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In [1] the entire nonperturbative contribution to the holomorphic part of the

Wilsonian effective action was computed for N = 2 globally supersymmetric (SUSY)

theories with gauge group SU(2), using ansätze dictated by physical intuitions. There

are several aspects of the Seiberg-Witten (SW) model [1] which are related to the

theory of moduli spaces of Riemann surfaces. In particular, here, we will consider

the recursion relations for nonperturbative (instanton) contributions to the N = 2

Super Yang-Mills (SYM) effective prepotential [2] and will compare them with the

recursion relations for the Weil-Petersson volumes of punctured Riemann spheres.

In the Seiberg-Witten model there exists a relation the modulus u = 〈Trφ2〉 and
the effective prepotential [2] (see also [3]). This allowed to prove the SW conjec-

ture by using the reflection symmetry of vacua [4]. On the other hand, it is rather

surprising that, while on one side all the instanton coefficients have been computed

in [2], explicit calculations have been performed only in the one and two-instanton

background [5, 6, 7], while the above mentioned relation has been shown to hold to

all instanton orders [8, 9]. The problem for instanton number k ≥ 3 seems extremely
difficult to solve. Indeed, the ADHM constraint equations become nonlinear and have

not been explicitly solved up to now. Moreover, neither the structure of the moduli

space, nor the volume form are known. The instanton measure for all winding num-

bers has been written in [10], but only in an implicit form (i.e. by implementing the

bosonic and fermionic ADHM constraints through the use of Dirac delta functions),

which in some special cases allows to extract information on the instanton moduli

space [11]. However, the mathematical challenging problem of finding the explicit

structure of the instanton moduli space for generic winding numbers still remains

unsolved. On the other hand, the simple way in which the recursion relations have

been derived, strongly suggests that there may be some mechanism which should

make the explicit calculations possible. The investigation of such mechanism would

provide important information on the structure of the instanton moduli space (of

which only the boundary à la Donaldson-Uhlenbeck is known for generic winding

number [12, 13, 14]) and of the associated volume form. In particular, even if the

integrals seem impossible to compute, (actually, as we stated before we know neither

the structure of the space nor the volume form), the existence of recursion relations

and the simple way in which they arise, seem to suggest that these integrals could be

easy to compute because of some underlying geometrical recursive structure. It has

been claimed for some time, but only recently proven [15], that the nonperturbative

contributions to u actually can be written as total derivatives, i.e. as pure bound-

ary terms, on the moduli space. If the boundary is composed by moduli spaces

of instantons of lower winding number times zero-size instantons moduli spaces, as

it happens in the Donaldson-Uhlenbeck compactification, this would immediately

provide, in the case of a suitable volume form, a recursion relation.

We will now see how the similar problem one finds in computing the Weil-

Petersson (WP) volumes of punctured spheres has been solved thanks to the re-
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cursive structure of the Deligne-Knudsen-Mumford boundary and to the peculiar

nature of the WP 2-form. The main analogy we will display, concerns the volume of

moduli space of n-punctured Riemann spheres Σ0,n = Ĉ\{z1, . . . , zn}, n ≥ 3, where
Ĉ ≡ C∪{∞}. Their moduli space is the space of classes of isomorphic Σ0,n’s, that is

M0,n = {(z1, . . . , zn) ∈ Ĉn|zj 6= zk for j 6= k}/Symm(n)× PSL(2,C) , (1)

where Symm(n) acts by permuting {z1, . . . , zn} whereas PSL(2,C) acts as a linear
fractional transformation. Using PSL(2,C) symmetry we can recover the “standard

normalization”: zn−2 = 0, zn−1 = 1 and zn = ∞. The classical Liouville tensor or
Fuchsian projective connection is

T F (z) =
{
J−1H , z

}
= ϕcl zz − 1

2
ϕ2cl z . (2)

