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Abstract. We present an algorithm for two—dimensional radiaransfer computations, at an appropriate level of complexity, are
tive transfer in axisymmetric, circumstellar media. The formaherefore needed in order to reconstruct the density, velocity and
integration of the transfer equation is performed by a generalizamperature structure of an observed cloud.
tion of the short characteristics (SC) method to spherical coordi- If densities drop below the critical density, the system will
nates. Accelerated Lambda Iteration (ALI) and Ng's algorithimleviate from local thermodynamic equilibrium (LTE). Line
are used to converge towards a solution. By taking a logarithrtiapping and photon escape from the line wings can in some
cally spaced radial coordinate grid, the method has the natwases be treated in the large-velocity-gradient (LVG) limit, but
capability of treating problems that span several decades inttais approach is only valid if systematic velocity fields are much
dius, inthe most extreme case from the stellar radius up to pargeeater than the local turbulent line width. In all other cases one
scale. Flux conservation is guaranteed in spherical coordinatasst perform a full non-LTE line transfer computation.
by a particular choice of discrete photon directions and a special For problems that can be formulated in 1-D slab or spherical
treatment of nearly—radially outward propagating radiation. Tlggometry there exist many radiative transfer programs, many of
algorithm works well from zero up to very high optical depthwhich use sophisticated techniques such as Accelerated Lambda
and can be used for a wide variety of transfer problems, inclutkeration (ALI; see areview by Hubeny 1989) and Complete Lin-
ing non—LTE line formation, dust continuum transfer and higlarization (CL; Auer & Mihalas 1969). But the requirement of
temperature processes such as compton scattering. In this page@rgeometry is often too restrictive. Distinctly non-spherical
we focus on multiple scattering off dust grains and on non-LTieatures are often observed from young stellar objects (YSO),
transfer in molecular and atomic lines. Line transfer is treatedch as bipolar reflection nebulae (e.g. Lenzen 1987), bipo-
according to an ALI scheme for multi-level atoms/moleculefar outflows (see Bachillér 1996) and disks (e.g. McCaughrean
and includes both random and systematic velocity fields. T&eO’Dell 1996). Even the progenitors of these YSOs, starless
algorithms are implemented in a multi-purpose user-frienddlense cloud cores, seem to appear as elongated structures at
radiative transfer program named RADICAL. We present twaillimeter wavelengths (e.g. Myers et[al. 1991), indicating that
example computations: one of dust scattering in the Egg Nedwen in the early stages of star formation spherical symmetry
ula, and one of non-LTE line formation in rotational transitiondoes not apply. The case of post-AGB stars and Planetary Neb-
of HCO™ in a flattened protostellar collapsing cloud. ulae is just as compelling, with the majority of these nebulae
being bipolar. The Cygnus Egg Nebula (CRL 2688) and the
Key words: radiative transfer — line: profiles — stars: circumRed Rectangle (HD 44179) are perhaps the most spectacular
stellar matter — stars: formation — infrared: stars — submillimetexamples of such bipolarity.

To model such objects, clearly one must resort to multi-
dimensional transfer computations. There is a vast literature
1. Introduction on this topic. Methods roughly fall in one of three catagories:

, i i . Monte Carlo methods, Discrete Ordinate methods and Angular
Molecular line and. dust continuum observa‘Flons are an IMpRiHment methods. Monte Carlo codes are very flexible and can
tant tool f_or studying the envelopes and disks around YOURH ysed for a large variety of problems in multidimensional ge-
stel_lar _Ok_)JeCt_S (YS_O)’ post_—AGB stars and AGN‘ _One of trt?metries,such as UV continuumtransfer (e.g. Spaans 1996), op-
main difficulties in interpreting such observations is that Optji.,| ang infrared continuum transfer (Wolf etfal. 1999), molec-
cal depths effects play an important role in the emission of thig, - ine transfer (Hogerheijde 1998), and Compton scattering
radiation. It is, for instance, ngl known that self-apsorptlone_g_ Pozdniakov et al. 1979; Haardt & Maraschi 1991). Such
and non-LTE effects are the main processes at work in shapjfigi, 45 perform well at low to medium optical depths, but it

the characteristic asymmetric double-peaked emission line POWell known that at high optical depths they converge very
files from collapsing protostellar cores (Zhou 1992). Radiati\éq:owly
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Angular Moment methods, on the other hand, are very wétl spherical coordinafslt is an algorithm specifically suited
suited to treat the high optical depths regime, since they dioe axisymmetric circumstellar nebulae and disks. It has been
related to (or variants of) the diffusion equation (see e.g. Yorkaplemented in a multi-purpose radiative transfer code named
etal[ 19938, Sonnhalter et@al. 1995, Murray etal. 1994). HowevRADICAL, which is designed to perform 2-D computations
it is not surprising that they fail at low optical depth, since thim dust continuum emission/absorption, multiple scattering off
diffusion approximation was never meant for this regime.  dust grains, non-LTE line transfer, and (for application to X-ray

In the Discrete Ordinate approach, not only space is disinaries and AGN) Comptonization. In this paper we describe
cretized into cells, but also the photon propagation directiaihe method of short characteristics in spherical coordinates, and
Most multi-dimensional implementations of the Discrete Ofecus our attention to the cases of simple isotropic scattering off
dinate methods are based on the “Lambda Iteration” schethest grains and non-LTE line transfer for multi-level molecules.
(e.g. Collison & Fix 1991, Efstathiou & Rowan-Robinson 1991 or a more extensive discussion of the algorithm and its appli-
Philips 1999). The advantage of these methods over the Moo&tions, see Dullemond (1999).

Carlo approach is that they do not involve random noise, and The structure of this paper is as follows. In SEEt. 2 we will
therefore provide ‘cleaner’ answers. But they suffer from th@resent the equations of transfer we wish to solve. In Bect. 3
same convergence problems as Monte Carlo methods. Howewer shall review the method of short characteristics as it is often
for Lambda Iteration there are various ways to cure this diseageesented in the literature. In Sddt. 4 we will show how this
The most well known of these methods is Accelerated Lambdethod can be generalized to spherical coordinates. Then we
Iteration (ALI, e.g. Scharmér 1981, Rybicki & Hummer 1991 will put the algorithm to the test in Selt. 5. Finally we will

In this paper we will focus on the Discrete Ordinate approagiesent two example applications in Secks. 6[and 7.
to radiative transfer because of its versatility, accuracy and the
wide range of convergence acceleration techniques availaleEquations of radiative transfer

However, despite the relative efficiency of these methods, mul- _ ) o )
tidimensional calculations remain costly. Feasibility constrainfd!® method thatwill be described in this paperis an Accelerated

can pose severe limits on the spatial and angular resolutibgmpda Iteration method. In such an algorithm the integration
which could easily result in unacceptable numerical diffusioff the for:nal transfer equation is performed using a “Lambda
Also, this limits the number of models one can reasonably maR@erator”. In this section we will present the equations that are
to fit observations, which could lead to dangerous undersaf@Pe solved, and we define the Lambda Operator. The numerical
pling of the parameter space. details of the Lambda Operator will be given in the next sections.
The bottleneck lies in the integration of the formal transfer 1he formal transfer equation is
equation. The most straightforward way of performing thes#/, g _1 (1)
integrals is by the method of “Long Characteristics”, which isjs — o (Sy = 1),

aCCUrate, but rather COSt|y in CPU time. A more efficient ang\nth IV is the intensity,s’u the source functiomy the Opacity’
rithm for doing this in two dimensions is the method of “Shoring s the path length. This equation must hold along every

Characteritics” (SC; Mihalas et al. 1978, Kunasz & Auer 1988trajght line through the medium. Its integral form along a ray
Auer & Paletou 1994, Stone et &l. (1992). These algorithms afgough a point? reads:

designed specifically with cartesian or cylindrical coordinates .

