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Abstract: In the framework of the matrix model/gauge theory correspondence, we con-

sider supersymmetric U(N) gauge theory with U(1)N symmetry breaking pattern. Due to

the presence of the Veneziano–Yankielowicz effective superpotential, in order to satisfy the

F–term condition
∑

i Si = 0, we are forced to introduce additional terms in the free energy

of the corresponding matrix model with respect to the usual formulation. This leads to a

matrix model formulation with a cubic potential which is free of parameters and displays a

branched structure. In this way we naturally solve the usual problem of the identification

between dimensionful and dimensionless quantities. Furthermore, we need not introduce

the N = 1 scale by hand in the matrix model. These facts are related to remarkable co-

incidences which arise at the critical point and lead to a branched bare coupling constant.

The latter plays the role of the N = 1 and N = 2 scales tuning parameter. We then

show that a suitable rescaling leads to the correct identification of the N = 2 variables.

Finally, by means of the mentioned coincidences, we provide a direct expression for the

N = 2 prepotential, including the gravitational corrections, in terms of the free energy.

This suggests that the matrix model provides a triangulation of the istanton moduli space.

Keywords: Supersymmetric Effective Theories, String Duality.

c© SISSA/ISAS 2003 http://jhep.sissa.it/archive/papers/jhep072003015/jhep072003015.pdf

mailto:marco.matone@pd.infn.it
mailto:mazzu@sissa.it
http://jhep.sissa.it/stdsearch?keywords=Supersymmetric_Effective_Theories+String_Duality


J
H
E
P
0
7
(
2
0
0
3
)
0
1
5

Contents

1. Introduction 1

2. Branches from the symmetry of the free energy 3

2.1 Stating the problem 4

2.2 Rescaling the free energy 5

2.3 An unwanted term 6

2.4 Coincidences at the extremum 7

2.5 Recursion relations 8

3. Branching the matrix model 8

3.1 Branches in the matrix model 9

3.2 The gauge theory coupling 11

3.3 The prescription 12

3.4 SW modulus and the scales 14

4. Triangulating the instanton moduli space 15

1. Introduction

During the last year, our understanding of the nonperturbative dynamics of fourdimensio-

nal supersymmetric gauge theory has achieved a dramatic advance. Motivated by insights

from the geometric engineering perspective [1, 2], in a series of papers [3] Dijkgraaf and Vafa

have proposed that some exact holomorphic quantities of N = 1 supersymmetric gauge

theories are captured by an auxiliary matrix model. In particular, under the assumption

that the low energy F -term physics is described by a glueball superfield, they proposed

that the N = 1 effective superpotential is completely obtained by evaluating the genus

zero free energy of the related matrix model. This conjecture has been proved by two

different techniques, first by showing that the relevant superspace diagrams reduce to a

zero dimensional theory [4] and then by showing that the generalized Konishi anomaly

equations in the chiral ring of the gauge theory are equivalent to the loop equations of

the related matrix model [5]–[8]. Very recently, an apparent discrepancy has been found

between the standard field theory computation and the matrix model result, both in the

perturbative approach [9] and from the Konishi anomaly point of view [10]. The solution of

this puzzle has been proposed in [11] by investigating the ambiguity in the UV completion

of the supersymmetric gauge theories.

A strong check of the DV conjecture can be performed in the cases where the gauge

theory exact quantities are already available, e.g. by testing the well known N = 2 su-

persymmetric gauge theory, namely Seiberg-Witten theory [12]. A recent step in this
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direction [13] concerns the exploration of the way in which the well known duality struc-

ture of the SW theory appears inside the matrix model itself (see also [14, 15, 16]). The

usual matrix model formulation of the SW theory [17] poses a number of questions. Let

us briefly discuss the main issues.

The first concerns the extremization of the superpotential. The matrix model con-

jecture for the SW theory with U(N) gauge group requires the soft breaking of N = 2

to N = 1 by adding a tree level superpotential. Now, due to the usual structure of

the Veneziano-Yankielovicz effective superpotential [18], namely the appearance of the log

terms, the F -term condition for the glueball superfields Si, strictly speaking, cannot give

the expected extremum condition
∑N

i=1 Si = 0.

A second crucial point is related to the fact that the most basic feature of the SW gauge

theory, namely the duality structure, is not displayed in its matrix model counterpart. As

explained in [13], the first step in investigating such deep aspect is to consider the scaling

properties of the matrix model free energy. In particular, it was shown that the natural

variable in order to display the SW duality is a rescaled version of the glueball superfield.

Therefore, the question arise whether there exists a formulation of the conjecture that by

itself provides this additional structure.

Another important issue is related to the introduction of dimensionful quantities in the

matrix model. On one hand, in the usual formulation one introduces by hand a cutoff Λ

directly in the free energy of the matrix model, relying on a gauge theory expectation. The

presence of such a dimensionful object in the matrix model provides in turn serious troubles

in analyzing the monodromy properties of the free energy. Moreover, the identification of

the u-modulus of the SW theory and of the dynamically generated scale of the gauge

theory is performed at the critical point by comparing it to the known SW curve. In

this respect, one might ask if any information about the scales and the modulus of the

gauge theory is present even outside the critical point. Finally, in the usual approach one

identifies the dimensionless ’t Hooft couplings of the matrix model with the dimensionful

gauge theory glueball superfields. This identification then leads to some problems in the

interpretation of the extremum condition, namely introducing the concept of “eigenvalue

holes” corresponding to the unstable extrema of the matrix model potential. Actually, all

the issues considered so far will turn out to be tightly related one to each other.