In the case of the punctured Riemann sphere we have

T F (z) =
n−1∑
k=1

(
1

2(z − zk)2 +
ck

z − zk

)
, (3)

where the coefficients c1, . . . cn−1, called accessory parameters, satisfy the constraints

n−1∑
j=1

cj = 0 ,

n−1∑
j=1

zjcj = 1− n
2
. (4)

These parameters are defined on the space

V (n) = {(z1, . . . , zn−3) ∈ Cn−3|zj 6= 0, 1 ; zj 6= zk , for j 6= k} . (5)

Note that

M0,n
∼= V (n)/Symm(n) , (6)

where the action of Symm(n) on V (n) is defined by comparing (1) with (6).

Let us now consider the compactification V
(n)
à la Deligne-Knudsen-Mumford

[16, 17]. The divisor at the boundary

D = V
(n)\V (n) , (7)

decomposes in the sum of divisors D1,. . . ,D[n/2]−1, which are subvarieties of real
dimension 2n − 8. The locus Dk consists of surfaces that split, upon removal of
the node, into two Riemann spheres with k + 2 and n− k punctures. In particular,
Dk consists of C(k) copies of the space V

(k+2) × V (n−k) where C(k) = ( n
k+1

)
, for

k = 1, . . . , (n− 3)/2, n odd. In the case of even n the unique difference is for
k = n/2 − 1, for which we have C(n/2 − 1) = 1

2

(
n
n/2

)
. An important property
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of the divisors Dk’s is that their image provides a basis in H2n−8(M0,n,R). The

Weil-Petersson volume is

VolWP (M0,n) =
1

(n− 3)!
∫
M0,n

ω
(n)
WP

n−3
=

1

(n− 3)!
[
ω
(n)
WP

]n−3
∩ [M0,n

]
. (8)

It has been shown that [17]

VolWP (M0,n) =
1

n!
VolWP

(
V (n)
)
=
π2(n−3)Vn
n!(n− 3)! , n ≥ 4 , (9)

where Vn = π
2(3−n)

[
ω
(n)
WP

]n−3 ∩ [V (n)] satisfies the recursion relations
V3 = 1 , Vn =

1

2

n−3∑
k=1

k(n− k − 2)
n− 1

(
n

k + 1

)(
n− 4
k − 1

)
Vk+2Vn−k , n ≥ 4 .

(10)

These recursive relations are a consequence of two basic properties. The first one

is the fact that the boundary of the moduli space in the Deligne-Knudsen-Mumford

compactification is the union of product of moduli spaces of lower order. The second

one is the restriction phenomenon satisfied by the Weil-Petersson 2-form. A property

discovered by Wolpert in [18] (see also [19, appendix]). The basic idea is to start

with the natural embedding

i : V
(m) → V (m) × ∗ → V (m) × V (n−m+2) → ∂V (n) → V (n) , n > m , (11)

where ∗ is an arbitrary point in V (n−m+2), it follows that [18][
ω
(m)
WP

]
= i∗
[
ω
(n)
WP

]
, n > m . (12)

There is a similarity between the above recursion relations for the WP volumes and

the recursion relations satisfied by the instanton coefficients. To see this let us recall

that in the case of the WP volumes, it has been derived in [19] a nonlinear differential

equation satisfied by the generating function for the Weil-Petersson volumes

g(x) =

∞∑
k=3

akx
k−1 , (13)

where

ak =
Vk

(k − 1)((k − 3)!)2 , k ≥ 3 , (14)

so that (10) assumes the simple form

a3 = 1/2 , an =
1

2

n(n− 2)
(n− 1)(n− 3)

n−3∑
k=1

ak+2an−k , n ≥ 4 . (15)
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One can check that (15) implies that the function g satisfies the differential equa-

tion [19]

x(x− g)g′′ = xg′2 + (x− g)g′ . (16)

Remarkably, it has been shown in [20], that this nonlinear differential equation is es-

sentially the inverse of a linear differential (Bessel) equation. More precisely, defining

g = x2∂xx
−1h, one has that (16) implies

xh′′ − h′ = (xh′ − h)h′′ . (17)

Differentiating (17) we get

yy′′ = xy3 , (18)

where y = h′. Then, interchanging the rôles of x and y, (18) transforms into the
Bessel equation

y
d2x

dy2
+ x = 0 . (19)

It has been suggested in [20] that the appearance of such a linear differential equation

may be related to the “mirror phenomenon”.