in mind, and are not straightforward to generalize to other cg;(P) = ¢~ " 1,(0) +/ 6_7—‘/’5(7';)617'; , 2)
ordinate systems. For circumstellar envelopes, however, there 0

are several arguments favoring the use of spherical (polar) gderer, is the optical depth along the ray, between pdit
ordinates, as opposed to cylindrical coordinates. Most circuand the edge of the medium. After evaluating this integral for
stellar nebulae have density and temperature profiles that alleinglesv, one can compute the mean intensity
peaked towards the center. This means that the radiation field |

is dominated by photons emitted in the central regions, whidh = - /L,(w)dw 3)

are subsequently reprocessed in the outer parts of the nebyla. . . . .
9 y rep b bﬂhe entire operation of computing (P) at every pointP, for a

The numerical scheme must therefore be able to resolve b functios b i th H fali
the very concentrated central regions and the extended o Ypn source function,, can be written as the action ot a finear
ambda OperatoA:

regions simultaneously. Also, it must guarantee that all rad

tion emitted at small radii will eventually emerge at large radiif, = A[S,], (4)

which amounts to saying that flux must be conserved ove

large range of radii. Using spherical coordinates and a Iogari{fwg

mic radial grid is the most natural way to cover such a lar

dynamic range and guarantee flux conservation.

The goal of this paper is to describe, test and demonstr&ie= €B.(T) + (1 — €)A[S,], (5)

an algorithm that generalizes the Short Characteristics methad j prior to submission we became aware of a paper by Busche
& Hillier (2000), who describe a method of short characteristics in
spherical coordinates that is similar to ours.

ing this Lambda Operator we can write down the complete
nsfer equation for a simple problem of thermal emission and
gigotropic (dust) scattering
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wheree = a%/q, is the thermalization coefficient (with the statistical equilibrium equations become:
a@Sthe thermal absorption opacity), afit} (') is the Planck -

function. Solving the transfer problem for isotropic scattering_ |74 + (13 Bji — miBy;) Aju[ S]]

and thermal emission amounts to solving Eb. (5) $pr The J7>!

Lambda Iteration procedure amounts to iteratively applying the  — Z [ Asj + (B — n;Bj)Ay[Sy]]

Lambda Operator and computing the ngywuntil convergence j<l

is reached. The Accelerated Lambda Iteration procedure, which _

converges much faster, is a variant of this procedure, involving T Z [ Cjt = mCl] = 0. (13)
an approximate operatax*. For details we refer to Hubeny I

(1989) and Rutten (1999). The non-locality of radiative transfer is now hidden in thg

For multi-level line transfer, we follow the treatment of Ry-operator, so that EG.{1L3) now represents the complete (non-
bicki & Hummer [1991). Consider an atom or molecule havinghear) set of equations for line transfer. Lambda Iteration now
N levels, with Einstein coefficients;;, B;; and collision rates proceeds by iteratively applying tig, operator and solving the
C;; between levels and;. The line profile functionp;; () de- matrix equation represented by Eql(13). Accelerated Lambda
termines at which frequencies the line emits and absorbs. Whesation proceeds according to the MALI scheme of Rybicki &
no systematic fluid velocities are present, the line profile fungtummer (1991).
tionisisotropic, and is normalized to unity. For the application to

circumstellar envelopes, the dominant broadening mechanis§n%hort characteristics in cartesian coordinates
are turbulent and thermal broadening. These two mechanisms

produce a Gaussian profile: To carry out the Lambda Iteration or Accelerated Lambda It-
) ) eration procedure, we need a numerical implementation of the
Bij (V) = —— exp _% (6) Lambda Operatah. In Cartesian coordinates, the formal trans-
rotlij /T GtotVij fer equation Eq[{1) becomes
Herec is the speed of lighty;; the line-center frequency of the dI, al, ol,
it P : i i i 7Ewm7+w 72041,(51,—]”) (14)
transition between levelsandj, anday is the line width, ds or Y oy
2k Tkin where translational symmetry in thedirection was assumed.
Qtot = Grurb + ol () The numerical implementation of the Lambda Operator

amounts to integrating Ed._(114) for giveéh anda,,. This must
whereTji, is the (kinetic) temperature of the gasmo the mass pe done on a 2—-dimensional spatial grid= (z;,y;), for a
of the molecule, andctu,b is the turbulent line width. A SYS- discrete set of directions = {Wz} and frequencieg = {Vz}
tematic fluid velocity can cause the line profile function to benis will provide the specific intensity(x;, y;; wi, 1) for all
angle-dependent in the lab frame as a result of Doppler shift; ; £ [. Let us focus on a given poirt = (i,y;) and on a
i (W, V) = B (1/(1 —w-v/e)— Vij) : 8) single direction and frequenay,= Wk, V= . The inte_gral of

Eq. [14) can be performed numerically along the entire charac-
The opacity in the line associated with this line profile is:  teristic starting at the upstream boundary, heading in the down-
hy stream direction (i.e. the direction where the radiation comes
1 V(i Bji = niBij)eij(w, v), (9 from) and ending at poinP (see FigIL). This direct approach
is called the method of Long Characteristics (LC). Provided the
tﬂigcretization in angle is appropriate, this method is quite ac-
ate and reliable. But it has a computational redundancy, and

ag5(w,v) =

wheren; are the fractional level populations, aidthe number
density of molecules. We assume complete redistribution for

lines. The source function is then independent of frequency aﬁﬂf g . . . :
ence itis overly time—consuming. Consider, for instance, a spa-

angle: . . LS ;
9 tial grid N x N, a set ofN,, directions and ofV,, frequencies.
S = niAij ) (10) The long characteristics integral of Eq.{14) typically requires
7 n;Bji —n;Bj; in the order of N integration steps. This means that while the
The transfer equation for this source function is then dimension of the grid i8V x N, x N,,, the total computational
i, (0.) time scales as
g\, V
— e = i) 8y — L@ )] A1) 4opy x N* x N, x N, . (15)
where we assume non-overlapping lines. The Short Characteristics method of integration (SC; see

The source tern$;; is known once the fractional level pop-Fig [3) does not have this redundancy. Instead of performing
ulationsn; are known. They are a solution of the statisticahe integral along the entire ray (the long characteristic), we

Lambda Operatod;;[S;;] = J;;, with characteristic) which connects a poiiiton the grid upstream
_ 1 of P to the closest intersection downstreammfitself. The
Jij = i I(w,v)pij(w, v)dwdv, (12) intensity atP is given by
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p = (1w +Tv)er — el /[T 7] (20)
dy = lez — e/ [T (T + 7)) (21)
e =1—e ™ (22)
e1 = T, — € (23)
ey = 72— 2 (24)

wherer, and 7, are the depths da/ and D, respectively. It
should be noted that this quadrature formula may have patho-
logical behaviour if the source function and/or the opacity varies
strongly between the point§, P and D. This problem can
be solved by limiting the resulting integrals between zero and

Fig. 1. An illustration of the Long Characteristics (LC) method inmax (j, (P), j,(U)) As, whereAs is the path length along the
Cartesian coordinates. The intensity at pdiis computed integrating short characteristic, ang = o, S,.
the transfer equation along the entire ray from the upstream boundary By systematically performing the integrals over all the short

(pointU) towards pointP.

