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Abstract. This paper describes the categorical semantics of a system
of mixed intuitionistic and linear type theory (ILT). ILT was proposed
by G. Plotkin and also independently by P. Wadler. The logic associ-
ated with ILT is obtained as a combination of intuitionistic logic with
intuitionistic linear logic, and can be embedded in Barber and Plotkin’s
Dual Intuitionistic Linear Logic (DILL). However, unlike DILL, the logic
for ILT lacks an explicit modality ! that translates intuitionistic proofs
into linear ones. So while the semantics of DILL can be given in terms
of monoidal adjunctions between symmetric monoidal closed categories
and cartesian closed categories, the semantics of ILT is better presented
via fibrations. These interpret double contexts, which cannot be reduced
to linear ones. In order to interpret the intuitionistic and linear iden-
tity axioms acting on the same type we need fibrations satisfying the
comprehension axiom.

1 Introduction

This paper arises from the need to fill a gap in the conceptual development
of the xSLAM project. The xSLAM project is concerned with the design and
implementation of abstract machines based on linear logic. For xSLAM we ini-
tially developed a linear λ-calculus by adding explicit substitutions to Barber
and Plotkin’s DILL [GdPR00]. We then considered the categorical models one
obtains for both intuitionistic and linear logic with explicit substitutions on the
style of Abadi et al. [GdPR99].

The DILL system [BP97] distinguishes between intuitionistic and linear vari-
ables: linear variables are used once during evaluation, intuitionistic ones arbi-
trarily often. This is a key feature for the optimisation which linear logic provides
for the implementation of functional programming languages. But in DILL the
intuitionistic implication is defined in terms of linear implication and the modal-
ity ! via the standard Girard translation, namely A→ B = (!A)−◦B. This is not
appropriate for implementations of functional languages. The reason is that in
the translation of the simply-typed λ-calculus into DILL !’s occur only in types
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!A−◦B, and the linearity is in effect not used. Indeed, a function of this type is
applied only to arguments with no free linear variables, and during the execu-
tion of the program these arguments will be substituted only for intuitionistic
variables. Finally we want to detect immediately when a function is intuitionis-
tic. Hence it is more appropriate to have both → and −◦ as primitive operations
and disregard !. This leads to consideration of the mixed intuitionistic and linear
type theory (henceforth named ILT) described by Plotkin [Plo93] and Wadler
[Wad90] obtained from DILL by (i) adding intuitionistic implication, and (ii)
removing the modality ! from the type operators.

The syntactic behaviour of ILT is very similar to that of DILL. But when it
comes to semantics, the situation is a little more complicated. It is not obvious
how to restrict the idea of a symmetric monoidal adjunction, so that we capture
all the behaviour of intuitionistic implication, without at the same time, import-
ing all the machinery for modelling the modality !. But if we step back and look
at our models for calculi of explicit substitution, we can see that modelling intu-
itionistic logic using fibrations can be combined with modelling (intuitionistic)
linear logic using symmetric monoidal closed categories, and in a way that does
not bring in all the machinery for !.

The expert reader will note that the fibration modelling of intuitionistic logic
is only necessary for dealing with predicates and/or dependent types; and this
paper is only concerned with propositional intuitionistic logic. However, fibration
modelling does provide a means of adding linear type theory to intuitionistic type
theory in the required way. This is the main result we establish in this paper.

The paper is organised as follows. In the first section we describe the calculus
ILT. In the next section we define IL-indexed categories and prove soundness
and completeness of ILT with respect to them. In the third section we show that
ILT is the internal language of (a suitable restriction of) IL-indexed categories.
Finally in the fourth section we add exponentials to these IL-indexed categories
and we prove the equivalence between them and the models given by a symmetric
monoidal adjunction between a symmetric monoidal closed category with finite
products and a cartesian closed category that is the co-Kleisli category with
respect to the comonad induced by the adjunction.

2 Intuitionistic and Linear Type Theory

The system of mixed intuitionistic and linear logic that we model in this paper,
to be called Intuitionistic and Linear Type Theory or ILT for short, borrows
from Girard’s Logic of Unity the elegant idea of separating assumptions into two
classes: intuitionistic, which can be freely duplicated (shared) or discarded (ig-
nored); and linear, which are constrained to be used exactly once. Syntactically,
this strict separation is achieved by maintaining judgements with double-sided
(“dual”) contexts Γ | ∆ ` A, where, as a convention, Γ and ∆ contain non-linear
(intuitionistic) and linear assumptions, respectively. Another distinguishing fea-
ture of ILT is that it has both intuitionistic (A → B) and linear implications
(A−◦B), as well as additive (A&B) and multiplicative (A⊗B) conjunctions with
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their units (1 and I), but no modality (or exponential) types !A. This system
should not be confused with BI the logic of bunched implications proposed by
O’Hearn and Pym [OP99], whose propositional fragment has the same operators,
but with very different behaviour.

