg. In particular, X is a disjoint union of intervals of the form

½fðaÞ;cðaÞ�, a A X.

Proof. Let fðaÞa xacðaÞ. Then, fðaÞ ¼ fðfðaÞÞa fðxÞa fðcðaÞÞ ¼ fðaÞ. Thus,
fðxÞ ¼ fðaÞ so x belongs to the pre-image of fðaÞ. Conversely, if x < fðaÞ, then
fðxÞa x < fðaÞ; so fðxÞ0 fðaÞ. If cðaÞ < x, then cðaÞ < xacðxÞ. So fðxÞ0 fðaÞ,
since otherwise cðxÞ ¼ cðfðxÞÞ ¼ cðfðaÞÞ ¼ cðaÞ, a contradiction.

Clearly fðaÞ0 fðbÞ implies that f ðfðaÞÞ and f ðfðbÞÞ are disjoint. Moreover,
every element x A X belongs to the pre-image of fðxÞ; hence X is a disjoint union of
intervals of the form ½fðaÞ;cðaÞ�. r
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An immediate application of the two preceding results furnish the following
corollary.

Corollary 6.3. Let C be a cotilting module with associated set G. If L, L 0 are two prime

ideals in G 0 with fðLÞ0 fðL 0Þ, then the intervals ½fðLÞ;cðLÞ� and ½fðL 0Þ;cðL 0Þ� are
disjoint and G 0 is the union of intervals of this form.

Lemma 6.4. If L0 aL are two prime ideals of a maximal valuation domain R, then

RL0
=L is an injective RL=L0-cogenerator.

Proof. L=L0 is the maximal ideal of RL=L0 and RL0
=L0 is the quotient field of

RL=L0. Thus the conclusion follows since it is well known that the injective envelope
of the simple module of a maximal valuation domain is the quotient field of the do-
main modulo its maximal ideal. r

Recalling the definition of hL0;Li from Section 5, we are now in a position to de-
scribe a cotilting torsion free class.

Proposition 6.5. Let C be a cotilting module over a maximal valuation domain R with

associated set G. A module M belongs to ?C if and only if for every non-zero torsion

element x A M there exists L A G 0 such that AnnðxÞ A hfðLÞ;cðLÞi.

Proof. Let M A ?C and let 00 x A M be a torsion element. Then 00AnnðxÞ ¼
I A G, so Ia A G 0. Let L ¼ Ia; we claim that I A hfðLÞ;cðLÞi. It is enough to show
that fðLÞa I . Assume I < fðLÞ and let r A fðLÞnI . By Lemma 3.3 (5), rL A G, hence
r�1R=L A ?C. But r�1R > RfðLÞ, thus by Lemma 3.5 r�1R=L B ?C, a contradiction.
To prove the converse, note that by Lemma 3.1, M A ?C if and only if every

cyclic submodule of M belongs to ?C; so it is enough to show that for every L A G 0,
I A hfðLÞ;cðLÞi implies I A G. Since fðLÞa I a IaacðLÞ, R=I is a R=fðLÞ-
module and IRcðLÞ ¼ I . Hence R=I is a R=fðLÞ-submodule of the localization R=I n
RcðLÞ. By Lemma 6.4, RfðLÞ=cðLÞ cogenerates the RcðLÞ=fðLÞ-module R=I nRcðLÞ.
Thus, R=I is cogenerated also as a R-module by RfðLÞ=cðLÞ and by Lemma 6.1,
RfðLÞ=cðLÞ belongs to ?C ¼ CogenC. r

We need now a technical lemma. For more details on the proof see [16].

Lemma 6.6. Let R be a maximal valuation domain and 00 I aR. Assume L is a

prime ideal of R and N is an idempotent prime ideal. Then:

(1) R=I A ?ðRNÞ if and only I bN.

(2) R=I A ?ðRN=LÞ if and only either:

2.a I bN, or

2.b I < N, I ZRN and IaaLXN.