Fig. 2. An illustration of the SC method in Cartesian coordinates. Thl%PU x N2 x N, x N,

short characteristic is the line connecting pdinto D throughP. The

characteristics, one can find an approximate formal solution of
the transfer equation (Kunasz & Auer 1988, Auer & Paletou
1994, Auer et al. 1994). A key ingredient for the SC method to
work is that the integrals should be performed in the right order,
sothatthe upstreamintensitiBs A; w), I, (B;w) andl, (C; w)
are known before the integral is performed and [Ed. (18) eval-
uated. In order to do so, the grid must be swept from the two
upstream boundaries towards the two downstream boundaries.
The method of Short Characteristics is computationally less
time consuming than the method of Long Characteristics, be-
cause now the transfer integral is performed over a much shorter
path. For the same discretization introduced earlier in this sec-
tion, the computational time scales as

(25)

value of the intensity at/ is determined by quadratic interpolationwhich is typically an factotV shorter than in the case of Long

between the pointd, B andC.

I, (P;w) e I,(U;w) +

/ ’ e S, (x(7)); w)dT!,

0

(16)

wherer, is the optical depth between points and P. The

Characteristics.

4. Short characteristics in spherical coordinates

We now wish to formulate the Short Characteristics algorithm
in spherical coordinates. In the following we refer to a standard
spherical coordinate systef®, ©, ®) where® is the latitude

upstream intensity, (U;w) can be found from the intensitiesand ® the azimuth. By assuming axial symmetry, any depen-

at A, B andC by 3—point quadratic interpolation

I,(U;w) = al,(A;w) + bl (B;w) + I, (C;w) 17

wherea, b andc are the usual Lagrange coefficients for poly-

dence on®d is suppressed, although radiation is still allowed
to travel alongd/0®, as well as in the radial and meridional
directions.

In order to describe the radiation field at each spatial point

nomial interpolation. Quadratic or higher order interpolatiop — (R,©) we need to set up a local coordinate system to
is necessary in order to reproduce the diffusion limit for higkharacterize the photon direction/at We introduce two inde-
optical depth, which is governed by a second order partial dfendent angles on the sky of the local obserfeand¢. The

ferential equation.

north pole of this local sky-map is chosen to coincide with the

The integral fromJ to P can be computed with second orgputward—pointing radial direction. Thieangle is gauged in such

der accuracy by interpolating the source functiyix(r}); w)
between the point®), P andU. Following Olson & Kunasz
(1987), one finds

I,(P;w) = e ™ I,(U;w) +u,S,(U;w)

+pu Sy (P5w) + d, Sy (D w) (18)
with
u, = eg+[ea — (21, + T)er]/ [ (1 + 7)) (29)

a way thaip = 0 points parallel to the equator of the global co-
ordinate system (see Fid. 3). As is customary in transfer theory,
we useu = cosf instead off itself, so the specific intensity
depends upon the two spatial variableso, the ray direction

u, ¢, and the frequency, I = I,(R,0; u,¢). The transfer
equation, Eq[{1), in spherical coordinates reads

dl, oI,

al, _ 1 — p? oI,
ds MaR

- ¢ 1- ,U,2 oI,
R Sin a@

R Ou

_|_
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Fig. 3. The global and local coordinate systems used to describe ffig. 4. An example of a long characteristic in an axially symmetric
radiation field. Herer/2 — 6 is shown instead of for the clarity of space. Only the upper quadrant is shown. The vertical axis is the sym-

illustration.

cos \/1—p?0l,

tan® R do

An important consequence of the use of spherical coordi(;S
nates is that, contrary to what happens for cartesian coordinafes,
the photon angles and¢ are no longer constant along the rays.

a, (S, —1). (26)

The variation ofR, ©, 1 and¢ along the path are

dR doe 1—pu?
ds M E——Tbmﬁﬁ, (27)
ap 1—p? @:_\/1—;12 cos ¢ 28)
ds R ds R tan®©’
wheres is the path length. Solving these equations yields
R* = b* + 5%, (29)
o 20+ 8 cosO
COb@ = W, (30)
s
= —, 31
SR R
2 _
sing = b* cos O — 28 (32)

and is purely a projection effect.

by/b2 + 52 — (20 + 505 O00)2

whereb is the impact parameter of the ray with respect to thé!6
origin, zq is the height above the midplane of closest approach 1
to the symmetry-axis, ard, is the inclination at infinity. When
projected into the subspace spannedi)¥ the trajectory be-
comes a hyperbola, as is shown in Eig.4. We stress that this
shape is caused by eliminating the dependence of-thagle,

metry axis and the horizontal axis the equator. The bot-dashed lines
represent the asymptotes of the hyperbolic characteristic.

B = RN ) 33)
o = picosO; + /1 — p? sin O;sin ¢; (34)
zo = Rp[(1— 1?) cos O —

piy/1 — p2 sin ©;sin ¢ . (35)

The short characteristic passing througt, ©; ; 1, ¢;) is de-
fined as the section of this curve that starts at the closest in-
tersection with the grid linegpstream of P (point U), passes
through P and ends at the closest intersection with the grid
linesdownstream of P (point D). The location of the point&
and D is specified by the corresponding values of parameter
along the raysy andsp, which are found solving Eq$. (P9)—
(30) with R = Ry and® = ©p, whereK =k — 1,k k+ 1
andL =1 —1,[,l+ 1. BothR = R, and® = O, need to be
included because the characteristic may intersect the €aone

R grid line twice. In principle, each equation has two solutions
for a given value of” and L, giving 12 possible roots

S

(36)

S7...12

{ — 20c08 Oy *

€082 O, — cos2 Oy,

cosOp, \/172((70s,2 O —c0s201) + zg} . (37)

However, two of these solutions always giwe-= sp, i.e. P =

For the numerical implementation of the short characterigRy,, ©,) itself, and are of no interest. Of the remaining 10 roots,
tics scheme, we are interested in those characteristics that gasse are complex and must be rejected. Between the real solu-
through a grid poinf® = (R, ©,;) and are tangent to one of thetions, the one representing poibt(U) is selected asking that
local discrete ordinate§u;, ¢;). Clearly, onceRy, Oy, p1;, ¢; \
are fixed, such a characteristic is unique and the values ofritsnce, in the following we will denote witR;, ©+, ji; andg;

parameters are

s > sp (s < sp) and that|s — sp| is minimum. For conve-

the values of the independent variables along the ray at point
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Fig. 5. An example of a Short Characteristic (SC) in spherical coordrig. 6. An example of an Extended Short Characteristic (ESC) in spher-
nates (the heavy line connectibgto D throughP). As in Fig[2 the ical coordinates (the heavy line connectiigto D throughP). It is
downstream part of the SC (which is only needed to guarantee sectivelextended version of the SC shown in Flg. 5. The ESC does not have
order accuracy in the formal integral betwdémnd P) is dashed. The the same problems as the SC because for the ESC none of the points
dotted line shows the complete ray to which the SC belongs. A, B or C coincides with pointP.

Although, as we have just shown, short characteristics chis means that in betwedri and P the ESC may intersect
be easily defined in spherical coordinates, two major problemse or mored grid lines. The pointD on the downstream side
have to be solved before they can be of any use in buildingeanains the same as for standard SCs.
transfer algorithm. The first point concerns the fact that, asitwas By using ESC instead of SC the “problem of unknown up-
mentioned earlieyy andy change along the ray. This means thaitream intensities” can be eliminated. In fact, if a proper sweep-
in addition to spatial interpolation (see [Eq] 17), we are forcedittg scheme is chosen (see Sect. 4.2), the problem of unknown
interpolate ir and¢ as well in order to evaluatg, (U, w). This  intensities only occurs in those situations when a short char-
is because the intensities at pointsB andC' are known only acteristic curves back onto the saf@egridline from which it
for a discrete set of directions which are different, in generalriginates, as is illustrated in F{d.5. By extending only those
from (ji; ,¢~>1). short characteristics, and leaving the rest truly short, one can

The second, more fundamental difficulty arises becauseailso avoid unknown intensities in the sweeping scheme. Just
spherical coordinates the concept of upstream and downstrdarmotation we call this scheme the Minimally Extended Short
boundaries is different from the Cartesian case. Radial infiniBharacteristics scheme (MESC). MESC is almost as accurate
is both the upstream and the downstream boundary, white inas ESC, but ESC is more closely similar to its one-dimensional
there is no obvious upstream or downstream boundary. If thegherical analogues, and is slightly less numerically diffusive.
grid is swept from© = 0 to © = = or vice versa, one will In the following we denote witl (or U_, ) the single down-
encounter situations in which the intensity at one of the poirggeam intersection with a grid line, andwith (i = 1,...,m)
A, B, C'is not known before the evaluation the transfer integrttie multiple intersections upstreami®f The pointl/,,, is there-
along the short characteristic (Eq] 16) is performed. An examitee the true upstream starting point of the ESC, where the in-
of such a situation is shown in Fig. 5. Interpolation makes ugansity must be found by interpolation. In Hig. 6 this is the point
of the pointsA4, B andC, but sinceA coincides withP, the U, and the ESC consists of two segments in this case.
intensity at the poind = P, has not been computed yet.