The system ILT closest relative is Barber and Plotkin’s DILL [BP97] and
most of its syntactic properties can be easily derived from DILL’s properties.
But semantics is a different story: DILL’s rather elegant semantics in terms of
a monoidal adjunction between a symmetric monoidal closed category L and
a cartesian closed category C is not suitable for ILT, as ILT has no terms (or
morphisms) corresponding to the modality per se. For instance, ILT has no term
corresponding to id: !A→!A. This section describes briefly the system ILT.

The set of types we shall work with is

A ::= G | A−◦B | A→ B | A⊗B | I | A&B | T

The syntax of preterms is defined inductively by

M,N ::= a | x | λaA.M | λxA.M |M iN |MlN
|M ⊗N | letM be a⊗ b in N | (M,N) | Fst(M) | Snd(M)
| ◦ | • | letM be • in N

where a and x range over countable sets of linear and intuitionistic variables,
respectively. This distinction of variables is not strictly necessary, but we adopt
it here to aid legibility. Because the two let-expressions behave so similarly we
sometimes write let M be p in N to cover both, where p is either a ⊗ b or •.
The typing rules for ILT are standard, see Table 1.

We have three kinds of equations, β and η-equations and commuting conver-
sions. The last kind of equations, familiar in the setting of linear lambda-calculi,
arise due to the form of η-rules for the tensor product and its unit. For the pre-
sentation of these equations we use contexts-with-holes, written C[ ]. They are
given by the grammar

C[ ] ::= | λaA.C[ ] | λxA.C[ ] | C[ ]iM | MiC[ ] | C[ ]lM | MlC[ ]
| C[ ]⊗M | M⊗C[ ] | let C[ ] be p in N | letM be p in C[ ]

Note that this definition implies that there is exactly one occurrence of the
symbol in a context-with-hole C[ ]. The term C[M ] denotes the replacement
of in C[ ] by M with the possible capture of free variables. This capture is the
difference between the replacement of and substitution for a free variable: If
C[ ] is the context-with-hole (λaA. ), then C[a] = λaA.a, whereas (λaA.b)[a/b] =
λcA.a. The equations for ILT are given in Table 2.

Note that in ILT linear variables can move across the divisor of the context
as expressed in the following lemma.

Lemma 1 For every ILT derivable judgement Γ | a1 : A1, . . . , an : An, Σ `M :
B we can derive Γ, x1 : A1, . . . , xn : An | Σ `M [x1/a1, . . . xn/an] : B.
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Γ | a : A ` a : A Γ, x : A | ` x : A

Γ | ∆, a : A ` M : B

Γ | ∆ ` λaA.M : A−◦B
Γ | ∆1 ` M : A−◦B Γ | ∆2 ` N : A

Γ | ∆ ` M lN : B

Γ, x : A | ∆ ` M : B

Γ | ∆ ` λxA.M : A → B

Γ | ∆ ` M : A → B Γ | ` N : A

Γ | ∆ ` M iN : B

Γ | ∆1 ` M : A Γ | ∆2 ` N : B

Γ | ∆ ` M ⊗N : A⊗B

Γ | ∆1 ` M : A⊗B Γ | a : A, b : B, ∆2 ` N : C

Γ | ∆ ` let M be a⊗ b in N : B

Γ | ∆ ` M : A Γ | ∆ ` N : B

Γ | ∆ ` (M, N) : A&B

Γ | ∆ ` M : A&B

Γ | ∆ ` Fst(M) : A

Γ | ∆ ` M : A&B

Γ | ∆ ` Snd(M) : B

Γ | ∅ ` • : I

Γ | ∆1 ` M : I Γ | ∆2 ` N : C

Γ | ∆ ` let M be • in N : C

Γ | ∆ ` ◦ : 1

Where applicable ∆1, ∆2 are disjoint and ∆ is a permutation of ∆1, ∆2.

Table 1. The typing rules of ILT

β-equations:

(λx: A.M)iN = M [N/x] (λa:A.M)lN = M [N/a]
let M⊗N be a⊗b in R = R[M/a, N/b] let • be • in M = M

Fst(M, N) = M Snd(M, N) = N

η-equations:

λa : A.Mla = M λx : A.Mix = M if x 6∈ FV (M)
let a⊗b be M in a⊗b = M let • be M in • = M if Γ |∆ ` M : 1

(Fst(M), Snd(M)) = M ◦ = M

Commuting conversions:

let M be ∗ in C[N ] = C[let M be ∗ in N ]
let M be a⊗b in C[N ] = C[let M be a⊗b in N ]

Table 2. The equations of ILT
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3 Categorical Semantics of ILT

The basis for our categorical model of ILT is Ehrhard’s notion of a D-category
for modelling dependent types [Ehr88], which goes back to Lawvere’s idea of hy-
perdoctrines satisfying the comprehension axiom [Law70]. Hyperdoctrines model
many-sorted predicative logic, where predicates are indexed over sorts or sets. A
suitable adjunction allows the interpretation of the comprehension axiom, that
is the creation of a subset defined by a predicate indexed over a set. Ehrhard
generalized this idea in terms of fibrations introducing D-categories to interpret
the Calculus of Constructions [Ehr88]. Here we adopt D-categories to model
ILT. The fact of no having type dependencies will be clearly expressed by some
restrictions that we will put on the particular D-categories we use to prove that
ILT is their internal language.

