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Introduction

Tilting and cotilting modules have been introduced by S. Brenner, M. Butler,
C. Ringel, D. Happel and others in the early eighties. Their definitions have been
extended to the case of infinitely generated modules over arbitrary rings by many
authors: K. Fuller, R. Colby, R. Colpi, J. Trlifaj, L. Angeleri Hiigel, G. D’Este, A.
Tonolo. A generalization to modules of projective or injective dimension greater than
one was introduced by L. Angeleri Hiigel and F. Coelho in [1]. So one can consider
n-tilting and n-cotilting modules where n denotes the projective, respectively, injective
dimension. Structure theorems for this type of modules are far from being known.
The first complete description of cotilting modules was given by R. Goébel and J.
Trlifaj [17] in the case of abelian groups. The author in [5], proved that cotilting
modules over arbitrary rings are pure injective and in [10]. R. Gobel, L. Striingmann
and the author proved that over Priifer domains rn-cotilting modules have injective
dimension at most one and thus over such rings all n-cotilting modules are pure in-
jective. Very recently, after the submission of this paper, J. Stovicek in [22] proved
that all n-cotilting modules over arbitrary rings are pure injective.

In this paper we characterize cotilting modules over Priifer domains. In Section 2
we prove that they are equivalent to direct products of cotilting modules over the
localizations at the maximal ideals and in the remaining sections we characterize
cotilting modules over valuation domains. Some results on decomposition of pure
injective modules over a valuation domain are given in [16, XIII, 5.3], but about the
structure of super decomposable pure injective modules very little is known. It is
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2 S. Bazzoni

known that they exist if and only if the valuation domain is not strongly discrete, that
is if it has a non zero idempotent prime ideal. We will prove that over valuation do-
mains every cotilting module is equivalent to a direct product of suitable indecom-
posable pure injective modules, showing that even though there might exist super
decomposable pure injective modules, cotilting modules can be assumed to have no
super decomposable summands.

In Section 4 we characterize cotilting modules of cofinite type over valuation
domains and we prove that every cotilting module is of cofinite type if and only if
the valuation domain is strongly discrete. Thus we answer negatively the question
whether all n-cotilting modules are of cofinite type (see definitions below). Not sur-
prisingly, the description of cotilting modules over non strongly discrete valuation
domains is more complicated. The characterization will be achieved by means of
change of rings. Up to equivalence, we will reduce the problem to characterizing co-
tilting modules over suitable factors of localizations of the domain and also to the
case of maximal valuation domains.

In Section 7 we show that for the class of Priifer domains it is easy to prove that
n-tilting modules are of projective dimension at most one and thus of finite type.

Added in proof. Recently, after this paper was submitted, it has been proved that
all n-tilting modules over arbitrary rings are of finite type. The result for 1-tilting
modules was obtained by D. Herbera and the author in [7]. The generalization to all
n-tilting modules is proved in the paper by J. Stovicek and the author [8] by using the
results obtained by J. Stoviéek and J. Trlifaj [23].

Section 7 shows that in the case of Priifer domains, the proof of the finite type of
n-tilting modules can be obtained in a pretty easier way.

1 Preliminaries and definitions

For any left R-module M we define the following classes:
M = {X € R-Mod | ExtL(X, M) = 0,Vi > 1},
™ = {X € Mod-R| Tor}(X, M) = 0,Vi > 1}.
If M is a right R-module we define;
MT = {X e R-Mod | TorX(M, X) =0,Vi > 1}.
If M is an R-module, i.d. M will denote the injective dimension of M.

Over an arbitrary ring with 1 a R-module C is a n-cotilting module if the following
conditions hold ([1]):

(Chid. C<m
(C2) Exth(C*, C) = 0 for each i > 0 and for every cardinal ;

(C3) there exists a long exact sequence:
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Cotilting and tilting modules over Priifer domains 3
0—-C—--—-C—-Cy---— W—=0,

where C; € Prod C, for every 0 < i < rand W is an injective cogenerator of R-Mod.

If C is a n-cotilting module the class +C is called a n-cotilting class. n-cotilting classes
have been characterized in [1]. In particular +C is closed under direct products.

In case n = 1 there is an alternative definition of 1-cotilting modules. A module C is
1-cotilting if and only if Cogen C = +C, where Cogen C denotes the class of modules
cogenerated by C (cf [3, Prop. 2.3], [12, Prop. 1.7]). Moreover, if C is a 1-cotilting
module, then Cogen C is a torsion free class. For results on torsion and torsion free
classes we refer to [21].

Since every l-cotilting module C is pure injective ([5]) we have that 1-cotilting
classes are closed under direct products, direct limits and pure submodules. In other
words they are definable classes, that is they are closed under elementary equivalence.
Thus, if C is l-cotilting, a module belongs to +C if and only if its pure injective en-
velope belongs to 1 C (see [18] or [13]).

The notion of n-cotilting modules of cofinite type was introduced in [2]. Since
we will use this notion only for cotilting modules over Priifer domains, we recall the
definition in this particular case.

A 1-cotilting module C over a Priifer domain R is of cofinite type provided there
exists a set & of finitely presented R-modules such that *C = g, ST.

2 1-cotilting modules over commutative rings

In this section we prove that, up to equivalence, the study of 1-cotilting modules
over commutative rings can be restricted to the local case. Recall that two cotilting
modules C and C’ are said to be equivalent if the corresponding cotilting classes, that
is if *C and +C’, coincide.

The following easy lemma will show to be very useful in the sequel.

Lemma 2.1. Let 0 # I be an ideal of a commutative ring R and M an R-module. Let E
be an injective module containing M and let M[I] denote the submodule of M consist-
ing of the elements annihilated by I, then:

(E/M)[]]
(E[I)|+ M)/ M~

(2) ExtR(R/I, M) =0, if I is idempotent and M[I| = M.

(1) Extg(R/I, M) =

Proof. (1) Consider the exact sequence:
0—-M-—FE—E/M—DO,
and the induced sequence

Hom(R/I, E) - Hom(R/I, E/ M) — ExtL(R/I, M) — 0.
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4 S. Bazzoni

Identifying Hom(R/I, X) with X[I] for every R-module X, then the image of f is
(E[I]+ M)/ M and the conclusion follows.

(2) Note that if x+ M e (E/M)[I], then Ix < M. Hence Ix = I’x =0, so that
x+ M e (E[I] + M)/ M. O

Now we state a result which deals with properties of 1-cotilting modules with respect
to change of rings. In what follows, if R and S are two rings and f is a ring homo-
morphism f : R — S we will view S-modules as R-modules via f.

Proposition 2.2. Let R, S be commutative rings and let f: R — S be a ring homo-
morphism. If C is a 1-cotilting R-module such that Exty(S, C) = 0, then Homg(S, C)
is a pure injective R-module and a 1-cotilting S-module.

Proof. Homg(S,C) is a pure injective R-module, since so is C. (See, for instance
[16, XIII, 2.1]). By a result of Fuller [15], Homg(S, C) is a 1-cotilting S-module
if Extg(S, C) =0 and Homg(S, C) is cogenerated by C. Clearly Homg(S, C) is co-
generated by C, since it is an R-submodule of C¥, so C is a 1-cotilting S-module.

O

Useful tools in dealing with change of rings are the following homological formulas;
they can be found in the book by Cartan Eilenberg ([11, VI, 4.1.3, 4.1.4]).

Assume f : R — S is a ring homomorphism.

(a) for every left R-module g4 and left S-module sB:

Ext}(S ®z 4, B) = Ext}h(4, B),

if Torf(S7 A) = 0 for every n.
(b) for every left R-module gB and left S-module s4:

Extg(A4, Homg(S, B)) = Exty(4, B),

if Extz(S, B) = 0 for every n.

