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0. Introduction

The Fourier and Radon hyperplane transforms are closely related, and one such
relation was established by Brylinski [4] in the framework of holonomic Z-modules.
The integral kernel of the Radon hyperplane transform is associated with the
hypersurface ScP x P* of pairs (x,y), where x is a point in the n-dimensional
complex projective space P belonging to the hyperplane yeP*. As it turns out, a
useful variant is obtained by considering the integral transform associated with the
open complement U of S in P x P*. In the first part of this paper, we generalize
Brylinski’s result in order to encompass this variant of the Radon transform, and
also to treat arbitrary quasi-coherent Z-modules, as well as (twisted) abelian
sheaves. Our proof is entirely geometrical, and consists in a reduction to the one-
dimensional case by the use of homogeneous coordinates.

The second part of this paper applies the above result to the quantization of the
Radon transform, in the sense of [7]. First we deal with line bundles. More precisely,

let P = P(V) be the projective space of lines in the vector space V, denote by (e) S %

the Radon transform associated with U< P x P*, and for meZ set
m'=—-m—-n—1, 9p(m)=Pp®c0p(m),

where Op(m) is the —mth tensor power of the tautological line bundle Op(—1). In [7],
it was shown that the natural morphism

Dp(—m*) C R@det V- D+ (—m)
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is an isomorphism for m <0. Using the Fourier transform we give a different proof of
this result in Theorem 6, as well as a description of the Radon transform of &p(—m*)
for m>0. Then we consider differential forms. More precisely, denote by .#p! the
Spencer complex. Recall that the Spencer and de Rham complexes are interchanged
by the solution functor, so that the shifted subcomplex Yp”; q[q] describes the sheaf
of closed g-forms. We establish in Theorem 7 the isomorphism

D ~ .
ypzq[q} o R« Vp”;nfq[n —q. (%)

Consider the maps P < V\{0} L. Denoting by 6 the Euler vector field, the sheaf

7~ 'Q% is identified with the subsheaf of j~'QY, whose sections w satisfy
Low=01w =0,

where Ly denotes the Lie derivative, and | the interior product. We obtain (%) by
first relating in Theorem 8 the Radon transform of the sheaf of g-forms with the
subsheaf of j’lQ'{/tlfq whose sections ¢ satisfy the Fourier transform of the above
relations, namely

Lyoc =do=0.

1. Radon and Fourier transforms for -modules

Let V and W be mutually dual (n+ 1)-dimensional real vector spaces, P and P*
the associated projective spaces, and x = (xy,...,x,) and y = (yo,...,y,) dual
systems of homogeneous coordinates. Consider the Leray form on P given by

Jj=0

and note that, setting ¥ = zx, one has d% = "w(x) dt + t"*! dx. Let u(¢) be one of the
distributions 1, Y(¢), 1/¢, or 6(¢) on the real line, so that #(z) = o(¢), 1/t, Y (1), 1,
respectively. Let ¢(x) be a homogeneous function with homogeneity degree such
that ¢(x)i({x,y))w(x) descends to a relative density on P x P* (e.g. if u = 1, then
i =06, and ¢ must satisfy the homogeneity relation ¢(zx) = sgn(¢)”"t"¢(x)). One
then has the following formal relation between the Radon and Fourier transforms,
the usual Radon hyperplane transform corresponding to the case u =1,

[ otwitcxanot = [ ot [utne = ar)or

= /1//()E)e’<x~"y> dx for Y(X) = o(x)t"u(r).
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(It is quite delicate to make the above formula precise for functions, but [14] provides
a convenient framework.) The aim of this section is to establish the corresponding
relation for Z-modules, thus generalizing a result of Brylinski [4].

1.1. Review on algebraic -modules

For the reader’s convenience, we recall here the notions and results from the
theory of 2-modules that we need. Refer e.g. to [10,12,17] for the analytic case, and
to [2,3] for the algebraic case.

Let X be a smooth algebraic variety over a field k of characteristic zero, and let Oy
and Py be its structure sheaf and the ring of differential operators, respectively. Let
Mod(Zyx) be the abelian category of left Zy-modules, Db(QX) its bounded derived

category, and Dg_coh(@ x) (resp. D2, (Zy)) the full triangulated subcategory of

Db(EZX) whose objects have quasi-coherent (resp. coherent) cohomologies. To
A €DY, (Zx) one associates its characteristic variety char(.#), a closed involutive
subvariety of the cotangent bundle 7*X.

We use the following notations for the operations of external tensor product,

inverse image, and direct image for Z-modules:

Db b b
:D°(Zy) x D*(Zy)—>D"(Zxxy),
Df*:D°(2y)-D%(Zy),

Df, : D°(Zx)—D®Zy),

where f: X - Y is a map of smooth algebraic varieties. More precisely, denoting by
Dy y and Py _ x the transfer bimodules, one has

L
DN =%yoy ® f'H,

1oy

L
Df.ll = R(Dyex @ M).

