
Astron. Astrophys. 360, 1187–1202 (2000) ASTRONOMY
AND

ASTROPHYSICS

An efficient algorithm for two–dimensional radiative transfer
in axisymmetric circumstellar envelopes and disks

C.P. Dullemond1 and R. Turolla2

1 Max-Planck-Institut f̈ur Astrophysik, Karl-Schwarzschild-Strasse 1, 85748 Garching, Germany (dullemon@mpa-garching.mpg.de)
2 Department of Physics, University of Padova, Via Marzolo 8, 35131 Padova, Italy (turolla@pd.infn.it)

Received 4 April 2000 / Accepted 9 June 2000

Abstract. We present an algorithm for two–dimensional radia-
tive transfer in axisymmetric, circumstellar media. The formal
integration of the transfer equation is performed by a generaliza-
tion of the short characteristics (SC) method to spherical coordi-
nates. Accelerated Lambda Iteration (ALI) and Ng’s algorithm
are used to converge towards a solution. By taking a logarithmi-
cally spaced radial coordinate grid, the method has the natural
capability of treating problems that span several decades in ra-
dius, in the most extreme case from the stellar radius up to parsec
scale. Flux conservation is guaranteed in spherical coordinates
by a particular choice of discrete photon directions and a special
treatment of nearly–radially outward propagating radiation. The
algorithm works well from zero up to very high optical depth,
and can be used for a wide variety of transfer problems, includ-
ing non–LTE line formation, dust continuum transfer and high
temperature processes such as compton scattering. In this paper
we focus on multiple scattering off dust grains and on non-LTE
transfer in molecular and atomic lines. Line transfer is treated
according to an ALI scheme for multi-level atoms/molecules,
and includes both random and systematic velocity fields. The
algorithms are implemented in a multi-purpose user-friendly
radiative transfer program named RADICAL. We present two
example computations: one of dust scattering in the Egg Neb-
ula, and one of non-LTE line formation in rotational transitions
of HCO+ in a flattened protostellar collapsing cloud.
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1. Introduction

Molecular line and dust continuum observations are an impor-
tant tool for studying the envelopes and disks around young
stellar objects (YSO), post-AGB stars and AGN. One of the
main difficulties in interpreting such observations is that opti-
cal depths effects play an important role in the emission of this
radiation. It is, for instance, well known that self-absorption
and non-LTE effects are the main processes at work in shaping
the characteristic asymmetric double-peaked emission line pro-
files from collapsing protostellar cores (Zhou 1992). Radiative
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transfer computations, at an appropriate level of complexity, are
therefore needed in order to reconstruct the density, velocity and
temperature structure of an observed cloud.

If densities drop below the critical density, the system will
deviate from local thermodynamic equilibrium (LTE). Line
trapping and photon escape from the line wings can in some
cases be treated in the large-velocity-gradient (LVG) limit, but
this approach is only valid if systematic velocity fields are much
greater than the local turbulent line width. In all other cases one
must perform a full non-LTE line transfer computation.

For problems that can be formulated in 1-D slab or spherical
geometry there exist many radiative transfer programs, many of
which use sophisticated techniques such as Accelerated Lambda
Iteration (ALI; see a review by Hubeny 1989) and Complete Lin-
earization (CL; Auer & Mihalas 1969). But the requirement of
1-D geometry is often too restrictive. Distinctly non-spherical
features are often observed from young stellar objects (YSO),
such as bipolar reflection nebulae (e.g. Lenzen 1987), bipo-
lar outflows (see Bachiller 1996) and disks (e.g. McCaughrean
& O’Dell 1996). Even the progenitors of these YSOs, starless
dense cloud cores, seem to appear as elongated structures at
millimeter wavelengths (e.g. Myers et al. 1991), indicating that
even in the early stages of star formation spherical symmetry
does not apply. The case of post-AGB stars and Planetary Neb-
ulae is just as compelling, with the majority of these nebulae
being bipolar. The Cygnus Egg Nebula (CRL 2688) and the
Red Rectangle (HD 44179) are perhaps the most spectacular
examples of such bipolarity.

To model such objects, clearly one must resort to multi-
dimensional transfer computations. There is a vast literature
on this topic. Methods roughly fall in one of three catagories:
Monte Carlo methods, Discrete Ordinate methods and Angular
Moment methods. Monte Carlo codes are very flexible and can
be used for a large variety of problems in multidimensional ge-
ometries, such as UV continuum transfer (e.g. Spaans 1996), op-
tical and infrared continuum transfer (Wolf et al. 1999), molec-
ular line transfer (Hogerheijde 1998), and Compton scattering
(e.g. Pozdniakov et al. 1979; Haardt & Maraschi 1991). Such
methods perform well at low to medium optical depths, but it
is well known that at high optical depths they converge very
slowly.
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Angular Moment methods, on the other hand, are very well
suited to treat the high optical depths regime, since they are
related to (or variants of) the diffusion equation (see e.g. Yorke
et al. 1993, Sonnhalter et al. 1995, Murray et al. 1994). However,
it is not surprising that they fail at low optical depth, since the
diffusion approximation was never meant for this regime.

In the Discrete Ordinate approach, not only space is dis-
cretized into cells, but also the photon propagation direction.
Most multi-dimensional implementations of the Discrete Or-
dinate methods are based on the “Lambda Iteration” scheme
(e.g. Collison & Fix 1991, Efstathiou & Rowan-Robinson 1991,
Philips 1999). The advantage of these methods over the Monte
Carlo approach is that they do not involve random noise, and
therefore provide ‘cleaner’ answers. But they suffer from the
same convergence problems as Monte Carlo methods. However,
for Lambda Iteration there are various ways to cure this disease.
The most well known of these methods is Accelerated Lambda
Iteration (ALI, e.g. Scharmer 1981, Rybicki & Hummer 1991).

In this paper we will focus on the Discrete Ordinate approach
to radiative transfer because of its versatility, accuracy and the
wide range of convergence acceleration techniques available.
However, despite the relative efficiency of these methods, mul-
tidimensional calculations remain costly. Feasibility constraints
can pose severe limits on the spatial and angular resolution,
which could easily result in unacceptable numerical diffusion.
Also, this limits the number of models one can reasonably make
to fit observations, which could lead to dangerous undersam-
pling of the parameter space.

The bottleneck lies in the integration of the formal transfer
equation. The most straightforward way of performing these
integrals is by the method of “Long Characteristics”, which is
accurate, but rather costly in CPU time. A more efficient algo-
rithm for doing this in two dimensions is the method of “Short
Characteritics” (SC; Mihalas et al. 1978, Kunasz & Auer 1988,
Auer & Paletou 1994, Stone et al. (1992). These algorithms are
designed specifically with cartesian or cylindrical coordinates
in mind, and are not straightforward to generalize to other co-
ordinate systems. For circumstellar envelopes, however, there
are several arguments favoring the use of spherical (polar) co-
ordinates, as opposed to cylindrical coordinates. Most circum-
stellar nebulae have density and temperature profiles that are
peaked towards the center. This means that the radiation field
is dominated by photons emitted in the central regions, which
are subsequently reprocessed in the outer parts of the nebula.
The numerical scheme must therefore be able to resolve both
the very concentrated central regions and the extended outer
regions simultaneously. Also, it must guarantee that all radia-
tion emitted at small radii will eventually emerge at large radii,
which amounts to saying that flux must be conserved over a
large range of radii. Using spherical coordinates and a logarith-
mic radial grid is the most natural way to cover such a large
dynamic range and guarantee flux conservation.