In this paper we will present a first investigation of this fact, mainly stating the most

interesting results. The details of the calculations and crucial generalizations will be given

in [19]. In section 2, by addressing the problem of the minimization of the superpotential,

we will show that

F0(−S2,−S1) 6= F0(S1, S2) .
Requiring that this symmetry exactly holds, one should modify the free energy by adding

some bilinear terms such that the new free energy

F (k)
0 = F0 + δF (k)

0 ,

displays different branches that depend on the odd number 2k + 1. In this way we obtain

F (k)
0 (eiκS2, e

−iκS1) = F (k)
0 (S1, S2) ,

– 2 –
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where κ ≡ (2k+1)π. Then we will show that, in order to compare the matrix model quan-

tities with the well known SW exact results, we have to perform a rescaling transformation

on the matrix model variables [13]. In section 3 we show that the proposed free energy is

given by the matrix model with potential

W (k)(Φ) = Tr

(

1

2
e
i
2
κΦ2 +

1

3
e

3i
4
κΦ3 − 1

12

)

,

where, with respect to the usual formulation, the couplings disappear. A crucial term in

the evaluation of the matrix model is the gaussian contribution which, due to the phases,

will be given by

e−
i
4
κ(M2

1−M
2
2 ) .

This will also solve the questions related to the identification of dimensionful quantities.

We then show that, in order to reproduce the expected extremum condition, the correct

gauge theory bare coupling is

τ0 −→ τ
(k)
0 =

2

πi
ln

Λ2

Λ1
− κ

2π
,

where Λ1 and Λ2 are the dynamically generated scale of the N = 1 and N = 2 supersym-

metric gauge theories, respectively. This clearly shows the role of the bare coupling as the

N = 1 and N = 2 scales tuning parameter. Moreover, the nonperturbative relation found

in [13] implies that at the critical point

Λ2
1 = 4u ,

where u is the SW modulus. Finally, it turns out that the free energy directly evaluated

at the critical point is equal, up to a numerical factor, to the one obtained by integrating

twice the effective coupling constant evaluated at the extremum. In other words, we find

that

eF̂/Λ
6
2 =

1

Vol(U(M1))×Vol(U(M2))

∫

DΦ1DΦ2e
−W (k)(Φ1,Φ2)|M1=eiκM2≡S/Λ3

2
.

This in turn provides a direct matrix model formulation for the N = 2 instantons, in-

cluding the gravitational corrections, and shows that the matrix model provides a kind of

triangulation of the instanton moduli space.

2. Branches from the symmetry of the free energy

In this section we start investigating the structure of the planar contribution to the free

energy F0 of the matrix model. Since the matrix model formulation reproducing the CIV

prepotential [1] has the advantage of a direct test with the established results of SW theory,

we focus on this case. Nevertheless, many of the results we will find have a more general

validity as they concern the matrix model formulation by itself rather than the specific SW

realization.

– 3 –



J
H
E
P
0
7
(
2
0
0
3
)
0
1
5

Let us then start with the free energy derived in [17]. The strategy will be to analyze

its structure in relation with the exact N = 2 results it should reproduce at the extremum.

In the analysis we will use the relationship between the N = 2 u-modulus and the prepo-

tential for the gaugino condensate derived in [13]. This investigation will lead to introduce

additional terms to F0 that will help us in deriving the matrix model formulation.

2.1 Stating the problem

In our explicit computation we will consider the case of a U(2) gauge group spontaneously

broken to U(1) × U(1) with a cubic tree level superpotential. In this simple case we have

two superfields S1 and S2, that will describe the effective abelian dynamics. Let us consider

the matrix model and write down the expression of the free energy [17]

F0(Si) =
∑

j=1,2

S2j
2

ln
Sj
∆3

− (S1 + S2)
2 ln

Λ

∆
+∆6

∑

n≥3

n
∑

j=0

cn,j

(

S1
∆3

)n−j ( S2
∆3

)j

. (2.1)

It turns out that the coefficients of the expansion satisfy the property

cn,j = (−1)ncn,n−j , cn,j = (−1)j |cn,j| . (2.2)

Eq. (2.1) has been derived in [17] by the matrix model formulation, except for the term

depending on Λ that should be added by hand, as expected from the gauge theory. This

expression for F0 differs by the relative sign between the infinite sum and the first two

contributions with respect to [17] (as we will see, this fits with the implied expressions

for the N = 2 modulus u and the effective coupling constant τ). Note that besides the

second term, also the third one, as follows by cn,j = (−1)ncn,n−j, is symmetric under the

transformation S1 → −S2, S2 → −S1. However, due to the log term, we have

F0(−S2,−S1) 6= F0(S1, S2) .