Dy

Recall that these operations preserve quasi-coherency, and if g: Y — Z is another
map of smooth algebraic varieties, then there are natural isomorphisms
Dg.Dfdl ~D(gof),# and Df*Dg*P~D(gof) P. Moreover, to any Cartesian
square is attached a canonical isomorphism as follows:
XI L> YI
hll g hl DD f vl ldy-dy |~ D f' DK M [dy-dy), M € D (Fx),
f

X—7Y

where dy denotes the dimension of X.
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The internal tensor product

® :D*(Zy) x D*(Fy)—D"(Zx)

D D

is defined by 4| ® 4, =D (M R M>), where 6: X S X x X is the diagonal
D

embedding. Recall that 4| & Mr~.H, ®5X<%2 as  (Oy-modules, and

D D
Df (M ® Mr)~Df* My ® Df*M,. Moreover, one has the projection formula

D D
Df.(M ® DfF N)~Dfoll ® N, MDD, (Zy), N D

q-coh q-coh (@Y)

The duality functor
[DX : Db(@X)Op - Db(@){)

is defined by Dy .# = R# omg, (M, D x ®@XQ§?_1)[dX], where Qy denotes the sheaf
of forms of maximal degree. Duality preserves coherency, but it does not preserve
quasi-coherency, in general. The functor

Dfi:D*(Zy)->D"(Zy)

is defined by Dfi.# = DyDf.Dy. 4.
Consider the microlocal correspondence associated with £

Y2 xx, Y5 TY.

One says that ./"eDP, (Zy) is non-characteristic for f if

LT X) nf 7 (char( ) e X xy T} Y,

where T3 X denotes the zero section of 7*X. Recall the following results.

D
Theorem 1. (i) The exterior tensor product X preserves coherency and commutes with

duality.
(i) If f is proper, then Df, preserves coherency and commutes with duality. In
particular, Df,. 4 ~Dfi. 4l for .4 €D® (Zy).

coh

(iii) If A €Dl (Zy) is non-characteristic for f, then Df*AN " is coherent and

DxDf* N ~Df*Dy A" In particular, if f is smooth then Df* preserves coherency and
commutes with duality.
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Let DY (Zx) (resp. DY, ,(Zx)) be the full-triangulated subcategory of D°, (Zx)
consisting of holonomic (resp. regular holonomic) objects. Holonomy is stable for all
of the above operations, and regular holonomy is stable under tensor product,

inverse image, and proper direct image.

1.2. Review on the Fourier—Laplace transform

Let V be the affine space associated with an (n + 1)-dimensional vector space over
k, and let V* be the dual affine space. Denote by D(V) = I'(V; Zy) the Weyl
algebra, and recall that since V is affine the two functors

RI'(V;e)
Dg—coh (‘@\/) < Db

on(D(V))
Dy ®,}3(\/)(.) q-co.

are quasi-inverse to each other. The formal relation
P(x,8,)e 5 = Q(y,8,)e <5

associates to each Qe D(V*) a unique Pe D(V), called its Fourier transform. Since
P\ Pre= 59> = PiOre 592 = 0y Pre 7 = 0,01 <7 | this gives a k-algebra
isomorphism

D(V*) 5 D(V)°P.

(Note that, choosing dual systems of coordinates V = Spec(k[xo, ..., x,]) and V* =
Spec(k[yo, ..., yu]), the above isomorphism is described by y;—~ — 0y, 0,,— — X;.)
Moreover, one has algebra isomorphisms

D(V)P~T(V;Qy®¢Zv ®(n§2§’1)
~det V'@ D(V)®@det V,

the identification Qy ~0y ®det V* being induced by T*V =V x V*. It is then
possible to consider the functor associating to a quasi-coherent D(V)-module M the
quasi-coherent D(V*)-module M” = det V*®@ M. Since this functor is exact, it
induces a functor

A :Dg—coh(@\/)_)Dg—coh(@\/*) (L.1)
called the Fourier-Laplace transform. The Fourier—Laplace transform is an
equivalence, it preserves coherency and holonomy, but it does not preserve regular
holonomy, in general. (For references see e.g. [4,14,16].)
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1.3. Review on the Radon transform(s)

Let P = P(V) be the n-dimensional projective space associated with V, and P* =
P(V*) the dual projective space. Let us denote by S the smooth hypersurface of
P x P* defined by the homogeneous equation {x,y» =0, and set U = (P x P*)\S.
Identifying P* with the family of hyperplanes in P, the set S describes the incidence
relation “‘the point xe[P belongs to the hyperplane yeP*.” Consider the smooth
maps

PEsBp, pEuUlp,

defined by restriction of the natural projections p and ¢ from P x P*. To these maps
are attached the pull-back—push-forward functors

Dgs.Dps, Dqu.Dpj,: DY o (Zp)— Dt

q-coh

(Zp). (1.2)

The first functor is the Z-module analogue of the usual Radon transform, consisting
in “integrating along hyperplanes.” The second functor (cf. [1,15,17]) is a small
variation! on the first one which has, amongst others, the advantage of giving an
equivalence of categories.