In order to make more explicit the structure we need to interpret our calculus
we recall the definition of D-categories in terms of indexed categories, which are
categorically equivalent to fibrations. A D-category is a split indexed category
E:Bop→Cat1 where the base category B models contexts and the fibre over an
object Γ models terms whose free variables are contained in the context modelled
in Γ . We require both B and each fibre E(Γ ), for Γ in B, to have a terminal object
>. We also require that for every f morphism in the base categoryE(f) preserves
the terminal object. The fibration associated to this indexed category is the
projecting functor p : Gr(E)→B, where Gr(E) is the Grothendieck completion
(see also page 107 of [Jac99]). We recall that the objects of the Grothendieck
completion of E are the couples (Γ,A) where Γ is an object of B and A is an
object of E(Γ ). The morphisms of Gr(E) between (Γ,A) and (∆,C) are couples
(f, h) where f : Γ → ∆ is a morphism in B and h : A→ E(f)(C) is a morphism
in E(Γ ). For every object Γ in B the category E(Γ ) is said the fibre of p under
the object Γ .

The key construction of a D-category to interpret contexts and substitutions
is the requirement called the “comprehension property” i.e. the requirement that
the terminal object functor T :B→Gr(E) has got a right adjoint G:Gr(E)→B.
Recall that the functor T is defined as follows: for every object Γ in the base
category B, T (Γ ) ≡ (Γ,>) and for every morphism f , T (f) ≡ (f, Id). Actually
T is an embedding functor of the base category B into the fibres of E. The
right adjoint to T assures that every object, which for example interprets a
sequent Γ ` A in the fibre over the object interpreting the context Γ , can be
put in correspondence to a context, in the example Γ,A, in the base category.
Moreover by T a morphism in the fibre corresponds to a morphism in the base
category and this allows to model substitution by the re-indexing functor.

The idea for the model of ILT is to modify this setting to capture the separa-
tion between intuitionistic and linear variables in ILT (with their corresponding
substitutions) and simultaneously to model the two identity axioms, i.e. the as-
sumptions of intuitionistic and linear variables, acting on the same types. The

1 Note that from now on when we refer to indexed categories we mean split indexed
categories, i.e. the pseudofunctor towards Cat is actually a functor.
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base category B models only the intuitionistic contexts of ILT, i.e., objects in B
model contexts (Γ | ). Each fibre over an object in B modelling a context Γ |
models terms Γ | ∆ ` M :A for any context ∆. We require a terminal object
in B. The fibres are now symmetric monoidal closed categories with finite prod-
ucts (SMCP categories) and model the linear constructions of ILT. The functors
between the fibres have to preserve the SMCP structure.

Since we no longer require each fibre to have a terminal object, we replace
the right adjoint to the terminal object functor T by a right adjoint G to the
unit functor U :B→Gr(E), assigning to each object Γ in B the object (Γ, I).
This right-adjoint G is the comprehension functor. In this way we obtain that
morphisms in the base correspond to morphisms with domain I in the fibre, i.e.,
terms with no free linear variables.

Now we can model substitution for intuitionistic variables by reindexing along
morphisms in the base as usual: this adjunction U a G enforces the restriction
that only terms with no free linear variables can be substituted for intuitionistic
variables. Intuitionistic function spaces are modelled in the standard way by the
right adjoint to weakening.

Definition 2 Let B be a category with a terminal object >. An IL-indexed cat-
egory is a functor E:Bop→Cat such that the following conditions are satisfied.
(Note that we write f ∗ (−) for the application of the functor E to f , for any
morphism f in B.)

(i) E(Γ ) is a symmetric monoidal category with finite products, i.e. a SMCP
category, for each object Γ of B. Moreover for each morphism f in B, the
functor f∗ preserves this SMCP structure on the nose, i.e. it is a SMCP
functor.
For every object Γ in B, we denote the terminal object of E(Γ ) by >, the
unique map towards > from every object C of E(Γ ) by terC , the product of
two objects A and B by A×B, the projections by π1 and π2 and the unique
map from A to B × C given two maps t and s from A to B and A to C
respectively by < t, s >.