Proof. Recall that if R is a maximal valuation domain, then Q=I is an injective
module for every I aR.
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(1) See Lemma 4.2 (2).
(2) Consider the condition RN : I ¼ L : I þ RN and label it by (*). By Lemma 2.1,

R=I A ?ðRN=LÞ if and only if (*) holds. If I bN, then IRN bNRN , hence (*) is
verified, since N is idempotent. Assume now I < N, then RN : I > RN , so (*) is sat-
isfied if and only if RN : I ¼ L : I . If Ia> N, then IN ¼ rRN , for some element r A N;
hence RN : I ¼ r�1RN . But then RN : I > L : I . So we must have IaaN. To show
that I ZRN , assume by way of contradiction that I ¼ rRN for some r A N. Then, as
before, (*) doesn’t hold. If L < Ia, there exists r B I such that r�1I > L. But r�1I a
IaaN; so r�1 A RN : InL : I , a contradiction. Thus, we conclude that IaaLXN,
so the only if part of condition (2.b) is satisfied.

Conversely, assume I ZRN and IaaLXN. Then RIabRL;RN and I ¼ IRa¼
IRN ¼ IRL. Hence, RN : I ¼ N : I ¼ Ia : I ¼ L : I . r

Lemma 6.7. Let C be a cotilting R-module with associated set G. For every N A G 0

such that fðNÞ0 0 one and only one of the following conditions is satisfied:

(1) fðNÞ ¼ inf G 0;

(2) fðNÞ ¼ supfcðLÞ jL A G 0;L < fðNÞg;

(3) there exists L A G 0 such that cðLÞ < fðNÞ and there are no other primes of G 0

properly between cðLÞ and fðNÞ.

Proof. Assume (1) doesn’t hold. Then the set A ¼ fcðLÞ jL A G 0;L < fðNÞg is non
empty. Note that L < fðNÞ implies cðLÞ < fðNÞ, since by Corollary 6.3 the intervals
corresponding to L and N are disjoint. Let L0 ¼ supA. If L0 ¼ fðNÞ, then condition
(2) is satisfied. If L0 < fðNÞ, then cðL0Þ < fðNÞ and clearly condition (3) is satisfied.

r

Definition 4. If N A G 0, 00 fðNÞ and fðNÞ satisfies condition (3) of Lemma 6.7 we
say that fðNÞ covers cðLÞ and we write fðNÞpcðLÞ. If fðNÞ satisfies condition (1)
we say that fðNÞ covers 0 and we write fðNÞp 0.

We are now not far from obtaining a characterization of cotilting modules over
valuation domains. In view of Proposition 5.2 we may assume that supG ¼ P and
inf G ¼ 0; moreover, by Lemma 5.3, we may assume that R is a maximal valuation
domain. We split our final characterization result into two parts.

Proposition 6.8. Let C be a cotilting module over a maximal valuation domain R with

associated set G. Assume supG ¼ P and inf G ¼ 0. Let

E ¼ Ql
Q

fðLÞ AG

RfðLÞ
cðLÞ l

Q
fðNÞpcðLÞ

RfðNÞ
cðLÞ

L
fðNÞp0

RfðNÞ:

Then ?C ¼ ?E.
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Proof. C and E are pure injective modules, thus in view of Lemma 3.1 it is enough to
show that ?C and ?E contain the same torsion cyclic modules.
CLAIM A: for every 00 I aR, R=I A ?C implies R=I A ?E. By Proposition