Note that since ps and ¢gs are smooth and proper, the first functor preserves
coherency. Even though gy is not proper, it follows e.g. from Lemma 1 below that
also Dqu.Dpj, preserves coherency, as does the functor

DquDp;, : D°(Zp) - D (Zp+). (1.3)
(For references see e.g. [7].)
1.4. Review on the blow-up transform(s)
Let V = V\{0} and consider the natural projection and embedding
pEvd v

They induce an embedding (7, /) of V as a locally closed subvariety of P x V. Let \70
be the closure of V in P x V, a smooth subvariety, and consider the maps

Pl v, v

obtained by restriction of the natural projections from P x V. Note that j is the
blow-up of the origin 0 in V, j is proper, and 7 is smooth. To these maps are

'"As follows e.g. from (1.9) and Lemma 1 below, there is a distinguished triangle
Op @ RI(P; Qp ®éjp//) — Dqu. Dpj, M — Dgs,Dps. 4 iy
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attached the functors
Dj,Dr*, Dj.D#E": DY o (Ze) =D con(Zv). (1.4)

Using similar remarks as for the Radon transform one checks that these functors
preserve coherency, as does the functor

DjiDz* : D*(Zp) - D°(Zv). (1.5)

1.5. A first statement of the result

As a last piece of notation, let V* = V*\{0} and consider the natural projection
and embedding

T

pr & vy vr

The next theorem generalizes a result of Brylinski [4, Théoréme 7.27],
who obtained the isomorphism (1.7) assuming .# regular holonomic. In order to
help the reader in following the pull-back—push-forward procedures, let us
summarize in the next diagram the maps that we will use. The starting point is P,
and the target is V*.

7/1}// ............... AT VT:
J J
W(—)V S / (1 6)

Theorem 2. For ./ €D, (Zp) there are natural isomorphisms in D°(Zy,.)

Dr*(Dqu.Dp;,# ) ~Dj* [(DjDr*.4)"],

Dr*(DquiDp;,#) ~Dj* (D). Dr*4)").
For .# D’ ., (Pp) there is a natural isomorphism in D®(%y,.)

g-coh

Dn*(Dgs, Dpt.#) ~ Dj*[(D}.Da*.4)"). (1.7)
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The statement may be visualized by the commutative diagram:

Db (@V) Fourier Db (@V* )

ull-back

Blow-up DP (Q‘V* )

pull-back

Db(@]p) W Db (g]p* )

In order to prove this theorem we will first restate it, using the language of integral
kernels, as Theorem 3. This has the advantage of applying to quasi-coherent

modules, and gives a reason for the strange-looking pattern of *’s and !’s in the
above formulae.

1.6. Review on integral kernels
Let X and Y be smooth algebraic varieties, and consider the projections

xZxxv4Ly.

For ,}i/'eDIJ(@XX y) the functor
()% # :D*(Zy)—D(Zy)
D D
My M o H =Dq.(Dp* M @A)

is called integral transform with kernel 2#". More generally, if Z is another smooth
algebraic variety and £ eD®(Zy,z), one sets

) P G
H o L =Dqi3.(DGA A @ D53 L) eD(Dxrz),

where ¢;; denotes the projection from X x Y x Z to the corresponding factors, so

that for example ¢3(x,y,z) = (x,z). The bifunctor ? preserves quasi-coherency, is

associative in the sense that (.# ° J/)@ P~ (A ° &), and the identity

functor corresponds to the regular holonomic kernel %y x.xy = Dd.Ox, where
0: X X x X is the diagonal embedding.

One says that # €D>, (Zxxy) and £ eDY, (Zy.z) are transversal if

(char(A") x T, Z) N (TyX x char( L)) c Ty, yx (X X Y x Z).
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b
coh

In particular, #€D_ , (Zx) is transversal to " if
(char(#) x Ty Y)nchar(A ) Ty, (X X Y).

In this case, assuming moreover that supp(#’) is proper over Y, it follows from
Theorem 1 that .Z 5 A is coherent, and

Dy(M S H)~DyM © DyyyX . (1.8)

1.7. Basic regular holonomic kernels

Let S be a smooth variety, let Z be a closed smooth subvariety of S of
codimension d, set U = S\Z, and consider the embeddings

jz: 2SS, ju:USS.

The simplest regular holonomic Zg-modules attached to the stratification S = Zu U
are

Os, Bzs=Djz0z, Bys=Dju.0Ovu, DsBys=Djuly.
As an alternative description, one has
HBzis = RI70s[d],  ABys = RIyOs,

where RI'z)./ ~Djz.Dj,.#4[~d], and RI'y).4 ~Djy.Djy.#4. Recall that one has a
distinguished triangle

RI |yl — M Rl 5 (1.9)

The basic model is the stratification Ay = {0} AL of the affine line A} =
Spec(k([?]), where one has the regular holonomic modules

Ot = Du /<0 = Py -1,
ﬁomll(: @All(/<t>: @All('57
93&]1{‘&1(: @All(/<6tt>: @All(-l/l,
DAIL(@A“AIL: @All(/<lat>= @AI'Y.

