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Abstract

Andrè Joyal constructed arithmetic universes to provide a categorical proof of Gödel
incompleteness results. He built them in three stages: he first took a Skolem theory,
then the category of its predicates and finally he made the exact completion out of
the latter.

Here, we prove that the construction of an initial arithmetic universe is equiva-
lent to that of an initial list-arithmetic pretopos and also of an initial arithmetic
pretopos. The initial list-arithmetic pretopos is built out of its internal language
formulated as a dependent typed calculus in the style of Martin-Löf’s extensional
type theory. Analogously, we prove that the second stage of Joyal’s construction
is equivalent to taking an initial arithmetic lextensive category or an initial regular
locos.

We conclude by proposing the notion of list-arithmetic pretopos as the general def-
inition of arithmetic universe. We are motivated from the fact in any list-arithmetic
pretopos we can show the existence of free internal categories and diagrams as in
any of Joyal’s arithmetic universes.

Key words: Dependent type theory, pretopoi, categorical logic.

1 Introduction

In category theory some kinds of category like topoi and pretopoi can be
thought of as universes in which to develop mathematics (see [Joh77,JM95,MM92]).
Arithmetic universes provide further examples of such universes.

The notion of arithmetic universe was introduced by Andrè Joyal in some
lectures given in the seventies, all still unpublished. The main purpose was
to provide a categorical proof of Gödel incompleteness theorems based on the
fact that any arithmetic universe contains an initial one. Arithmetic uni-
verses are built in three stages: first, take a Skolem theory, namely a cartesian
category with a parameterized natural numbers object where all the objects
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are finite products of the natural numbers object, then take the category of
its predicates and finally add quotients by doing its exact completion. The
outcome gives in particular a pretopos with parameterized list objects, here
called list-arithmetic pretopos. An initial arithmetic universe is obtained by
performing the described construction starting from an initial Skolem theory.

Now a question arises: what is the general categorical definition of arith-
metic universe such that we can build free internal categories and diagrams
as in any of Joyal’s arithmetic universes? In [Mor96] and [Wra85] it is more
or less said that it should be a pretopos with free internal categories and
diagrams.

Here, we propose the notion of list-arithmetic pretopos as the general no-
tion of arithmetic universe, for at least two reasons. First, we prove that
the construction of an initial arithmetic universe amounts to be equivalent to
that of an initial list-arithmetic pretopos. Second, we know that free internal
categories and diagrams exist in any list-arithmetic pretopos [Mai99] as Joyal
proved for any of his arithmetic universes. Actually, since we prove that the
construction of an initial arithmetic universe is equivalent to that of an ini-
tial arithmetic pretopos as well, we could also choose the notion of arithmetic
pretopos as the general definition of arithmetic universe. But, we do not do
that since we think that list constructors are essential to build free internal
categories and diagrams.

All these results are obtained by employing the internal language of the
considered categories. In particular that of list-arithmetic pretopoi, already
introduced in [Mai99,Mai01], turns out to be the internal language of any
initial arithmetic universe. Knowing the internal language of a category means
that we can treat the category as a syntactic one built out of its internal
language. This is a stronger link between a calculus and a class of categories
than that established by the soundness and completeness theorem.

The internal type theory of list-arithmetic pretopoi, and hence of general
arithmetic universes as defined here, is based on the dependent typed calculus
Au formulated in the style of extensional Martin-Löf’s type theory [Mar84].
In designing the internal language of a category (at least lex) we are led to
produce an extensional type theory since we view the equality between mor-
phisms of the category as the definitional equality between terms. Extensional
Martin-Löf’s type theory differs from the intensional Martin-Löf’s Construc-
tive Type Theory [NPS90] for what regards its computational contents: while
in the former the definitional equality between terms is in general undecid-
able, in the latter it is decidable and it enjoys all the computational properties
good enough to reckon it as a paradigm of a functional programming language.
Anyway, providing an internal dependent type theory, even if extensional, for
an initial arithmetic universe is important to investigate its computational
properties like, for example, the validity of a canonical normal form theorem
for closed terms, which is the best one can hope for extensional dependent
type theories and from which we can get a syntactic consistency proof of the
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theory.