The goal of this paper is to describe, test and demonstrate
an algorithm that generalizes the Short Characteristics method

to spherical coordinates1. It is an algorithm specifically suited
for axisymmetric circumstellar nebulae and disks. It has been
implemented in a multi-purpose radiative transfer code named
RADICAL, which is designed to perform 2-D computations
in dust continuum emission/absorption, multiple scattering off
dust grains, non-LTE line transfer, and (for application to X-ray
binaries and AGN) Comptonization. In this paper we describe
the method of short characteristics in spherical coordinates, and
focus our attention to the cases of simple isotropic scattering off
dust grains and non-LTE line transfer for multi-level molecules.
For a more extensive discussion of the algorithm and its appli-
cations, see Dullemond (1999).

The structure of this paper is as follows. In Sect. 2 we will
present the equations of transfer we wish to solve. In Sect. 3
we shall review the method of short characteristics as it is often
presented in the literature. In Sect. 4 we will show how this
method can be generalized to spherical coordinates. Then we
will put the algorithm to the test in Sect. 5. Finally we will
present two example applications in Sects. 6 and 7.

2. Equations of radiative transfer

The method that will be described in this paper is an Accelerated
Lambda Iteration method. In such an algorithm the integration
of the formal transfer equation is performed using a “Lambda
Operator”. In this section we will present the equations that are
to be solved, and we define the Lambda Operator. The numerical
details of the Lambda Operator will be given in the next sections.

The formal transfer equation is

dIν

ds
= αν(Sν − Iν) , (1)

with Iν is the intensity,Sν the source function,αν the opacity,
and s the path length. This equation must hold along every
straight line through the medium. Its integral form along a ray
through a pointP reads:

Iν(P ) = e−τν Iν(0) +

∫ τν

0

e−τ ′

ν S(τ ′
ν)dτ ′

ν , (2)

whereτν is the optical depth along the ray, between pointP
and the edge of the medium. After evaluating this integral for
all anglesω, one can compute the mean intensityJν

Jν =
1

4π

∫

Iν(ω)dω . (3)

The entire operation of computingJν(P ) at every pointP , for a
given source functionSν , can be written as the action of a linear
Lambda OperatorΛ:

Jν = Λ[Sν ] , (4)

Using this Lambda Operator we can write down the complete
transfer equation for a simple problem of thermal emission and
isotropic (dust) scattering

Sν = εBν(T ) + (1 − ε)Λ[Sν ] , (5)

1 Just prior to submission we became aware of a paper by Busche
& Hillier (2000), who describe a method of short characteristics in
spherical coordinates that is similar to ours.
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where ε ≡ αabs
ν /αν is the thermalization coefficient (with

αabs
ν the thermal absorption opacity), andBν(T ) is the Planck

function. Solving the transfer problem for isotropic scattering
and thermal emission amounts to solving Eq. (5) forSν . The
Lambda Iteration procedure amounts to iteratively applying the
Lambda Operator and computing the newSν until convergence
is reached. The Accelerated Lambda Iteration procedure, which
converges much faster, is a variant of this procedure, involving
an approximate operatorΛ∗. For details we refer to Hubeny
(1989) and Rutten (1999).

For multi-level line transfer, we follow the treatment of Ry-
bicki & Hummer (1991). Consider an atom or molecule having
N levels, with Einstein coefficientsAij , Bij and collision rates
Cij between levelsi andj. The line profile functioñϕij(ν) de-
termines at which frequencies the line emits and absorbs. When
no systematic fluid velocities are present, the line profile func-
tion is isotropic, and is normalized to unity. For the application to
circumstellar envelopes, the dominant broadening mechanisms
are turbulent and thermal broadening. These two mechanisms
produce a Gaussian profile:

ϕ̃ij(ν) =
c

atotνij
√

π
exp

(

−c2(ν − νij)
2

a2
totν

2
ij

)

. (6)

Herec is the speed of light,νij the line-center frequency of the
transition between levelsi andj, andatot is the line width,

atot = aturb +

√

2kTkin

mmol
, (7)

whereTkin is the (kinetic) temperature of the gas,mmol the mass
of the molecule, andaturb is the turbulent line width. A sys-
tematic fluid velocity can cause the line profile function to be
angle-dependent in the lab frame as a result of Doppler shift,

ϕij(ω, ν) = ϕ̃ij

(

ν(1 − ω · v/c) − νij

)

, (8)

The opacity in the line associated with this line profile is:

αij(ω, ν) =
hν

4π
N(njBji − niBij)ϕij(ω, ν) , (9)

whereni are the fractional level populations, andN the number
density of molecules. We assume complete redistribution for the
lines. The source function is then independent of frequency and
angle:

Sij =
niAij

njBji − niBij
. (10)

The transfer equation for this source function is then

dIij(ω, ν)

ds
= αij(ω, ν) [Sij − Iij(ω, ν)] , (11)

where we assume non-overlapping lines.
The source termSij is known once the fractional level pop-

ulationsni are known. They are a solution of the statistical
equilibrium equation. Using the definition of the line-integrated
Lambda Operator̄Λij [Sij ] ≡ J̄ij , with

J̄ij =
1

4π

∫

I(ω, ν)ϕij(ω, ν)dωdν , (12)

the statistical equilibrium equations become:
∑

j>l

[

njAjl + (njBjl − nlBlj)Λ̄jl[Sjl]
]

−
∑

j<l

[

nlAlj + (nlBlj − njBjl)Λ̄lj [Slj ]
]

+
∑

j

[

njCjl − nlClj

]

= 0 . (13)

The non-locality of radiative transfer is now hidden in theΛ̄jl

operator, so that Eq. (13) now represents the complete (non-
linear) set of equations for line transfer. Lambda Iteration now
proceeds by iteratively applying thēΛjl operator and solving the
matrix equation represented by Eq. (13). Accelerated Lambda
Iteration proceeds according to the MALI scheme of Rybicki &
Hummer (1991).

3. Short characteristics in cartesian coordinates

To carry out the Lambda Iteration or Accelerated Lambda It-
eration procedure, we need a numerical implementation of the
Lambda OperatorΛ. In Cartesian coordinates, the formal trans-
fer equation Eq. (1) becomes

dIν

ds
≡ ωx

∂Iν

∂x
+ ωy

∂Iν

∂y
= αν(Sν − Iν) (14)

where translational symmetry in thez–direction was assumed.
The numerical implementation of the Lambda Operator

amounts to integrating Eq. (14) for givenSν andαν . This must
be done on a 2–dimensional spatial gridx = (xi, yj), for a
discrete set of directionsω = {ωi} and frequenciesν = {νi}.
This will provide the specific intensityI(xi, yj ;ωk, νl) for all
i, j, k, l. Let us focus on a given pointP = (xi, yj) and on a
single direction and frequency,ω = ωk, ν = νl. The integral of
Eq. (14) can be performed numerically along the entire charac-
teristic starting at the upstream boundary, heading in the down-
stream direction (i.e. the direction where the radiation comes
from) and ending at pointP (see Fig. 1). This direct approach
is called the method of Long Characteristics (LC). Provided the
discretization in angleω is appropriate, this method is quite ac-
curate and reliable. But it has a computational redundancy, and
hence it is overly time–consuming. Consider, for instance, a spa-
tial grid N × N , a set ofNω directions and ofNν frequencies.
The long characteristics integral of Eq. (14) typically requires
in the order ofN integration steps. This means that while the
dimension of the grid isN2 ×Nω ×Nν , the total computational
time scales as

tCPU ∝ N3 × Nω × Nν . (15)

The Short Characteristics method of integration (SC; see
Fig. 2) does not have this redundancy. Instead of performing
the integral along the entire ray (the long characteristic), we
perform the integral only along that portion of the ray (the short
characteristic) which connects a pointU on the grid upstream
of P to the closest intersection downstream ofP itself. The
intensity atP is given by
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P

D

U

Fig. 1. An illustration of the Long Characteristics (LC) method in
Cartesian coordinates. The intensity at pointP is computed integrating
the transfer equation along the entire ray from the upstream boundary
(pointU ) towards pointP .

P

D

U

A CB

Fig. 2.An illustration of the SC method in Cartesian coordinates. The
short characteristic is the line connecting pointU toD throughP . The
value of the intensity atU is determined by quadratic interpolation
between the pointsA, B andC.