(ii) For each object Γ of B the functor U :B→Gr(E), given by U(Γ ) ≡ (Γ, I)
and U(f) ≡ (f, Id) has a right adjoint G:Gr(E)→B. The object G(Γ,A) is
abbreviated Γ.A in the sequel and the morphism G(f, h) is written f.h.
Furthermore (Fst, Snd): (Γ.A, I)→(Γ,A) denotes the counit of this adjunc-
tion. The natural isomorphism between HomGr(E)((−, I), (−, A)) and
HomB(−,−.A) is denoted by [−,−].

(iii) For every object Γ of B and A of E(Γ ), the functor Fst∗A:E(Γ )→E(Γ.A)
has a right adjoint ΠA:E(Γ.A)→E(Γ ). We will write in the sequel CurI for
the natural isomorphism between HomE(Γ.A)(Fst∗A(B), C) and HomE(Γ )(B,
ΠA(C)) and AppI for its counit.

(iv) The Beck-Chevalley-condition for the adjunctions Fst∗A ` ΠA is satisfied in
the strict sense, i.e. the equation f∗(CurIA(t)) = CurIA((f.Id)∗(t)) holds for
every f :∆→Γ , A ∈ E(Γ ), B ∈ E(Γ.A).

Next, we define the interpretation of the ILT-calculus, which is the minimal
ILT-theory corresponding to the notion of IL-indexed category.
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Definition 3 Given any IL-indexed category E:Bop→Cat we define a map [[ ]]
from types to objects in E(>), from intuitionistic contexts Γ to objects in B,
from linear contexts ∆ to objects in E(>), from double contexts to objects of
suitable fibres and from terms Γ | ∆ ` M :A to morphisms [[M ]]: [[∆]]→[[A]] in
E([[Γ ]]) by induction over the structure:

(i) On intuitionistic and linear contexts respectively:

[[ ]] = > [[Γ, x:A]] = [[Γ ]].[[A]] [[ ]] = I [[∆, a:A]] = [[∆]]⊗[[A]]

where I is the tensor-unit in the category E(>) and also [[∆]] and [[A]] are
objects of E(>).
On double contexts: [[Γ | ∆]] = Fst∗[[Γ ]]([[∆]]) because [[∆]] being a linear
context is an object of E(>).

(ii) On types:

[[A→ B]] = Π[[A]].[[B]] [[A−◦B]] = [[A]]−◦[[B]] [[A⊗B]] = [[A]]⊗[[B]]
[[I]] = I [[A&B]] = [[A]] × [[B]] [[1]] = >

(iii) On terms (assuming that Γ = x1:A1, . . . , xn:An):

[[Γ, x:A | ` x:A]] = Snd [[Γ |a:A ` a:A]] = Id
[[Γ `M :A]] = t

[[Γ, x:B `M :A]] = Fst ∗ t [[Γ | ∆ ` ◦ : 1]] = ter[[∆]]

[[Γ, x:A | ∆ `M :B]]= t
[[Γ | ∆ ` λxA.M :A→B]]=CurI(t)

[[Γ | ∆ `M :A→B]]= t [[Γ | ` N :A]]=s
[[Γ | ∆ `MIN :B]]=〈Id, s〉 ∗ (AppI · t)

[[Γ | ∆ `M :A]] = t [[Γ | ∆ ` N :B]] = s
[[Γ | ∆ ` (M,N):A×B]] =< t, s >

[[Γ | ∆ `M :A×B]] = t
[[Γ | ∆ ` Fst(M):A]] = π1(t)

[[Γ | ∆ `M :A×B]] = t
[[Γ | ∆ ` Snd(M):B]] = π2(t)

[[Γ | ∆1 `M :A]] = t [[Γ | ∆2 ` N :B]] = s
[[Γ | ∆ `M⊗N :A⊗B]] = (t⊗ s) · π

[[Γ | ∆1 `M :A×B]] = m [[Γ | ∆2, a:A, b:B ` N :C]] = n
[[Γ | ∆ ` letM be a⊗ b in N :C]] = n · (Id⊗m) · π

[[Γ | ∅ ` • : I]] = Id
[[Γ | ∆1 `M : I]] = m [[Γ | ∆2 ` N :C]] = n

[[Γ | ∆ ` letM be • in N :C]] = n · ψ · (Id⊗m) · π

where ψ is one part of the isomorphism between [[∆2]] and [[∆2]]⊗ I

[[Γ | ∆, a:A `M :B]] = t

[[Γ | ∆ ` λaA.M :A−◦B]] = CurL(t)

where CurL is the corresponding natural transformation for the adjunction
between (−)⊗[[A]] and [[A]]−◦(−) in E([[Γ ]])
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[[Γ | ∆1 `M :A−◦B]] = t [[Γ | ∆2 ` N :A]] = s
[[Γ | ∆ `MLN :B]] = AppL · (t⊗s) · π

where AppL is the counit of the right adjoint to tensor and π is the canonical
morphism from [[∆]] to [[∆1]]⊗[[∆2]].