The above structure is reminiscent of the above derived in Seiberg-Witten theory.

In particular, in the case of WP volumes one starts evaluating the recursion rela-

tions by means of the Deligne-Knudsen-Mumford compactification and the Wolpert

restriction phenomenon [17], then derives the associated nonlinear ODE [19] and end

to a linear ODE [20] which is obtained by essentially inverting it. In the Seiberg-

Witten model, one starts by observing that the aD(u) and a(u) moduli satisfy a

linear ODE [21], inverts the equation to obtain a nonlinear one satisfied by u(a) then

finds recursion relations for the coefficients of the expansion of u(a) [2]. The final

point stems from the observation that u and F are related in a simple way which
allows one to consider the derived recursion relation as a relation for the instanton

contributions to the preportential F . The above similarity suggests to reconstruct
the instanton moduli space and its measure starting from the recursion relations [2]

Gn+1 = 1

8G20(n+ 1)2
[
(2n− 1)(4n− 1)Gn + 2G0

n−1∑
k=0

ck,nGn−kGk+1 −

− 2
n−1∑
j=0

j+1∑
k=0

dj,k,nGn−jGj+1−kGk
]
, (20)

where n ≥ 0, G0 = 1/2 and

ck,n = 2k(n−k−1)+n−1 , dj,k,n = [2(n−j)−1][2n−3j−1+2k(j−k+1)] . (21)

It is still possible to rewrite some apparently cubic terms in the third term on the

r.h.s. as quadratic ones and absorb them in the second term on the r.h.s. of (20),
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obtaining thus

Gn+1 = 1

2(n+ 1)2

[
(2n− 1)(4n− 1)Gn +

n−1∑
k=0

bk,nGn−kGk+1 −

− 2
n−1∑
j=1

j∑
k=1

dj,k,nGn−jGj+1−kGk
]
, (22)

where bk,n = ck,n − 2dk,0,n and we have exploited the fact that dk,0,n = dk,k+1,n. Let
us now consider the volume Gn of the moduli space of an instanton configuration of
winding number n. In order to reproduce the recursion relation, we assume that Gn
can be written as

Gn =
∫
V
(n)
I

X(n)∧
k=1

ω
(n)
I =

[
ω
(n)
I

]X(n)
∩
[
V
(n)

I

]
, (23)

where ∩ is the topological cup product, ω(n)I is the natural 2-form defined on the

n-instanton moduli space and V
(n)

I is a suitable compactification of V
(n)
I , which we

will make explicit later. The function X(n), representing the complex dimension of

V
(n)

I , will be fixed later. It is possible to recast (23) in the form

Gn+1 =
[
ω
(n+1)
I

]X(n+1)−1 ∩ ([ω(n+1)I

]
∩
[
V
(n+1)

I

])
=
[
ω
(n+1)
I

]X(n+1)−1 ∩ [D(n+1)ω · V (n+1)I

]
=
[
ω
(n+1)
I

]X(n+1)−1 ∩ [D(n+1)ω

]
, (24)

where · denotes the topological intersection and D(n+1)ω is the [2X(n+ 1)− 2]-cycle
Poincaré dual to the “instanton” class [ω

(n+1)
I ]. The divisor at the boundary

D(n+1) = V (n+1)I /V
(n+1)
I , (25)

decomposes in the sum of divisors D1,j , D2,j,k and D3,n. In order to make contact
with the recursion relation for the Gn’s, we set