The next result is an easy consequence of formula (b).

Lemma 2.3. Let I be an idempotent ideal of a commutative ring R. Let A, B be R/I-
modules with 1.d. B < 1 as an R-module, then

Extg(4, B) = Extg (4, B).
Proof. By Lemma 2.1 (2), Exty(R/I,B)=0, hence formula (b) yields
Extg, (4, Homg(R/I, B)) = Exty(4, B), and Homg(R/I,B) = B as R/I-modules.
O

Recalling that 1-cotilting modules are pure injective (by [5]), we will make use of the
following well known result by Auslander.
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Cotilting and tilting modules over Priifer domains 5

Proposition 2.4 (Auslander [4]). If R is an arbitrary ring and C is a pure injective
R-module, then the functor Exty(—, C) sends direct limits into inverse limits. In par-
ticular, +C is closed under direct limits.

For every R-module M over a commutative ring R and every maximal ideal m of R
denote by M™ the R,,-module Homg(R,,, M).

Theorem 2.5. Let R be a commutative domain and let C be a 1-cotilting
R-module. Then for every maximal ideal m of R, C™ is a 1-cotilting R -module and
[Liemax g C™ is a 1-cotilting R-module equivalent to C.

Proof. For every maximal ideal m of R, C™ is a 1-cotilting R,,-module. In fact,
Proposition 2.2 applies, since R, is a flat R-module and C is pure injective. Moreover
C™ is cogenerated by C as an R-module. Let E =[], .paxg C™ then Cogen E =
Cogen C = +C. We prove now that *E = Cogen E. In fact, a R-module M belongs
to “E if and only if Ext}g(M ,C™) =0 for every maximal ideal m and also, by
formula (a), if and only if Ext}zm(RTn@M ,C™) =0, for every maximal ideal
m. Since C™ is a cotilting R,,-module, we conclude that M e *E if and only if
R, ® M is cogenerated by C™ as a R,,-module. From the embedding 0 — M —
[Liemax g R @ M, we infer that M is cogenerated by E as a R-module. There-
fore we have proved *E < Cogen E < Cogen C = *C. If we show that *C < “E,
then the proof is complete. As noted above, M belongs to ~E if and only if
Ext}em(Rm ® M, C™) = 0 for every maximal ideal m and so, by formula (b), M € *E
if and only if Ext}z(Rm ® M, C) =0, or every maximal ideal m. So we must prove
that M e -C implies R,, ® M € *C. R,, is isomorphic to the direct limit of s~'R
where s € R\m. So, by Proposition 2.4 it is enough to show that M € +C implies
sTTR® M e *C, for every se R\m. But this is true, since s'R =~ R implies
sSTROM = M. O

In [10] it is proved that n-cotilting modules over Priifer domains have injective di-
mension at most one. Thus, over such rings, we will simply write “cotilting modules”
without any mention to the injective dimension. As an immediate consequence of the
preceding theorem we have:

Corollary 2.6. Let C be a cotilting module over a Priifer domain R. Then for every
maximal ideal m of R, C™ is a cotilting module over the valuation domain R, and
[Lemax g C™ is a cotilting R-module equivalent to C.

3 The set & associated to a cotilting module over a valuation domain

By Corollary 2.6 the study of cotilting modules over Priifer domains can be restricted
to the case of valuation domains.

So we will consider a valuation domain R with maximal ideal P and quotient field
Q. For terminology and definitions on valuation domains and their modules, we refer
to [16].
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6 S. Bazzoni

We state a result valid for all pure injective modules over valuation domains R;
recall that pure injective modules over Priifer domains have i.d. <1.

Lemma 3.1. Let C a pure injective module over the valuation domain R. Then +C is
determined by the cyclic modules that it contains. Moreover if R is an almost maximal
valuation domain a module M € +C if and only if every cyclic submodule of M belongs
to +C.

Proof. First of all notice that +C contains the class of torsion free modules and that it
is closed under submodules, since i.d. C < 1. Thus a module M e *C if and only if its
torsion submodule belongs to ~C. Now writing a module as a direct limit of its fi-
nitely generated submodules and applying Proposition 2.4, we conclude that M € -C
if and only if all of its finitely generated torsion submodules are in +C. By [16, 1, 7.8],
a finitely generated torsion module A4 over a valuation domain admits a finite chain
of pure submodules with cyclic successive factors. By the pure injectivity of C it is
immediate to conclude that 4 € +C if and only if all the cyclic factors are in ~C. The
second statement follows analogously recalling that over almost maximal valuation
domains the finitely generated torsion modules are direct sums of cyclics (see [16,
v, 10.4]. O

Recall that a module C is 1-cotilting if and only if *C = Cogen C. It is well known
that a 1-cotilting module C cogenerates a torsion theory whose torsion free class is
the class Cogen C. Moreover, for every R-module M the torsion submodule of M is
the intersection of the kernels of all the homomorphisms from M to C. Thus, we
have the following.

Lemma 3.2. Let R be a valuation domain and C a cotilting module. For every ideal J of
R the torsion submodule of R/J with respect to the torsion theory cogenerated by C is
J'JJ where J' = ({I|J <1 < R,R/I € Cogen C}.

In the case of cotilting modules C over a valuation domain, an important role will be
played by the set 4 defined as follows:

4 ={I<R|R/Ie*C}={I <R|R/IeCogenC}.

So % consists of the non-zero ideals of R such that R/ is torsion free in the torsion
theory cogenerated by C. % will be called the set associated to C.

Recall that a module C is 1-cotilting if and only if *C = Cogen C. In the case of
cotilting modules C over a valuation domain, an important role will be played by the
set ¢4 defined as follows:

4={I<R|R/Ie*+C}={I <R|R/IeCogenC}.

% will be called the set associated to C.
Recall that, if I is a non-zero ideal of a valuation domain R, /# denotes the prime
ideal associated to 1, that is I# = {re R|rl < I}. I” is the union of the proper
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Cotilting and tilting modules over Priifer domains 7

ideals of R isomorphic to I (see [16, p. 70 (g)]). If I,J < Q denote by J: I =
{xe Q|xI <J}.

Lemma 3.3. Let C be a cotilting R-module. The set 4 defined above has the following
properties.

1) 9 is closed under arbitrary sums and arbitrary intersections.
2) % contains Ann(M) for every module M € *+C.
3) If0 # I € %, then for every r € R\I, r'I € 4. Moreover, I* € 4 and R;+/1* € *C.

5) If 0 £ 1 € G and I < 17, then for every r € I"\I, rR;+ and r1* belong to 4.

(
(
(
(
(
(6) If rl € 9, for some I < R, then r"I € G for every n.

)
)
4) If rRy € G for some prime ideal L € 9 and some element r € L, then rL € %.
)
)

Proof. (1) Let I, € %; then R/ > I, = lim R/I,, since the ideals I, are totally odered.
Hence > I, € 4, by Proposition 2.4. If I, € 4, then R/I, embeds in a direct product
of copies of C. Let I =, I,; then also R/I embeds in a direct product of copies of
C,hence I € %.

(2) If M € +C = Cogen C, the annihilators of the elements of M belong to ¥, since
Cogen C is closed under submodules. Ann(M) is the intersection of the annihilators
of the elements of M; thus Ann(M) belongs to ¥ by part 1.