On the other hand, to get the value 〈S1〉 = −〈S2〉 ≡ S at the extremum we need the exact

symmetry. The extremum corresponds to the minimum of Weff , which is usually evaluated

by setting the bare coupling constant τ0 to zero. This gives
∑

i

τij = 0 , j = 1, 2 , (2.3)

where τij =
∂2F0
∂Si∂Sj

, that is τ11 = τ22 = −τ12. On the other hand, setting S1 = −S2, in τij,

gives

τ11 − τ22 = ln

(

S1
∆3

)

− ln

(

− S1
∆3

)

= (2k + 1)πi, (2.4)

k ∈ Z, so that τ11 − τ22 does not vanish. Therefore, the symmetry of F0 under S1 → −S2,

S2 → −S1 should be exact in order to get the critical value S2 = −S1. This suggests

modifying F0 in such a way that the following two crucial features hold:

1) The critical value for S as a function of ∆ and Λ, which follows from the condition

τ12 + τ11 = 0 evaluated at the extremum, be unchanged and fit with the exact

result [17, 13].
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2) The effective gauge coupling constant τ11 evaluated at the critical point reproduces

the well known SW exact result [12].

It turns out that if one chooses a vanishing bare coupling constant, then there is a modifica-

tion to the free energy satisfying the above conditions, except for an apparently irrelevant

term. The additional term reads

δF (k)
0 =

∆3

12
(S1 − S2)−

i

4
κ(S21 − S2

2) +
i

2
κS1S2 −

3

4
(S21 + S22) , (2.5)

where

κ ≡ (2k + 1)π , k ∈ Z ,

so that the modified free energy F (k)
0 ≡ F0 + δF (k)

0 displays the requested symmetry

F (k)
0 (eiκS2, e

−iκS1) = F (k)
0 (S1, S2) . (2.6)

In the following, after discussing the crucial scaling properties of the free energy, we will

check that the addition of (2.5) to the free energy reproduces the requested features at the

extremum (see also [19]). However, we will see that it remains a “minor discrepancies”.

Removing it will lead to the exact formulation with a unequivocally fixed bare coupling

constant.

2.2 Rescaling the free energy

In [13] it has been shown that the free energy satisfies a scaling property which selects the

natural variables to make duality transparent. In this respect, we note that the duality one

obtains in N = 1 is the one induced, by consistency, by the Γ(2) monodromy of N = 2.

The scaling property of the free energy is obtained by first rescaling Si, ∆ and Λ

Si −→ Si =
(Λ

∆

)3
Si , ∆ −→ Λ

∆
∆ = Λ , Λ −→ Λ

∆
Λ =

Λ2

∆
, (2.7)

and then performing the map

F (k)
0 (Si,∆,Λ) −→ F (k)

0 (Si,Λ, µΛ) = µ6F (k)
0 (Si,∆,Λ) , (2.8)

where µ ≡ Λ
∆ . Note that since the comparison with the SW curve gives [17] ∆2 = 4u, we

thus have µ = (Λ2/4u)1/2. We observe that whereas in the original free energy the scale Λ

appears in pair with ∆, in the rescaled free energy we have that µ is “decoupled” from Λ.

More precisely, F (k)
0 has the structure

Λ−6F (k)
0 (Si,Λ, µΛ) = H(k)

(S1
Λ3

,
S2
Λ3

)

−
(S1
Λ3

+
S2
Λ3

)2

lnµ . (2.9)

Let us show that the dependence of S on Λ and ∆ still follows after modifying the free

energy as in (2.5). The extremum condition (2.3) holds unchanged also for the rescaled

– 5 –
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variables, in particular S ≡ S1 = eiκS2. Set τ (k) = ∂2F
(k)
0

∂Si∂Sj
. From the condition τ

(k)
11 +τ

(k)
12 =

0 we get the expansion of µ

µ4 =
S
Λ3

exp





∑

n≥3

bn

( S
Λ3

)n−2


 , (2.10)

where

bn =
n
∑

j=0

|cn,j|(n− j)(n− 2j − 1) .

We shall see that this expansion leads to a set of relations that constrain the coefficients

of the free energy. Inverting (2.10) as a series for S/Λ3 in powers of µ4, one obtains

S = Λ3(µ4 + 6µ8 + 140µ12 + 4620µ16 + · · ·) , (2.11)

that expressed in terms of S coincides with the series given in [17].

2.3 An unwanted term

The asymptotic expansion for τ (k) ≡ τ
(k)
11 reads1

τ (k) = − κ

2π
+

1

2πi
ln
S
Λ3

+
1

4πi

∑

n≥3

n(n− 1)an

( S
Λ3

)n−2

, (2.12)

where an =
∑n

j=0 |cn,j|. As a check of the formulation outlined so far, we would like to

compare the result of the matrix model computation (2.12) to the known expression of the

SW effective coupling constant τ .