6.5, there exists L0 A G 0 such that I A hfðL0Þ;cðL0Þi. By Lemma 6.6 (2.a), R=I A
?ðRfðL0Þ=cðL0ÞÞ. We show now that R=I belongs to ?ðRfðLÞ=cðLÞÞ for every other
L A G 0 with fðL0Þ0 fðLÞ. If I b fðLÞ, again we are done by Lemma 6.6 (2.a).
So assume I < fðLÞ; since fðL0Þa I we have fðL0Þ < fðLÞ and by Corollary 6.3,
the intervals ½fðL0Þ;cðL0Þ� and ½fðLÞ;cðLÞ� are disjoint, so cðL0Þ < fðLÞ. Hence
IaacðL0Þ < fðLÞ and by Lemma 6.6 (2.b) R=I A ?ðRfðLÞ=cðLÞÞ. Consider now the
summands of E of the form RfðNÞ=cðLÞ where fðNÞpcðLÞ, for some L A G 0. If
fðLÞ ¼ fðL0Þ, then the intervals ½fðLÞ;cðLÞ� and ½fðL0Þ;cðL0Þ� coincide, and clearly
fðNÞpcðL0Þ. Since I A hfðL0Þ;cðL0Þi and cðL0Þ < fðNÞ, we have IaacðL0Þ <
fðNÞ and we conclude by Lemma 6.6 (2.b). If fðLÞ0 fðL0Þ the intervals ½fðLÞ;cðLÞ�
and ½fðL0Þ;cðL0Þ� are disjoint; so either cðLÞ < fðL0Þ or cðL0Þ < fðLÞ. In the first
case we must have fðNÞa fðL0Þ, since fðNÞpcðLÞ; so I b fðNÞ and Lemma 6.6
(2.a) applies. In the second case IaacðL0Þ < cðLÞ < fðNÞ and Lemma 6.6 (2.b)
applies. Thus, R=I A ?RfðNÞ=cðLÞ. It remains to consider the summand RfðNÞ for
fðNÞp 0, that is 00 fðNÞ ¼ inf G 0. In this case fðNÞa fðL0Þ and fðL0Þa I .
Hence R=I A ?RfðNÞ, by Lemma 6.6 (1).
CLAIM B: for every 00 I aR, R=I A ?E implies R=I A ?C. By Proposition

6.5 it is enough to show that there exists a prime ideal L0 A G 0 such that I A
hfðL0Þ;cðL0Þi. If I b fðPÞ, then I A hfðPÞ;cðPÞ ¼ Pi and we are done. Assuming
I < fðPÞ the set A ¼ fL A G 0 j I < fðLÞg is non-empty. Note that L A A implies
Iaa fðLÞ, since by hypothesis R=I A ?RfðLÞ=cðLÞ and so Lemma 6.6 (2.b) applies.

Moreover, L A A implies fðLÞ A A, since f2 ¼ f. Let N ¼ inf A, then IaaN. As-
suming fðNÞ < N we have I b fðNÞ and IaaNacðNÞ; thus I A hfðNÞ;cðNÞi.
It remains to consider the case fðNÞ ¼ N. If I ¼ fðNÞ, then I A G and we are done.
So we assume I < fðNÞ and invoking Lemma 6.7, we consider the three distinct
possibilities for fðNÞ. Condition (1) of Lemma 6.7 cannot be satisfied since other-
wise fðNÞp 0 and R=I A ?RfðNÞ would imply I b fðNÞ, by Lemma 6.6 (1). Also
condition (2) of Lemma 6.7 cannot be satisfied by fðNÞ, since otherwise there would
exist L A G 0, L < fðNÞ such that I < cðLÞ. So cðLÞ < fðNÞ since the intervals
defined by L and N are disjoint. Thus there would also exist L 0 A G 0, L 0 < fðNÞ
such that cðLÞ < cðL 0Þ < fðNÞ. Then the intervals ½fðLÞ;cðLÞ� and ½fðL 0Þ;cðL 0Þ�
are disjoint, so I < cðLÞ < fðL 0Þ. This would show that L 0 A A, contradicting
fðNÞ ¼ inf A. So condition (3) of Lemma 6.7 holds, that is fðNÞpcðL0Þ for some
L0 A G 0. Thus R=I A ?RfðNÞ=cðL0Þ and, by Lemma 6.6, IaacðL0Þ. In this case I A
hfðL0Þ;cðL0Þi. r