(3) Let 0# 1€ %; then there exists a cyclic module Rx € Cogen C such that
I =Ann(x). If reR\I, then 0# Rrxe CogenC and Ann(rx) =r"'I. Hence,
r-'le%. Since I* =%, r "I, I* € 4 by part 1; that is R/I# € *C. Recalling that
11 I# =I%# for every re R\I# we have that r"'R/I# € *C. Moreover, R;+/I* =
> crys I R/I#; thus Rps/1# € -C by Proposition 2.4.

(4) Note that if L is a prime ideal and r € L, then rR;, < L. Consider the exact
sequence

rRyp, R R
—

0»——>——>——0.
_>rL rL_)rRL_>

The first non-zero term is isomorphic to Ry /L, hence it is in *C by part 3; R/rR;
belongs to +C by hypothesis, thus also the middle term is in +C and we conclude that
rLe%.

(5) Let 0 # I € % and let r € I#\I; then r~'1 < R hence r~'1/I € Cogen C. By part
2, Aan(r~'"1/I)=1:r"'I =rR;+€%. By part (3) and (4) r/* € 4.

(6) Consider the exact sequence

0 — rl/r*I — R/r*I — R/rI — 0.

rl/r’I € +C, since it is isomorphic to a submodule of R/rI which is in +C by as-
sumption. Hence, R/r’I € *C, too. An easy induction completes the proof. O

(AutoPDF V7 28/4/06 13:66) WDG (170x240mm) Tmath J-1468 Forum, : PMU:I(CKN)28/4/2006 pp. 1-23 1468_06-04 (p.7)



8 S. Bazzoni

In investigating the set ¥, it is convenient to define the following.

Definition 1. Let 4 be the set associated to a cotilting module. We denote by sup %
the sum of all the ideals in 4 and, if ¥ # {0}, we denote by inf ¥ the intersection of
the non-zero ideals in 4. Moreover, we denote by %’ the set of non-zero prime ideals
of 4.

To every R-module M over a valuation domain R one can associate two prime
ideals:

M?={reR|rM <M}; My={reR|30+#xe M,rx=0}.

While over valuation domains M # is crucial in characterizing tilting modules M (see
[19]), the role of M, will be of relevance in studying cotilting modules. Note that M,
is the union of the annihilators of the non zero elements of M.

Lemma 3.4. Let C be a cotilting R-module with associated set 9. Then sup ¥ = Cy and
inf & is an idempotent prime ideal.

Proof. By definition C4 = (J;_... Ann(c) and Ann(c) € % for every 0 # c € C, since
C cogenerates its submodules. Thus, Cx < sup¥. If I € 4, then R/I is cogenerated
by C, hence I is an intersection of annihilators of elements of C. Thus, I < Cy4 and so
sup¥ = Cy. Suppose ¥ # {0} and let I = inf . Assume, by way of contradiction
that Iy is not a prime ideal. Let r € R\l and consider the exact sequence:

By Lemma 3.3 (1) I € %, hence R/I, € ~C. Moreover, Iy/rly =~ r~'Iy/Iy and r~'1y /I
is a submodule of R/Iy € +C. Hence the midddle term of the sequence is in +C, so
rly € 4. By the minimality of Iy we conclude that rly = I, that is Iy = (1) # and thus
Iy is a prime ideal. Assume now that Iy is not idempotent. Then Iy = rR;, for some
r € Iy. By Lemma 3.3 (4), rly € ¥, contradicting the minimality of Io. O

Lemma 3.5. Let C be a cotilting module with associated set 4. For every L€ 9, let
J=Y{a'R|a'R/L e *C}. Then there is an idempotent prime ideal L' < L such
that J = Ry and L' € 4. Moreover, Rp//L e *~C and L' =inf{N € %' |Ry/L e *C}.

Proof. Let X = {ae R|aL € %}; thena 'R/Le*Cifand only ifae X. If a,b e X
the exact sequence

0 — bL/abL — R/abL — R/bL — 0

implies that a~'»~'R < J. Hence J is an overring of R, so J = Ry, for some prime
ideal L'. By Lemma 3.3 (3), / > R;, hence L’ < L. By Proposition 2.4, R;//L € +C;
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Cotilting and tilting modules over Priifer domains 9

moreover, L' = Ann(Ry./L), hence L' € 4, by Lemma 3.3 (2). Assume by way of
contradiction that L’ is not idempotent, that is L’ = rR;, for some element r e L'.
From the exact sequence 0 — R;//L — r"'R;//L — Ry//L' — 0, it follows that
'Ry, /L € +C, contradicting the maximality of J. The last statement follows by the
fact that N < N’ implies Ry > Ry. 0

4 Cotilting modules of cofinite type over valuation domains
In this section R will always denote a valuation domain.

Recall that a cotilting module C over a valuation domain is of cofinite type if and
only if there exists a set % of finitely presented modules such that *C = T = {X e
R-Mod | Torf(S, X) = 0,VS € #}. If this is the case, then % can be chosen to be the
intersection of (+C) with the class of finitely presented R-modules. In this section we
prove that a cotilting module over a valuation domain R is of cofinite type if and only
if R is strongly discrete.

For every R-module M, E(M) and M denote the injective and the pure injective
envelope of M, respectively.

Recall that a maximal immediate extension of a valuation domain R is a pure in-
jective envelope of R and for fractional ideals 7, J of R, J /I JR;, /IRL where L
denotes the prime ideal J# U I'* (see [16, XIII, 5.5]). Moreover, for every prime ideal
Lof R E(Q/L) =~ QRL/LRL ~ Q/L (see [16, XIII, 4.3]).

The next results show that a cotilting module C of cofinite type is determined by
the prime ideal C.

We first consider the case in which C is a torsion free module. This is equivalent to
C4x=0andalsoto ¥ =0.

Proposition 4.1. Let C be a torsion free cotilting module. Then LC is the class of all
torsion free modules and C is equivalent to Q @ P. In particular C is of cofinite type.

Proof. Denote by % the class of all torsion free modules. Since Ce 7%,
Cogen C < 7% . The inclusion 7% < +C follows by the fact that C is pure injec-
tive. Consider the module C; = Q@ P ~ Q @ PR. C) is pure injective and clearly
Cogen Cy, = 7% ; moreover ~C, = ~PR. If I is a non-zero ideal of R, then, by
Lemma 2.1, ExtR(R/I PR) =0 if and only if PR:I = PR. But PR: I > R, thus
there are no cyclic torsion modules in +C;. Hence we conclude that *C; = 9% ;so C
and Cj are equivalent cotilting modules. The last statement trivially follows by not-
ing that 77 = %7, where & is the class of all finitely presented R-modules. O

Before passing to consider the case 0 # C, we prove a lemma.

Lemma 4.2. Let L be a non-zero prime ideal of R and 0 # I < R. The following hold.
(1) R/I€ J-P//z if and only if I* < L.
(2) If L is idempotent, R/I € “Ry, if and only if I > L.
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10 S. Bazzoni

Proof. (1) By [16, XIII, 5.5] P/L = PR/LR. Note that QR/LR is an injective R-
module containing PR/LR. Thus, by Lemma 2.1, Extk(R/I, PR/LR) = 0 if and
only if PR : I = LR : I+ PR as submodules of OR. This happens exactly if I# < L.
In fact, if 77 > L the equality 77 = [, R T '] implies the existence of an element
r¢ I such that ' > L. Hence r ! € PR: I, but rl ¢ LR : I + PR. Conversely, if
I < Landr~'Ie PR, thenr~'I <I7 hencer~'eLR:1.