In order to do this we have to plug the expansion (2.11) into (2.12). Since µ4(u) =

2−6(Λ2
SW /u)2, where ΛSW =

√
2Λ, by using the asymptotic expansion of u(a) in [12] we

find

τ (k) = − κ

2π
+ τSW , (2.13)

where the well known expression for the SW gauge coupling [12] reads, after setting â =

a/ΛSW ,

τSW =
2i

π
ln 2 +

2i

π
ln â+

3

4πi
â−4 +

105

27πi
â−8 +

165

27πi
â−12 + · · · . (2.14)

Notice that the term − κ
4πS2 in the onshell rescaled free energy, which generates the dis-

crepancy (2.13), cannot be reabsorbed by changing the phase of S. Actually, the only phase

that leaves the perturbative series of the onshell free energy
∑

n≥3 an(S/Λ3)n invariant is

e2lπi, l ∈ Z. On the other hand, we have

F (k)
0 (e2lπiS) = F (k−l)

0 (S) ,

so that a term S2 multiplied by a half odd number would survive. The fact that τ (k)

does not exactly coincide with the SW effective coupling constant is a crucial question.

Understanding and removing this discrepancy is a key step in our investigation.

1In the following expressions we have rescaled τ (k) by 1/πi.

– 6 –
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2.4 Coincidences at the extremum

By evaluating the relevant quantities at the extremum, some interesting coincidences arise.

The first step is a remark that, although obvious, needs to be stressed. This concerns

how the prepotential is evaluated at the extremum. As we said, one first evaluates2 τ at

the extremum, then integrates it twice with respect to S (with care on the integration

constants). Of course, this should be different from the function one obtains by directly

evaluating it, that is F0(Si,Λ, µΛ) with Si and µ4 replaced by their expressions at the

extremum. We denote this function as

F̂0(S) ≡ F0|S,µ

where here and in the following we use the notation

f |S ≡ f |S≡S1=eiκS2
, f |S,µ ≡ f |S≡S1=eiκS2,µ=µ(S) .

Remarkably, it turns out that directly evaluating F0 at the extremum one gets

F̂0(S) = 4F0(S) . (2.15)

Let us set ŜiD(S) ≡ ∂F0
∂Si
|S,µ. We have

Ŝ2D(S) = −Ŝ1D(S) = −2SD(S) = −
1

2

∂F̂0
∂S , (2.16)

where SD(S) = ∂F0(S)
∂S . Since µ appears in F0 only through the term −(S1 + S2)2 lnµ, it

follows that in evaluating F̂0 and ŜiD we do not need the value of µ at the extremum (given

in eq. (2.10)). In other words, just setting S ≡ S1 = eiκS2, we obtain both F̂0 and ŜiD.
In order to evaluate F0 directly at the extremum we need only this “trivial part” of the

condition coming from the extremum. In particular, we have

τ =
1

2

∂ŜD
∂S =

1

4

∂2F̂0
∂S2 .

Consider now the following nonperturbative relation [13]

µ4 =
3 · 24πi
Λ6

(

F (k)
0 − S

2

∂F (k)
0

∂S

)

, (2.17)

which is the analogue of the U(1)R anomaly equation derived in SW theory [20]. A first

interesting consequence of the above coincidences is that this relation between µ and the

prepotential also holds, except for a factor 4, if one first computes the Legendre transform of

F0 with respect to S2i , and then evaluates it at the extremum. Since, as we said, the critical

values are independent of the value of µ at the extremum, by (2.17) and (2.15) we obtain

Λ6

6πi
µ4 = (2F0 − Sj∂SjF0)|S = 8F0 − 4S∂SF0 = 2F̂0 − ŜjŜjD = 2F̂0 − Ŝ∂SF̂0 , (2.18)

2In this subsection we omit the superscript k labelling the branches.
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where Ŝ1 ≡ S, Ŝ2 ≡ −S. Among the various versions (2.18) of the relation (2.17), there is

only one which can be satisfied by the unrescaled F0(Si), i.e.

u =
3πi

2Λ4

(

2F0(Si)− Sj∂SjF0(Si)
)

|S,µ , (2.19)

where µ = (Λ2/4u)1/2. This is the version of the relation found in [13] in the form derived

by Dymarsky and Pestun [16] (see also [21]). In this respect we note that while the relation

between µ and F0(Si,Λ, µΛ) holds in the versions given in (2.18), this is not the case for

F0(Si,∆,Λ) that satisfies the relation only in the case in which the extremum is considered

after the Legendre transform with respect to S2
i has been evaluated, that is eq. (2.19).

The detailed analysis of these coincidences will be presented elsewhere [19]. The origin

of the observed coincidences relies on two crucial facts, namely the symmetry (2.6) of the

free energy and the remarkable structure (2.9), that emerges after the rescaling. Moreover,

due to the latter structure, one can easily prove that the gauge coupling is not affected by

replacing the term lnµ by a generic function f(µ), including f ≡ 0 (in this case τij = Hij).

2.5 Recursion relations

The relation between the N = 2 u-modulus and the prepotential, in the context of the SW

theory, leads to the proof of the SW conjecture [22]. The analogous relation in the matrix

model is given by (2.17). Since this has a nonperturbative nature, it can then be argued

that this relation puts strong constraints on the structure of the matrix model formulation

itself. Remarkably, this is indeed the case as by (2.10) and (2.17) we get

exp





∑

n≥3

bn

( S
Λ3

)n−2



 = 1− 6
S
Λ3

+ 6
∑

n≥3

(2− n)an

( S
Λ3

)n−1

, (2.20)

which provides infinitely many conditions on the coefficients cn,i of the N = 1 free energy.