Iν(P ;ω) = e−τν Iν(U ;ω) +
∫ τν

0

e−τ ′

ν Sν(x(τ ′
ν);ω)dτ ′

ν (16)

whereτν is the optical depth between pointsU and P . The
upstream intensityIν(U ;ω) can be found from the intensities
atA, B andC by 3–point quadratic interpolation

Iν(U ;ω) = aIν(A;ω) + bIν(B;ω) + cIν(C;ω) (17)

wherea, b andc are the usual Lagrange coefficients for poly-
nomial interpolation. Quadratic or higher order interpolation
is necessary in order to reproduce the diffusion limit for high
optical depth, which is governed by a second order partial dif-
ferential equation.

The integral fromU to P can be computed with second or-
der accuracy by interpolating the source functionSν(x(τ ′

ν);ω)
between the pointsD, P andU . Following Olson & Kunasz
(1987), one finds

Iν(P ;ω) = e−τν Iν(U ;ω) + uνSν(U ;ω)

+pνSν(P ;ω) + dνSν(D;ω) , (18)

with

uν = e0 + [e2 − (2τν + τ̄ν)e1]/[τν(τν + τ̄ν)] (19)

pν = [(τν + τ̄ν)e1 − e2]/[τν τ̄ν ] (20)

dν = [e2 − τνe1]/[τ̄ν(τν + τ̄ν)] (21)

e0 = 1 − e−τν (22)

e1 = τν − e0 (23)

e2 = τ2
ν − 2e1 (24)

whereτν and τ̄ν are the depths atU and D, respectively. It
should be noted that this quadrature formula may have patho-
logical behaviour if the source function and/or the opacity varies
strongly between the pointsU , P and D. This problem can
be solved by limiting the resulting integrals between zero and
max

(

jν(P ), jν(U)
)

∆s, where∆s is the path length along the
short characteristic, andjν = ανSν .

By systematically performing the integrals over all the short
characteristics, one can find an approximate formal solution of
the transfer equation (Kunasz & Auer 1988, Auer & Paletou
1994, Auer et al. 1994). A key ingredient for the SC method to
work is that the integrals should be performed in the right order,
so that the upstream intensitiesIν(A;ω),Iν(B;ω)andIν(C;ω)
are known before the integral is performed and Eq. (18) eval-
uated. In order to do so, the grid must be swept from the two
upstream boundaries towards the two downstream boundaries.

The method of Short Characteristics is computationally less
time consuming than the method of Long Characteristics, be-
cause now the transfer integral is performed over a much shorter
path. For the same discretization introduced earlier in this sec-
tion, the computational time scales as

tCPU ∝ N2 × Nω × Nν (25)

which is typically an factorN shorter than in the case of Long
Characteristics.

4. Short characteristics in spherical coordinates

We now wish to formulate the Short Characteristics algorithm
in spherical coordinates. In the following we refer to a standard
spherical coordinate system(R, Θ,Φ) whereΘ is the latitude
andΦ the azimuth. By assuming axial symmetry, any depen-
dence onΦ is suppressed, although radiation is still allowed
to travel along∂/∂Φ, as well as in the radial and meridional
directions.

In order to describe the radiation field at each spatial point
P = (R, Θ) we need to set up a local coordinate system to
characterize the photon direction atP . We introduce two inde-
pendent angles on the sky of the local observer:θ andφ. The
north pole of this local sky-map is chosen to coincide with the
outward–pointing radial direction. Theφ angle is gauged in such
a way thatφ = 0 points parallel to the equator of the global co-
ordinate system (see Fig. 3). As is customary in transfer theory,
we useµ ≡ cos θ instead ofθ itself, so the specific intensity
depends upon the two spatial variablesR, Θ, the ray direction
µ, φ, and the frequencyν, I = Iν(R, Θ ; µ, φ). The transfer
equation, Eq. (1), in spherical coordinates reads

dIν

ds
≡ µ

∂Iν

∂R
−
√

1 − µ2

R
sin φ

∂Iν

∂Θ
+

1 − µ2

R

∂Iν

∂µ
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φ

Θ

Φ

π/2−θ

R

Z

X

Y

Fig. 3. The global and local coordinate systems used to describe the
radiation field. Hereπ/2 − θ is shown instead ofθ for the clarity of
illustration.

− cos φ

tan Θ

√

1 − µ2

R

∂Iν

∂φ
= αν(Sν − Iν) . (26)

An important consequence of the use of spherical coordi-
nates is that, contrary to what happens for cartesian coordinates,
the photon anglesµ andφ are no longer constant along the rays.
The variation ofR, Θ, µ andφ along the path are

dR

ds
= µ ,

dΘ

ds
= −

√

1 − µ2

R
sin φ , (27)

dµ

ds
=

1 − µ2

R
,

dφ

ds
= −

√

1 − µ2

R

cos φ

tan Θ
, (28)

wheres is the path length. Solving these equations yields

R2 = b2 + s2 , (29)

cos Θ =
z0 + s cos Θ∞√

b2 + s2
, (30)

µ =
s√

b2 + s2
, (31)

sin φ =
b2 cos Θ∞ − z0s

b
√

b2 + s2 − (z0 + s cos Θ∞)2
, (32)

whereb is the impact parameter of the ray with respect to the
origin, z0 is the height above the midplane of closest approach
to the symmetry-axis, andΘ0 is the inclination at infinity. When
projected into the subspace spanned byR, Θ the trajectory be-
comes a hyperbola, as is shown in Fig. 4. We stress that this
shape is caused by eliminating the dependence on theΦ–angle,
and is purely a projection effect.

For the numerical implementation of the short characteris-
tics scheme, we are interested in those characteristics that pass
through a grid pointP = (Rk,Θl) and are tangent to one of the
local discrete ordinates(µi, φj). Clearly, onceRk,Θl, µi, φj

are fixed, such a characteristic is unique and the values of its
parameters are

Fig. 4. An example of a long characteristic in an axially symmetric
space. Only the upper quadrant is shown. The vertical axis is the sym-
metry axis and the horizontal axis the equator. The bot-dashed lines
represent the asymptotes of the hyperbolic characteristic.

b2 = R2
k(1 − µ2

i ) (33)

cos Θ∞ = µi cos Θl +
√

1 − µ2
i sin Θl sin φj (34)

z0 = Rk

[

(1 − µ2
i ) cos Θl −

µi

√

1 − µ2
i sin Θl sin φj

]

. (35)

The short characteristic passing through(Rk,Θl ; µi, φj) is de-
fined as the section of this curve that starts at the closest in-
tersection with the grid linesupstream of P (point U ), passes
throughP and ends at the closest intersection with the grid
linesdownstream of P (pointD). The location of the pointsU
andD is specified by the corresponding values of parameters
along the ray,sU andsD, which are found solving Eqs. (29)–
(30) with R = RK andΘ = ΘL, whereK = k − 1, k, k + 1
andL = l − 1, l, l + 1. BothR = Rk andΘ = Θl need to be
included because the characteristic may intersect the sameΘ or
R grid line twice. In principle, each equation has two solutions
for a given value ofK andL, giving 12 possible roots

s1...6 = ±
√

R2
K − b2 (36)

s7...12 =
1

cos2 Θ∞ − cos2 ΘL

{

− z0 cos Θ∞ ±

cos ΘL

√

b2(cos2 Θ∞ − cos2 ΘL) + z2
0

}

. (37)

However, two of these solutions always gives = sP , i.e.P =
(Rk,Θl) itself, and are of no interest. Of the remaining 10 roots,
some are complex and must be rejected. Between the real solu-
tions, the one representing pointD (U ) is selected asking that
s > sP (s < sP ) and that|s − sP | is minimum. For conve-
nience, in the following we will denote with̃R1, Θ̃1, µ̃1 andφ̃1

the values of the independent variables along the ray at pointU .
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Fig. 5. An example of a Short Characteristic (SC) in spherical coordi-
nates (the heavy line connectingU to D throughP ). As in Fig. 2 the
downstream part of the SC (which is only needed to guarantee second
order accuracy in the formal integral betweenU andP ) is dashed. The
dotted line shows the complete ray to which the SC belongs.