Next, we turn to the soundness of this categorical semantics. As always, the
key lemmata concern substitution. In particular they are needed to prove the
validity of introduction and elimination rules regarding intuitionistic implication
and of all the conversion rules involving substitution. As we have two kinds of
substitution, we have to show two substitution lemmata, namely for substitution
of intuitionistic and linear variables.

Lemma 4 (i) Assume [[Γ, x:A | ∆ `M :B]] = t and [[Γ | ` N :A]] = s. Then
[[Γ | ∆ `M [N/x]:B]] = 〈Id, s〉 ∗ t.

(ii) Assume [[Γ | ∆1, a:A ` M :B]] = t and [[Γ | ∆2 ` N :A]] = s. Then
[[Γ | ∆ ` M [N/a]:B]] = t · (Id⊗s) · π, where π is the canonical morphism
from [[∆]] to [[∆1⊗∆2]].

Proof. Induction over the structure of M .

The soundness proof is now routine.

Theorem 5 Given an IL- indexed category E:Bop → Cat under the above in-
terpretation [[]] the following facts hold.

(i) Assume Γ | ∆ ` M :A. Then [[Γ | ∆ ` M :A]] is a morphism from [[∆]] to
[[A]] in E([[Γ ]]);

(ii) Assume Γ | ∆ `M = N :A. Then [[Γ | ∆ `M :A]] = [[Γ | ∆ ` N :A]].

Now we turn to the completeness theorem.

Theorem 6 If [[Γ | ∆ ` M :A]] = [[Γ | ∆ ` N :A]] where [[]] is the above
defined interpretation, for every IL- indexed category E:Bop → Cat and for
every derived sequents Γ | ∆ ` M :A and Γ | ∆ ` N :A then we can derive in
ILT Γ | ∆ `M = N :A.

Proof. As usual the proof is based on the construction of a term model out of
ILT. Since the interpretation of ILT in the syntactic model turns out to be the
identity then the completeness immediately follows.
First recall that in order to prove that two functors U : B → Gr(E) and
G : Gr(E) → B define a right adjunction U a G, we give two data: firstly,
a natural transformation αD : Hom(U(−), D)→Hom(−, G(D)) for each ob-
ject D in Gr(E), and secondly the co-unit, that is a natural transformation
ε : U ·G→1 such that for every object C in B and every f in Hom(U(C), D) we
have εD · U(αD(f)) = f .

Now we proceed by defining the syntactic IL-indexed category starting from
an ILT-theory, based on the ILT-calculus and possibly some ground types with
the corresponding terms.
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Definition 7 Given an ILT-theory T with any set of ground types G we define
the syntactic IL- indexed category F (T ) in the following way.
The base category:

– Objects of the base category B(T ) are lists of types (A1, . . . , An). The termi-
nal object is the empty context [ ].

– Morphisms from (A1, . . . , An) to (B1, . . . , Bm) are lists of terms (M1, . . . ,
Mm) such that x1:A1, . . . , xn:An | ` Mi:Bi for some intuitionistic vari-
ables x1, . . . , xn. We will write A for (A1, . . . , An) whenever convenient.

– Two morphisms (M1, . . . ,Mm) and (N1, . . . , Nm) from (A1, . . . , An) to
(B1, . . . , Bm) supposing that x1:A1, . . . , xn:An | ` Mi:Bi and y1:A1,
. . . , yn:An | ` Ni:Bi are equal if we derive x1:A1, . . . , xn:An ` Mi =
Ni[x/y]:Bi. We will write (M) for (M1, . . . ,Mm) whenever convenient.

– The identity morphism on (A) is the list (x);
– Composition is given by intuitionistic substitution: given morphisms

(M1, . . . ,
Mm) from (A1, . . . , An) to (B1, . . . , Bm) with x1:A1, . . . , xn:An | `Mi:Bi

and (N1, . . . , Nn) from (C1, . . . , Ck) to A such that y1:C1, . . . , yk:Ck | `
Nj :Aj, we define M ·N to be (M1[N/x], . . . ,Mm[N/x]).

The fibres:

– The objects of the fibres of E(A) are types A.
– A morphism from A to B in E(A) is a term M such that x1:A1, . . . , xn:An |
a:A ` M :B. Two morphisms M and N from A to B in E(A) such that
x1:A1, . . . , xn:An | a:A ` M :B and y1:A1, . . . , yn:An | b:A ` N :B are
equal if we derive x: A | a:A `M = N [x/y, a/b]:B.

– For any morphism M from A to B, the functor E(M ) is the identity on
the objects and transforms any morphism M with y: B | a:A ` M :B to
M [M/y].

The structure in a fibre is given in the following.