Even if apparently these conditions do not unequivocally fix the cn,i it is plausible that

there exists a simple argument leading to fix them completely. In particular,

bn+3 −
6n

n+ 1
bn+2 + 6nan+2 −

6

n+ 1

n−2
∑

j=0

(j + 1)(n− j − 1)an−j+1bj+3 = 0 .

which has been explicitly checked up to n = 7 [19].

3. Branching the matrix model

At this stage it is useful to summarize some questions one meets in the matrix model

formulation of supersymmetric gauge theories. Even if we are considering the specific case

of the CIV free energy [1], the issues we are dealing with extend to more general cases.

The first problem concerns the gauge coupling constant. A starting point of our in-

vestigation was (2.4) showing that S1 = −S2 is not a solution. On the other hand, this

is related to the lack of symmetry of the original free energy (2.1) under S1 → −S2,

S2 → −S1. We then saw that this symmetry, and therefore the solution S1 = eiκS2, can

– 8 –
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be restored by including additional terms to the free energy (2.1) depending on the odd

number κ/π = 2k + 1 which specifies the symmetry, namely

S1 −→ eiκS2 , S2 −→ e−iκS1 .

In this way one obtains the correct critical values for µ, F (k)
0 and therefore τ (k). However,

as we said, in comparing τ (k) with the SW effective coupling constant, one sees that they

coincide up to the term − κ
2π . This is not a minor question. First of all note that the exact

expression of τ is necessary to get the correct monodromy. In general, rescaling or adding

a constant to a function breaks its Möbius polymorphicity, in our case

τ −→ τ̃ =
Aτ +B

Cτ +D
, (3.1)

where the constants are the entries of the matrices in Γ(2). The only possibility to add a

constant by preserving the monodromy properties of τ is that such a constant corresponds

to a translation in Γ(2). On the other hand, τ (k) in (2.12) differs from the SW effective

coupling constant τ by the constant − κ
2π , that is

τ (k) = τ − κ

2π
, (3.2)

and since the difference τ (k)− τ is a non integer number, (3.2) cannot correspond to a Γ(2)

monodromy of τ .

Another open question is related to the fact this formulation of the conjecture pro-

vides an expression for F (k)
0 (Sj ,∆,Λ) while, in order to display the duality structure, we

are forced to consider its rescaled version F (k)
0 (Sj ,Λ, µΛ) = µ6F (k)

0 (Sj ,∆,Λ), as observed

in [13]. The properties of F (k)
0 (Sj ,Λ, µΛ) indicate that this rescaling actually hides a prop-

erty of the matrix model formulation which is still to be understood.

The last question concerns the nature of ∆, which is related to the scaling properties

of the free energy. In the usual formulation, ∆ is to be identified with 2
√
u by comparing

the matrix model curve at the extremum with the SW curve. But one should be led to

investigate the meaning of ∆ even outside the critical point. On the other hand, in passing

to the effective superpotential of the gauge theory we would like to consider the N = 1

dinamically generated scale Λ1 rather than ∆. Related to these questions is the unpleasant

feature that, in order to derive the free energy, one is forced to identify dimensionless

quantities with dimensionful ones.

The above list concerns the main, strictly connected, questions related to the ma-

trix model formulation of supersymmetric gauge theories. The problem is to understand

whether there exists an exact matrix model formulation free of the above problems. In the

following we will see that in fact there exists such a formulation and that, while possessing

some of the relevant features of the original formulation, it leads to a natural explanation

based on the two different dynamically generated scales of the N = 1 and N = 2 theories.

3.1 Branches in the matrix model

Let us consider as our starting point the matrix model with cubic potential [17, 23]. We

now show that a suitable modification of that model actually leads to a formulation free of

the problems outlined in the previous section. In order to find the matrix model potential
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we first note that we should introduce, in the usual cubic potential, the branches we labelled

by the integer k

W (k) = Tr (m(k)Φ2 + g(k)Φ3), k ∈ Z .

To specify the meaning of the index in the matrix potential we try to eliminate some of

the dimensional problems one has from the very beginning in the formulation. First, since

Φ are dimensionless quantities, in order to be consistent one should require that m(k) and

g(k) be dimensionless quantities.

Eliminating dimensionful quantities from the potential leads us to consider the follow-

ing dimensionless branched matrix model potential

W (k)(Φ) = Tr

(

1

2
e
i
2
κΦ2 +

1

3
e

3i
4
κΦ3 − 1

12

)

, (3.3)

κ ≡ (2k + 1)π, k ∈ Z, where we added an integration constant for future purpose. With

respect to the previous formulation this potential does not contain any parameter. Even if

surprising, we will show that this will reproduce the exact N = 2 results and will be free

of the problems outlined so far. Note that the κ-dependence can be completely absorbed

in the matrix redefinition Ψk = e
i
4
κΦ so that

W (k)(Φ) = Tr

(

1

2
Ψ2
k +

1

3
Ψ3
k −

1

12

)

, (3.4)

in other words

W (k)(Φ) = W (0)(Ψk) .