Although, as we have just shown, short characteristics can
be easily defined in spherical coordinates, two major problems
have to be solved before they can be of any use in building a
transfer algorithm. The first point concerns the fact that, as it was
mentioned earlier,µ andφ change along the ray. This means that
in addition to spatial interpolation (see Eq. 17), we are forced to
interpolate inµ andφ as well in order to evaluateIν(U, ω). This
is because the intensities at pointsA, B andC are known only
for a discrete set of directions which are different, in general,
from (µ̃1 , φ̃1).

The second, more fundamental difficulty arises because in
spherical coordinates the concept of upstream and downstream
boundaries is different from the Cartesian case. Radial infinity
is both the upstream and the downstream boundary, while inΘ
there is no obvious upstream or downstream boundary. If the
grid is swept fromΘ = 0 to Θ = π or vice versa, one will
encounter situations in which the intensity at one of the points
A, B, C is not known before the evaluation the transfer integral
along the short characteristic (Eq. 16) is performed. An example
of such a situation is shown in Fig. 5. Interpolation makes use
of the pointsA, B andC, but sinceA coincides withP , the
intensity at the pointA ≡ P , has not been computed yet.

4.1. Extended short characteristics

The problem of unknown intensities can be solved by modifying
the definition of short characteristics to be the part of the ray that
connectsP , not with just the nearest gridline intersection, but
with the nearestR = Rk gridline intersection, i.e. the nearest
radial shell. Such an “extended short characteristic” (ESC) is
illustrated in Fig. 6. The starting pointU of such an ESC will
be located either atR = Rk−1, R = Rk+1 or back atR = Rk.

Fig. 6.An example of an Extended Short Characteristic (ESC) in spher-
ical coordinates (the heavy line connectingU2 to D throughP ). It is
the extended version of the SC shown in Fig. 5. The ESC does not have
the same problems as the SC because for the ESC none of the points
A, B or C coincides with pointP .

This means that in betweenU andP the ESC may intersect
one or moreΘ grid lines. The pointD on the downstream side
remains the same as for standard SCs.

By using ESC instead of SC the “problem of unknown up-
stream intensities” can be eliminated. In fact, if a proper sweep-
ing scheme is chosen (see Sect. 4.2), the problem of unknown
intensities only occurs in those situations when a short char-
acteristic curves back onto the sameΘ-gridline from which it
originates, as is illustrated in Fig. 5. By extending only those
short characteristics, and leaving the rest truly short, one can
also avoid unknown intensities in the sweeping scheme. Just
for notation we call this scheme the Minimally Extended Short
Characteristics scheme (MESC). MESC is almost as accurate
as ESC, but ESC is more closely similar to its one-dimensional
spherical analogues, and is slightly less numerically diffusive.

In the following we denote withD (orU−1) the single down-
stream intersection with a grid line, and withUi (i = 1, . . . , m)
the multiple intersections upstream ofP . The pointUm is there-
fore the true upstream starting point of the ESC, where the in-
tensity must be found by interpolation. In Fig. 6 this is the point
U2 and the ESC consists of two segments in this case.

4.2. The sweeping scheme

Using the (minimally) extended short characteristics defined
above, we can systematically sweep the grid without encoun-
tering unknown intensities. We start at the outer boundaryR∞

and integrate inwards only those ESCs for whichµi ≤ 0. The
sweeping order inΘ is fromΘ = 0 to Θ = π and then back.

The intensity at eachP = (Rk,Θl) is found for allµi ≤ 0
andφj by tracing the ESCs back to their upstream starting point
Um. At pointUm the values ofR, Θ, µ andφ are different from
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those atP , and will be denoted with̃Rm, Θ̃m, µ̃m andφ̃m. The
find the intensity at(R̃m, Θ̃m, µ̃m, φ̃m)) by interpolation. We
then integrate the formal transfer equation along each segment
of the ESC connectingUm to P , according to Eq. (18). This
gives

Iν(P ) = exp(−τm)Iν(Um) +
∑

i=1,m

exp(−τi−1) ×
(

uν,iSν,i + pν,i−1Sν,i−1 + dν,i−2Sν,i−2

)

(38)

whereτi is the depth fromP to Ui and the indexi denotes
the quantity evaluated atUi (e.g.Si ≡ S(Ui); i = 0 refers to
P and i = −1 to D). The u’s, p’s andd’s are defined as in
Eqs. (19), (20) and (21), but withτ replaced by(τi − τi−1) and
τ̄ by (τi−1 − τi−2).

The integration is then repeated moving towards smaller
radii, until the inner boundary atR = R1 is reached. Here we
can include the contribution of a central source or any other
boundary condition.

Then we start integrating back towards larger radii, until
we reach the outer edge. By now the radiation field on the grid
Iν(Rk,Θl ; µi, φj) is known.

4.3. Tangent-ray discretization of photon direction

Eqs. (31) and (32) show thatµandφchange along the ESC. If we
follow the ESC upstream towards a pointUm (see Fig. 6), then
the values of these two angles atUm are generally not exactly at
the discrete values{µi} and{φj} of the sample of directions.
This means that we must interpolate not only in space (between
A, B andC), but also in directionµ, φ. Although, this is not,
in principle, a fundamental problem, the use of interpolations
should be reduced to a minimum to avoid unnecessary numerical
diffusion.

Fortunately one can eliminate the interpolation inµ by
means of a suitable choice of theµ–grid so that all ESCs al-
ways start and end at one of the{µi} points. We let theµ–
discretization depend onRk,

{µk,j ; j = −mk, · · · , mk} , (39)

and choose theµk,j in such a way that for eachj =
−mk, · · · , mk there is aj′ = −mk−1, · · · , mk−1 such that

(1 − µ2
k,j)R

2
k = (1 − µ2

k−1,j′)R2
k−1 . (40)

This choice is based on the fact that the values ofµ andR along
an ESC depend only on each other and onb, as can be seen by
combining Eqs. (29) and (31):

(1 − µ2)R2 = b2 . (41)

By choosing theµk,j according to Eq. (40), a ray which orig-
inates atRk with, say,µ = µk,j and arbitraryφ, reaches any
other radius along the path with a value ofµ which coincides
with one of the points of the localµ grid there, thus eliminating
the need for interpolation.

A µ-grid that is consistent with Eq. (40) is:

µk,±i = ±
√

1 −
R2

k−i

R2
k

, (42)

in agreement with the angular spacing induced in spherical sym-
metry by the “tangent ray method” (see e.g. Mihalas et al. 1975;
Zane et al. 1996). Actually, it can be easily shown that in 1-
D spherical symmetry the ESC method, withµk,j given by
Eq. (42), is fully equivalent to the tangent ray method. This
is an important feature of the algorithm since it then exactly
recognizes spherical symmetry. And, even in the absence of
spherical symmetry, it transports radiation outward without any
numerical diffusion inR or µ.

However, theµ spacing implied by Eq. (42) has the ten-
dency to give a poor sampling aroundµ = 0. This problem can
be easily solved by introducing some (typically one or two) ex-
tra points aroundµ ' 0 to enhance the angular resolution there.
Obviously this violates the original prescription and therefore
requires the use of interpolation for these extraµ–points, pro-
ducing a small amount of angular diffusion forµ ∼ 0. Generally
this diffusion is small.

Unfortunately the interpolation inφ can never be avoided.
The φ angle depends in a complicated way ons (see Eq. 32)
and it can change rapidly even within one element of a ESC.
Both first and higher order interpolation inφ have been tested
in our numerical code. We have found that in most cases theφ
diffusion is not very large and, in general, influences the solution
less than the spatial (Θ) diffusion.