(1.10)

Here we used the pattern
%Z@All(/<P> :@All(.u

to indicate that .# is a cyclic & Al -module with generator u and relation Pu = 0.
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Let now S be a closed smooth subvariety of X x Y, and consider the embedding

itSGX x Y,

and the maps
xesty x%uly,

obtained by restriction of the natural projections p and ¢ from X x Y. Note that
Di.Os~Bsixxy, Di.Bzs~Bzxxy-

Lemma 1. For .4 eDg_Coh(QZ x), there are natural isomorphisms in D*(Zy):

D *
Mo Bsxy~Dqs.Dps A,
M 2 DiBys~Dqu.Dpy M,

D
M o @Xxy’iay®DR(ﬂ),

where DR(4) = RI'(X; QX®5X%). If moreover M is coherent and transversal to
Di.Buy|s, and S is proper over Y, then there is an isomorphism of functors from
anz)oh(@x) to Dth(@Y):

M2 Di.DsB s~ DquDp}y .

In order to check the transversality condition, note that

char(Di. Ay s)cT,(X x Y)UTg(X x Y).

Proof. The first isomorphism is a particular case of the second one for Z =, S =
U. To prove the second isomorphism, note that for .# e Dg_coh(g x) there is the chain
of isomorphisms

D
M ° Di, By~ Dq.(Dp* M @ Di.Djy.0y)
D
~ Dg, Di,Djy, (Dj},Di*Dp* 4 ® Oy)
~ Dgy.Dpy A .
As for the third isomorphism, using the first one with S = X x Y we get
M E Oxy~ Dq.Dp' .l

~ Da’; Da)(*eﬂ,
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where ay : X — {pt} denotes the map to the variety reduced to a point. Finally, for

M e ch’oh(,@x), the last isomorphism follows from the second one by (1.8), as follows:

M ° Di,DsBys~ M ° DyxyDi.Bys
D .
~ Dy((Dxﬂ) o DZ*QUB)
~ DquU*Dp?]D)(%
~ DY[D(]U*IDUDPE%

=DquDpy, A . O

1.8. Radon and Fourier transforms for 9-modules

Consider the holonomic kernel (irregular at infinity)
&L = Dy | I = Dyxyre” 7, (1.11)

where .# is the left ideal of differential operators Pe Zyy+ such that, formally,
Pe=<¥¥> = (. Then ¢ is the kernel attached to the Fourier—Laplace transform, since
one has (see [16, Section 7.5])

A D
M= S L, MED, (D).

Concerning the Radon transform, it follows from Lemma 1 that the functors in
(1.2) and (1.3) are given by composition with the regular holonomic kernels attached
to the stratification P x P* = SUU. According to (1.10), let us give these kernels the
following names:

R = Opxpr, Ry = DpupBupxe, Ri)i = Bupxps Rs = Bspxpr-  (1.12)

As for the blow-up, let E = \%\\7 be its exceptional divisor, a smooth hypersurface
of Vy. It follows from Lemma 1 that the functors in (1.4) and (1.5) are given by

composition with the regular holonomic kernels attached to the stratification Vo =
EuV. According to (1.10), let us give these kernels the following names:

S =05, Sy=D0Byg, Syi=Byy, To=Bgn,. (113)



A. D’Agnolo, M. Eastwood | Advances in Mathematics 180 (2003) 452—485 463

Summarizing, one has

u= 1 Y 1/t )
Ry = Opxpr DpxpHBupxp+ | Bupxp Bs|pxp
()3 Ry ~ || Cp- ®DR(e) | Dqu,Dpu* Dqu,Dpy* | Dgs,Dps*
Su = Y% RATHAND A P
(o) 3 D7 ~ D7.D7* DjiDr* Dj.D7r* | Boyv ® DR(e)

Consider the maps
Vo s PxV, P&yl

Theorem 3. Let ./ eDg_coh(Qp), and let u be one of the four generators in (1.10), so
that

u=1,Y1/t0, i=90,1/t,Y,1,
respectively. Then there is a natural isomorphism in Db(gv):
Dr* (M ° ;) ~Dj*(M ° DTS, ° Z).

As we already pointed out, this statement implies Theorem 2.

Proof. Consider the maps
PxPLPx v Lpx v
induced by P* & V/* L V*. Denote by S” the hypersurface of P x V* defined by the
equation {x,y» =0, let U”" = (P x V*)\S", and set
@,1/ = Opxvr, %/),f = DPX\/"£[U”‘P><\/*7 e@/1//1 = '@U.J”\[P’x\/*v ‘J?:S, = g@”\ﬂmx\/*'
One has
D (4 ° Rg)~ .M S D" Ry~ 4 S D" R~ Dj* (M ° RY).

Then the statement is a corollary of the following proposition. [
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Proposition 1. There is an isomorphism in Db(;@pxw):
- D
9;/ ~Di, S, o Z.