4.2. The sweeping scheme

4-1. Bxtended short characteristics Using the (minimally) extended short characteristics defined

The problem of unknown intensities can be solved by modifyirabove, we can systematically sweep the grid without encoun-
the definition of short characteristics to be the part of the ray thating unknown intensities. We start at the outer boundagy
connectsP, not with just the nearest gridline intersection, buand integrate inwards only those ESCs for whigh< 0. The
with the nearesR = R;. gridline intersection, i.e. the nearessweeping order if® is from© = 0 to © = = and then back.
radial shell. Such an “extended short characteristic” (ESC) is The intensity at eac® = (R, ©;) is found for allu; < 0
illustrated in Figl 6. The starting poiiif of such an ESC will andg; by tracing the ESCs back to their upstream starting point
be located either &® = Ry_1, R = Ry, or back atR = R,. U,,. At pointU,, the values of?, ©,  and¢ are different from
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those atP, and will be denoted witt#,,,, ©,,,, L, andq?m. The inagreementwith the angular spacing induced in spherical sym-
find the intensity a(Rm, O, fim, ém)) by interpolation. We metry by the “tangent ray method” (see e.g. Mihalas étal. 1975;
then integrate the formal transfer equation along each segméane et all 1996). Actually, it can be easily shown that in 1-
of the ESC connectind/,,, to P, according to Eq[{18). This D spherical symmetry the ESC method, wijth ; given by
gives Eq.[42), is fully equivalent to the tangent ray method. This
is an important feature of the algorithm since it then exactly
L,(P) = exp(=7m)I,(Unm) + Z exp(—7i-1) X recognizes spherical symmetry. And, even in the absence of
=t spherical symmetry, it transports radiation outward without any
(u,iSu,i + Dui-1Sv,i-1 + dui—25,i-2) (38)  numerical diffusion inR or .
wherer; is the depth fromP to U; and the index denotes However, thep spacing implied by Eq[(42) has the ten-
the quantity evaluated &f; (e.g.S; = S(U;); i = 0 refers to dency to give a poor sampling aroupd= 0. This problem can

P andi = —1to D). Theu's, p's andd’s are defined as in be easily solved by introducing some (typically one or two) ex-
Egs. [19),[(2D) and(21), but withreplaced by(r; — 7;,_;) and tra points aroung ~ 0 to enhance the angular resolution there.
7oy (1,1 — Ti_2). Obviously this violates the original prescription and therefore

The integration is then repeated moving towards smalléquires the use of interpolation for these extrgoints, pro-
radii, until the inner boundary & = R, is reached. Here we ducing a small amount of angular diffusion for 0. Generally
can include the contribution of a central source or any othiés diffusion is small.
boundary condition. Unfortunately the interpolation it can never be avoided.

Then we start integrating back towards larger radii, unflihe ¢ angle depends in a complicated way ofsee Ed.32)
we reach the outer edge. By now the radiation field on the ga@d it can change rapidly even within one element of a ESC.
I,(Rk, Oy ; pi, ¢5) is known. Both first and higher order interpolation ¢hhave been tested
in our numerical code. We have found that in most casegthe
. o N diffusion is not very large and, in general, influences the solution
4.3. Tangent-ray discretization of photon direction less than the spatia®)) diffusion,

Egs. [31) and(32) show thatandy change along the ESC. Ifwe

follow the ESC upstream towards a poli, (see Fig.b), then 4 4 Special treatment of radiation near i ~ 1

the values of these two angled 8}, are generally not exactly at

the discrete value$u, } and{¢;} of the sample of directions. The tangent-ray discretization pfllows the algorithm to accu-

This means that we must interpolate not only in space (betwe@tely conserve radial flux. However, such a choicg-edngles

A, B and(), but also in direction., ¢. Although, this is not, requires a large number of points at larger radii, typically

in principle, a fundamental problem, the use of interpolationsx 2, k. One cannot make do with a smaller numberuof

should be reduced to a minimum to avoid unnecessary numerigaints without facing the risk of loosing flux. This is illustrated

diffusion. in the following argument. If radiation is emitted at a radiis
Fortunately one can eliminate the interpolationnby an observer aR;, > R can see the radiation from the emitting

means of a suitable choice of the-grid so that all ESCs al- region even if its eyes cannot resolve the source. This is be-

ways start and end at one of thg;} points. We let theu— cause the observer's eyes measure the flux and not the intensity.

discretization depend oR;,, The ESC algorithm, on the other hand, deals with intensity, and

intensity is converted into flux by performing an integral over

g 3= =, o ymu (39) du d¢. For this integral to be reasonably accurate, the emitting
and choose theu ; in such a way that for eachh = region must be resolved inandy, leading to the requirement
—my, -, my thereis @’ = —my_1,- -+, myp_1 such that my > k.

(1- Mi,j)RQ —(1- /Lifl,j’)Rifl ) (40) Unfortunately this means that the computational cost scales

, o as N2 if one wishes to extend the span of the radial domain.
This choice is based on the fact that the valugsahd 2 along  gjnce the ability to deal with many orders of magnitude in ra-

an ESC depend only on each other andoas can be seen by s is crucial to solving transfer problems in circumstellar en-
combining Eqs[(29) and (81): velopes, this scaling is undesirable.

(1—pHR? =1, (41) An easy way to solve this scaling problem is related to the
simple observation that all photons wjth~ 1 follow roughly a
radially outgoing trajectory and they tend to travel more radially
(i.e. with i closer to unity), the further they propagate outwards.
In the “radial streaming” limit { — ¢ < 1), Eq. (40) becomes
approximately

By choosing theuy, ; according to EqL{40), a ray which orig-
inates atR;, with, say,u = p ; and arbitraryp, reaches any
other radius along the path with a value ofvhich coincides
with one of the points of the local grid there, thus eliminating
the need for interpolation.

A pu-grid that is consistent with Ed.(40) is:

B 1— O, R
P ki = £ 1 — —, (42) Hej ki Yt 43
\/7]%’% L= pie—rjot Q—ij— R (43)
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where(),, ; is the solid angle (bounded by, ;) at Ry. Eq.[43) than the rest, but cover a much smaller fraction of the image.
is just a restatement of thig R? law which is exactly obeyed The spectrum may therefore contain significant contributions
by a point source and by any radiation in the radial streaminfjflux from both the central parts and the outer regions of the

limit. image. Unless the image resolve all spatial scales of the object,
This property of radially outward radiation makes it possibléne spectra produced in such a way are unreliable.
to bundle allu—points with sufficiently largg: into a single If arectangular arrangement of pixelsis used, one must make

collective flux-like bin. The intensity of that bin will be treatedsure to use a variable spacing in battandy, in such a way

as theaverageintensity within that collective bin. The idea is to that the small scales around the star are sufficiently resolved. If
divide theu—range[—1, 1] into three parts one is mainly interested in the images themselves, this seems
the most reliable and straightforward way to go.