– The tensor product of two objects A and B in the fibre E(A) is the type
A⊗B. The tensor product of two morphisms M and N in E(A) is the
term let a⊗b be z in M⊗N if x1:A1, . . . , xn:An | a:A ` M :B and
y1:A1, . . . , yn:An | b:A ` N :B.

– The unit of the category E(A) is given by the type I.
– The product and terminal object in E(A) are given by the products and the

type 1 in the syntax in the standard way.
– The right adjoint to the tensor product in E(A) is given by the natural trans-

formation mapping the morphism M from C⊗A to B to λa:A.M [c⊗a/b]
where x: A | b:C⊗A `M :B; the co-unit is the natural transformation whose
component at the object B is given by the morphism let a⊗b be c in ab with
x: A | c:A−◦B⊗A ` let a⊗b be c in ab:B.
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The comprehension property:

– The right adjoint G to the functor U is given by

G(((A1, . . . An), A)) = (A1, . . . , An, A)
G(((M1, . . .Mn),M)) = (M1, . . . ,Mn,M [x/a])

if x: A | a:A ` M :B, since by lemma 1 we can derive x: A, x:A | `
M [x/a]:B. For any morphism ((M1, . . .Mn),M) with x: A | a: I ` M :B
the natural isomorphism [M ,M ] is (M1, . . . ,Mn,M [•/a]). The co-unit for
the object ((A1, . . . , An), A) is the morphism ((x1, . . . , xn), let ∗ be a in x).

The intuitionistic function space:

– The right adjoint to Fst∗:E(A)→E((A, A)) is the functor ΠA(−):E((A,
A))→E(A) which maps every object C of E((A, A)) to A → C and ev-
ery morphism M in E((A, A)) to λxA.M . The natural transformation CurI

maps the morphism M from C to B in E(A, A) to λx:A.M if x: A, x:A |
` M :B; the co-unit is the natural transformation whose component at the

object B is given by the term ax where x: A, x:A | a:A→ B ` ax:B.

Note the subtle difference in the definition of the base category and the fibre:
we define objects in the base category to be lists of types, whereas objects in the
fibre are singleton types. Having products in the calculus, we could have chosen
a uniform definition and defined the objects of B to be types rather than lists of
types. However, this means we would need to use projections in the syntax to
access the components of the product, which is rather cumbersome. In contrast
we have no choice for the definition of the fibres but to use types as objects. The
reason is that with the other choice there is no way of turning the fibre into a
symmetric monoidal closed category, as there is no way of defining C−◦A⊗B in
terms of C−◦A and C−◦B. This is not problem for a cartesian closed category,
as in this case we have C → A×B ≡ (C → A)× (C → B).

The key part of the completeness theorem is the following proposition, whose
proof is a routine verification:

Proposition 8 For any ILT-theory T the syntactic IL-indexed category F (T )
is an IL-indexed category.

The syntactic IL-indexed category allow us to prove completeness for ILT with
respect to IL-indexed categories.

4 ILT as an Internal Language

Starting from the above soundness and completeness theorems we want to see
if ILT is actually an internal language of IL-indexed categories. To this purpose
we define the following categories TH(ILT ) and IL-ind.
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Definition 9 The objects of TH(ILT ) are the ILT-theories, i.e. type theories
whose inference rules include the ILT ones. The morphisms are translations that
send types to types so as to preserve I,>,⊗,&,−◦,→. They send terms to terms
so as to preserve the introduction and elimination constructors corresponding to
the above types and they send intuitionistic (linear) variables to intuitionistic
(linear) variables respecting their typability such that the typability judgement
and equality between terms are preserved.

Definition 10 The objects of the category IL-ind are IL-indexed categories and
the morphisms between E:Bop → Cat and E′:B′op → Cat are given by a functor
H : B → B′ preserving the terminal object and a natural transformation α :
E ⇒ E′ · H such that for every object ∆ in B α∆ : E(∆) → E′(H(∆)) is
a SMCP-functor. Finally the comprehension adjunction is preserved and the
intuitionistic function spaces too as expressed by the conditions described in the
following (where we differentiate the structure of E from that one of E′ with the
prime).

1. For every object ∆ in B and A in E(∆), and for every morphism (f, t) :
(∆,A) → (Γ,C) in Gr(E) we have H(G(∆,A)) = G′(H(∆), α∆(A)) and
H(G(f, t)) = G′(H(f), α∆(t)).

2. For every (f, t) : (∆, I) → (Γ,C) H([f, t]) = [(H(f), α∆(t))]′

3. For every object ∆ in B, A in E(∆) and C in E(∆.A) and every mor-
phism f in E(∆.A) we have that α∆(ΠA(C)) = Πα∆(A)(α∆.A(C)) and
α∆(CurI(f)) = CurI

′
(α∆.A(f)).