Proof. Let us start by observing that \70 is the quotient of All( x VeV xp \70 by the

action of the multiplicative group G,, given by c(¢,x) = (¢~'t, cx). Let us denote by
[#,x] the equivalence class of (z,x). Consider the commutative diagram

Al<—1  AlxV—T Vo© L >PxV

Tm Tmz m| th O Tqu
211

’ ’

ALxAL<T AL x T xV* T, x V> P x V x V*

T I -

Al<———Jxyr——>PxV* V x Vv*
where p;, gi, pjj, and g;; are the natural projections,

tt,x)=t, (t,x)=[t,x], 7j(x,»)=<{xp),
i([e,x]) = (5], x), J([ex])=tx, #([6,x]) = [x],
Y = id/-\f( x 9, and f' = f x idy- for f = 1,1, &, j, n. There are natural isomorphisms
in D°(Zpyy+):
- D - g
DIy e £~ Dgi3.(Dgp, DSy @ Dgy3L)
~ * D *
~ Dq3.(D7,Dg] S, @ Dgyp; L)
~ * D ~x *
~ Dqlg*Dl*(Dquu ® D1 Dq23$>
D
~ D7 (Dq; ¥, ® Dj*Z).
There are natural isomorphisms in D*(%y, - ):
D D
Dr*D7. (Dg; ¥, ® D" L)~ Dp.D7*(Dg; S, ® DF*P)
D
~ Dpr.(D1*Dg; S ® DT*Dj"*P)
D
~ Dpy.(Dp}, D", ® DI"Dj* L)

D
~ Dp23*(|DpT2Dl*(@/_\ll( . u) ® D)}H*gl)
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/E3 * D Ik

=~ Dpos. (DY Dpy(Za) - u) @ D" L)
o//% *( 05 D

~ Dpr3, Dy (DPI(J/&II( u) @ Z1)

- D

> Dy ((Zar -u) > Z1)

~ (G .1

~ Dy (JAII( u)

1% opl!
17/
~ D™ D

where | = & AlxAl e~ is the one-dimensional Fourier-Laplace kernel, and & Al U
is the cyclic module defined in (1.10). Summarizing, we have an isomorphism
D™ (DL, © )~Dn"* A,

One concludes by the following lemma. [J

Lemma 2. Let f: X —Y be a fibration with fiber Al = A\{0}. Then the functor
Df* : Modgcon(Zvy) > Modg.con(Zx) is exact and fully faithful.

Proof. Since f is smooth, Df* is exact. Moreover, one has an isomorphism:

RHomg  (Df* A"y, Df* A"5)~RHomg, (A1, DADF* A5)[—1].  (1.14)

D
By the projection formula, Df.Df* A/, ~Df,0xy ® A", and one has

d
Df,Ox ~ Rf, ((QXX—/Y>Q§(/Y>,

where Q} e the sheaf of relative one-forms, sits in degree zero. Hence, locally on Y
one has Df.Oy ~0y @ Oy[l]. Taking zeroth cohomology, (1.14) gives

Homgx(Df*/V'l,Df*ﬂ/'z):Homgy(Jl/l,JV'z). O

1.9. Twisted case

For k=C and 4€C, one can replace the ring Zp with the ring of twisted
differential operators (TDO-ring):

Dp; = 0p(A)®0Zp @ oUp(—1),

whose sections, by definition, are locally of the form s*®P®s", where s is a
nowhere vanishing section of the tautological line bundle Op(—1), with the glueing

condition s7*® P, ®st = 557 ®@ P, ®s% if and only if Py = (s1/55) “Pi(s1/)". If
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A—peZ, the functor Op(p— 1) ®o(e) gives an equivalence of categories from

D*(Zp,) to D°(Zp,,), so that classical Z-modules correspond to the case LeZ.

We do not recall here the theory of TDO-modules, referring instead to [1,11,15].
We just point out that this allows one to consider for A€ C\Z the twisted Radon
kernel (see [6,15]),

Ry D°(Tp ) =D (D 1),
where A" = —n — 1 — /, as well as a blow-up kernel
yl—/kl : Db(@pﬁ)v*)—)Db(@\/).

The following analogue of Theorem 3 is then obtained by much the same proof.

Theorem 4. Let Ac C\Z and M Dg_coh(@pﬁ 7). Then there is a natural isomorphism in
D*(Zy.):

Da* (M5 R,)~Dj (it © D&, ° 2).

2. Radon and Fourier transforms for sheaves
2.1. Review on sheaves

Mainly to fix the notations, we recall here some definitions from the theory of
sheaves. Refer to [13] for details. In this section, we will take k = C and work in the
analytic topology.

Let X be a locally compact topological space. Let ky be the constant sheaf with
fiber k = C, and for a locally closed subset 4= X, let kyx be the sheaf on X

characterized by (kyx)|4 = k4, (Kax)[y 4 = 0. Denote by D®(ky) the bounded
derived category of sheaves of k-vector spaces on X, and by ®, f~', Rfi, R# om, Rf.
and f* the usual six operations, where f : X — Y is a continuous map with finite c-soft
dimension. For FeDP(ky), we set

D' F = R#om(F,ky).