Since the correspondence between type constructors and categorical prop-
erties is modular [Mai01], we can easily recognize the internal type theories
both of arithmetic lextensive categories and of regular locoi as fragments of the
calculus Au. The novelty of the formulation of internal languages for categor-
ical universes in terms of a dependent type theory, in contrast to traditional
formulations in terms of a many sorted logic, is that they reveal that proposi-
tions interpreted as subobjects correspond to mono types, that is types with
at most one proof. Hence, in designing an internal dependent type theory we
do not need to add a new syntactic entity representing propositions with corre-
sponding rules of formation, but we just consider dependent types. Thinking of
the interpretation of a dependent typed calculus via fibrations [Ben85,Jac99],
all this corresponds categorically to regain the properties of the subobject
fibration of a category only by means of its codomain fibration [Mai01].

Here, by making use of the internal languages of the considered categories,
we prove not only that the third stage in the construction of an initial arith-
metic universe amounts to be equivalent to the construction of an initial list-
arithmetic pretopos or even of an initial arithmetic pretopos, but also that the
second stage is equivalent to the construction of an initial arithmetic lextensive
category or of an initial regular locos.

In the future we aim to employ the internal type theory of an arithmetic
universe to translate Joyal’s categorical proof of Gödel incompleteness result
into a type-theoretic one. Moreover, we intend to use the internal language
to proceed in the constructions of theories generated from finite decidable
sketches internally to a generic arithmetic universe as started in [Mai00].

2 The categorical definition of list-arithmetic pretopos

We recall the definitions of the categories we are going to use in the sequel.

Definition 2.1 A lextensive category is a finitely complete category with sta-
ble finite disjoint coproducts [CLW93].

Note that a lextensive category amounts to be a locally distributive lex category 1 .

Definition 2.2 A parameterized natural numbers object in a category with
finite products is an object N together with maps 0 : 1 → N, s : N → N such
that for every b : B → Y and g : Y → Y there is an unique rec(b, g) making

1 In previous versions of this paper or in [Mai01] we used the term “distributive” as in
[Coc90] for what most of the authors call “lextensive” to reserve the word “distributive”
for a more general concept (see [CLW93]).
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the following diagrams commute

B
<id,0·!B>

b

B×N

rec(b,g)

B×N
id×s

rec(b,g)

Y Yg

with !B : B → 1 the unique map towards the terminal object.

It is worth to recall here that in the presence of function spaces, like in a
cartesian closed category, this parameterized version of natural numbers object
is equivalent to the usual natural numbers object.

Definition 2.3 An arithmetic lextensive category is a lextensive category with
a parameterized natural numbers object.

Definition 2.4 A finitely complete category U has parameterized list objects
if for any object A ∈ ObU , there is an object List(A) with maps rA

o : 1 →
List(A), rA

1 : List(A) × A → List(A) such that for every b : B → Y and
g : Y × A → Y there is an unique rec(b, g) making the following diagrams
commute

B
<id,rA

o ·!B>

b

B×List(A)

rec(b,g)

B×(List(A)×A)
id×rA

1

(rec(b,g)×idA)·σ

Y Y ×Ag

where σ : B×(List(A)×A) → (B×List(A))×A is the associative isomorphism
<< π1, π1 · π2 >, π2 · π2 >.
In [Coc90] there is an equivalent definition of list-arithmetic finitely complete
categories in terms of recursive objects and preservation of recursive objects
by the pullback functor !∗D : C → C/D sending an object B to π1 : D×B → D.

Definition 2.5 A locos is a lextensive category with parameterized list ob-
jects.

Definition 2.6 A regular locos is a locos which is also a regular category,
namely it has stable images.

Finally, we recall the categorical definition of a pretopos [MR77], [JM95]

Definition 2.7 A pretopos is a category equipped with finite limits, stable
finite disjoint coproducts and stable effective quotients of equivalence relations.

Definition 2.8 A list-arithmetic pretopos is a pretopos with parameterized
list objects.

Some general categorical properties are needed in order to extract the internal
dependent type theory of a category, for example of a list-arithmetic pretopos.
To start with, we need a list-arithmetic pretopos to be locally a list-arithmetic
pretopos:
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Proposition 2.9 For every object A ∈ ObU of a list-arithmetic pretopos U
the slice category U/A is still a list-arithmetic pretopos, i.e. the notion of
list-arithmetic pretopos is local.