Theorem 6.9. Let C be a cotilting module over a maximal valuation domain R with

associated set G. Assume supG ¼ P and inf G ¼ 0. Then C is equivalent to the cotilt-

ing module

E ¼ Ql
Q

fðLÞ AG

RfðLÞ
cðLÞ l

Q
fðNÞpcðLÞ

RfðNÞ
cðLÞ

L
fðNÞp0

RfðNÞ:
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Proof. We first show that E A CogenC ¼ ?C. In fact, Q and RfðNÞ belong to ?C,
since they are torsion free. For every L A G 0, RfðLÞ=cðLÞ A ?C by Lemma 6.1 and for
every fðNÞpcðLÞ the exact sequence:

0! cðNÞ
cðLÞ !

RfðNÞ
cðLÞ !

RfðNÞ
cðNÞ ! 0

yields RfðNÞ=cðLÞ A ?C. Thus CogenEJCogenC ¼ ?C and by Proposition 6.8
?C ¼ ?E. Therefore to complete the proof we need to prove that ?EJCogenE. The
inclusion CogenEJ ?E implies that CogenE is closed under extensions. Therefore
CogenE is a torsion free class and a module A is torsion with respect to this torsion
theory if and only if HomRðA;EÞ ¼ 0. Note that ?E is closed under submodules,
so to prove the inclusion ?EJCogenE it is enough to show that if M A ?E and
HomRðM;EÞ ¼ 0, then M ¼ 0. By way of contradiction assume 00M. Since Q is a
direct summand of E, the hypothesis HomRðM;EÞ ¼ 0 implies that M has a non-
zero torsion submodule (in the classical sense). So there exists 00 x0 A M such that
00 I ¼ Annðx0Þ. Since M A ?E, R=I A ?E ¼ ?C; hence by Proposition 6.5, there
exists L A G 0 such that I A hfðLÞ;cðLÞi. We claim that M

M½fðLÞ� A
?E. By Lemma 3.1,

it is enough to show that R=AnnðxÞ A ?E for every 00 x A M
M½fðLÞ� . Write x ¼

xþM½fðLÞ�; then J ¼ AnnðxÞ < fðLÞ and AnnðxÞ ¼ J : fðLÞ ¼ Ann
fðLÞ
J

� �
. Since

x A M A ?E we know that R=J A ?E ¼ ?C; hence also
fðLÞ
J

A ?C and by Lemma 3.3

(2), Ann
fðLÞ
J

� �
A G. Thus R=AnnðxÞ A ?C ¼ ?E: Consider now the sequence

0!M½fðLÞ� !M ! M

M½fðLÞ� ! 0:

Since M
M½fðLÞ� A

?E and HomRðM;EÞ ¼ 0, we conclude that also HomRðM½fðLÞ�;EÞ
¼ 0. Consider the localization M½fðLÞ�nRcðLÞ and let

f : M½fðLÞ� !M½fðLÞ�nRcðLÞ

be the canonical map. Then Ker f ¼ fx A M½fðLÞ� j sx ¼ 0 for some s B cðLÞg. The
condition HomRðM½fðLÞ�;EÞ ¼ 0 yields HomR

M½fðLÞ�
Ker f ;E

� �
¼ 0. Now M½fðLÞ�n

RcðLÞ is an RcðLÞ=fðLÞ-module, so, by Lemma 6.4, it is cogenerated by RfðLÞ=RcðLÞ
which is a direct summand of E. Thus the module

M½fðLÞ�
Ker f is also cogenerated by E

and the vanishing of HomR
M½fðLÞ�
Ker f ;E

� �
gives

M½fðLÞ�
Ker f ¼ 0. But the element x0 A M we

started with belongs M½fðLÞ� and its annihilator is contained in cðLÞ, thus it doesn’t
belong to Ker f , a contradiction. r

Collecting the results proved in the previous sections we can state the following.
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Theorem 6.10. Let R be a Prüfer domain and C a cotilting R-module. Then C is

equivalent to a cotilting module C 0 where C 0 is a direct product of indecomposable pure

injective modules.