(2) By Lemma 2.1, R/I € LR, if and only if RL I=R;. This is equivalent to
I>L.In fact if there ex1sts re L\I then r~'7 < R; and r! ¢ R;. Conversely, if
I > L, then IRL > LRL, SO RL I= RL, since L is an idempotent prime ideal. O

Proposition 4.3. Let C a cotilting module and let 0 < L = Cy. The following are
equivalent:

(1) C is of cofinite type.
(2) +C ={M € R-Mod |V0 # x € M,Ann(x) < L}.
(3) E(Q/L)® P//E is a cotilting module equivalent to C.

Proof. (1) & (2). Assume C is a cotilting module and let 1C = #. C is of cofinite
type if and only if # = % T where % consists of the finitely presented modules which
belong to "% . Recalling that every finitely presented module over a valuation domain
is a direct sum of modules of the form R/rR for some r € R, we have that C is of
cofinite type if and only if # = .'T where &’ = {R/tR|R/tR € T#}. We have that
R/tR € V7 if and only if TorRX(R/tR, C) = 0, since Torf(R/tR, —) commutes with
direct products and Torf(R/tR, —) = 0. Note that, for every 0 # ¢ € R and every R-
module M, TorR(R/tR, M) = M[{]. It follows that R/tR € "% if and only if r € R\L.
Moreover, it follows that M e .&'T if and only if for every 0 # x € M, Ann(x) < L.
Thus the equivalence of conditions (1) and (2) is proved.

(2) < (3). Let C,=E(Q/L)® P/L. First we prove that CogenC; ={M €
R-Mod | V0 # x € M,Ann(x) < L}. By the description of the modules E(Q/L) and
P/L given at the beginning of this section, it follows that the annihilators of non-zero
elements in E(Q/L) or in P/L are, either of the form rL for some r € R, or of the
form 'L for some r ¢ L. Hence the annihilators are always contained in L, since L
is a prime ideal. Consequently, if 0 # x € C| for some cardinal y, then Ann(x) < L.
Furthermore, if M is a module all of whose elements have annihilator contained in
L, then M is an R-submodule of M ® R;. Since E(Q/L) is isomorphic to the R;-
injective envelope of the simple R;-module R; /L, C; cogenerates every R;-module,
thus in particular it cogenerates M as an R-module. We conclude that Cogen C| =
{M € R-Mod |Y0 # x € M,Ann(x) < L}. Thus, assuming (3), condition (2) follows
immediately.

Assume now that condition (2) holds. Then, Cogen C; = Cogen C = *+C. So con-
dition (3) holds if and only +C; = *C. Since E(Q/L) is an injective R-module, *C; =
LP/L and by Lemma 3.1 it is enough to show that lP/L and +C contain the same
torsion cyclic modules. By Lemma 4.2, for every 0 # I < R, R/I € *P/L if and only
if I# < L. By hypothesis, a cyclic torsion module R/I is in ~C if and only if the
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Cotilting and tilting modules over Priifer domains 11

annihilator of every non-zero element r+ I € R/I is contained in L. If r ¢ I, then
Ann(r+1) =r"'I;s0 R/I € *C if and only if ¥~'1 < L, for every r ¢ I, that is if and
only if I# < L. Hence we conclude that +C; = +C. O

As an application of the preceding results we obtain a characterization of cotilting
modules over strongly discrete valuation domains. Recall that a valuation domain is
called strongly discrete if every non-zero prime ideal is not idempotent; equivalently
if every non-zero prime ideal L is a principal ideal of the localization R;.

Proposition 4.4. Let R be a strongly discrete valuation domain. Then every cotilting
module C is of cofinite type. In particular C is equivalent to E(Q/L) @ P/L, where
L = C#.

Proof. Let 4 be the set associated to C. If ¥ = {0}, then the conclusion follows by
Proposition 4.1. If ¥ # {0}, let L = sup %. Then, L = C, by Lemma 3.4. Since there
are no non-zero idempotent prime ideals, Lemma 3.5 yields that Q/L € ~C. As noted
in Section 1, +C is closed under pure injective envelopes; thus Q/\/L belongs to ~C.
Q/L coincides with the injective envelope of Q/L and also with the R;-injective
envelope of the simple Ry -module R;/L. We conclude that Cogen C contains all
the Ry -modules. Let o/ = {M € R-Mod |VY0 # x € M,Ann(x) < L}. If M € ./, then
M is a R-submodule of R; ® M, hence M is cogenerated by C. Conversely,
Cogen C < .o/, since L = Cy. Thus, condition 2 of Proposition 4.3 is satisfied and the
conclusion follows. |

We are now in a position to show that over non strongly discrete valuation domains
there exist cotilting modules which are not of cofinite type.

Proposition 4.5. Let L be a non-zero idempotent prime ideal of R. The module
C=Q@R ®R/LOP/L

is a cotilting module and
+C ={M e R-Mod |¥0 # x € M, Ann(x) = 0 or Ann(x) = L}.

In particular C is not of cofinite type.

Proof. Let o/ = {M € R-Mod |Y0 # x € M,Ann(x) = 0 or Ann(x) = L}. We show
first that *C < /. Let M € 1 C and let 0 # I = Ann(x) for some 0 # x € M. Then
R/I €*C; in particular R/I € 1R, and R/IeiP//i. By Lemma 4.2, I =L, so
LC < /. To prove the inclusion ./ < *+C, it is enough to show that every torsion
module M e .o/ belongs to +C, since C is pure injective and .7 is closed under sub-

modules. If M is a non zero torsion module in ./, then M is an R-submodule of the
localization M ® R;. We show that M ® R; € *C, so M € +C, too. M ® Ry is a
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12 S. Bazzoni

R; /L-module; hence isomorphic to a direct sum of copies of the field R; /L. The R-
module R; /L is a direct limit of modules of the form s~'R/L, s ¢ L, thus isomorphic
to R/sL = R/L. Therefore, by Proposition 2.4 we are led to show that R/L € LC.
By Lemma 4.2, R/Le LR, N LP/L It remains to show that R/L e (RL/L) Since
R, / L=~ RL /LRL, we consider the exact sequence

0—>LI€Z—>I€Z—>IEZ/L]§Z—>O.

Since LRy is the pure injective envelope of L, i.d. LR; < 1; thus from the above
exact sequence we infer that *R, < *(R,/LR;), hence R/L € “(R./LR;) and we
conclude that +C = .o/. We proceed now to check that Cogen C = .. It is easy to
see that C e .7, since L is a prime ideal; thus also Cogen C < 7 = *C. In particular
we obtain that Cogen C is closed under extensions and clearly Cogen C contains all
torsion free modules. So, to prove that .o/ < Cogen C it is enough to verify that C
cogenerates every torsion module M € .«/. By the above argument M is an R-
submodule of a direct sum of copies of Ry /L and R /L is cogenerated by C, since it
is a submodule of Rz /L. Thus we conclude that *C = .o/ = Cogen C. Proposition 4.3
implies that C is not of cofinite type. ]

Propositions 4.4 and 4.5 imply the following result.

Corollary 4.6. Let R be a valuation domain. Then every cotilting module is of cofinite
type if and only if R is strongly discrete.

5 Cotilting modules under change of rings

In this section we investigate the properties of cotilting modules over a valuation
domain R with respect to localizations or factors of R.

Definition 2. Let Ly < L be two prime ideals of a valuation domain R. We let
(Lo,Ly={I <R|Ly<I<I*<L).
In particular I € {Ly, L) if and only if I > Ly and [ is an ideal of R;.

Lemma 5.1. Let Ly < L be two prime ideals of the valuation domain R with Ly idem-
potent. Assume D is a Ry /Lo-module such that i.d. D < 1 as a R-module. Then, for
every ideal I € (Lo, L)

Extp(R/I, D) = Exty, ,; (R./I, D).