We consider the two cut solution in which M1 eigenvalues fluctuate around to the critical

point a1 = 0 and M2 = M − M1 eigenvalues fluctuate around the other critical point

a2 = −e−
i
4
κ. As usual, one passes to the eigenvalue representation getting as jacobian

the square of the Vandermonde determinant. In terms of the fluctuations around the two

vacua

λi = a1 + ν1i , i = 1, . . . ,M1 , λi = a2 + ν2i , i = M1 + 1, . . . ,M ,

we can exponentiate the Vandermonde determinant and obtain the matrix model around

this vacuum

Z(k) =
1

Vol(U(M1))×Vol(U(M2))

∫

DΦ1DΦ2e
−W

(k)
1 (Φ1)−W

(k)
2 (Φ2)−W

(k)
I (Φ1,Φ2) , (3.5)

where

W
(k)
1 = Tr

(

1

2
e
i
2
κΦ2

1 +
1

3
e

3i
4
κΦ3

1 −
1

12

)

,

W
(k)
2 = −Tr

(

1

2
e
i
2
κΦ2

2 −
1

3
e

3i
4
κΦ3

2 −
1

12

)

.

Note that the constant term−1/12 in (3.3) is the one which leads to a constant contribution

to W
(k)
1 +W

(k)
2 that vanishes when M1 = M2. The interaction term W

(k)
I is obtained by

expanding the log when exponentiating the Vandermonde determinant. While referring
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to [19] for the details about the evaluation of this matrix model, here we just comment on

the quadratic contribution. This is important as it shows that whereas, as in the previous

approaches, the propagator has the “wrong” sign, this is precisely what we need. While

this is usually seen as a problem of the formulation and so its effect is essentially ignored,

we see that the minus sign leads to the correct expression for the free energy. If m denotes

the coefficient of the quadratic contribution, then it is usually assumed that this leads

to m− 1
2
(M2

1+M
2
2 ). However, in our case m = e

i
2
κ and the minus sign for the quadratic

contribution to the second matrix potential corresponds to a minus sign of the exponent

−e
i
2
κ = e−

i
2
κ .

It follows that the quadratic terms give the following contribution to Z (k)

e−
i
4
κ(M2

1−M
2
2 ) ,

which is exactly what we need for reproducing the second term in (2.5). So, we see that

the minus sign turns out to be correct in the matrix model formulation. Finally, the planar

contribution to the free energy reads

F
(k)
0 (Mj) =

1

12
(M1 −M2) +

∑

i=1,2

M2
i

2
lnMi −

i

4
κ(M2

1 −M2
2 )−

− i

2
κM1M2 −

3

4
(M2

1 +M2
2 ) +

∑

n≥3

n
∑

j=0

cn,jM
n−j
1 M j

2 . (3.6)

3.2 The gauge theory coupling

The above results would suggest identifying Mi with Si/∆
3. However, in this case the new

expression (3.6), besides a global rescaling, displays two basic differences with respect to

the old free energy (2.5).

First of all we note the absence of the term

(S1 + S2)
2 ln

(

Λ

∆

)

. (3.7)

This term is problematic because, on the one hand, there is no reason for the appearence of

Λ in the matrix model free energy; as we already pointed out, the Λ dependence is usually

added by hand from a gauge theory guess. On the other hand, we have seen that this term

plays a basic role in evaluating the extremum of the effective superpotential.

The second difference is that whereas in F (k)
0 = F0 + δF (k)

0 , as in (2.5), we have the

term
i

2
κS1S2 , (3.8)

the analogous contribution in (3.6), that is − i
2κM1M2, has opposite sign. Fortunately, we

saw that directly evaluating the rescaled free energy F (k)
0 (S1,S2) at S1 = eiκS2, reproduces

the SW prepotential except for the term −(2k+1)S 2. It is precisely because of this change

of sign of the term (3.8) in (3.6), that this unwanted additional term is now missing, so

– 11 –
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that the first condition coming from the extremum, i.e. τ
(k)
11 = τ

(k)
22 , by itself reproduces the

correct SW coupling as in (2.14). But we should now take into account both the change

of sign of (3.8) and simultaneously get the exact expression for µ. Nevertheless, requiring

that the second condition be consistent with the first one, leads to a new view on the

structure of the bare coupling constant τ0! The idea is quite natural. Namely, note that

in evaluating the extremum (2.3) we have forgotten the bare coupling constant by simply

putting it to zero. But we can just use a nonzero value of τ0 to get the correct critical

values. More precisely, we set

τ0 −→ τ
(k)
0 =

2

πi
ln

Λ2

Λ1
− κ

2π
. (3.9)

Before identifying the two scales Λ1 and Λ2, we make a couple of comments on this proposal.

A first interesting consequence of (3.9) is that

τ
(j)
0 − τ

(k)
0 = k − j , (3.10)

that will be discussed in [19]. The second observation is that, as we will see, the term
2
πi ln

Λ2
Λ1

inside τ
(k)
0 compensates the fact that (3.7) is now missing, as it should, since it

cannot derive from the matrix model, from the new free energy (3.6). Furthermore, the

role of the term κ
2π in τ

(k)
0 is that of compensating the change of sign of the term (3.8)

in (3.6), a request coming from the need of obtaining the correct expression for µ as given

in (2.10).