Proof. By Corollary 2.6 C is equivalent to the direct product of the cotilting
Rm-modules Cm ¼ HomRðRm;CÞ and in view of Proposition 5.2, Lemma 5.3 and
Theorem 6.9, a cotilting module over a valuation domain is equivalent to a direct
product of indecomposable pure injective modules and of modules of the form JS=IS
for some 0a I a JaQ, where S is a maximal immediate extension of the valuation
domain. Recall that over a valuation domain a pure injective module is indecom-
posable if and only it is the pure injective envelope of a module of the form J=I (cf
[16, XIII, 5.9]). For each summand JS=IS of Cm we can argue like in the proof of
[24, Theorem 3.4]. In fact, JS=IS is the pure injective envelope of a direct sum of k
copies of J=I for some cardinal k (see [16, XIII, 5.4]. Let M ¼

Q
a A k

cJ=IJ=I . Then JS=IS
is a direct summand of M and M is a summand of a direct product of copies of
JS=IS. Thus in the decomposition of Cm we can substitute every summand of the
form JS=IS by suitable direct products of the indecomposable pure injective Rm-
modules cJ=IJ=I . To conclude the proof we note that if A is a pure injective module over
the localization Rm of a domain R, then A is pure injective also as R-module, since
pure monomorphisms are preserved under localization. Moreover, if A is indecom-
posable as Rm-module and A1 lA2 is a R-direct sum decomposition of A, we must
have Ai nRm ¼ 0, for i ¼ 1 or 2; so Ai ¼ 0 and A is indecomposable also as a
R-module. r

We conclude with the following observation.

Remark 2. Recall that a non zero module is called super decomposable if it doesn’t
have non zero indecomposable direct summands. It is known that if R is a valuation
domain, then there exist super decomposable pure injective modules if and only if R
is not strongly discrete (cf [16, XIII, 5.11]). We don’t know whether a cotilting mod-
ule C can have a super decomposable summand, say A; if so this summand should
satisfy Ext1RðAg;AÞ ¼ 0, for every cardinal g and we don’t know whether this can
happen. But, by the previous theorem, even if C has a super decomposable summand
we can consider a cotilting module C 0 equivalent to C, such that C 0 has no super
decomposable summands.
In [24] a set fMa j a A kg of pure injective modules with i.d. a 1 satisfying the

conditions Ext1RðMa;MbÞ ¼ 0 for all a; b A k is said to be a rigid system if every Ma is
indecomposable; and it is said to be an almost rigid system if M0 is super decom-
posable and Ma is indecomposable for every 0 < a A k. In [24, Theorem 3.4] it is
proved that for every 1-cotilting module C over an arbitrary ring there exists an
almost rigid system fMa j a A kg such that the module C 0 ¼

Q
a A k Ma is a cotilting

module equivalent to C.
Our Theorem 6.10 shows that for cotilting modules over Prüfer domains we can

improve the result of [24, Theorem 3.4] by stating that we can choose the almost rigid
system to be rigid.
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7 n-tilting modules over commutative and Prüfer domains

In this section we consider n-tilting modules and we prove that over Prüfer domains
or over domains of i.d.a1, n-tilting modules have projective dimension at most one.

Symmetrically to the definitions in Section 1 we define, for any left R-module M:

M? ¼ fX A R-Mod jExt iRðM;X Þ ¼ 0; Eib 1g:

Let p.d. M denote the projective dimension of a R-module M. A R-module T is a
n-tilting module if the following conditions hold ([1]):

(T1) p.d. T a n;

(T2) Ext iRðT ;T ðlÞÞ ¼ 0 for each i > 0 and for every cardinal l;

(T3) there exists a long exact sequence:

0! R! T0 ! T1 � � � ! Tr ! 0;

where Ti A AddT , for every 0a ia r.