Proof. By formula (a) in Section 2 we have ExtR(R/I D) =~ ExtR (Rp/1,D). Since Ly
is idempotent, Lemma 2.3 yields ExtR (RL/I,D) = ExtRL/LO(RL/I D). O

(AutoPDF V7 28/4/06 13:66) WDG (170x240mm) Tmath J-1468 Forum, : PMU:I(CKN)28/4/2006 pp. 1-23 1468_06-04 (p. 12)



Cotilting and tilting modules over Priifer domains 13

Proposition 5.2. Let C be a cotilting R-module with associated set 4. Let 0 # L =
sup¥ and inf G = Ly. Then C is equivalent to the cotilting module

Q@E@HomR(%,C)@)F/Z.
0

Moreover, Homg(Ry /Ly, C) is a Ry /Lo-cotilting module.

Proof. Let R' = Ry /L. First of all notice that Extk(R’, C) = 0. In fact, by Lemma
3.3, Lo € % and Ry, /L, € Cogen C, thus also R; /L € Cogen C, since R, < R;,. Let
D = Homg(R', C). By Proposition 2.2, D is a pure injective R-module and a cotilting
R'-module. Let C;,=Q® R, ®D® P/L; C; is a pure injective R-module and
we have to prove that C; is a cotilting module equivalent to C. We first show that
LC =1C;. By Lemma 3.1 it is enough to check that the two classes contain the same
cyclic modules. By Lemma 4.2 and Lemma 5.1, R/I € *C) if and only if I € (Lo, L)
and Extk,(R./I,D) =0. Let now R/I € -C for a nonzero ideal I < R; since L =
sup% and Ly = inf %, I € (L, LY. Moreover, R/I € +C if and only if R; /I € +C. In
fact, if R/I € +C then Lemma 3.3 (3) implies Ry /1% € 1 C, since Ry < Ry« From the
exact sequence 0 — I#/I — R; /I — R /1# — 0 we conclude that R; /I € *C. By
formula (b), Exty(R./I,C) = Extk,(R./I, D). Thus, we conclude that R/I € -C if
and only if R/I € *C). R

The summands Q, R;, and Hompg (L_ﬁ’ C) of C; are clearly cogenerated by C as

R-modules. By Lemma 3.3 Le %, so P/L € Cogen C and thus P/L is cogenerated
by C, since the class Cogen C is closed under pure injective envelopes. So Cogen C; <
Cogen C. It remains to show that C is cogenerated by C;. Cogen C; contains all
the torsion free modules and the inclusions Cogen C; < Cogen C = +C = +C; imply
that Cogen C; is closed under extensions. Thus it is enough to show that the torsion
submodule 7' of C is cogenerated by C;. By assumption the annihilator of every
non-zero torsion element of C contains L, thus 7T is an R/Lj-module. By Lemma
3.4 L, is idempotent, so (a) and Lemma 2.3 imply Extk(7, D) =~ Ext,le/LO(T,D) =
Extp (T ®g/r, R',D). Now, Extp(T,D)=0 since TeC="'C,=!D. Thus
T ®pgy1, R', is cogenerated by D as an R’-module, since D is R’-cotilting. Moreover,
T4 < L yields an exact sequence 0 — 7 — T ®g/r, R' which shows that 7" is an
R-submodule of a product of copies of D. Thus T is cogenerated by D, hence by C,
and we conclude that Cogen C = Cogen C;. O

Remark 1. By the preceding result the investigation of cotilting modules over valua-
tion domains can be reduced to the case in which sup% = P and inf ¥ = 0. In fact,
the proof above shows that the set ¥, associated to the R;/Lo-cotilting module
Homg(R /Ly, C) has inf 0 and sup the maximal ideal of R, /L.

The next lemma shows that to characterize cotilting modules over a valuation do-
main R it is possible to assume that R is a maximal valuation domain.
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14 S. Bazzoni

Lemma 5.3. Let C be a cotilting R-module and let S be a maximal immediate extension
of R. Consider D = Homg(S, C). Then D is both a S- and a R-cotilting module; more-
over C and D are equivalent cotilting R-modules.

Proof. S is torsion free, hence S € *C = Cogen C. Thus, by Proposition 2.2, D is a
S-cotilting module and a pure injective R-module. We show that D is also a cotilting
R-module. By formula (a) we have Exty(R/I, D) = 0 if and only if Exty(S/IS, D) =
0 and, by (b) if and only ExtL(S/IS, C) = 0. Now Ext}(S/IS, C) = 0 if and only if
ExtR(R/I,C) = 0, since S/IS is isomorphic to the pure injective envelope of R/I and
LC is closed under submodules and pure injective envelopes. By Lemma 3.1 we con-
clude that *C = +D (as R-modules). D is clearly cogenerated by C and we show
now that C is cogenerated by D. In fact, by (a) ExtS(C ® S, D) =~ Extk(C, D) and
Exth(C,D) = 0 since C e *C =+D. Thus C ® S is cogenerated by the D as an S-
module, since D is S-cotilting. By the purity of the exact sequence 0 — R — S —
S/R — 0 we obtain the monomorphism 0 — C — C ® S, which shows that C is an
R-submodule of a product of copies of D. Thus we conclude that, as R-modules,
1D =+C = Cogen C = Cogen D. O

6 A classification of cotilting modules over valuation domains

In order to complete the characterization of cotilting modules over valuation do-
mains we need a more detailed investigation of the set & associated to a cotilting
module (see Section 3). We will see that the complexity of the set ¥ depends on the
abundance of non-zero idempotent prime ideals that it contains. Recall that 4’ de-
notes the set of non-zero prime ideals of %.

Definition 3. Let C be a cotilting module with associated set %. Define
$:9 — %9, ¢$(L)=inf{Ne% |Ry/Le*C},
v:9" -9, Y(L)=sup{Ne% |Ryp/Ne"C}
By Lemma 3.3 and 3.5 the two maps are well defined; by Lemma 3.5 is ¢(L) is an

idempotent prime ideal and it might be 0.
The two maps ¢ and y satisfy the following properties.

Lemma 6.1. Let ¢,  be defined as above. Then the following hold:

1) For every L € %', Ryy)/L and Ry /(L) belong to *+C;

(1)

(2) @, ¥ are increasing maps; $(L) < L and L < (L),
(3) ¢(W(L)) = ¢(L) and $p($(L)) = ¢(L);

4) ¥(p(L)) = (L) and Y(y(L)) = (L).
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Cotilting and tilting modules over Priifer domains 15

Proof. (1) By Lemma 3.5, Ry /Le*C. Let o/ ={Ne% |Ryu/Ne'C}
Then Ry /W(L) is isomorphic to 11m{R¢ /N |N €./}, hence Ry /(L) € +C by
Proposmon 2.4.

(2) ¢(L) < L and L < (L) by Lemma 3.3 (3) and by (1) above.

Let L) < L, € 4. Consider the exact sequence

Ly Rywy  Rywy

0
L L L,

— 0.

The two outer terms belong to *C, hence Ry,)/Li € *C; thus ¢(L;) < ¢(L>)
by definition of ¢. Moreover, Ry,) < Ryr,). By (1), Ryr,)/W(L1) € ~C; thus also
Ry(1,)/W(L1) € -C. By definition of the map s we conclude that y(L;) < ¥(L;).

(3) By (2) L < (L), s0 (L) < $(Y(L)). By (1), Ry)/%(L) € “C; thus, by the
definition of ¢ we have ¢(L) = ¢(Wy(L)). So ¢(y(L)) = ¢(L).