Let us now identify the scales Λ1 and Λ2. The meaning of Λ2 is obvious, as it plays

the role of the scale Λ appearing in the expression of the N = 2 effective coupling, so that

Λ2 ≡ 2−1/2ΛSW . Since in this new approach the ∆ parameter simply disappeared, the

natural choice for Λ1 is just the N = 1 dynamically generated scale, as it should appear in

the expression of the effective potential. Therefore, we have

Λ1 ≡ ΛN=1 , Λ2 ≡ ΛN=2 .

3.3 The prescription

We now consider the link between the matrix model and the gauge theory. The prescription

is to make the following dimensionless identification in (3.6)

M1 =
S1
Λ3
1

, M2 =
S2
Λ3
1

, (3.11)

with the free energy given by

F (k)
0 (Si,Λ1) = Λ6

1F
(k)
0

(

Si
Λ3
1

)

, (3.12)

that is

F (k)
0 (Si,Λ1) =

Λ3
1

12
(S1 − S2) +

∑

j=1,2

S2j
2

ln

(

Sj
Λ3
1

)

− i

4
κ(S21 − S2

2)−

− i

2
κS1S2 −

3

4
(S21 + S22) + Λ6

1

∑

n≥3

n
∑

j=0

cn,j

(

S1
Λ3
1

)n−j (S2
Λ3
1

)j

. (3.13)
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Note that in the present derivation the Mi are identified with the dimensionless quantities

Si/Λ
3
1 and there is no need to add by hand any additional scale. Furthermore, we note

that one can consistently define the matrix model with Mi replaced by Si/Λ
3
1. After this

identification is made, one analytically continues Si/Λ
3
1 so that the critical case can be

consistently considered.

By (3.13) and (3.9) the gauge theory effective superpotential is

W
(k)
eff (Si) =

∑

j=1,2

(

∂F (k)
0

∂Sj
− 2πiτ

(k)
0 Sj

)

(3.14)

=
∑

j=1,2

Sj

[

ln

(

Sj
Λ3
1

)

−1−4 ln
(

Λ2

Λ1

)]

+ iκS2 +Λ3
1

∑

n≥2

n
∑

j=0

dn,j

(

S1
Λ3
1

)n−j (S2
Λ3
1

)j

,

where dn,j = cn+1,j(n+ 1− j) + cn+1,j+1(j + 1). Observe that

W
(k)
eff (e2kiπiSi) = W

(k)
eff (Si) +

∑

j=1,2

2πikiSi , (3.15)

where ki ∈ Z, i = 1, 2. It follows that the linear contribution to the effective superpotential

has the structure
∑

j=1,2(2πikj − 1)Sj +πiS2, so that the term πiS2 plays a special role as

it cannot be completely reabsorbed by a phase shift of the Si.

Minimizing W
(k)
eff in (3.14) gives the two F -term conditions

S ≡ S1 = eiκS2 , (3.16)

and
(

Λ2

Λ1

)4

=
S

Λ3
1

exp
[

∑

n≥3

bn

(

S

Λ3
1

)n−2
]

. (3.17)

In order to identify the N = 2 effective coupling constant, we should first recognize the

relationship between the two scales Λ1 and Λ2 at the extremum.

Additional contributions to the Veneziano-Yankielowicz superpotential [18] have al-

ready been considered in literature, for example by Kovner and Shifman [24]. More re-

cently, Cachazo, Seiberg andWitten [7] first observed that in considering the critical points,

which follow from the Veneziano-Yankielowicz superpotential W V Y , one may consider, in

the case of SU(N), either ln(Λ3N/SN ) = 0 or N ln(Λ3/S) = 0, leading to an apparent

ambiguity. Then they observed that W V Y can be defined on each of the N possible infinite

cover of the S-plane. In particular, according to their analysis, one should explicitly include

additional branches to W V Y . In the case of symmetry breaking pattern U(N)→ ∏

j U(Nj)

they obtained

Weff(Si) =
n
∑

j=1

(

2πiτ0Sj +NjSj

[

ln

(

Λ3
j

Sj

)

+ 1

]

+ 2πibjSj

)

+O(SiSj) , (3.18)

where the bj are integers with b1 = 0. It is interesting to observe that the additional

contribution 2πi
∑

j bjSj , representing the relative shifts of theta vacua, is reminiscent of

the iκS2 term in (3.14). However, note that whereas κ/π is odd, the additional term
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in (3.18) always depends on the even numbers 2bj . Furthermore, unlike (3.14), for each

Nj = 1, the corresponding term 2πibjSj in (3.18) can be exactly obtained, as it should, by

the phase shift Sj → e2πibjSj in the argument of Weff . The reason is that the bj ’s label the

theta vacua of each factor in the broken gauge group, and so they play no role in the abelian

case. Therefore, even if these contributions have a similar structure, they appear of different

nature. In particular, whereas the Cachazo, Seiberg and Witten term is based on the

general properties of the logarithm, our additional term is a consequence of the request that

at the critical point S1+S2 = 0, as it should in the model we are considering. Nevertheless,

in spite of the differences, it is likely that further investigation in this direction may lead

to a better understanding of the Veneziano-Yankielowicz superpotential and related issues.