! ) For the production of spectra we propose a different ap-
[=pirs, pirs]  intensity samples: = pux proach. Rather than arranging the pixels over a rectangle, we
[rs, 1] outward averaged binu ~ 1, arrange them in concentric rings. The impact parameters of the

wherey,., is a suitably chosen constant close to unity. This w ircles are related to the radial grid points of the transfer cal-
the nun:E)er of—gridpointsmy, at each radius can be. limited ulation. For a reliable evaluation of the spectra it is generally
depending on how closg,. is to unity. We choose a globalenough to have one circhforeaElgl, plus some more, aboutss,
value forpu,.s, and do not allow this to differ from one radius toFO reso_lve the central region. The number of cirdigsin eac_h .
another. image is therefore roughly the same as the number of radial grid

Because the radial outward bin represent&tagrated in- pqlnts:Nb = Ng .+5' The number of pixels in each .C'rcm*" IS
tensity, i.e. an average of the true intensity over a solid an?ﬁléghtly less stra|glh'Fforward to choose, but for rehabl_e spectra
Qs = 2m(1—pu,s), itrequires a special treatment. Let us deno Lis generally sufficient to takéV,, = 2Ne, whereNp is the

the average intensity in this bin &% (R, ©;). The integration number ofS grid points, count_ed from pole to pole. Using this
formula, Eq.(3B), forl;* (Ry, ©;) becomes method, the images automatically resolve all relevant scales,

while using only a fairly limited number of pixels.

[1, —pirs] inward intensity bin: p~ —1

Ij (Rkv @l>
R2 | 5. Testing the ESC Lambda Operator
=€Xp(—7){ 5L (Re—1,61) + o .
Ry The Extended Short Characteristic implementation of the
R\ 1 [ Lambda Operator is not exact, as opposed to the one based on
1- R )or /0 L(Ri—1,05 iy -1, ) dg Long Characteristics. The interpolations used in the ESC algo-
Sy (Re_1,04) + puSu(Rr, ©1) rithm introduce numerical diffusion, even in the optically thin

regime, and this constitutes a potential threat to the reliability
(44)  of the method. In order to test the accuracy of the ESC Lambda
This formula simulates the correlct R behavior of the flux for Qperator we have performed a series of runs for a nurlnber.of
optically thin media providegd, ; is sufficiently close to unity. It simple setl_Jps, comparing the results of the ESC calculation with
reduces to the standard expression when the medium s optic!’:n se obtained by means ofan exact LC Lambda Operator. Here
thick. An estimate of the error introduced by the assumptieﬂﬁ present the analysis for three such tests.
of radial streaming can be made by comparing Eg$. (40) and
(@3), and is of ordef1 — p,5)/2. The radiation contained in 5.1. Optically thick annulus

the = 1 bin will not accumulate any numerical InterlOOlatlonrhefirsttestproblem concernsthe determination of the radiation

errors because it moves strictly along the radial grid lines. .. . L
The inward collective bin will always behave as a real inter];'—eIOI produced by an optically thick, isothermal, sharply—edged

. N . . annuls, bounded bizy < R < Rp; andO©jy; < © < 1 — Oyy.
sity, so that the / R* behavior does not need to be S|mulated.|n the actual calculation we have takBp — 2.86, Ry — 4.83.

©; = 1.26 and the absorbtion, is given by

10® inside the annulus
0 elsewhere

+d, Sy (Ri+1,01) -

4.5. Spectra and images

Once the iterative part of the transfer has been completed éyri‘(gR’ 0)= (45)

the source functlpn IS kr_10wn, the nextstep is tp produge IMagEs the sake of simplicity all variables are dimensionless and
and spectra. An image is produced by formal integration of tt e

source function along long characteristics through the mediume temperature has been taken such Atl’) = 1. We use a
; glong ; gnt srPatiaI grid with20 radial points, logarithmically spaced such
(ray tracing). Each ray represents one pixel of the image. Ojle
can produce spectra by making images at a range of frequencies,
. . . “ ” Ri+1 - RZ
and integrating these images over the “detector” aperture. —2tL_ " _ 1 1402, (46)
Here, as in the Lambda iteration, we face resolution prob- R;
lems if the source under consideration spans a large rangeumd the angular grid i® consists of 20 equally spaced points

log(R). The central parts of the image are often much brighttom pole to pole. Fid.l7 shows the configuration for the test
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Table 1. The errors of ESC and the LC algorithms for the optically

thick test.
Point EESC J%SC €ELcC U%C
A 0.060  0.090 0.085 0.116
B 0.034 0.112 —-0.016 0.134
C 0.059 0.112 0.001 0.105
D —0.020 0.091 0.002 0.094
B E 0.107 0.096 —0.032 0.084
‘ﬂ““‘s&ﬂ F 0.109 0.103 0.028 0.089
‘ ““”‘ G 0.029 0.051 —0.019 0.068
‘ H —0.012 0.056 —0.046 0.104

and the error in the mean intensifyas

_ JUgrsc — Ddpd¢ _ Jgsc —J
-8 -4 0 4 8 €ESC = [ Idudé = Ni :
Fig. 7. The set—up for the test runs. The annulus is shown together w;

: %ﬂnilar definitions apply to the LC errors.
the spatial mesh. Here all four quadrants are shown, although only the Radiative transfer for this setun has been performed usin
first quadrant needs to be computed as a result of mirror symmetry in P P 9

the equatorial plane and cyclindrical symmetry around the polar aia€ ESC method. The results are shown inBiig. 8 for the 9 grid-

Nine representative grid points, labeldd- H, are marked (see Fig. 8). POiNts labeledd — I'in Fig [4. The contours of the real images
are overplotted. The same calculation has been repeated using

the LC method. The errors of both the ESC and the LC calcu-
roblem. Mirror symmetry in the equator reduces the numbIations are listed in Tab[g 1. These figures show that the errors
P ' y Y q f the ESC method are not very much greater than those of

of actual points to 10 in the rang)e< © < m/2. The mesh in the LC method (which result from the discretization alone) and
photon momentum space consists of 32 equally spaced pmqts

in ¢, covering the range @, and 41 points i, 38 chosen strenghten the reliability of the ESC algorithm.
according to Eq[{40), plus = 0 andu = +0.24 to ensure

sufficient resolution at smajt. Because of the symmetry, theb.2. Optically thin annulus

transfer needs to be solved only for the 16 points in the ran

(49)

g%f&ntrary to the optically thick case of the previous subsection,
0<¢<m/2anddr/2<¢ < 2. the radiation field from an optically thin annulus cannot be de-

Th? radiation f'?ld emitted by such a source can be SeMErmined by a simple analytic formula such as Eql (47). Atlarge
analytically determined. As seen by an observer at some P however. the mean intensity should follow theR?2 law
P, it is simply the projection of the object on the sky of th : '

b Since the obiectis sharplv—edaed and highly opti d be independent 6f. We can verify if the solution produced
OLSEIVET. SInce (e object IS sharply—edged and nighly Opticayy e e algorithm indeed has this expected behavior. All de-
thick (= > 100), its projection will be sharply—edged as well

. Lo i tails are the same as in the previous test, with the only difference
The intensity is simply given by that now the (constant) absorption is takér°.
e ; We focus on the behavior at large radii. In radial streaming
L(P;p, ¢) = { JOBV(T) ;g: :Zﬁ m;zig?h?it?j?ftm’ (47)  H(R;,0;) =~ J(R;,©;) which, for an optically thin source,
is simply proportional to the volume integral of the emissivity
so it is easy to compute the projections on the sky of the of-/?, ©) and is independent &
server at various positions in space by using some independent
ray—tracing algorithm or a semi-analytical computation of th&(%?) = 73 /j(Rlv ©')(R')*dR sin©'de’". (50)
image. This image can then be compared to that produced by
the ESC and the LC transfer algorithms to evaluate the accurdéfhough close to the source the mean intensity is still very
of the ESC Lambda Operator. dependentom®, atR > R), the code should be able to recover
Let Irsc(p, ¢) andI ¢ (u, ¢) be the intensities, at the ob-the correctbehaviouf o« R~?2atlarge radii. The mean intensity
server location, computed using the ESC and the LC algorithrd$ 1%, ©.7) resulting from the ESC transfer calculation is shown
for the same discretization m and ¢ Let’ moreover[(‘uq (b) in F|g, where it is multlplled W|t|“R2 It can be Clearly seen
be the true intensity, which may be found by tracing individu&nat the while/ depends o for small radii, it becomes almost

rays with very high resolution ip andg. We define the standardindependent o® as the radius increases and that the inverse
error of the ESC algorithm as square law is very well reproduced. The dependencé on

© at the largest radius is shown in Higl 10. Typical errors are
< 5%, which lies within the error expected from the coarseness
of the grid.