Clearly ¢(#(L)) < ¢(L). By Lemma 3.5, r € ¢(L) if and only r'R/L ¢ +C, hence
if and only if rL ¢ 4. Assume ¢(4(L)) < #(L) and choose r € ¢(L)\¢(¢(L)). Then
r¢(L) €9 and rL ¢ %. Since r ¢ r¢(L), Lemma 3.3 (5) yields rRy) € 4. Moreover,
rL <rRy) < R. So, by Lemma 3.2 the torsion submodule of R/rL with respect to
the torsion theory induced by C is contained in 7Ry /rL. But by (1), Ryy)/L is
torsion free. So R/rL is torsmn free, contradlctmg the hypothes1s rL¢%.

(4) By (2) 4(L) <L, so $($(L)) <W(L). By (1), Ryp)/d(L) € “C; thus, by
the definition of and by the fact that ¢ —(15 we have W(L) = y(4(L)). So
V(L) = w(L).

Let (L) = N; by (2) ¥(L) < ¥(N). Using (3) we have ¢(L) = ¢(N); therefore
Ry1)/W(N) e +C, by (1). By the definition of i we conclude that y(N) < (L),
hence (W (L)) = p(N) = p(L). 0

The following easy result on totally ordered sets will be useful.

Lemma 6.2. Let X be a totally ordered set. Assume ¢, : X — X are two increasing
functions such that:

(1) for every x € X, ¢(x) < x and x < Y(x);

(2) gop=¢; Yoy =y, goy=¢ Yyodp=4y.

Then, for every a € X, the pre-image ¢~ (¢(a)) of ¢(a) is the interval [P(a),y(a)] =
{xe X |¢(a) < x < y(a)}. In particular, X is a disjoint union of intervals of the form

[#(a),Y(a)], ae X.

Proof. Let ¢(a) < x <y(a). Then, ¢(a) = ¢(4(a)) < ¢(x) < $(Y(a)) = ¢(a). Thus,
#(x) = ¢#(a) so x belongs to the pre-image of ¢(a). Conversely, if x < ¢(a), then
$(x) < x < ¢(a); so §(x) # d(a). If Y(a) < x, then Y(a) < x < Y(x). So ¢(x) # ¢(a),
since otherwise (x) = ¥(¢(x)) = ¥(¢(a)) = ¥(a), a contradiction.

Clearly ¢(a) # ¢(b) implies that ¢ (¢(a)) and ¢~ (¢(b)) are disjoint. Moreover,
every element x € X belongs to the pre-image of ¢(x); hence X is a disjoint union of
intervals of the form [¢(a), Y(a)]. N
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16 S. Bazzoni

An immediate application of the two preceding results furnish the following
corollary.

Corollary 6.3. Let C be a cotilting module with associated set 4. If L, L' are two prime
ideals in 4" with $(L) # ¢(L'), then the intervals [¢p(L),y(L)] and [¢p(L"),y(L")] are
disjoint and 9’ is the union of intervals of this form.

Lemma 6.4. If Ly < L are two prime ideals of a maximal valuation domain R, then
Ry, /L is an injective Ry /Lg-cogenerator.

Proof. L/Ly is the maximal ideal of R;/Ly and R;,/L¢ is the quotient field of
R; /Ly. Thus the conclusion follows since it is well known that the injective envelope
of the simple module of a maximal valuation domain is the quotient field of the do-
main modulo its maximal ideal. O

Recalling the definition of {L¢, L) from Section 5, we are now in a position to de-
scribe a cotilting torsion free class.

Proposition 6.5. Let C be a cotilting module over a maximal valuation domain R with
associated set 9. A module M belongs to ~C if and only if for every non-zero torsion
element x € M there exists L € 9" such that Ann(x) € <¢(L), y(L)>.

Proof. Let M €+C and let 0 # xe M be a torsion element. Then 0 # Ann(x) =
Ie¥ sol*e% . Let L=1I% weclaim that I € (¢(L),y(L)>. It is enough to show
that ¢(L) < I. Assume I < ¢(L) and let r € ¢(L)\I. By Lemma 3.3 (5), rL € 4, hence
r'R/Le*C.But r'R > Ry), thus by Lemma 3.5/ 'R/L ¢ *C, a contradiction.
To prove the converse, note that by Lemma 3.1, M € *C if and only if every
cyclic submodule of M belongs to +C; so it is enough to show that for every L € 4/,
Te (L), y(L)) implies [ € %. Since ¢(L) <I<I#<y(L), R/I is a R/¢(L)-
module and /Ry = I. Hence R/I is a R/¢(L)-submodule of the localization R/I ®
Ry(r). By Lemma 6.4, Ry /(L) cogenerates the Ry )/#(L)-module R/I ® Ry r).
Thus, R/I is cogenerated also as a R-module by Ry)/¥/(L) and by Lemma 6.1,
Ry1)/W¥(L) belongs to -C = Cogen C. O

We need now a technical lemma. For more details on the proof see [16].

Lemma 6.6. Let R be a maximal valuation domain and 0 # I < R. Assume L is a
prime ideal of R and N is an idempotent prime ideal. Then:
(1) R/I € +(Ry) if and only I > N.

(2) R/I € *(Ry/L) if and only either:
2.a I>N,or
2bI<N,I£RyandI* <LAN.

Proof. Recall that if R is a maximal valuation domain, then Q/I is an injective
module for every I < R.
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(1) See Lemma 4.2 (2).

(2) Consider the condition Ry : I = L : I + Ry and label it by (*). By Lemma 2.1,
R/I e +(Ry/L) if and only if (*) holds. If I > N, then IRy > NRy, hence (*) is
verified, since N is idempotent. Assume now I < N, then Ry : I > Ry, so (¥) is sat-
isfiedifand only if Ry : I = L : I.If I# > N, then Iy = rRy, for some element r € N;
hence Ry : I = r 'Ry. But then Ry : I > L : I. So we must have I* < N. To show
that I 2 Ry, assume by way of contradiction that / = rRy for some r € N. Then, as
before, (*) doesn’t hold. If L < I# there exists r ¢ I such that 7' > L. But r~'I <
I#* < N;sor'eRy:I\L:I,a contradiction. Thus, we conclude that I* < LN,
so the only if part of condition (2.b) is satisfied.

Conversely, assume I 2 Ry and I#* < L~ N. Then R;+» > R;, Ry and I = IR* =
IRy = IR,. Hence, Ry : I =N :1=1#:1=1L:1. 0

Lemma 6.7. Let C be a cotilting R-module with associated set 4. For every N € %'
such that $(N) # 0 one and only one of the following conditions is satisfied:

(1) ¢(N) = inf @,
(2) ¢(N) =sup{y/(L)[Le¥',L < $(N)};

(3) there exists L e 4’ such that (L) < ¢(N) and there are no other primes of 4’
properly between (L) and ¢(N).

Proof. Assume (1) doesn’t hold. Then the set .o/ = {{/(L)|Le %', L < #(N)} is non
empty. Note that L < ¢(N) implies (L) < ¢(N), since by Corollary 6.3 the intervals
corresponding to L and N are disjoint. Let Ly = sup «Z. If Ly = ¢(N), then condition
(2) is satisfied. If Ly < ¢(N), then y(Lo) < ¢(N) and clearly condition (3) is satisfied.

O

Definition 4. If N € 4', 0 # ¢(N) and ¢(N) satisfies condition (3) of Lemma 6.7 we
say that ¢(N) covers (L) and we write ¢(N) > (L). If ¢(N) satisfies condition (1)
we say that ¢(N) covers 0 and we write ¢(N) > 0.