Having a local structure corresponds to the closure of the various constructors
on dependent types. But this is not enough to interpret a dependent type
theory. Indeed, since substitution for dependent types and terms is interpreted
via the pullback functor, we also need that

Proposition 2.10 For every morphism f : A → B of a list-arithmetic pre-
topos U the pullback functor f ∗ : C/B → C/A preserves the list-arithmetic
pretopos structure of the corresponding slice categories.

Proof. For what concerns the structure of a pretopos these propositions follow
easily. The key point is then to prove that parameterized list-objects exist in
the slice categories and they are stable under pullbacks. The proof of these
propositions for the list-arithmetic structure, stated also in [Coc90] about
locoi, can be done by means of the internal language of a locos. Indeed, a
locos has an internal language given by that for Heyting pretopoi in [Mai98]
without forall types and quotient types but with list types restricted to closed
types. Then, by means of this internal language, we can build list types on
arbitrary dependent types, corresponding to list objects in a slice category,
and prove that they are stable under pullbacks [Mai].

Analogously, we can prove that

Proposition 2.11 Arithmetic lextensive categories, regular locoi and arith-
metic pretopoi are local in the sense of prop. 2.9 and the pullback functors
preserve their structure in the sense of prop. 2.10.

Remark 2.12 If we interpret the type theory using the codomain fibration
and substitution via pullback, then we need to face some coherence problems
that we can fix by using the split fibration [Ben85,Hof94,Jac99] associated to
the codomain fibration (more details can be found in [Mai99,Mai01]).

Remark 2.13 Note that, for what just said about locoi in the proof of
prop. 2.10, we can immediately deduce that the internal type theory of a
list-arithmetic pretopos is that one in [Mai98] without forall type and natural
numbers type, - corresponding to the internal language of a pretopos -, to-
gether with lists restricted to closed types - corresponding to parameterized
list-objects -. However, since we can prove that lists on arbitrary dependent
types are definable, in the next section we will present the version of the
calculus with them included.

3 The internal language of list-arithmetic pretopoi

In a few words the internal language of a list-arithmetic pretopos corresponds
to predicative coherent logic equipped with the set-theoretic constructions of
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lists and quotients. We recall that with respect to intuitionistic logic, pred-
icative coherent logic lacks implication and universal quantification, namely it
has only conjunction, falsum, disjunction and existential quantification. Hence
negation as A → ⊥ is not definable in general, but we can have proofs from
A to falsum at the metalanguage level of an inference rule. For example, we
can not prove the proposition 0 
= s(0) because we can not even express it as
a proposition, but we can prove that from 0 = s(0) we get a contradiction.

Now, we recall the rules of the typed calculus Au for arithmetic universes
introduced in [Mai99]. The typed calculus Au is equipped with types, which
should be thought of as sets or data types, and with typed terms which rep-
resent proofs of the types to which they belong.

In the style of Martin-Löf’s type theory, we have four kinds of judgements
[NPS90]:

A type [Γ] A = B [Γ] a ∈ A [Γ] a = b ∈ A [Γ]

that is the type judgement, the equality between types, the term judgement
and the equality between terms of the same type. The contexts Γ of these
judgements are telescopic [dB91], since types are allowed to depend on vari-
ables of other types. The contexts are generated by the following rules

1C) ∅ cont 2C)
Γ cont A type [Γ]

Γ, x ∈ A cont
(x ∈ A 
∈ Γ)

plus the rules of equality between contexts [Str91], [Pit00]. In the following,
we present the inference rules to construct type judgements and term judge-
ments with their equality judgements by recursion. One should also add all
the inference rules that express reflexivity, symmetry and transitivity of the
equality between types and terms together with the following set equality rule
and assumption of typed variables

set rule)
a ∈ A [Γ] A = B [Γ]

a ∈ B [Γ]
var)

Γ, x ∈ A, ∆ cont

x ∈ A [Γ, x ∈ A, ∆]