Let Y and Z be locally compact topological spaces, and let KEDb(kXXy),
LeDb(ksz). As for Z-modules, one sets

Ko L= Rq3(qi K®4 L).
In particular, the integral transform with kernel K is the functor
(e)° K : D°(ky)—D°(ky),

F—FoK=Rq(p 'FRK).
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The operation o is associative, and the identity is associated with the kernel Ky x x,
where X is diagonally embedded in X x X.

Assume that X is a real analytic manifold. To FeD°(ky) one associates
its microsupport SS(F), a closed involutive subset of 7*X whose complement
describes the codirections along which F propagates. One says that K and L are
transversal if

(SS(K) x T, Z)n(TyX xSS(L)) < Tyyyyz (X X Y X Z).

2.2. Radon and Fourier transforms for sheaves

Let us use the same notations as in Section 1, summarized in (1.6). Note that here
we consider all spaces V, V* P, ... as well as the maps between them, in the category
of real analytic manifolds.

Denote by DE’W (ky) the full triangulated subcategory of Db(kv) whose objects
have conic cohomologies, i.e. cohomologies which are locally constant along the
orbits of the multiplicative group R of positive real numbers. The Fourier-Sato
transform for sheaves is the equivalence of categories

(o) oL : D (ky)— Dy (ky+),

where L = Koy for @ = {(x,y)eV x V*: Re{x,y) <0} (cf. e.g. [13]).

For the Radon and blow-up transforms, one considers the solution com-
plexes of the corresponding kernels for 2-modules in (1.12) and (1.13), i.e. one
considers

u= 1 Y 1/t é
Ry, = kpyp+ Dpyprkupxps | Kuppxp Kspxp+[-1]
(¢)oRu =~ || kp» ®R['(P;0) | Rau.pg' | Reupy’ Rgs,pg*
Su = kg, Dgkyw | ko kg7 -1
(8) 0 RitSy ~ Rzt Rj 7! Rjim™' | kov @ RT(P; )

where, as in the 2-module case, one uses transversality in order to get the above
isomorphisms of functors. Consider the maps

Voo PxV, P&yl

Theorem 5. Let Fe Db(k[p:), and let u be one of the four generators in (1.10), so
that

u=1,Y,1/t,5, d=051/1,7,1,
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respectively. Then there is a natural isomorphism in Db(kv)
n ! (FeoRy)~j~ " (F o RiS, - L)[1].

The proof is a line by line analogue of the one for Z-modules, making use of the
isomorphisms
kioyc o Li~ke, ke oLi~Kkjyc[—2],

ch oLy ﬁD«’ckC\@[—l]y chkc\c oLy 2l“@m[—l]-
Here, L1 = k{re¢ruy <ojjcxc 18 the kernel of the Fourier-Sato transform on C.

Remark 1. Let .# be a coherent algebraic Z-module on P, denote by .#*" the
associated analytic Z-module on P, considered as a complex analytic manifold, and
set Sol(M) = RA omguw (A", O3"). Using the Riemann-Hilbert correspondence and
the compatibility between Fourier and the solution functor (see e.g. [14]), one can
recover the isomorphism in Theorem 5 for F = Sol(.#) from the one in Theorem 3.

Remark 2. As for -modules and TDOs, one has a statement analogue to Theorem
5 in the framework of twisted sheaves.

2.3. Link with the real blow-up

The Fourier—Sato kernel is related to the real analytic space structure underlying
the complex vector space V. We give here an alternative description of the blow-up
transform, using such a real structure. Although addressing a natural question, this
subsection is independent from the rest of this paper. The reader in a hurry may
prefer to skip to Section 3.

Let Pr = Pr(V) be the real projective space of lines in the 2(n + 1)-dimensional
real vector space underlying V. Note that Py is orientable, and recall that for n>1 one
has 7 (Pgr) = Z/2Z. Thus, up to isomorphism, there are only two locally constant
sheaves of rank one on Pg. We denote them by kp,(¢) for ¢€Z/27Z, assuming that
kp,, (0) is the constant sheaf. There is a natural fibration with fiber Pr(C)~S":

pZPR—>|p

associating to a real line Rx in V its complexification Cx. Recall that Rpkp, (1) = 0.
As in the complex case, the natural maps

P v, v

induce an embedding of V as a locally closed subset in Pr x V. We denote by \A/EQ the

closure of V in Pg x V, and set Ep = \/?f\\'/. These are, respectively, the real blow-up
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of 0 in V, and its exceptional divisor. The natural projections from Py x V induce
maps

PRZ‘BWJRW

Since 7g is a line bundle, one has (V) = Z/27. For ¢ Z /27, we denote by k@? (e)

the two locally constant sheaves of rank one on V&. Note that the relative
orientation sheaf Org, jym 13 non-trivial, and hence Or' R ~ OI R p, & OFg, /R

is non-trivial. Consider the diagram
Vﬂ> \7}% T) Egr~ Pr
N
Vo< E~P
where p” = (p x id\/)|@)¢7.