Formally the fact that ILT is the internal language of our IL-indexed cate-
gories is proved by providing an equivalence between the category of ILT-theories
TH(ILT ) and that one of IL-indexed categories IL-ind. But we can prove the
above equivalence only if we put some restrictions on the IL-indexed categories.

Definition 11 An IL-indexed category E:Bop → Cat, is a restricted IL-indexed
category if the following conditions hold:

1. for every object ∆ ∈ Ob(B), meaning with ι∆ : ∆ → > the unique map
towards the terminal object > in B, the functor E(ι∆) : E(>) → E(∆) is
bijective on the objects;

2. the right adjoint G restricted to the fibres of > corresponding to E(>) is
bijective on the objects;

Finally we call rIL-ind the full subcategory of IL-ind whose object are restricted
IL-indexed categories.
Now we are ready to prove the following:

Proposition 12 There exist two functors L : TH(ILT ) → rIL-ind and F :
rIL-ind → TH(ILT ) that give rise to an equivalence between TH(ILT ) and
rIL-ind.
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Proof. Given an ILT-theory T we define F (T ) in an analogous way to the defi-
nition of the syntactic ILT-category in Definition 7, but we take B(T ) to be the
category whose objects are the ILT-types and whose morphisms between the
types A and C are x : A | ` c : C. Hence we define G((A,B)) ≡ A&B. We can
easily see that F (T ) is a restricted IL-indexed category.
We can obviously lift any translation to become a morphism between IL-indexed
categories. Given an IL-indexed category E:Bop → Cat we now define an ILT-
theory L(E) out of it in the following way:

Definition 13 The language of L(E) is defined as follows:

1. the types of L(E) are the objects of the fibre E(>);
2. the preterms of L(E) are the morphisms of E(∆) for every object ∆ of B;
3. The inference rules are defined as the interpretation function in the Defini-

tion 3. Note that two typed terms represented by two morphisms in the same
fibre are equal if they are equal as morphisms.

The functor L can be easily extended on the morphisms of IL-indexed categories
to define translations. What remains to be checked is that the two compositions
L · F and F ·L are naturally isomorphic to the corresponding identity functors.
For every ILT-theory T it is easy to check that L(F (T )) can be translated into
T via a natural isomorphism.

For every restricted IL-indexed category E:Bop → Cat we prove that
F (L(E)) is equivalent to E by the added requirements on IL-indexed categories.
The base category B is equivalent to the B(F (L(E))) since by the comprehension
adjunction with respect to E together with the first requirement we can build
a faithful, full and surjective functor from B(F (L(E))) towards B. The natural
transformation on each fibre is given by the projecting functors on the objects
and by the identity on morphisms. The components of this natural transfor-
mations are really isomorphisms by the second requirement on the restricted
indexed category.

Note that the internal language could be naturally enriched with explicit sub-
stitutions on terms to represent the composition in the fibre by explicit substitu-
tions of linear variables and the morphism assignment of E by explicit substitu-
tions of intuitionistic variables. But if we want to interpret explicit substitution
operations on contexts in a different way from those on terms, then we need to
add another fibration to each SMCP fibre in the style of [GdPR99], passing to
a complicated doubly indexed category.

Moreover, observe that every categorical model defined by Benton [Ben95]
given by a symmetric monoidal adjunction F ` K with F : C → S, C a cartesian
closed category, S a symmetric monoidal closed category with finite products,
provides an IL-indexed category, by taking as a base the cartesian closed category
C and as the fibre over an object C of the base the symmetric monoidal closed
category with finite products whose objects are those of S but whose morphism
from A to B are the S-morphism F (C)⊗A−◦B. The intuitionistic space between
A and B is given by the usual F (A)−◦B.
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Then, if the adjunction F ` K satisfies the requirement that C is the co-Kleisli
category with respect to the comonad induced by the adjunction and K the em-
bedding functor via the counit, the above IL-indexed category is also restricted.

5 The Connection to the Exponentials

In this section we show how to regain exponentials. We characterise exponentials
by a universal construction, namely as the left adjunction to the functor which
replaces all linear variables in a term by the intuitionistic ones.
Note that since ILT is the internal language of a restricted IL-indexed cate-
gory, its base category is actually cartesian closed so we can give the following
definition to get exponentials:

Definition 14 An rIL-indexed category with exponentials is a restricted
IL-indexed category E:Bop→Cat such that the functor I:E(>)→B given by
I(A) = >.A, I(t) = id.t has a symmetric monoidal left adjoint to form a sym-
metric monoidal adjunction. We write ! for the left adjoint.