We can derive then the structural rules of weakening and of a suitable ex-
change. In the following we give the formation rules for types specific to Au
with the corresponding introduction, elimination and conversion rules of their
terms. We omit the equality rules of all the type and term constructors that
are necessary to derive the substitution rules. We adopt the usual definitions
of bound and free occurrences of variables and we identify two terms under
α-conversion. Note that the context common to all judgements involved in a
rule will be omitted. The typed variable appearing in a context is meant to
be added to the implicit context as the last one. The rules to generate Au’s
types and terms are all present in the extensional version of Martin-Löf’s type
theory [Mar84] except for the disjointness axiom, the rules about quotients
types restricted to mono equivalence relations and the effectiveness axiom. A
type is called mono if it is inhabitated by at most one proof.
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Supposing A type and R(x, y) type [x, y ∈ A], we will write Equiv(R) to
mean the following three judgements: refl(x) ∈ R(x, x) [x ∈ A], sym(x, y, z) ∈
R(y, x) [x ∈ A, y ∈ A, z ∈ R(x, y)], trans(x, y, z, u, v) ∈ R(x, z) [x ∈ A, y ∈ A, z ∈
A,u ∈ R(x, y), v ∈ R(y, z)].
Moreover, we will write Mono(R) to mean

z = w ∈ R(x, y) [x ∈ A, y ∈ A, z ∈ R(x, y), w ∈ R(x, y)]

The Au dependent typed calculus
Terminal type

Tr) � type I-Tr) � ∈ � C-Tr)
t ∈ �

t = � ∈ �
False type

Fs) ⊥ type E-Fs)
a ∈ ⊥ A type

ro(a) ∈ A

Indexed Sum type

Σ)
C(x) type [x ∈ B]

Σx∈BC(x) type
I-Σ)

b ∈ B c ∈ C(b)
< b, c >∈ Σx∈BC(x)

E-Σ)
d ∈ Σx∈BC(x) m(x, y) ∈ M(< x, y >) [x ∈ B, y ∈ C(x)]

ElΣ(d,m) ∈ M(d)

C-Σ)
b ∈ B c ∈ C(b) m(x, y) ∈ M(< x, y >) [x ∈ B, y ∈ C(x)]

ElΣ(< b, c >,m) = m(b, c) ∈ M(< b, c >)

Equality type

Eq)
C type c ∈ C d ∈ C

Eq(C, c, d) type
I-Eq)

c ∈ C

eqC(c) ∈ Eq(C, c, c)

E-Eq)
p ∈ Eq(C, c, d)

c = d ∈ C
C-Eq)

p ∈ Eq(C, c, d)
p = eqC(c) ∈ Eq(C, c, d)

Disjoint Sum type

+)
C type B type

C + B type
I1-+)

c ∈ C

inl(c) ∈ C + B
I2-+)

b ∈ B

inr(b) ∈ C + B

E-+)
w ∈ C + B aC(x) ∈ A(inl(x)) [x ∈ C] aB(y) ∈ A(inr(y)) [y ∈ B]

El+(w, aC , aB) ∈ A(w)

C1-+)
c ∈ C aC(x) ∈ A(inl(x)) [x ∈ C] aB(y) ∈ A(inr(y)) [y ∈ B]

El+(inl(c), aC , aB) = aC(c) ∈ A(inl(c))

C2-+)
b ∈ B aC(x) ∈ A(inl(x)) [x ∈ C] aB(y) ∈ A(inr(y)) [y ∈ B]

El+(inr(b), aC , aB) = aB(b) ∈ A(inr(b))

Disjointness
c ∈ C b ∈ B inl(c) = inr(b) ∈ C + B

dsj(c, b) ∈ ⊥
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Quotient type

Q)
R(x, y) type [x ∈ A, y ∈ A] Mono(R) Equiv(R)

A/R type

I-Q)
a ∈ A A/R type

[a] ∈ A/R
eq-Q)

a ∈ A b ∈ A d ∈ R(a, b) A/R type

[a] = [b] ∈ A/R

E-Q)
p ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(l, p) ∈ L(p)

C-Q)
a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]

ElQ(l, [a]) = l(a) ∈ L([a])

Effectiveness
a ∈ A b ∈ A [a] = [b] ∈ A/R

eff(a, b) ∈ R(a, b)

List type

list)
C type

List(C) type
I1-list) ε ∈ List(C) I2-list)

s ∈ List(C) c ∈ C

cons(s, c) ∈ List(C)

E-list)
s ∈ List(C) a ∈ L(ε) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, s) ∈ L(s)

C1-list)
s ∈ List(C) a ∈ L(ε) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, ε) = a ∈ L(ε)

C2-list)
s ∈ List(C) c ∈ C a ∈ L(ε) l(x, y, z) ∈ L(cons(x, y)) [x ∈ List(C), y ∈ C, z ∈ L(x)]

ElList(a, l, cons(s, c)) = l(s, c,ElList(a, l, s)) ∈ L(cons(s, c))

Note that List(�) corresponds to the type of natural numbers represented
as lists on a singleton. Hence, we put N ≡ List(�) with 0 ≡ ε and s(n) ≡
cons(n, ∗) for n ∈ List(�).