Proposition 2. There are natural isomorphisms in D°(kg;)
D’\’/;kwvo ~ Rpf’k\j(n)i, k\/‘\% ~ Rpf’k\’/gni(l ).
Proof. Note that p"'kg; ~p" g, [~dim® V) >R [—dim \A/gq{] :k\jgx(l), where o,
denotes the dualizing complex. Hence, for F eDb(k\j(u?) one has
D, Rp/'F ~ RA#om(Rp|'F, k)
~ Rp" R#om(F, p"kg;)

~ Ro! D (FOKE(1))

The second isomorphism in the statement thus follows from the first one. To prove
the first isomorphism, note that

D/\/Ok\/lm = D/\/ORPI k\/l\/[R

=~ Rpy' D (ko ®kyi (1))
~ " ~ .
Using the distinguished triangle

D k[E |\/[R —>k\/|Re —>D k\/l\/R +—1>
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it is then enough to prove that Rpngl@)*k[ERI\A/E‘ = 0. Since Egr is not relatively

orientable in V', one has D/\Z'}k[ERIW? ZkIERI\’;gQ ®k\7§(1)[—1], and hence

R Dk 7~ Rif (ke 73 @k (1)1
~ Rp| Rlgke, (1)[—1]

~ RIRp kg, (1)[—1] = 0. O

3. Applications

For the remainder of this paper we consider the case k = C, and we concentrate on
the Radon transform 2,,, = #yjpxp+. From now on we thus simply set

R = Bupxr, R=Kkypxp,
so that

(0)° Z2~Dqy.Dpl,, (o) oR~Rqup;.

3.1. Radon transform of line bundles

For meZ, let Op(m) denote the —mth tensor power of the tautological line bundle
Op(—1). The Leray form on P is defined in homogeneous coordinates by

0ddxon - Adx, = Z (—l)ijdxo/\ d/x; Adx,,
=0

where | denotes the interior product and 0 the Euler vector field. It is thus a global
section of Qp ® ¢Op(n + 1) which only depends on the choice of a volume element in
det V*. Removing this dependency, we get a canonical section

o(x) el (P;Qp®oOp(n+ 1)®det V).
Set
p(m) = DpQ e, Op(m), m" =-m—n—1,
and note that, using the identification

Qp~0p(—n — 1) @det V* (3.1)
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induced by w(x), we get an identification
Dp(Zp(—m))[—n]~Dp(—m") ®det V. (3.2)
It was shown in [7] that for m <0 the integral kernel
x> o(x)elN(P x P (Qp(—m™ ) K Ops(m)) @ vpmop 2@ det V)
induces an isomorphism
Dp(—m*) ° R@det V & Tp-(—m). (3.3)
The integral kernel
o™ Y({x ) )o(y)e TP x P (Op(m") RQ, (—m))
® tprp: Dpxp 2 @det V*)
gives a morphism
Dp(—m*) ° R@det V- D+ (—m)
which is an inverse to (3.3) for m<0. The following statement describes its kernel
and cokernel for m >0 (this should be compared with the topological results in [5]),
and recovers the case m <0 by different methods, using the results from Section 1.
Let us denote by S”'V the mth symmetric tensor power of V.
Theorem 6. For any meZ there is a long exact sequence of Dp+-modules

0— Op ®S"V* > Tp(—m*) © Z@det V- Tp:(—m) - Op- ® S"V* 0.

Before starting the proof, let us explicitly describe the morphisms entering the
above long exact sequence. The natural identification S"V*~T' (P, Up(m)) gives a
canonical monomorphism

k[p &® Sm\/* - (Qu:o(m),
which in turn corresponds to a surjective Zp-linear morphism
@p(—m) - (QP ® Sm\/

(for m = 0 this is but the beginning of the Spencer resolution of ¢p). Consider its
kernel

@6}(—}7’1) = ker(@p(_m) N (/GP ® Sm\/)’
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and set
Dp(=m)" = Dp(Zp(—m))[—n].
Note that by (3.2) there is a distinguished triangle
Op[—n]®S"V* - Tp(—m*) @det V - Flp(—m)" 2.
Then the statement of Theorem 6 is equivalent to the isomorphism

Do(=m)* S R Dy (—m). (3.4)

Proof. By Lemma 2, it suffices to prove that there is a distinguished triangle in
D*(2y.)

Dr*(Zp(—m*) ° #)@det VV - Dr* D (—m)
- D' (Op ® Up [1)) @SV 2.
Consider the cyclic Zy-module
Dy(m) =Dy/<{0+m),

and note that Dn*Zp(m) ~ Dj* Py (m). Since one also has Dn*Op ~ Dj* Oy, the above
distinguished triangle is equivalent to

Dr*(Zp(—m*) S R) - Dj* Dy-(—m) @det V*
- Dj* (Oy ® Oy [1)) ®S"V* @det V* 2.
By Theorem 3, it is enough to prove that there is a distinguished triangle in Db(,,@v«)
To(-m")° DLDT, By, © L~ Dy (—m) @det V*
- (Oy ® Oy [1]) S"V* @det V* 5 .