If T is a n-tilting module the class T? is closed under direct sums ([1]). The notion of
n-tilting modules of finite type was introduced in [2]. We recall that a 1-tilting module
T is of finite type (countable) provided that there exists a set S of finitely presented
(countably presented) R-modules of p.d.a1 such that T? ¼

T
s AS S?. In [9] it has

been proved that every 1-tilting module is of countable type and, moreover, that over
Prüfer domains every 1-tilting module is of finite type.

In this section R will be a commutative domain with quotient field Q and K will
denote the R-module Q=R.

Any direct sum of copies of K will be called a K-free module. We recall that every
torsionfree divisible R-module is injective; thus, in particular, QðaÞ is injective for
every cardinal a.

Proposition 7.1. Let M be an R-module with p.d. M ¼ nb 1. Then, there is a free

R-module F such that ExtnRðM;F Þ0 0. In particular, if n > 1, Extn�1R ðM;DÞ0 0, for
some K-free module D.

Proof. The proof is by induction on n. Assume n ¼ 1. By Eilenberg’s trick there is an
exact sequence 0! F1 ! F0 !M ! 0 where F0 and F1 are free R-modules. Then
clearly Ext1RðM;F1Þ0 0. Assume n > 1 and consider a partial projective resolution
of M

0! Hn�1 ! Pn�2 ! � � � ! P1 ! P0 !M ! 0

with projective modules Pi. By dimension shift we have that ExtnRðM;FÞG
Ext1RðHn�1;FÞ and also p.d. M ¼ n if and only if p.d. Hn�1 ¼ 1. Hence the result
follows by the case n ¼ 1. For the second statement note that, for every cardinal a,
Extn�1R ðM;K ðaÞÞGExtnRðM;RðaÞÞ. r
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As an application of the preceding results we obtain:

Proposition 7.2. Assume T is a n-tilting R-module and i.d. R ¼ 1. Then na 1.

Proof. The class T? is closed under direct sums; hence it contains all the K-free
modules, since, by hypothesis, K is injective. By Proposition 7.1 we infer that p.d. T
is at most 1. r

Assuming R is a Prüfer domain we obtain a result analogous to Proposition 7.2.

Proposition 7.3. Let R be a Prüfer domain and T a n-tilting module. Then na 1.

Proof. Assume p.d. T ¼ n > 1 and let Hn�1 be the ðn� 1Þst-syzygy module of T .
Then p.d. Hn�1 ¼ 1 and, by dimension shift, H?n�1 ¼ fX A R-Mod jExtnRðT ;X Þ ¼ 0g.
By [6, Lemma 3.4], H?n�1 is closed under direct sums and it is closed under epimor-
phic images, since p.d. Hn�1 ¼ 1. Thus, H?n�1 is a torsion class. By [3, Theorem 10] it
is a special preenveloping class, hence by the characterization of tilting classes (see
[3, Theorem 2.1]), H?n�1 is a 1-tilting class, that is H?n�1 ¼ T?1 , for a 1-tilting module
T1. Note now that Hn�1 is a torsionfree module and moreover flat since R is a Prüfer
domain. Thus, H?n�1 contains all the cotorsion modules and ?ðH?n�1Þ is contained in
the class of flat modules. In particular T1 is a flat module. By [9, Theorem 3.2] T1 is
of finite type. As noted before, the modules in ?ðT?1 Þ are flat, hence the finitely pre-
sented modules in ?ðT?1 Þ are projective. This implies T?1 ¼ R-Mod, hence H?n�1 ¼
R-Mod; that is Hn�1 is projective, contradicting the assumption p.d. T > 1. r

Corollary 7.4. If R is Prüfer domain, then all n-tilting modules are of finite type.

Proof. It follows immediately by the preceding proposition and by [9, Theorem 3.4].
r

For a description of 1-tilting modules of finite type over Prüfer domains see [20].
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