4 Joyal’s arithmetic universes

What we describe in this section can be read in unpublished notes by Gavin
Wraith [Wra85] and also in [Mor96] and it is due to Andrè Joyal. Joyal built
arithmetic universes in three stages:

(i) consider a Skolem theory S;
(ii) take the category Pred(S) of predicates in S;
(iii) make the exact completion (Pred(S))ex on regular categories;

Then, he proved Gödel incompleteness theorems based on the fact that any
arithmetic universe contains an initial one obtained by performing the above
construction starting from an initial Skolem theory. Here, we describe Joyal’s
construction in more detail.

Definition 4.1 A Skolem category is a cartesian category (i.e. a category
with terminal object 1 and binary products) with a parameterized natural
numbers object.
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Definition 4.2 A Skolem theory is a Skolem category whose objects are finite
products of the natural numbers object.

In [Wra85] an initial Skolem category is built and used to model a program-
ming language which represents exactly primitive recursive functions.

Using type theory we can also build an initial Skolem category as follows.

Definition 4.3 Let Tsk be the fragment of the type theory Au in section 3
with terminal type, natural numbers type (namely List(�)) and finite prod-
ucts (namely Σx∈AB with the two projections [Mar84]).

Definition 4.4 Let Sin be the category having the types of Tsk as objects
and the proof-terms b(x) ∈ B [x ∈ A] derivable in Tsk as morphisms between
types A and B.

Proposition 4.5 Tsk provides the internal language of Skolem categories and
Sin is an initial Skolem category (and theory).

Here is an useful property of the natural numbers object in a Skolem theory:

Proposition 4.6 In any Skolem theory S the natural numbers object N is
equipped with a structure of parameterized list object over itself.

The proof relies on a particular encoding trick based on the binary repre-
sentation of natural numbers. Then, we are ready to define the category of
predicates on a Skolem theory. First notice that we define f ≤ g ≡ f ·− g = 0
between morphisms in the Skolem category, where ·− is the usual truncated
subtraction on natural numbers.

Definition 4.7 Given a Skolem theory S the category Pred(S) of predicates
has as

• Ob(Pred(S)): S-morphisms P : N → N such that P ∗ P = P (where ∗ is
the usual multiplication between natural numbers);

• Hom(P,Q): S-morphisms f : N → N such that P ≤ Q · f and two such
S-morphisms f : N → N and g : N → N are equal iff P ∗ f = P ∗ g.

Note that, if Pred(S) is embedded in the usual category Sets of classical ZFC-
sets, then we get a category having subsets of the set of natural numbers as
objects, because a subset is characterized by the elements with value 1 through
a predicate P (that is its characteristic function), and equivalence classes of
functions mapping a subset to the codomain subset as morphisms. Finally,
two maps are considered equal if they are equal on the domain subset. This
category of predicates has nice properties as Joyal proved:

Proposition 4.8 The category Pred(S) of a Skolem theory S is regular with
parameterized list objects and stable disjoint coproducts. Moreover, there is an
epi-mono factorization where epimorphisms split.

The key point to prove the existence of list-objects is proposition 4.6. Now,
we are ready to perform the last step, namely to make the exact completion
on a regular category (see for example [CV98] and loc. cit.).
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Definition 4.9 We call Joyal-arithmetic universe the exact completion (Pred(S))ex.
Note that by the presence of split epimorphisms we can define the morphisms
in (Pred(S))ex as morphisms of Pred(S) preserving the equivalence relations:

Definition 4.10 The category (Pred(S))ex has

• Ob(Pred(S))ex: (X,R) where X is an object of Pred(S) and R is an equiv-
alence relation on X;

• Hom((X,R), (Y, S)): Pred(S)-morphisms preserving the equivalence rela-
tions.

Finally, Joyal also proved that

Proposition 4.11 (Pred(S))ex is a list-arithmetic pretopos 2 .

Definition 4.12 We call Ain the initial arithmetic universe (Pred(Sin))ex
where Sin is the initial Skolem category defined above.