4.4. Special treatment of radiation near µ ' 1

The tangent-ray discretization ofµ allows the algorithm to accu-
rately conserve radial flux. However, such a choice ofµ–angles
requires a large number ofµ points at larger radii, typically
mk & k. One cannot make do with a smaller number ofµ
points without facing the risk of loosing flux. This is illustrated
in the following argument. If radiation is emitted at a radiusR,
an observer atRk � R can see the radiation from the emitting
region even if its eyes cannot resolve the source. This is be-
cause the observer’s eyes measure the flux and not the intensity.
The ESC algorithm, on the other hand, deals with intensity, and
intensity is converted into flux by performing an integral over
dµ dφ. For this integral to be reasonably accurate, the emitting
region must be resolved inφ andµ, leading to the requirement
mk & k.

Unfortunately this means that the computational cost scales
asN2

R if one wishes to extend the span of the radial domain.
Since the ability to deal with many orders of magnitude in ra-
dius is crucial to solving transfer problems in circumstellar en-
velopes, this scaling is undesirable.

An easy way to solve this scaling problem is related to the
simple observation that all photons withµ ' 1 follow roughly a
radially outgoing trajectory and they tend to travel more radially
(i.e. withµ closer to unity), the further they propagate outwards.
In the “radial streaming” limit (1 − µ � 1), Eq. (40) becomes
approximately

1 − µk,j

1 − µk−l,j−l
=

Ωk,j

Ωk−l,j−l
'

R2
k−l

R2
k

(43)
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whereΩk,j is the solid angle (bounded byµk,j) atRk. Eq. (43)
is just a restatement of the1/R2 law which is exactly obeyed
by a point source and by any radiation in the radial streaming
limit.

This property of radially outward radiation makes it possible
to bundle allµ–points with sufficiently largeµ into a single
collective flux-like bin. The intensity of that bin will be treated
as theaverage intensity within that collective bin. The idea is to
divide theµ–range[−1, 1] into three parts

[1,−µrs] inward intensity bin: µ ' −1
[−µrs, µrs] intensity samples: µ = µk,j

[µrs, 1] outward averaged bin:µ ' 1 ,

whereµrs is a suitably chosen constant close to unity. This way
the number ofµ–gridpointsmk at each radius can be limited,
depending on how closeµrs is to unity. We choose a global
value forµrs, and do not allow this to differ from one radius to
another.

Because the radial outward bin represents anintegrated in-
tensity, i.e. an average of the true intensity over a solid angle
Ωrs = 2π(1−µrs), it requires a special treatment. Let us denote
the average intensity in this bin asI+

ν (Rk,Θl). The integration
formula, Eq. (38), forI+

ν (Rk,Θl) becomes

I+
ν (Rk,Θl)

= exp(−τ)

[

R2
k−1

R2
k

I+
ν (Rk−1,Θl) +

(

1 −
R2

k−1

R2
k

)

1

2π

∫ 2π

0

Iν(Rk−1,Θ ; µmk−1, φ) dφ

]

+uνSν(Rk−1,Θl) + pνSν(Rk,Θl)

+dνSν(Rk+1,Θl) . (44)

This formula simulates the correct1/R2 behavior of the flux for
optically thin media providedµrs is sufficiently close to unity. It
reduces to the standard expression when the medium is optically
thick. An estimate of the error introduced by the assumption
of radial streaming can be made by comparing Eqs. (40) and
(43), and is of order(1 − µrs)/2. The radiation contained in
theµ = 1 bin will not accumulate any numerical interpolation
errors because it moves strictly along the radial grid lines.

The inward collective bin will always behave as a real inten-
sity, so that the1/R2 behavior does not need to be simulated.

4.5. Spectra and images

Once the iterative part of the transfer has been completed and
the source function is known, the next step is to produce images
and spectra. An image is produced by formal integration of the
source function along long characteristics through the medium
(ray tracing). Each ray represents one pixel of the image. One
can produce spectra by making images at a range of frequencies,
and integrating these images over the “detector” aperture.

Here, as in the Lambda iteration, we face resolution prob-
lems if the source under consideration spans a large range in
log(R). The central parts of the image are often much brighter

than the rest, but cover a much smaller fraction of the image.
The spectrum may therefore contain significant contributions
of flux from both the central parts and the outer regions of the
image. Unless the image resolve all spatial scales of the object,
the spectra produced in such a way are unreliable.

If a rectangular arrangement of pixels is used, one must make
sure to use a variable spacing in bothx andy, in such a way
that the small scales around the star are sufficiently resolved. If
one is mainly interested in the images themselves, this seems
the most reliable and straightforward way to go.

For the production of spectra we propose a different ap-
proach. Rather than arranging the pixels over a rectangle, we
arrange them in concentric rings. The impact parameters of the
circles are related to the radial grid points of the transfer cal-
culation. For a reliable evaluation of the spectra it is generally
enough to have one circle for eachRi, plus some more, about 5,
to resolve the central region. The number of circlesNb in each
image is therefore roughly the same as the number of radial grid
points:Nb = NR +5. The number of pixels in each circleNϕ is
slightly less straightforward to choose, but for reliable spectra
it is generally sufficient to takeNϕ = 2NΘ, whereNΘ is the
number ofΘ grid points, counted from pole to pole. Using this
method, the images automatically resolve all relevant scales,
while using only a fairly limited number of pixels.

5. Testing the ESC Lambda Operator

The Extended Short Characteristic implementation of the
Lambda Operator is not exact, as opposed to the one based on
Long Characteristics. The interpolations used in the ESC algo-
rithm introduce numerical diffusion, even in the optically thin
regime, and this constitutes a potential threat to the reliability
of the method. In order to test the accuracy of the ESC Lambda
Operator we have performed a series of runs for a number of
simple setups, comparing the results of the ESC calculation with
those obtained by means of an exact LC Lambda Operator. Here
we present the analysis for three such tests.

5.1. Optically thick annulus

The first test problem concerns the determination of the radiation
field produced by an optically thick, isothermal, sharply–edged
annuls, bounded byR0 < R < RM andΘM < Θ < π − ΘM .
In the actual calculation we have takenR0 = 2.86, RM = 4.83,
ΘM = 1.26 and the absorbtionαa is given by

αa(R, Θ) =

{

103 inside the annulus
0 elsewhere.

(45)

For the sake of simplicity all variables are dimensionless and
the temperature has been taken such thatBν(T ) = 1. We use a
spatial grid with20 radial points, logarithmically spaced such
that
Ri+1 − Ri

Ri
= 1.1402 , (46)

and the angular grid inΘ consists of 20 equally spaced points
from pole to pole. Fig. 7 shows the configuration for the test



C.P. Dullemond & R. Turolla: Two–dimensional radiative transfer in circumstellar envelopes and disks 1195

Fig. 7.The set–up for the test runs. The annulus is shown together with
the spatial mesh. Here all four quadrants are shown, although only the
first quadrant needs to be computed as a result of mirror symmetry in
the equatorial plane and cyclindrical symmetry around the polar axis.
Nine representative grid points, labeledA−H, are marked (see Fig. 8).

problem. Mirror symmetry in the equator reduces the number
of actual points to 10 in the range0 < Θ < π/2. The mesh in
photon momentum space consists of 32 equally spaced points
in φ, covering the range 0–2π, and 41 points inµ, 38 chosen
according to Eq. (40), plusµ = 0 andµ = ±0.24 to ensure
sufficient resolution at smallµ. Because of the symmetry, the
transfer needs to be solved only for the 16 points in the ranges
0 < φ ≤ π/2 and3π/2 < φ ≤ 2π.