N JUgsc — I)*duds
ESC fIQdudQ/)

(48)
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Fig. 8. The radiation field (u, ¢) for the test problem of the optically thick annulus at various positions in space (from top left to bottom right

at the pointsA — H of Fig[7). In each panep, from 0 to2r, is on thex—axis andu, from -1 to 1, on the/—axis. Tickmarks on both axes are
representative of the actual valuesoénd¢ used in the calculation. The image shows the intensity resulting from the ESC transfer algorithm
(the grey scale is such that white corresponds to maximum and black to zero). The thin solid curves mark the true contour of the object, computed
by ray-tracing with high angular resolution. The slightly diffusive nature of the results is a consequence of the interpolations inherent to the
ESC method. Numerical diffusion remains quite low in almost all cases, with the possible exception d .point

4 1.2 '
—
el
200
© _
£ 2 0.8 ]
€ 1 =
— ~ 0.6 b
* 0 O
o 0.4t .
Pl
(=)
0.2 b
Fig. 9. A surface plot of the mean intensti( R, ©) as produced by 0.0 ‘
the ESC algorithm for the optically thin annulus. In order to show the 0 /2 n
behavior at large radii, the mean intensity is multiplied By and S

normalized for convenience. Fig. 10. The computed (solid line) and the exact (dashed line) mean

intensity for the optically thin annulus, at the largest radius as a function
5.3. Sherically symmetric test problem of ©; errors ares 5%.

Although the above tests show that the ESC algorithm performs

well on its own, they are not enough to prove that it will produce

accurate and reliable results when applied to, for instancealgorithm: the additional-points close tqe ~ 0, and the special

non—LTE line transfer computation. Unfortunately it is not eadyeatment of the intensity near~ 1. These are features that are

to test this, because to our knowledge there exists no usefat particularly related to 2-D, and can therefore also be tested

benchmark test case yet for 2-D axisymmetric radiative transfierl-D just as well.

in circumstellar clouds. Our test cloud is a spherically symmetric power law model
The least we can do is to test our 2—-D algorithm on a 1-Bith hydrogen density specified by

spherically symmetric test case, and check the output against

that produced by an independent 1-D transfer calculation. This 0 Ro\? s

way we can at least test two of the special features of the ES@®!. (1) = Np, (E) cm -, (51)
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1.0 .
[ +++++ RADICAL
— SIMLINE

whereR is the radius in cm, anﬂf{_" =2.0x10"cm 3 isthe
2

number density aR = Ry = 1.0 x 10'® cm. We take a constant
kinetic temperaturdii,(R) = 20K. The abundance of our
molecule is also a constaimel(R) = Nmol(R)/Ny, (R) = N
1.0 x 1079, The systematic velocity is taken zero. The models ©
are computed in spherical coordinates, inthe domair< R <

Rour. We takeR;, = 1.0x 10" cmandRoy = 7.8 x 1018 cm. At

the inner boundary we put a reflective boundary condition. The

incoming radiation at the outer boundary is the= 2.728 K 0.1 : : :
microwave background radiation. < oo
We choose a fictive 2-level molecule which is specified by’ *°° J\/“ 1
-0.01 . . .
By — E; = 6.0 cm ! =8.63244 K (52) F el el e el
92/91 = 30 P (53) Fig. 11. The fractional population of the upper level of the 1-D test
A = 1.0x 107" s~ (54) ' problem. The symbols are the solution produced by RADICAL, which
Ky = 20x107%cmPs™? (55) is our code based on the ESC algorithm. ALI+Ng were used. The
solid line is the solution found by the program SIMLINE, which is an
from which the downward collision rate followsCs; = independent 1-D line transfer program written by V. Ossenkopf (1999).
Ny, Ko s~1. The total (thermal+turbulent) line widtia is  The difference between the two solutions (normalized to the SIMLINE
art = 0.150 kms~! (see Ed.B). solution) is shown in the lower panels.

The test problem presented here has high optical depth
(r = 10* at line center) and a very sub-critical density at 100000
R > 10 cm. Itis therefore well suited to test whether non-LTE
effects are properly computed.

The line transfer is computed in a passband of 40 fre-
guency points equally spaced between.40 kms ! and 0.1000 ¢
+0.40 kms™!. Theu angle is discretized usingB points, ar- i

1.0000 U

rror

ranged according to the tangent-ray prescription of[Eq|. (42) With 0.0100 . Li+Ng 4
3 additionalu-points around: = 0 on each side. Our conver- ‘ ]
gence criterion is simply: 0.0010 L ALI+Ng 4
max(6n;/n;) < 1x 1074 (56) i

0.0001 | | I
at all radii. For the radius we use an equally spaced logarithmic 0 50 100 150 200

N_iter

grid with (R;+1 — R;)/R; = AR/R = 0.1720. We perform 4
runs: Lambda Iteration and Accelerated Lambda Iteration wifig- 12. Convergence plot for the 1-D test problem. The largest error
and witout Ng acceleration. is plotted against the iteration number for four different methods. We

The results for the upper level population is plotted in E@ 1@fine the error as the maximum relative difference between the “real”

and compared to the results obtained independently with SIﬁﬁg:tgobq;:(;éhviiltivz:j’fﬁglztri]%nsoe:]t\ler;agig geé\'lv-l;]r:gri?ln jOIU)tiin
. ¢ X{on;/n;
LINE written by V. Ossenkop{{1939). The convergence pIoT‘]N%_G, which is a 100 times stricter convergence criterion than the last

for four different methods are shown in F{@lZ: . iteration step plotted for ALI+Ng in this figure.
More test problems, and a more extensive discussion of them

was presented by Dullemond (1999). Also, our algorithm and

code succesfully passed the benchmark test cases presented at . “ . Y .
. . e nebula with two sharply edged “searchlight beams” emerging
a workshop on molecular line transfer in Leiflen

from each of the poles (Sahai etlal. 1998). The lobes are sepa-
rated by a dark equatorial lane which completely obscures the
6. A simple model for the Egg Nebula central star.

Now that the algorithm has been tested, we demonstrate herﬁThe optical emission from this nebula can be understood as

how it can be used in practice. Our first example is a simprlg ected starlight escaping from the ”?b“'a through p?Iar cavi-
s (Latter et al. 1993, Morris 1981). Itis clear that the “search-

model of the optical appearance of the Cygnus Egg Nebula (Ck i . ) . .