Indeed, it can be easily shown that Ain is an initial arithmetic universe
among Joyal-arithmetic universes with functors induced from functors be-
tween Skolem theories with a fixed choice of their structure preserving such
a structure strictly. Note that Pred(Sin) turns out to be the category of
primitive recursive predicates.

5 The category of primitive recursive predicates via

type theory

Here we outline how the category of primitive recursive predicates is equivalent
to an initial arithmetic lextensive category and also to an initial regular locos.

Throughout the paper when we talk about initial categories, for example
among arithmetic lextensive categories, we refer to the category of arithmetic
lextensive categories with a fixed choice of their structure and functors preserv-
ing such a structure strictly. Instead, when we talk about functors preserving
some structure we mean preservation up to isomorphisms.

First, we recall what are the dependent type theories we use to build our
initial categories:

Definition 5.1 Tad is the dependent type theory equipped with the terminal
type, extensional equality types, indexed sum types, disjoint sum types and
the natural numbers type List(�) as those present in the calculus Au in
section 3.

Definition 5.2 Trl is the dependent type theory obtained by extending Tad

with quotient types of the kind A/� 3 and list types as those present in the

2 Actually from [Wra85,Mor96] we only read that (Pred(S))ex is a pretopos with list-
objects but we noticed that they are also parameterized.
3 After Steve Awodey’s talk (presenting a joint work with Andrej Bauer) at the Mittag-
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calculus Au in section 3.

Definition 5.3 Uad is the syntactic category having the closed types of Tad as
objects and the proof-terms b(x) ∈ B [x ∈ A] derivable in Tad as morphisms.

Definition 5.4 Url is the syntactic category having the closed types of Trl as
objects and the proof-terms b(x) ∈ B [x ∈ A] derivable in Trl as morphisms.

With the technique used in [Mai01] we can prove

Theorem 5.5 Tad provides the internal type theory of arithmetic lextensive
categories and Uad is an initial arithmetic lextensive category.

Theorem 5.6 Trl provides the internal type theory of regular locoi and Url is
an initial regular locos.

The proof of these theorems consists in providing a sort of bi-equivalence
between the category of arithmetic lextensive categories (regular locoi) with a
fixed choice of their structure and equipped with strict functors, i.e. functors
preserving the considered categorical structure strictly, and the category of
theories based on Tad (Trl). In particular, Uad (Url) has Tad (Trl) as its internal
language and it is initial with respect to strict functors.

Now, we are ready to prove that

Theorem 5.7 The syntactic categories Uad and Url are equivalent to Pred(Sin).

Proof. First, we define two embeddings Ead : Pred(Sin) −→ Uad and Erl :
Pred(Sin) −→ Url both as follows:

• Ead(P ) ≡ Σx∈NP (x) =N 1

• Ead(f) ≡ < π1(z), eq >∈ Σx∈NQ(x) =N 1 [z ∈ Σx∈NP (x) =N 1]
for f : P → Q in Pred(Sin).
The definition of Erl is analogous.

Then, we can prove that these embeddings have nice properties:

Lemma 5.8 The embedding Ead is an arithmetic lextensive functor and Erl is
a regular locos functor.

Moreover, since by proposition 4.8 we know that Pred(Sin) is a regular locos,
then there exist an arithmetic lextensive functor and a regular locos functor,
respectively Jad : Uad −→ Pred(Sin) and Jrl : Url −→ Pred(Sin), defined on
objects and morphisms of Uad and Url through the interpretations of Tad and
Trl into Pred(Sin), that are in turn defined as in the section about the free
list-arithmetic pretopos in [Mai99], in a way as Jad · Ead = id and Jrl · Erl = id.
Then, we can show that, being Uad and Url an initial arithmetic lextensive
category and an initial regular locos respectively, Ead · Jad : Uad −→ Uad and
Erl · Jrl : Url −→ Url are naturally isomorphic to the corresponding identity
functors and hence we conclude.

Leffler Institute I realized that in my formulation of the internal type theory of regular
categories A/Ker(f) for a term f can be derived from A/�.
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Corollary 5.9 The initial arithmetic lextensive category Uad is equivalent to
the initial regular locos Url.

From this corollary we conclude that in an initial arithmetic lextensive cate-
gory stable images and lists are definable. But, since the equivalence is built
through the interpretation functors, defined in turn by induction on type and
term constructors, we can not say to be able to construct images and lists
internally to any arithmetic lextensive category.