The radiation field emitted by such a source can be semi–
analytically determined. As seen by an observer at some point
P , it is simply the projection of the object on the sky of the
observer. Since the object is sharply–edged and highly optically
thick (τ � 100), its projection will be sharply–edged as well.
The intensity is simply given by

Iν(P ; µ, φ) =

{

0 for rays missing the object
Bν(T ) for rays hitting the object

, (47)

so it is easy to compute the projections on the sky of the ob-
server at various positions in space by using some independent
ray–tracing algorithm or a semi–analytical computation of the
image. This image can then be compared to that produced by
the ESC and the LC transfer algorithms to evaluate the accuracy
of the ESC Lambda Operator.

Let IESC(µ, φ) andILC(µ, φ) be the intensities, at the ob-
server location, computed using the ESC and the LC algorithms,
for the same discretization inµ andφ. Let, moreover,I(µ, φ)
be the true intensity, which may be found by tracing individual
rays with very high resolution inµ andφ. We define the standard
error of the ESC algorithm as

σ2
ESC =

∫

(IESC − I)2dµdφ
∫

I2dµdφ
(48)

Table 1. The errors of ESC and the LC algorithms for the optically
thick test.

Point εESC σ2
ESC εLC σ2

LC

A 0.060 0.090 0.085 0.116
B 0.034 0.112 −0.016 0.134
C 0.059 0.112 0.001 0.105
D −0.020 0.091 0.002 0.094
E 0.107 0.096 −0.032 0.084
F 0.109 0.103 0.028 0.089
G 0.029 0.051 −0.019 0.068
H −0.012 0.056 −0.046 0.104

and the error in the mean intensityJ as

εESC =

∫

(IESC − I)dµdφ
∫

Idµdφ
≡ JESC − J

J
. (49)

Similar definitions apply to the LC errors.
Radiative transfer for this setup has been performed using

the ESC method. The results are shown in Fig. 8 for the 9 grid-
points labeledA − I in Fig. 7. The contours of the real images
are overplotted. The same calculation has been repeated using
the LC method. The errors of both the ESC and the LC calcu-
lations are listed in Table 1. These figures show that the errors
of the ESC method are not very much greater than those of
the LC method (which result from the discretization alone) and
strenghten the reliability of the ESC algorithm.

5.2. Optically thin annulus

Contrary to the optically thick case of the previous subsection,
the radiation field from an optically thin annulus cannot be de-
termined by a simple analytic formula such as Eq. (47). At large
radii, however, the mean intensity should follow the1/R2 law
and be independent ofΘ. We can verify if the solution produced
by the ESC algorithm indeed has this expected behavior. All de-
tails are the same as in the previous test, with the only difference
that now the (constant) absorption is taken10−6.

We focus on the behavior at large radii. In radial streaming
H(Ri,Θj) ' J(Ri,Θj) which, for an optically thin source,
is simply proportional to the volume integral of the emissivity
j(R, Θ) and is independent ofΘ

J(R) =
1

4πR2

∫

j(R′,Θ′)(R′)2dR′ sin Θ′dΘ′ . (50)

Although close to the source the mean intensity is still very
dependent onΘ, atR � RM the code should be able to recover
the correct behaviourJ ∝ R−2 at large radii. The mean intensity
J(Ri,ΘJ) resulting from the ESC transfer calculation is shown
in Fig. 9, where it is multiplied withR2. It can be clearly seen
that the whileJ depends onΘ for small radii, it becomes almost
independent onΘ as the radius increases and that the inverse
square law is very well reproduced. The dependence ofJ on
Θ at the largest radius is shown in Fig. 10. Typical errors are
. 5%, which lies within the error expected from the coarseness
of the grid.
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Fig. 8. The radiation fieldI(µ, φ) for the test problem of the optically thick annulus at various positions in space (from top left to bottom right
at the pointsA − H of Fig. 7). In each panelφ, from 0 to2π, is on thex–axis andµ, from -1 to 1, on they–axis. Tickmarks on both axes are
representative of the actual values ofµ andφ used in the calculation. The image shows the intensity resulting from the ESC transfer algorithm
(the grey scale is such that white corresponds to maximum and black to zero). The thin solid curves mark the true contour of the object, computed
by ray–tracing with high angular resolution. The slightly diffusive nature of the results is a consequence of the interpolations inherent to the
ESC method. Numerical diffusion remains quite low in almost all cases, with the possible exception of pointE.

Fig. 9. A surface plot of the mean intenstyJ(R, Θ) as produced by
the ESC algorithm for the optically thin annulus. In order to show the
behavior at large radii, the mean intensity is multiplied byR2 and
normalized for convenience.

5.3. Spherically symmetric test problem

Although the above tests show that the ESC algorithm performs
well on its own, they are not enough to prove that it will produce
accurate and reliable results when applied to, for instance, a
non–LTE line transfer computation. Unfortunately it is not easy
to test this, because to our knowledge there exists no useful
benchmark test case yet for 2–D axisymmetric radiative transfer
in circumstellar clouds.

The least we can do is to test our 2–D algorithm on a 1–D
spherically symmetric test case, and check the output against
that produced by an independent 1–D transfer calculation. This
way we can at least test two of the special features of the ESC

Fig. 10. The computed (solid line) and the exact (dashed line) mean
intensity for the optically thin annulus, at the largest radius as a function
of Θ; errors are. 5%.

algorithm: the additionalµ-points close toµ ' 0, and the special
treatment of the intensity nearµ ' 1. These are features that are
not particularly related to 2-D, and can therefore also be tested
in 1-D just as well.

Our test cloud is a spherically symmetric power law model
with hydrogen density specified by

NH2

(R) = N0

H2

(

R0

R

)2

cm−3 , (51)
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whereR is the radius in cm, andN0

H2

= 2.0 × 107 cm−3 is the

number density atR = R0 ≡ 1.0×1015 cm. We take a constant
kinetic temperatureTkin(R) = 20 K. The abundance of our
molecule is also a constant,Xmol(R) ≡ Nmol(R)/NH2

(R) =

1.0 × 10−6. The systematic velocity is taken zero. The models
are computed in spherical coordinates, in the domainRin ≤ R ≤
Rout. We takeRin = 1.0×1015 cm andRout = 7.8×1018 cm. At
the inner boundary we put a reflective boundary condition. The
incoming radiation at the outer boundary is theT = 2.728 K
microwave background radiation.

We choose a fictive 2-level molecule which is specified by

E2 − E1 = 6.0 cm−1 = 8.63244 K (52)

g2/g1 = 3.0 (53)

A21 = 1.0 × 10−4 s−1 (54)

K21 = 2.0 × 10−10 cm3 s−1 (55)

from which the downward collision rate follows:C21 =
NH2

K21 s−1. The total (thermal+turbulent) line widthatot is
atot = 0.150 km s−1 (see Eq. 6).

The test problem presented here has high optical depth
(τ = 104 at line center) and a very sub-critical density at
R & 1016 cm. It is therefore well suited to test whether non-LTE
effects are properly computed.

The line transfer is computed in a passband of 40 fre-
quency points equally spaced between−0.40 km s−1 and
+0.40 km s−1. Theµ angle is discretized using43 points, ar-
ranged according to the tangent-ray prescription of Eq. (42) with
3 additionalµ-points aroundµ = 0 on each side. Our conver-
gence criterion is simply:

max(δni/ni) < 1 × 10−4 (56)

at all radii. For the radius we use an equally spaced logarithmic
grid with (Ri+1 − Ri)/Ri ≡ ∆R/R = 0.1720. We perform 4
runs: Lambda Iteration and Accelerated Lambda Iteration with
and witout Ng acceleration.

The results for the upper level population is plotted in Fig. 11
and compared to the results obtained independently with SIM-
LINE written by V. Ossenkopf (1999). The convergence plots
for four different methods are shown in Fig. 12.

More test problems, and a more extensive discussion of them
was presented by Dullemond (1999). Also, our algorithm and
code succesfully passed the benchmark test cases presented at
a workshop on molecular line transfer in Leiden2.