3.4 SW modulus and the scales

Apparently, we do not have any information concerning the identification of the u modulus.

In previous formulations this was argued by identifying the parameters of the matrix model

potential and the SW curve. Here we have a different view which is strictly related, as

the structure of the bare coupling constant τ
(k)
0 indicates, to the RGE. In the previous

approaches one identified u in terms of ∆ using the derivation of the matrix potential

from the SW curve, leading to some questions outlined in previous sections. In our case,

by (3.17) and the nonperturbative relation (2.17), which still holds for the free energy (3.13),

we recover again the identity (2.20), as explained in detail in [19]. Therefore, by means of

monodromy arguments we can make the identification at the critical point

S
Λ3
2

=
S

Λ3
1

. (3.19)

Furthermore, this implies that the left hand side of (2.10) and that of (3.17) coincide, i.e.

(

Λ2

Λ1

)4

=

(

Λ2
2

4u

)2

,

by means of which we recover the relation between the u-modulus and the N = 1 scale

Λ2
1 = 4u , (3.20)

and (3.19) becomes S/Λ3
2 = S/8u3/2. Thus we have found that in the present formulation

at the critical point the N = 1 scale coincides with 2 times the square root of the u-modulus

of the N = 2 theory.

We can as well modify the prescription (3.11) by means of (3.19) and make the following

identification in (3.6)

M1 =
S1
Λ3
2

, M2 =
S2
Λ3
2

, (3.21)

with the free energy given by

F (k)
0 (Si,Λ2) = Λ6

2F
(k)
0

( Si
Λ3
2

)

. (3.22)
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By evaluating F (k)
0 (Si,Λ2) directly at S ≡ S1 = eiκS2, we see that the k-dependence

completely disappears. In particular, we obtain

1

4πi
F (k)
0 (S, e−iκS,Λ2) =

Λ3
2

24πi
S − 3

8πi
S2 + 1

4πi
S2 ln S

Λ3
2

+
Λ6
2

4πi

∑

n≥3

an

( S
Λ3
2

)n

, (3.23)

that now precisely corresponds to the SW prepotential as obtained by integrating twice τ

with respect to the glueball superfield.

Note that the absence of any parameter in the expression of the free energy allows us

to look for its monodromy properties. To understand this aspect, observe that if the term

(S21 +S22) lnµ is present in the expression of the free energy, the monodromy would involve

µ dependent terms leading to a rather involved analysis.

In the usual formulation the potential depends on some parameters, namely the cou-

plings, whereas in (3.3) they are missing. This is due to the fact that simply we need not

double the number of parameters. Actually, once S1, S2 and F0 are given, we have enough

information to get the full SW theory. In particular, the above discussion shows that the

u-modulus arises in terms of a through the relation (2.17).

4. Triangulating the instanton moduli space

Results in noncritical strings uncovered a deep connection between algebraic-geometrical

structure and Liouville theory. It should be stressed that, on one hand, Liouville theory

arises in the description of the moduli space of Riemann surfaces, in particular the Liou-

ville action is the Kähler potential for the Weil-Petterson metrics. On the other hand,

Liouville theory is the crucial quantum field theory for noncritical strings. In particular,

in [25] it was shown that there is an analytic formulation for 2D pure quantum gravity

which is directly expressed in terms of the Liouville geometry of moduli space of punc-

tured spheres, reproducing the Painlevé I (Liouville F -models). In that paper it was also

argued that the eigenvalues of the matrix model should be seen as punctures on a Rie-

mann sphere, which can be identified with the branch points on the Riemann sphere itself.

We note, in passing, that the relation between punctured spheres and hyperellittic Rie-

mann surfaces leads to relations between Weil-Petterson volumes for such surfaces, e.g.

V olWP (M1,1) = 2V olWP (M0,4). Furthermore, there is the isomorphism M2,0
∼= M0,6.

One may expect that these relationships hide more general properties of moduli spaces,

which should be strictly related to the Deligne-Knudsen-Mumford compactification. The

latter, together with the Wolpert restriction phenomenon, is at the heart of the recursion

relations associated to the Painlevé I as derived in [25]. The analogy with the recursion

relation for the N = 2 instantons suggested the formulation of instanton numbers in terms

of intersection theory [26]. Recalling that 2D quantum gravity also leads to a natural tri-

angulation of moduli space of Riemann surfaces, one might expect that a similar structure

arises in instanton theory. Remarkably, we have that the coincidences discussed in section 2

provide the following direct identification of the N = 2 prepotential

eF̂/Λ
6
2 =

1

Vol(U(M1))×Vol(U(M2))

∫

DΦ1DΦ2e
−W (k)(Φ1,Φ2)|M1=eiκM2≡S/Λ3

2
, (4.1)
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where

W (k)(Φ1,Φ2) = W
(k)
1 (Φ1) +W

(k)
2 (Φ2) +W

(k)
I (Φ1,Φ2) .

This gives a direct way of expressing N = 2 instanton contributions, including the gravi-

tational corrections considered in [27, 28, 29, 23], in terms of a matrix model. The above

remarks then suggest that this formulation should be related to a kind of triangulation of

instanton moduli space.
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