Remark 5.10 At a first glance, we could have thought of Pred(Sin) as an
initial Skolem category closed under equalizers. But, we can not prove this,
since, for example, the embedding of Pred(Sin) in an initial finitely complete
category does not preserve the terminal object of Pred(Sin) unless we know
that natural numbers can be decomposed disjointly in zero plus strictly posi-
tive numbers, namely unless we have disjoint finite coproducts.

6 The initial arithmetic universe via type theory

Here, we outline how the construction of an initial arithmetic universe is equiv-
alent to that of an initial list-arithmetic pretopos and also of an initial arith-
metic pretopos. To accomplish our task, first we recall some facts about
internal type theories and related initial syntactic categories.

Definition 6.1 Tpn is the fragment of the dependent type theory Au in sec-
tion 3 without list types but with the natural numbers type List(�).

Definition 6.2 Upn is the syntactic category having the closed types of Tpn as
objects and the proof-terms b(x) ∈ B [x ∈ A] derivable in Tpn as morphisms.

Definition 6.3 UAu is the syntactic category having the closed types of Au
as objects and the proof-terms b(x) ∈ B [x ∈ A] derivable in Au in section 3
as morphisms.

With the technique used in [Mai99,Mai01] analogously to theorem’s. 5.5 5.6
we can prove

Theorem 6.4 Tpn provides the internal type theory of arithmetic pretopoi and
Upn is an initial arithmetic pretopos.

Theorem 6.5 Au provides the internal type theory of list-arithmetic pretopoi
and UAu is an initial list-arithmetic pretopos.

Moreover, we prove

Theorem 6.6 The syntactic category UAu is equivalent to Ain.

Proof. Analogously to the embeddings in theorem 5.7 we define
Eau : Pred(Sin) −→ UAu as follows:

• Eau(P ) ≡ Σx∈NP (x) =N 1

• Eau(f) ≡ < π1(z), eq >∈ Σx∈NQ(x) =N 1 [z ∈ Σx∈NP (x) =N 1]
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for f : P → Q in Pred(Sin).

and we can prove that

Lemma 6.7 The embedding Eau is regular and preserves disjoint coproducts
and parameterized list objects.

Therefore, by the above lemma, since Ain is the exact completion of Pred(Sin),

by its universal property there exists a functor Êau : Ain −→ UAu [CV98].

Moreover, Êau preserves all the list-arithmetic pretopos structure since it is an
exact functor by the property of exact completion and also:

Lemma 6.8 The functor Êau : Ain −→ UAu preserves disjoint finite coprod-
ucts and list objects.

Then, since by proposition 4.11 we know that Ain is a list-arithmetic pretopos,
there exists a list-arithmetic functor Jau : UAu −→ Ain defined on objects and
morphisms of UAu through the interpretation of Au into Ain, that is in turn
defined as in the section about the free list-arithmetic pretopos in [Mai99].
Then, being UAu an initial list-arithmetic pretopos and by the property of
exact completion we conclude that these functors establish an equivalence of
categories.

From the equivalence between the initial arithmetic universeAin and the initial
list-arithmetic pretopos UAu we deduce that the internal language of the initial
arithmetic universe Ain is the typed calculus Au. Analogously, we can prove
that

Theorem 6.9 The syntactic category Upn is equivalent to Ain.

Corollary 6.10 The initial list-arithmetic pretopos UAu is equivalent to the
initial arithmetic pretopos Upn.

In other words, we can prove that parameterized list objects are definable in
an initial arithmetic pretopos. But it is worth noticing also here, as after
corollary 5.9, that because of the nature of the above equivalence, where one
of the functors is defined by induction on type and term constructors, we can
not directly deduce that any arithmetic pretopos is list-arithmetic.

7 Conclusions.

As the initial arithmetic universe Ain is equivalent to the initial list-arithmetic
pretopos UAu, we propose the notion of list-arithmetic pretopos as the general
definition of arithmetic universe. Of course, being Ain equivalent to an initial
arithmetic pretopos as well, we could also choose the notion of arithmetic
pretopos for that. But we do not make this choice because, while we are able
to define free internal categories and diagrams (see for example [Jac99] for
the definitions) in any list-arithmetic pretopos [Mai99], as Joyal did in any
of his arithmetic universes, we doubt that this is possible in any arithmetic
pretopos.
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theorems. Unpublished manuscript, 1985.

286