D1,j = c(1)n,jV (n−j)I × V (j+1)I ,

D2,j,k = c(2)n,j,kV
(n−j)
I × V (j+1−k)I × V (k)I × V (1)I ,

D3,n = c(3)n V (n)I × V (1)I . (26)

Let us now expand D(n+1)ω in terms of the divisors at the boundary of the moduli

space, namely

D(n+1)ω =
n−1∑
j=0

d
(1)
n,jD1,j +

n−1∑
j=1

j∑
k=1

d
(2)
n,j,kD2,j,k + d(3)n D3,n . (27)

5
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One can see that consistency requirements on the outlined procedure uniquely de-

termine X(n) to be

X(n) = 2n− 1 . (28)

Let us consider the following natural embedding

i : V
(m)

I → V (m)I × ∗ → V (m)I × V (n−m)I → ∂V (n)I → V (n)I , n > m , (29)

where ∗ is an arbitrary point in V (n−m)I . We now impose the following constraint[
ω
(m)
I

]
= i∗
[
ω
(n)
I

]
, n > m . (30)

Let us elaborate the three terms on the r.h.s. of (24): the first term is[
ω
(n+1)
I

]2(n+1)−2 ∩ [V (n−j)I × V (j+1)I

]
=

=
[
ω
(n−j)
I + ω

(j+1)
I

]2(n+1)−2 ∩ [V (n−j)I × V (j+1)I

]
=

(
2(n+ 1)− 2
2(n− j)− 1

)([
ω
(n−j)
I

]2(n−j)−1 ∩ [V (n−j)I

])([
ω
(j+1)
I

]2(j+1)−1 ∩ [V (j+1)I

])
=

(
2(n+ 1)− 2
2(n− j)− 1

)
Gn−jGj+1 . (31)

The second term has the form[
ω
(n+1)
I

]2(n+1)−2 ∩ [V (n−j)I × V (j+1−k)I × V (k)I × V (1)I
]
=

=
[
ω
(n−j)
I + ω

(j+1−k)
I + ω

(k)
I + ω

k
I (1)
]2(n+1)−2 ∩ [V (n−j)I × V (j+1−k)I × V (k)I × V (1)I

]
= 2k

(
2(n+ 1)− 2

2k

)(
2(n+ 1)− 2− 2k
2(n− j)− 1

)([
ω
(n−j)
I

]2(n−j)−1 ∩ [V (n−j)I

]
×

×
([
ω
(j+1−k)
I

]2(j+1−k)−1 ∩ [V (j+1−k)I

])([
ω
(k)
I

]2k ∩ [V (k)I ])([ω(1)I ] ∩ [V (1)I ])
=
k

2

(
2(n+ 1)− 2

2k

)(
2(n+ 1)− 2− 2k
2(n− j)− 1

)
Gn−jGj+1−kGk , (32)

where we used the fact that G1 = 1/4. Finally, the last term is[
ω
(n+1)
I

]2(n+1)−2
∩
[
V
(n)

I × V (1)I
]
=
n

2
Gn . (33)

In this way we can recast the recursion relations as

Gn+1 =
n−1∑
k=0

(
2n

2(n− k)− 1
)
d
(1)
n,kc

(1)
n,kGn−kGk+1 +

n−1∑
j=1

j∑
k=1

k

2

(
2n

2k

)
×

×
(
2(n− k)
2(n− j)− 1

)
d
(2)
n,j,kc

(2)
n,j,kGn−jGj+1−kGk +

n

2
d(3)n c

(3)
n Gn , (34)

6
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which can be straightforwardly compared to (22) and gives

d
(1)
n,kc

(1)
n,k

(
2n

2(n− k)− 1
)
=

bk,n

2(n+ 1)2
,

d
(2)
n,j,kc

(2)
n,j,k

(
2n

2k

)(
2(n− k)
2(n− j)− 1

)
= − 2dj,k,n
k(n+ 1)2

,

d(3)n c
(3)
n =

(2n− 1)(4n− 1)
n(n+ 1)2

. (35)
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