6. A simple model for the Egg Nebula

Now that the algorithm has been tested, we demonstrate here
how it can be used in practice. Our first example is a simple
model of the optical appearance of the Cygnus Egg Nebula (CRL
2688). This object has been extensively studied ever since its
discovery by Ney et al. (1975). It is a bipolar reflection nebula
surrounding an F5 supergiant ofTeff = 6500K (Crampton et al.
1975). At optical wavelength it appears as a diffuse bi–lobed

2 See http://www.strw.leidenuniv.nl/˜radtrans/

Fig. 11. The fractional population of the upper level of the 1-D test
problem. The symbols are the solution produced by RADICAL, which
is our code based on the ESC algorithm. ALI+Ng were used. The
solid line is the solution found by the program SIMLINE, which is an
independent 1-D line transfer program written by V. Ossenkopf (1999).
The difference between the two solutions (normalized to the SIMLINE
solution) is shown in the lower panels.

Fig. 12.Convergence plot for the 1-D test problem. The largest error
is plotted against the iteration number for four different methods. We
define the error as the maximum relative difference between the “real”
solution and the level populations at iterationNiter. The “real” solution
was obtained with ALI+Ng and converged down tomax(δni/ni) <
10−6, which is a 100 times stricter convergence criterion than the last
iteration step plotted for ALI+Ng in this figure.

nebula with two sharply edged “searchlight beams” emerging
from each of the poles (Sahai et al. 1998). The lobes are sepa-
rated by a dark equatorial lane which completely obscures the
central star.

The optical emission from this nebula can be understood as
reflected starlight escaping from the nebula through polar cavi-
ties (Latter et al. 1993, Morris 1981). It is clear that the “search-
light beams” are due to single scattering of direct starlight by
dust grains. The lobes are, however, more likely to be the result
of multiple–scattering.

We will model this multiple–scattering process in 2–D with
the MESC algorithm, in an attempt to reproduce the complex
optical appearance of the nebula. Our setup consists of an almost
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spherical wind with a cavity at both poles. The density in the
cavities is small, but it is still high enough to reflect sufficient
amounts of starlight. To reproduce the twin–beams at both poles,
we place a small blob of matter at the polar axis in the cavity,
causing a shadow. A star is placed at the center of the coordinate
system to illuminate the nebula from within.

We model only a single frequency in the optical, at 600
nm. For this reason we refrain from taking actual realistic dust
opacities, and specify total optical depth and scattering albedo
instead. The dust density is shown as contour plots in Fig. 13.
The total optical depth at the equator is about 60. The ratio of
absorption over scattering is0.3. The dust scattering is assumed
to be isotropic, which suffices for the present simplified exam-
ple. We do not specify the dust temperature for this setup since
thermal emission at 600 nm is negligible.

The simulation was performed by RADICAL, using the
MESC algorithm, and applying Accelerated Lambda Iteration
and Ng acceleration. The image subsequently produced by for-
mal integration is shown in Fig. 14. The model reproduces the
searchlight beams and the diffuse glow. It also naturally repro-
duces the intensity difference between the north and south lobe.
This is a result of the slight inclination at which the object is
seen. For light emerging from the south lobe, the path length
through the outer regions of the nebula is larger than for the
north lobe.

Although the model resemblances the HST image of Sahai et
al., it should be noted that the density structure that we have used
may not be consistent with observations at other wavelengths.
For example, HCN observations by Bieging & Nguyen-Q-Rieu
(1996) seem to rule out the presence of a cavity in the wind.
Also the rather high albedo may be difficult to reconcile with
the fact CRL 2688 is carbon–rich.

7. A model of line transfer
in a collapsing protostellar cloud

In this section it will be demonstrated how the 2-D transfer
algorithm can be used in the observational study of low-mass
star formation in dense molecular cloud cores.

Low mass star formation takes place in dense molecular
cloud cores. According to the spherically symmetric model of
Shu (1977), such a core develops a cusp with density close to
a 1/R2 powerlaw. Once a gravitational instability is trigged,
the centeral part of the cloud collapses, and forms a star. An
expansion wave propagates into the cloud towards larger radii,
allowing more and more matter to fall supersonically down the
potential well, and add to the protostar’s mass.

Both observational evidence and theoretical arguments,
however, indicate that purely spherical collapse is rare. Any
slight amount of angular momentum in the primordial cloud
will cause deviations from sphericity as centrifugal forces tend
to dominate over radial infall deep down the potential well.
And even before the collapse stage these primordial clouds of-
ten appear to be non-spherical (Myers et al. 1991). Theoretical
models of non-spherical protostellar collapse include, among

Fig. 13.The density contours for the dust envelope around the central
star of the Egg Nebula. Contours are logarithmically spaced, separated
by factors of

√
10. The distance scale on the x- and y-axis is in cen-

timeters. At the polar axis one can see a small blob of matter. This blob
is responsible for the shadow.

others, Ulrich (1976), Cassen & Moosman (1981), Terebey et
al. (1984), Galli & Shu (1993.

The models of Cassen & Moosman and Ulrich (hereafter
CMU) focus on the inner free-falling part of the collapsing
cloud, and assume that the material originates from an originally
spherical cloud with some angular momentum. Their model is
almost spherical at large radii, but flattens off closer towards
the center, and forms a disk near the centrifugal radius. This
model was later extended by Hartmann et al. (1996, hereafter
HCB) to include flattening of the parent cloud. These models
show that the inner free-fall part of an initially flattened cloud
naturally tends to form a bipolar cavity, which is often observed
in YSO. These models are distinctly non-spherical at all radii,
despite the fact that centrifugal forces only dominate at small
radii. It is therefore evident that fitting such models to molecular
line observations requires 2-D axi-symmetric radiative transfer
computations.

In this section we perform such a calculation, using the algo-
rithms of this paper. We solve the non-LTE level populations for
the first 7 rotational levels of HCO+, and compute the predicted
single–dish spectra.

7.1. Description of the model

In our HCB models we assume that the radius of the expansion
waveRaccis outside our domain, so we shall confine our study to
the free-fall inner region of the collapsing sheet-like molecular
cloud. We assume that matter in the parent cloud had a small
amount of rotation in the plane of the sheet before it collapsed.
According to the HCB model, the velocity field of the gas is
given by the formulae of Ulrich (1976):

vR = −
(

GM

R

)1/2(

1 +
µ

µ0

)1/2

(57)



C.P. Dullemond & R. Turolla: Two–dimensional radiative transfer in circumstellar envelopes and disks 1199

Fig. 14.The synthetic image of the Egg Neb-
ula, produced by RADICAL. The color cod-
ing is reverse logarithmic grey scale. The
color table was slightly modified to enhance
contrast in the lobes, but the modifications
remain within 15%.

vΘ =

(

GM

R

)1/2
(

µ0 − µ
√

1 − µ2

)

(
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µ
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vφ =

(
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)1/2(
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0

1 − µ2

)1/2(

1 − µ

µ0

)1/2

, (59)

whereµ ≡ cos(Θ) andµ0 ≡ cos(Θ0). The angleΘ0 is the
Θ-coordinate that the gas parcel had when it started its free-fall
at large radius. For a given(R, Θ) the value ofΘ0 can be found
from

R

Rc

(

1 − µ

µ0

)

= (1 − µ2
0) , (60)

whereRc is the centrifugal radius, i.e. the radius at which cen-
trifugal forces equal gravity. This is the outer radius of the disk
that is formed as a result of the rotation.