2688). This object has been extensively studied ever since t bea_LmS are due to single scattering OT direct starlight by

discovery by Ney et al[ (1975). It is a bipolar reflection nebu ust grains. The lobes are, however, more likely to be the result
. of multiple—scattering.

rrounding an F5 ergiantbfy = K (Crampton et al. : . . . . .
surrounding supergiant = 6500K ( P We will model this multiple—scattering process in 2—D with

1975). At optical wavelength it appears as a diffuse bi—-lobed : :
) P 9 PP the MESC algorithm, in an attempt to reproduce the complex

2 See http://www.strw.leidenuniv.nl/ radtrans/ optical appearance of the nebula. Our setup consists of an almost
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spherical wind with a cavity at both poles. The density in thex10'
cavities is small, but it is still high enough to reflect sufficient
amounts of starlight. To reproduce the twin—beams at both poles,
we place a small blob of matter at the polar axis in the cavityx10'®
causing a shadow. A star is placed at the center of the coordinate
system to illuminate the nebula from within.

We model only a single frequency in the optical, at 600
nm. For this reason we refrain from taking actual realistic dust
opacities, and specify total optical depth and scattering albedo
instead. The dust density is shown as contour plots il Elg. 13. 6
The total optical depth at the equator is about 60. The ratio 6f'® [
absorption over scattering(@s3. The dust scattering is assumed
to be isotropic, which suffices for the present simplified exam-
ple. We do not specify the dust temperature for this setup since'
thermal emission at 600 nm is negligible.

The simulation was performed by RADICAL, using thdig. 13. The density contours for the dust gnve!ope around the central
MESC algorithm, and applying Accelerated Lambda [teraticiiar of the Egg Nebula. C_:ontours are logarithmically spac_ed_, s_eparated
and Ng acceleration. The image subsequently produced by ]Q%_factors ofv/10. The o!lstance scale on the x- and y-axis is in cen-
mal integration is shown in Fif14. The model reproduces tHrgeters. At the polar axis one can see a small blob of matter. This blob

. . is Tesponsible for the shadow.
searchlight beams and the diffuse glow. It also naturally repro-
duces the intensity difference between the north and south lobe.
This is a result of the slight inclination at which the object is
seen. For light emerging from the south lobe, the path lengthers, Ulrich [(1976), Cassen & Moosman (1981), Terebey et
through the outer regions of the nebula is larger than for the (1984), Galli & Shu[(1993.
north lobe. The models of Cassen & Moosman and Ulrich (hereafter

Although the modelresemblances the HST image of Sahagu) focus on the inner free-falling part of the collapsing
al., itshould be noted that the density structure that we have uggslid, and assume that the material originates from an originally
may not be consistent with observations at other wavelengtBgherical cloud with some angular momentum. Their model is
For example, HCN observations by Bieging & Nguyen-Q-Riealmost spherical at large radii, but flattens off closer towards
(1996) seem to rule out the presence of a cavity in the winfle center, and forms a disk near the centrifugal radius. This
Also the rather high albedo may be difficult to reconcile witthodel was later extended by Hartmann etlal. (1996, hereafter
the fact CRL 2688 is carbon-rich. HCB) to include flattening of the parent cloud. These models
show that the inner free-fall part of an initially flattened cloud
naturally tends to form a bipolar cavity, which is often observed
in YSO. These models are distinctly non-spherical at all radii,
despite the fact that centrifugal forces only dominate at small
radii. Itis therefore evident that fitting such models to molecular
In this section it will be demonstrated how the 2-D transfdine observations requires 2-D axi-symmetric radiative transfer
algorithm can be used in the observational study of low-massmputations.
star formation in dense molecular cloud cores. Inthis section we perform such a calculation, using the algo-

Low mass star formation takes place in dense moleculithms of this paper. We solve the non-LTE level populations for
cloud cores. According to the spherically symmetric model tffie first 7 rotational levels of HCQ and compute the predicted
Shu [1977), such a core develops a cusp with density closestiogle—dish spectra.

a 1/R? powerlaw. Once a gravitational instability is trigged,

the Cen_teral part of the clouq collapses, and forms a star. %\_ Description of the model

expansion wave propagates into the cloud towards larger radii,

allowing more and more matter to fall supersonically down tHe our HCB models we assume that the radius of the expansion
potential well, and add to the protostar’s mass. waveR,.cis outside our domain, so we shall confine our study to

Both observational evidence and theoretical argumentise free-fall inner region of the collapsing sheet-like molecular
however, indicate that purely spherical collapse is rare. Agjoud. We assume that matter in the parent cloud had a small
slight amount of angular momentum in the primordial cloudmount of rotation in the plane of the sheet before it collapsed.
will cause deviations from sphericity as centrifugal forces tetcording to the HCB model, the velocity field of the gas is
to dominate over radial infall deep down the potential welgiven by the formulae of Ulrich (1976):
And even before the collapse stage these primordial clouds of-
ten appear to be non-spherical (Myers efal. 1991). Theoretical GM\? 2
models of non-spherical protostellar collapse include, amoh§ ~ — (R) (1 + /m)

]

o7,
_1x10'7

n n 1 n n n n n n 1 n n n n
—5x10'6 0 5x10'0 1x10'7

7. A model of line transfer
in a collapsing protostellar cloud

(57)



C.P. Dullemond & R. Turolla: Two—dimensional radiative transfer in circumstellar envelopes and disks 1199

20 | | |
10 —
O —  —
Fig. 14.The syntheticimage of the Egg Neb-
ula, produced by RADICAL. The color cod-
ing is reverse logarithmic grey scale. The
—20 color table was slightly modified to enhance
! ! ! contrast in the lobes, but the modifications
-20 —-10 0 10 20 remain within 15%.
GMN\'? [ po—p i 1/2 for different flattening parameters, are shown in Fig. 15. The
e = R m 1 % (58) centrifugal radius of the infalling envelope is@@t = 100 AU.
12 12 12 We place a thin disk with a radius dlgisxk = R: = 100 AU
v, — GM 1—pd 1M (59) at the equator. A zoom-in of the density distribution, down to
¢~ \UR 1— p? Lo ’ the scale of the disk, is shown in Fig]16. We will ignore any

emission from the disk, and merely treat it as a light-blocking

wherep = cos(©) and g = cos(©p). The angled, is the _%(ﬁundary condition at the equator.

©-coordinate that the gas parcel had when it started its free
atlarge radius. For a giveiR, ©) the value 09, can be found

from 7.2. Non-LTE line transfer
R 1-H) = 1— 1) (60) We compute the line transfer problem for four HCB models,
R o 07 with flattening parameter; = 0,1,2,3 for models 1,2,3,4

whereR. is the centrifugal radius, i.e. the radius at which ceff€SPectively. The adopted valued for the accretion rate and

i i o —6 —1
trifugal forces equal gravity. This is the outer radius of the didRe turbulent line width arel/ = 2.4 x 10" Meyr— and

— 1
that is formed as a result of the rotation. awrp = 0.25kms™". i
The density of the gas for the HCB model is given by For these models we compute the non-LTE line transfer
problem of the lowest few rotational levels of HEQincluding

M nsecﬁ(nuo) the effects of the moving medium. We assume a cosmic back-
4r(GMR3)1/2  tanh(n) ground (CMB) continuum as incident radiation at the outer edge
—1/2 9 -1 of the computational domain. Dust emission and opacity are ne-
X (1 + ”) (“ + QMORC) (61) glectedinthe line transfer, which is justified for the lower-lying
Ho o R HCO™ lines because the nebula is optically thin to dust in the
where 1 is a dimensionless flattening parameter, which millimeter and sub-millimeter, and radiative pumping by dust
roughly equal to the ratio of the accretion radRig.to the sheet continuum is not important for HCQ Also, we need not in-
thicknessH. HCB argue that this value must be somewhere tHude the dust emissivity in the computation of the emerging
between) = 0 andn = nmax ~ 4. Forn = 0 the CMU models spectra, since we shall show only the spectra with the dust- and
are reproduced. Density contours of this free-falling envelogeMB-continuum removed. The radiative transfer is computed

prcB(R,©) =
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Fig. 16. A zoom-in of the density structure of the= 3 case of the =

HCB model. The figure on the right is a zoom-in to the scale of th&y 17, The level populations for model 3 for the first four rotational

centrifugal radius. The bar represents the disk. levels of HCO" as a function of® and R. Note that the centrifugal
radius (which is the disk outer edge) isRé¢ = 1.5 x 10'5cm.

within a range ofR € [70,10%] AU. As an inner boundary we o
have a vacuum. The cross sections for#CO™ collisional =
transitions were taken from Monteiro (1985) and Green (197&‘?). o
We adopt an HCO abundance df x 10~9 The gas temperature
is taken to bé&l" = 20K throughout the cloud.