We are now not far from obtaining a characterization of cotilting modules over
valuation domains. In view of Proposition 5.2 we may assume that sup% = P and
inf 4 = 0; moreover, by Lemma 5.3, we may assume that R is a maximal valuation
domain. We split our final characterization result into two parts.

Proposition 6.8. Let C be a cotilting module over a maximal valuation domain R with
associated set G. Assume sup % = P and inf 9 = 0. Let

Ry ® I Ryv
(L) " ynsuw VL) 4

E=0@® ]I
HL)e%

=
=0
=
=
=

Then +C = LE.
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18 S. Bazzoni

Proof. C and E are pure injective modules, thus in view of Lemma 3.1 it is enough to
show that *C and “E contain the same torsion cyclic modules.

CLAIM A: for every 0 #1 <R, R/I € *C implies R/I € E. By Proposition
6.5, there exists Lo € %’ such that I € {¢(Lg),¥(Lo)>. By Lemma 6.6 (2.a), R/I €
(Ry(1y)/¥(Lo)). We show now that R/I belongs to *(Ry)/W(L)) for every other
Le % with ¢(Lo) # ¢(L). If I > ¢(L), again we are done by Lemma 6.6 (2.a).
So assume I < ¢(L); since ¢(Ly) < I we have ¢(Ly) < ¢(L) and by Corollary 6.3,
the intervals [¢(Lo),¥(Lo)] and [¢(L), y(L)] are disjoint, so ¥(Lo) < ¢(L). Hence
I* <y(Ly) < ¢(L) and by Lemma 6.6 (2.b) R/I € +(Ry1)/¥(L)). Consider now the
summands of E of the form Ryy)/y(L) where ¢(N) > (L), for some Le 4’ If
#(L) = ¢(Ly), then the intervals [¢(L), W (L)] and [¢(Lo), ¥(Lo)] coincide, and clearly
d(N) > (Lo). Since I € {¢(Ly),¥(Lo)» and ¥(Ly) < #(N), we have I* < (Ly) <
#(N) and we conclude by Lemma 6.6 (2.b). If ¢(L) # ¢(Lo) the intervals [¢(L), y(L)]
and [@(Lo), ¥(Lo)] are disjoint; so either (L) < ¢(Lo) or (L) < ¢(L). In the first
case we must have ¢(N) < ¢(Ly), since ¢(N) > (L); so I > #(N) and Lemma 6.6
(2.a) applies. In the second case 17 < /(L) < Y(L) < #(N) and Lemma 6.6 (2.b)
applies. Thus, R/I € “Ryy)/W¥(L). It remains to consider the summand Ry for
#(N) > 0, that is 0 # ¢(N) =inf%’. In this case #(N) < @(Lo) and ¢(Ly) <1I.
Hence R/I € *Ryy), by Lemma 6.6 (1).

CLAIM B: for every 0 #1 < R, R/I € *E implies R/I € *C. By Proposition
6.5 it is enough to show that there exists a prime ideal Lo e %' such that [ ¢
{P(Lo), W(Lo)). If I = ¢(P), then I € {@(P),y(P) = P) and we are done. Assuming
I < ¢(P) the set o/ ={Le%'|I <@$(L)} is non-empty. Note that L € .o/ implies
I# < ¢(L), since by hypothesis R/I € *Ry)/¥(L) and so Lemma 6.6 (2.b) applies.
Moreover, L € .o/ implies ¢(L) € .«Z, since ¢* = ¢. Let N = inf .7, then I# < N. As-
suming ¢(N) < N we have I > ¢(N) and I# < N < y(N); thus I € <p(N),y(N)>.
It remains to consider the case ¢(N) = N. If I = ¢(N), then I € % and we are done.
So we assume I < ¢(N) and invoking Lemma 6.7, we consider the three distinct
possibilities for ¢(N). Condition (1) of Lemma 6.7 cannot be satisfied since other-
wise ¢(N) >0 and R/I € *Ryy) would imply I > ¢(N), by Lemma 6.6 (1). Also
condition (2) of Lemma 6.7 cannot be satisfied by ¢(N), since otherwise there would
exist Le 9, L < ¢(N) such that I < y(L). So y(L) < #(N) since the intervals
defined by L and N are disjoint. Thus there would also exist L' € ', L' < §(N)
such that (L) < y(L") < ¢(N). Then the intervals [¢(L), W (L)] and [¢(L'),y(L")]
are disjoint, so I < (L) < #(L"). This would show that L’'e .o/, contradicting
¢(N) = inf .. So condition (3) of Lemma 6.7 holds, that is ¢(N) > (L) for some
Lye %' . Thus R/I € “Ryn)/W(Lo) and, by Lemma 6.6, I# < /(Ly). In this case / €

{p(Lo),¥(Lo)>. O

Theorem 6.9. Let C be a cotilting module over a maximal valuation domain R with
associated set 4. Assume sup% = P and inf 4 = 0. Then C is equivalent to the cotilt-
ing module

Ry ® I Ryw)
(N) > (L

E= QG_) ¢(Ig[e€¢ (L)
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Cotilting and tilting modules over Priifer domains 19
Proof. We first show that E € Cogen C =*C. In fact, Q and Ry belong to +C,

since they are torsion free. For every L € 4', Ry)/W(L) € -C by Lemma 6.1 and for
every ¢(N) > (L) the exact sequence:

()—>( —

ylelds Ry /W(L) € -C. Thus Cogen E = Cogen C =+C and by Proposition 6.8

LC = LE. Therefore to complete the proof we need to prove that *E < Cogen E. The
inclusion Cogen E < +E implies that Cogen E is closed under extensions. Therefore
Cogen E is a torsion free class and a module 4 is torsion with respect to this torsion
theory if and only if Homg(4, E) = 0. Note that 1E is closed under submodules,
so to prove the inclusion *E < Cogen E it is enough to show that if M € *E and
Hompg(M, E) = 0, then M = 0. By way of contradiction assume 0 # M. Since Q is a
direct summand of E, the hypothesis Homg (M, E) = 0 implies that M has a non-
zero torsion submodule (in the classical sense). So there exists 0 # xo € M such that
0 # I = Ann(xq). Since M € *E, R/I € 'E = *+C; hence by Proposition 6.5, there

exists L € 4’ such that I € {¢(L),y(L)>. We claim that [;‘f( %) €lE. By Lemma 3.1,
it is enough to show that R/Ann(X) e E for every 0 # X ¢ [ ] Write ¥ =
X+ M[§(L)); then J = Ann(x) < ¢(L) and Ann(%) = J : ¢(L) = Ann ("~ >) Since

x e M e LE we know that R/J € 1E = *+C; hence also ¢(JL) etC and by Lemma 3.3
(2), Ann (¢( )) € %. Thus R/Ann(x) € -C = *E. Consider now the sequence

0—>M[¢(L)]—>M—>m—>0

Since % € LE and Homg(M, E) = 0, we conclude that also Homg(M[¢(L)], E)

= 0. Consider the localization M[¢(L)] ® Ry(;) and let

S Mp(L)] — M[$(L)] @ Ry

be the canonical map. Then Ker /' = {x € M[¢(L)]|sx = 0 for some s ¢ y(L)}. The
condition Homg(M|[$(L)],E) =0 yields HomR( K[erf ] ’E) =0. Now M[¢(L)] ®

Ry(r) is an Ry ) /¢(L)-module, so, by Lemma 6.4, it is cogenerated by Ryz)/Ry(r)

which is a direct summand of E. Thus the module MK[ii f)] is also cogenerated by E

[(L)] E) giv s M)

0. But the element xo € M we

Kerf Kerf =
started with belongs M[¢(L)] and its anmhllator is contained in (L), thus it doesn’t
belong to Ker f, a contradiction. O

and the vanishing of HomR(

Collecting the results proved in the previous sections we can state the following.