The density of the gas for the HCB model is given by

ρHCB(R, Θ) =
Ṁ

4π(GMR3)1/2

ηsech2(ηµ0)

tanh(η)

×
(

1 +
µ

µ0

)−1/2(

µ

µ0

+
2µ2

0Rc

R

)−1

(61)

where η is a dimensionless flattening parameter, which is
roughly equal to the ratio of the accretion radiusRaccto the sheet
thicknessH. HCB argue that this value must be somewhere in
betweenη = 0 andη = ηmax ' 4. Forη = 0 the CMU models
are reproduced. Density contours of this free-falling envelope,

for different flattening parameters, are shown in Fig. 15. The
centrifugal radius of the infalling envelope is atRc = 100 AU.
We place a thin disk with a radius ofRdisk = Rc = 100 AU
at the equator. A zoom-in of the density distribution, down to
the scale of the disk, is shown in Fig. 16. We will ignore any
emission from the disk, and merely treat it as a light-blocking
boundary condition at the equator.

7.2. Non-LTE line transfer

We compute the line transfer problem for four HCB models,
with flattening parameterη = 0, 1, 2, 3 for models 1,2,3,4
respectively. The adopted valued for the accretion rate and
the turbulent line width areṀ = 2.4 × 10−6 M�yr−1 and
aturb = 0.25 kms−1.

For these models we compute the non-LTE line transfer
problem of the lowest few rotational levels of HCO+, including
the effects of the moving medium. We assume a cosmic back-
ground (CMB) continuum as incident radiation at the outer edge
of the computational domain. Dust emission and opacity are ne-
glected in the line transfer, which is justified for the lower-lying
HCO+ lines because the nebula is optically thin to dust in the
millimeter and sub-millimeter, and radiative pumping by dust
continuum is not important for HCO+. Also, we need not in-
clude the dust emissivity in the computation of the emerging
spectra, since we shall show only the spectra with the dust- and
CMB-continuum removed. The radiative transfer is computed
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Fig. 15.The density structure of the flattened
collapsing cloud model of HCB, for varying
flattening parameterη. Scales are inAU .
The centrifugal radius is atRc = 100 AU.
The effect of rotation can be seen most
clearly in theη = 0 case, which is spherical
at large radius, but flattens off nearR = Rc.

Fig. 16. A zoom-in of the density structure of theη = 3 case of the
HCB model. The figure on the right is a zoom-in to the scale of the
centrifugal radius. The bar represents the disk.

within a range ofR ∈ [70, 104] AU. As an inner boundary we
have a vacuum. The cross sections for H2-HCO+ collisional
transitions were taken from Monteiro (1985) and Green (1975).
We adopt an HCO+ abundance of2×10−9 The gas temperature
is taken to beT = 20K throughout the cloud.

We perform the non-LTE line transfer for all four models.
The resulting non-LTE level populations for model 3 are shown
in Fig. 17, and the corresponding excitation temperatures are
shown in Fig. 18. One can see that at the equator (Θ = π/2) the
levels are almost thermalized, except at large radii. This is due
to the much larger density at the equator than at the pole. The
drop in excitation temperature at large radii is a result of the
decoupling of radiation and matter. At large radii the level pop-
ulations will be strongly influenced by the cosmic background
radiation. Another interesting phenomenon occurs at small radii
near the pole: the excitation temperature exceeds the gas tem-
perature. This effect was discussed by Leung & Liszt (1976)
for the CO 1-0 transition. It can be understood as resulting from
an overpopulation of theJ = 1 level due to the large ratio of
radiative rates (A21/A10 ' 10).

Once the level populations have been computed, the line
spectra are produced. The spectra are centered on the origin of
the object. First the circular images are produces in a range of
frequencies. This circular rendering of the images ensures that
no details at large or small radii are missed, and thus that no flux
is accidently lost. The antenna temperatures are then computed
by integrating the images, after they have been multiplied by
the beam pattern centered on the origin of the object. We use an
“Airy” beam, with a beam size corresponding to a single dish of
15 m diameter. The object is placed at 140 parsec distance. The

Fig. 17.The level populations for model 3 for the first four rotational
levels of HCO+ as a function ofΘ andR. Note that the centrifugal
radius (which is the disk outer edge) is atRc = 1.5 × 1015cm.

Fig. 18.The excitation temperatures of the lowest four rotational tran-
sitions of HCO+ for model 3, as a function ofΘ andR. They were
deduced from the level populations shown in Fig. 17, using the formula
Tex(ij) = (hνij/k)/ log(njgi/nigj).

spectra of the four models, computed for the first four radiative
transitions at three different inclinations, are shown in Fig. 19.

From the spectra one can clearly see the effect of flattening
of the HCB cloud, in particular for models 3 and 4. At near
pole-on inclination (5◦) hardly any self-absorption is seen in
these models, because one looks straight into the “cavity”. At
near edge-on inclination (85◦) the “torus” blocks the central
regions from view near line center, which results in the clear
self-absorption features seen in the line shapes. A similar man-
ifestation of non-spherical symmetry of a circumstellar cloud
has been discussed recently by van der Tak et al. (1999). An
interesting feature of the line spectra of models 3 and 4 is that
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Fig. 19.The single-dish HCO+ line spectra of the HCB models, shown at three different inclinations: dotted line is 5◦ (near pole-on), dashed
line is 45◦ and solid line is 85◦ (near edge-on). A dish diameter of 15 m was taken, and the object is located at 140 pc.

the edge-on line profiles are wider than the pole-on profiles.
This can be attributed to the fact that the density and the exci-
tation temperature is lower at the pole than at the equator. At
pole-on inclination the high density equatorial matter will emit
near line-center instead of in the line wings, thus making the
line profile narrower.

The asymmetry between the red-shifted and the blue-shifted
peaks are typical for protostellar collapse. The rotation is hardly
seen in these spectra. This is because the rotational velocity is
everywhere much smaller than the free-fall velocity, except at
very small radii where the emission barely contributes to the
single-dish spectra shown here.

8. Conclusions

Numerical radiative transfer modeling on desktop workstations
is extremely cheap.Not doing so in cases where this is pos-
sible would mean an enormous waste of valuable information

that lies encoded in observed data. However the success of such
modeling depends on the algorithms that are available. We have
developed a robust and accurate method, called the “extended
short characteristics” (ESC) method, by which complicated 2–D
axi–symmetric multi–frequency radiative transfer calculations
can be performed. By using spherical coordinates, this method
can accurately treat circumstellar envelopes and disks from the
stellar surface all the way up to parsec scale, without the need of
grid refinement. By making a special choice of discrete photon
angles and bundling ‘almost–radially–moving’ rays into a sin-
gle bin, the conservation of radial flux can be guaranteed even
over many orders of magnitude in radius, and without excessive
computational cost.

The ESC method, and a slight variation called MESC, forms
the core of a multi–purpose 2-D radiative transfer code called
RADICAL. We have tested the ESC/MESC algorithm on a sim-
ple test problem which we described in this paper. We have also
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verified that the 2-D algorithm, when applied to a 1-D spheri-
cally symmetric problem, indeed reproduces what an indepen-
dent 1-D algorithm would produce for the same problem. The
errors remained within a few percent, the exact value of which
depends on the grid resolution. In the light of these, and many
other tests we performed over the course of time, we believe
that the method is both robust and accurate, and yields reliable
results without requiring much fine-tuning from the user.

The ESC/MESC algorithm is designed for a variety of ap-
plications. We have demonstrated in this paper how the method
can be used for the problem of dust scattering in a bipolar
proto–planetary nebula and the problem of non-LTE line trans-
fer in a collapsing cloud. But the method can also easily be
applied to other radiative processes, such as dust continuum
emission with radiative equilibrium for the dust grains, thermal
Bremsstrahlung, electron scattering and even Comptonization
in hot plasmas. Other codes exist as well for solving radiative
transfer in these fields, and each method has its own advantages
and drawbacks. Only extensive testing and “field use” will tell to
what extent the ESC/MESC algorithm is a definite improvement
over existing codes for different transfer problems. However, the
accuracy, reliability and efficiency of the ESC/MESC method
make it certainly a promising technique for the solution of as-
trophysical radiative transfer in two dimensions under a variety
of circumstances.
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