We perform the non-LTE line transfer for all four models.
The resulting non-LTE level populations for model 3 are shown o
in Fig.[17, and the corresponding excitation temperatures are,|_
shown in Figl-IB. One can see that at the equ&o«(r /2) the -
levels are almost thermalized, except at large radii. This is due N
to the much larger density at the equator than at the pole. The® =~ ™
drop in excitation temperature at large radii is a result of the
decoupling of radiation and matter. At large radii the level pojfrig. 18. The excitation temperatures of the lowest four rotational tran-
ulations will be strongly influenced by the cosmic backgroursitions of HCO™ for model 3, as a function o® and R. They were
radiation. Another interesting phenomenon occurs at small ra@iduced from the level populations shown in Eig. 17, using the formula
near the pole: the excitation temperature exceeds the gas téersi) = (hvi;/k)/log(n;gi/nig;).
perature. This effect was discussed by Leung & Liszt (1976)
for the CO 1-0 transition. It can be understood as resulting from
an overpopulation of thd = 1 level due to the large ratio of spectra of the four models, computed for the first four radiative
radiative rates4s; /A1 ~ 10). transitions at three different inclinations, are shown in[Eig. 19.

Once the level populations have been computed, the line From the spectra one can clearly see the effect of flattening
spectra are produced. The spectra are centered on the origiofadhe HCB cloud, in particular for models 3 and 4. At near
the object. First the circular images are produces in a rangepole-on inclination (8) hardly any self-absorption is seen in
frequencies. This circular rendering of the images ensures ttiese models, because one looks straight into the “cavity”. At
no details at large or small radii are missed, and thus that no fluear edge-on inclination (8pthe “torus” blocks the central
is accidently lost. The antenna temperatures are then computgions from view near line center, which results in the clear
by integrating the images, after they have been multiplied bglf-absorption features seen in the line shapes. A similar man-
the beam pattern centered on the origin of the object. We usédfastation of non-spherical symmetry of a circumstellar cloud
“Airy” beam, with a beam size corresponding to a single dish bfas been discussed recently by van der Tak et al. {1999). An
15 m diameter. The object is placed at 140 parsec distance. Titeresting feature of the line spectra of models 3 and 4 is that
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Fig. 19. The single-dish HCO line spectra of the HCB models, shown at three different inclinations: dotted lirffe(isedr pole-on), dashed
line is 45 and solid line is 85 (near edge-on). A dish diameter of 15 m was taken, and the object is located at 140 pc.

the edge-on line profiles are wider than the pole-on profilabat lies encoded in observed data. However the success of such
This can be attributed to the fact that the density and the exaiedeling depends on the algorithms that are available. We have
tation temperature is lower at the pole than at the equator. ddveloped a robust and accurate method, called the “extended
pole-on inclination the high density equatorial matter will emghort characteristics” (ESC) method, by which complicated 2-D
near line-center instead of in the line wings, thus making tlagi—symmetric multi—frequency radiative transfer calculations
line profile narrower. can be performed. By using spherical coordinates, this method

The asymmetry between the red-shifted and the blue-shifteh accurately treat circumstellar envelopes and disks from the
peaks are typical for protostellar collapse. The rotation is harditellar surface all the way up to parsec scale, without the need of
seen in these spectra. This is because the rotational velocitgrisl refinement. By making a special choice of discrete photon
everywhere much smaller than the free-fall velocity, except amgles and bundling ‘almost-radially-moving’ rays into a sin-
very small radii where the emission barely contributes to tlyte bin, the conservation of radial flux can be guaranteed even
single-dish spectra shown here. over many orders of magnitude in radius, and without excessive
computational cost.

The ESC method, and a slight variation called MESC, forms
the core of a multi-purpose 2-D radiative transfer code called
Numerical radiative transfer modeling on desktop workstatioggap|CAL. We have tested the ESC/MESC algorithm on a sim-

is extremely cheapNot doing so in cases where this is poSpje test problem which we described in this paper. We have also
sible would mean an enormous waste of valuable information

8. Conclusions
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verified that the 2-D algorithm, when applied to a 1-D sphetBusche J., Hillier D., 2000, ApJ 531, 1071

cally symmetric problem, indeed reproduces what an indepékassen P., Moosman A., 1981, Icarus 48, 353

dent 1-D algorithm would produce for the same problem. TKellison A., Fix J., 1991, ApJ 368, 545

errors remained within a few percent, the exact value of whié{ampton D., Cowley A.P., Humphreys R.M., 1975, ApJ 198, L135
depends on the grid resolution. In the light of these, and may/lemond C., 1999, Ph.D. Thesis, Univesiteit Leiden

other tests we performed over the course of time, we beliaeg tathiou A., Rowan-Robinson M., 1991, MNRAS 252, 528

that the method is both robust and accurate, and yields reli %Iérl?.éSgg;:éHA;?gg,lAgéJ;l?, 220
results without requiring much fine-tuning from the user. 214t E. Maraschi L. 1991 ApJ 380, L51
The ESC/MESC algorithm is designed for a variety of afyatmann L., Calvet N., Boss A., 1996, ApJ 464, 387

plications. We have demonstrated in this paper how the methggherheijde M., 1998, Ph.D. Thesis, Rijks Univesiteit Leiden
can be used for the problem of dust scattering in a bipolatbeny I., 1989, In: Meyer F., et al. (eds.) Theory of Accretion Disks.
proto—planetary nebula and the problem of non-LTE line trans- Kluwer
fer in a collapsing cloud. But the method can also easily f&nasz P.B., Auer L.H., 1988, JQSRT 39, 67
applied to other radiative processes, such as dust continukfiter W., Hora J., Kelly D., Deutsch L., Maloney P.R., 1993, AJ 106,
emission with radiative equilibrium for the dust grains, thermal 260
Bremsstrahlung, electron scattering and even Comptonizatkﬁ‘i‘ze” R., 1987, A&A 173, 124
in hot plasmas. Other codes exist as well for solving radiati ung C., LisztH., 197,6’ ApJ 208, 732
transfer in these fields, and each method has its own advant geaughrean M.J., O'Dell C.R., 1996, AJ 111, 1977

' : . A3 | a0VaNtgQes a5 D., Kunasz P.B., Hummer D.G., 1975, ApJ 202, 465
and drawbacks. Only extensive te_stmg and f|g|_d use will tell tQyin 2 1as D.M., Auer L.H., Mihalas B.R., 1978, ApJ 220, 1001
what extentthe ESC/MESC algorithmis a definite improvemefpnteiro T.S., 1985, MNRAS 214, 419
over existing codes for different transfer problems. However, thgyrris M., 1981, ApJ 249, 572
accuracy, reliability and efficiency of the ESC/MESC methomlurray S., Castor J., Klein R., McKee C., 1994, ApJ 435 631
make it certainly a promising technique for the solution of asyers P.C., Fuller G.A., Goodman A.A., Benson P.J., 1991, ApJ 376,
trophysical radiative transfer in two dimensions under a variety 561
of circumstances. Ney E.P., Merrill K.M., Becklin E.E., Neugebauer G., Wynn-Williams

C.G., 1975, ApJ 198, L129
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