(AutoPDF V7 28/4/06 13:66) WDG (170x240mm) Tmath J-1468 Forum, : PMU:I(CKN)28/4/2006 pp. 1-23 1468_06-04 (p. 19)



20 S. Bazzoni

Theorem 6.10. Let R be a Priifer domain and C a cotilting R-module. Then C is
equivalent to a cotilting module C' where C' is a direct product of indecomposable pure
injective modules.

Proof. By Corollary 2.6 C is equivalent to the direct product of the cotilting
R,,-modules C™ = Homg(Ry,, C) and in view of Proposition 5.2, Lemma 5.3 and
Theorem 6.9, a cotilting module over a valuation domain is equivalent to a direct
product of indecomposable pure injective modules and of modules of the form JS/IS
for some 0 < I < J < Q, where S is a maximal immediate extension of the valuation
domain. Recall that over a valuation domain a pure injective module is indecom-
posable if and only it is the pure injective envelope of a module of the form J/I (cf
[16, XIII, 5.9]). For each summand JS/IS of C™ we can argue like in the proof of
[24, Theorem 3.4]. In fact, JS/IS is the pure injective envelope of a direct sum of x
copies of J/I for some cardinal x (see [16, XIII, 5.4]. Let M =[], _,.J/I. Then JS/IS
is a direct summand of M and M is a summand of a direct product of copies of
JS/IS. Thus in the decomposition of C™ we can substitute every summand of the
form JS/IS by suitable direct products of the indecomposable pure injective Ry,-
modules J/I. To conclude the proof we note that if 4 is a pure injective module over
the localization R,, of a domain R, then A is pure injective also as R-module, since
pure monomorphisms are preserved under localization. Moreover, if 4 is indecom-
posable as R,,-module and 4, @ A, is a R-direct sum decomposition of 4, we must
have 4;® R, =0, for i=1 or 2; so A; =0 and A4 is indecomposable also as a
R-module. O

We conclude with the following observation.

Remark 2. Recall that a non zero module is called super decomposable if it doesn’t
have non zero indecomposable direct summands. It is known that if R is a valuation
domain, then there exist super decomposable pure injective modules if and only if R
is not strongly discrete (cf [16, XIII, 5.11]). We don’t know whether a cotilting mod-
ule C can have a super decomposable summand, say A4; if so this summand should
satisfy Ext}e(A 7,A) =0, for every cardinal y and we don’t know whether this can
happen. But, by the previous theorem, even if C has a super decomposable summand
we can consider a cotilting module C’ equivalent to C, such that C’ has no super
decomposable summands.

In [24] a set {M, |« e x} of pure injective modules with i.d. <1 satisfying the
conditions Ext}e(Ma, Mp) =0 for all «, f € « is said to be a rigid system if every M, is
indecomposable; and it is said to be an almost rigid system if M is super decom-
posable and M, is indecomposable for every 0 < o € x. In [24, Theorem 3.4] it is
proved that for every l-cotilting module C over an arbitrary ring there exists an
almost rigid system {M, | o € x} such that the module C' =[], ... M, is a cotilting
module equivalent to C.

Our Theorem 6.10 shows that for cotilting modules over Priifer domains we can
improve the result of [24, Theorem 3.4] by stating that we can choose the almost rigid
system to be rigid.
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7 n-tilting modules over commutative and Priifer domains

In this section we consider #n-tilting modules and we prove that over Priifer domains
or over domains of i.d. <1, n-tilting modules have projective dimension at most one.
Symmetrically to the definitions in Section 1 we define, for any left R-module M:

M* = {X € R-Mod | Exth(M, X) = 0,Vi > 1}.

Let p.d. M denote the projective dimension of a R-module M. A R-module 7 is a
n-tilting module if the following conditions hold ([1]):

(T1) p.d. T < m;
(T2) Exti(T, T™W) = 0 for each i > 0 and for every cardinal /;

(T3) there exists a long exact sequence:
0O—-R—-Ty—T,---—T,—0,

where T; € Add T, forevery 0 < i <r.

If T is a n-tilting module the class 7+ is closed under direct sums ([1]). The notion of
n-tilting modules of finite type was introduced in [2]. We recall that a 1-tilting module
T is of finite type (countable) provided that there exists a set & of finitely presented
(countably presented) R-modules of p.d. <1 such that T+ = (,_, S*. In [9] it has
been proved that every 1-tilting module is of countable type and, moreover, that over
Priifer domains every 1-tilting module is of finite type.

In this section R will be a commutative domain with quotient field Q and K will
denote the R-module Q/R.

Any direct sum of copies of K will be called a K-free module. We recall that every
torsionfree divisible R-module is injective; thus, in particular, Q* is injective for
every cardinal o.

Proposition 7.1. Let M be an R-module with p.d. M =n > 1. Then, there is a free
R-module F such that Extx(M, F) # 0. In particular, if n > 1, Extf{l (M, D) #0, for
some K-free module D.

Proof. The proof is by induction on n. Assume n = 1. By Eilenberg’s trick there is an
exact sequence 0 — F| — Fy — M — 0 where Fy and F| are free R-modules. Then
clearly Ext}lz(M ,F1) # 0. Assume n > 1 and consider a partial projective resolution
of M

0O—-Hy 1 —>P,y—--—>P —Py—M-—0
with projective modules P;. By dimension shift we have that Exti(M,F) =
Ext,le(Hn,l,F) and also p.d. M =n if and only if p.d. H, ;1 = 1. Hence the result

follows by the case n = 1. For the second statement note that, for every cardinal o,
Exty (M, K") = Exth(M, R™). O
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As an application of the preceding results we obtain:
Proposition 7.2. Assume T is a n-tilting R-module andi.d. R =1. Thenn < 1.

Proof. The class T+ is closed under direct sums; hence it contains all the K-free
modules, since, by hypothesis, K is injective. By Proposition 7.1 we infer that p.d. T
is at most 1. Il

Assuming R is a Priifer domain we obtain a result analogous to Proposition 7.2.
Proposition 7.3. Let R be a Priifer domain and T a n-tilting module. Then n < 1.

Proof. Assume p.d. T =n> 1 and let H, | be the (n — 1)*-syzygy module of 7.
Then p.d. H,_; = 1 and, by dimension shift, ;- | = {X € R-Mod | Ext}(T, X) = 0}.
By [6, Lemma 3.4], H;- | is closed under direct sums and it is closed under epimor-
phic images, since p.d. H,_; = 1. Thus, H;- | is a torsion class. By [3, Theorem 10] it
is a special preenveloping class, hence by the characterization of tilting classes (see
[3, Theorem 2.1]), H- | is a l-tilting class, that is H- | = T, for a 1-tilting module
T:. Note now that H,_; is a torsionfree module and moreover flat since R is a Priifer
domain. Thus, H,- , contains all the cotorsion modules and ~(H;- ,) is contained in
the class of flat modules. In particular 77 is a flat module. By [9, Theorem 3.2] T} is
of finite type. As noted before, the modules in +(75") are flat, hence the finitely pre-
sented modules in +(T}") are projective. This implies 7Tj- = R-Mod, hence H;- | =

R-Mod; that is H,_ is projective, contradicting the assumption p.d. 7" > 1. O
Corollary 7.4. If R is Priifer domain, then all n-tilting modules are of finite type.

Proof. Tt follows immediately by the preceding proposition and by [9, Theorem 3.4].
O

For a description of 1-tilting modules of finite type over Priifer domains see [20].
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