Note that I is a monoidal functor by using the internal language. It is
also possible to define the exponentials by the condition HomE(Γ )(!∗A,B) ∼=
HomE(Γ ·A)(I, B) plus a Beck-Chevalley-condition [HS99]. It is easy to see that
these two definitions are equivalent: if you specialise the second condition to the
case Γ = > and use the adjunction between B and Gr(E) putting !(>.A) ≡!∗(A),
you obtain the first condition by the first requirement of restricted indexed cat-
egories. The converse argument goes as follows:

HomE(Γ )(!∗A,B) ∼= HomE(Γ )(I, !∗A−◦B) ∼= HomB(Γ,>.(!∗A−◦B))
∼= HomE(T )(!Γ, !∗A−◦B) ∼= HomE(T )(!Γ⊗!∗A,B) ∼= HomE(T )(!(Γ × (>.A)), B)
∼= HomB(Γ.A,>.B) ∼= HomE(Γ ·A)(I, B)

where the second-but-last equivalence uses the fact that the adjunction between
E(>) and B is monoidal.

It is instructive to examine the relation between a rIL-indexed category and
certain Benton’s linear-nonlinear categories as expressed in the following.

Definition 15 The category Benr has as objects Benton’s models F ` K
[Ben95], i.e. a symmetric monoidal adjunction between a cartesian closed cate-
gory C and a symmetric monoidal closed category with finite products S where
F : C → S, such that C is the co-Kleisli category with respect to the comonad
induced by the adjunction and K is the embedding functor via the counit. The
morphisms between F a K and F ′ ` K ′, with F : C → S and F ′ : C′ → S′,
are functors M : S → S ′ preserving the SMCP structure and the symmetric
monoidal comonad.

We recall that the category Ben of Benton’s models and couples of functors
(H1, H2) with H1 : S → S′, H2 : C → C′ commuting with the adjoints and
preserving the monoidal adjunction has Benr as a co-reflective subcategory:
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Benr

I //
Ben

R
oo

assigning to each Benton’s model the corresponding one given by the monoidal
adjunction with the co-Kleisli category. Morever note that the category Benr is
equivalent to the category Bier of Bierman’s models (see [Bie94]) with functors
preserving the relevant structure.

Definition 16 The category rIL-indE has restricted IL-indexed categories as
objects and as morphisms IL-morphisms preserving the adjunction that define
exponentials, i.e. a morphism between E:Bop → Cat and E′:B′op → Cat is a
rIL-ind morphism given by H : B → B′ and α : E ⇒ E′ · H such that it also
satisfies the following conditions:

– for every object ∆ in B, !H(∆) = α>(!∆);
– for every object ∆ in B and A in E(>) and for every morphism t : ∆ →
I(A) in B, φ′(H(t)) = α>(φ(t)), where φ′ and φ are the bijections of the
corresponding adjunctions.

Proposition 17 The category Benr of suitable Benton’s models is equivalent
to the category rIL − indE.

Proof. We already saw how every linear-nonlinear category in Benr gives rise to
an rIL-indexed category in section 4. The exponentials in Benton’s setting satisfy
the universal property for exponentials in a rIL-indexed category with exponen-
tials. Conversely, any rIL-indexed category with exponentials E : B→Cat gives
rise to a linear-nonlinear category: the symmetric monoidal closed category is
E(>), and the cartesian closed category is the base category B, which we prove
to be cartesian closed by means of its internal language ILT. Now we can ob-
serve by the internal language that the adjunction ! ` I gives rise to a symmetric
monoidal adjunction between E(>) and B. Using the equivalence between the
two definitions of exponentials given above one shows that these functors define
an equivalence.

By the above proposition we conclude that we can embed the category Ben
into the category IL-ind through the reflection into Benr, as an alternative to
the embedding into IL-ind obtained by taking the cartesian closed category of
a Benton’s model as the base category of the indexed category.

Bier
' // Benr

'
��

I //
Ben

R
oo � _

��
rIL−indE

� �
// rIL−ind

� �
// IL−ind

Here we could also prove that rIL-indE is a reflective subcategory of rIL-ind,
whose reflection is given by freely adding the ! modality to the internal language
of a rIL-indexed category and then considering the syntactic category associated.
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In the context of Benton’s model, once the SMCP category S is fixed one is
free to choose a functor F : C → S to represent exponentials. In the context of
rIL-indexed categories with exponentials the choice of F is determined by the
choice of the indexed category E, that is the substitution along intuitionistic
variables.

6 Conclusion

We have produced a sound and complete model for the type theory ILT. More-
over we showed that, with a suitable restriction, IL-categories are the internal
language for this type theory. The reasons for developing ILT are of a prag-
matic nature: in applications within linear functional programming, it seems a
good idea to have both intuitionistic and linear implication co-existing, instead
of having intuitionistic implication a derived operation, obtained from Girard’s
translation.

We hope to find a good representation in terms of one-dimensional categories
for IL-indexed categories. Maybe in order to achieve this we need to extend ILT
with a connective reflecting the logical role of the operation “|” acting on ILT-
contexts.
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