This is obtained by Fourier transform if we prove that there is a distinguished
triangle in D°(Zy):

Tp(—m") ® DLDT, By, — Dy (—m") = (B ® By [1]) 8"V @det V' 5.

Since Dp(—m*) ° DT, D, By v, ~DjDn* Zp(—m*) ~ DiDj* 2y (—m’*), this is exactly

what is claimed in Proposition 3 below. [



A. D’Agnolo, M. Eastwood | Advances in Mathematics 180 (2003) 452—485 473

Recall that on a smooth variety X there is a natural isomorphism of left Zy ® Z -
modules:

®-1
Bxixxx ~Dx oy Qy

where Zx acts on Ay y.x via the first and second projections. Concerning oy,
recall that %oy ®det V* has a generator Jgy and relations x; dgpy =0 for i =
0,...,n. One then has an identification of k-vector spaces oy ®det V"~
@ yk - 9%d¢;y or, more intrinsically,

,%)Ol\/ ~S*V ®det V.

Proposition 3. For any meZ there is a distinguished triangle in Db(@\/):

DiDS* Dy (—m*) = Dy (—m*) > (Bopy ® Zopy [1]) © SV @det V13

Proof. One has ngl]])j*@v(—m*):ID\/RFMID\/@\/(—m*). Using the distinguished
triangle deduced from (1.9),

DyRI g Dy Dy (—m*) = Dy (—m") > DyRI g Dy Dy (—m") )

it is then enough to prove the isomorphism
D\/RF[O] D\/@\/(—m*) ~ (,@m\/ @go‘\/ [1]) ® SV ®d€t V*. (35)

Consider the short exact sequence

Using the identification 2y ®(5‘\/ng8 -1 ~ABy|vxv, we get a distinguished triangle

N (0—m*), 1
Dy @y (—m") > Byyxv[n + 1] —— Byyxv[n + 1] =,

where (0 — m*), means that 0 — m* acts on %y« via the second projection. Using
the identifications

RF[O]%\/WX\/[H + 1] ~ RF[O]RF[\/]@\/X\/[Z(II + 1)}
~ RF[O](O\/WD(n + 1)]

~ Bojvxv
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we get a distinguished triangle

" (0—m*), 1
RF[O]D\/@\/(—W[ )—N%O\\/x\/‘i—“%’m\/x\/iﬁ (3.6)

As we recalled before entering the proof, %oy xv ®det> V* is generated as a k-vector
space by a;aéaowx\, Using the commutation relation [0, X;] = 1, one gets
02 00 = (Z f:@a) 020800y = (—n — 1 — |B]) D20
i=0

In particular, (0 —m*), acts diagonally sending to zero only the base elements
a;aﬁaoww with || = —m" —n—1=m. We thus get an isomorphism of P-
modules:

ker(0 — m"), ~coker (0 —m"),~%Byy ®S"V @det V.
It follows from (3.6) that

. B S"V®detV fori=0,1,
HZRF[O]D\/@\/(—I’}’Z*) — { 0‘\/@ ® 1

0 otherwise.
Hence, there is a distinguished triangle
,@0‘\/ ®S"V®det V- RF[()] D\/Q\/(—m*) _’%0\\/ [— 1] ®S"V®det V +—1> .

Since Homg,, (%op [—1], Bopy[1]) = 0, one has
RF[O]D\/@\/(—WI*) ~ (%0‘\/ (—Bgow[—l]) ®S"VEdetV,

and (3.5) follows by duality. O

3.2. Radon transform of closed forms

Let X be a smooth n-dimensional algebraic variety. Recall that if % and ¥ are
locally free (Oy-modules of finite rank there is a natural isomorphism

Qiff(f,g):c}fOngX(@,\/®@g*7gx®@f*), (37)

where F* = #Home,(F,0p), and where Ziff denotes the sheaf of differential
homomorphisms. The de Rham complex

Q° = QO d?\' Ql Qn—l d;z;] lo
Y =(Qy = Qx> oy — QY),
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thus corresponds to a complex of Zy-modules, called the Spencer complex,
d¥ dax
Il = (Ipy < Ipy =S & Iy,
where we set yp;( =Zx®0 N\, Oy, denoting by @y the sheaf of holomorphic

vector fields. Recall that the map P+ P1 gives a quasi-isomorphism

O0x & gpX. (3.8)

Moreover, one checks that
q . ~
dY (PROIA - AO) =D (1) PO®O A0 A0,
+ (=) P10, 0] A Oy A -+-0;---0;--- A
I<i<j<q

(See [12] for a detailed exposition.)
Let us denote by ¥p¥  the subcomplex obtained from p) by replacing p¥
with 0 when j<g. Thus,
X

d ax i
Vpgq[q] = (Oeyp(){( Loegpr & ypff)q—licokerd;(

is concentrated in degree zero, and for 0 <g<n it has the sheaf of closed ¢-forms as
solutions. We similarly define &p% . Note that &p% [¢] is isomorphic to

Ip¥ 4+1(¢ + 1], up to flat connections, and that one has isomorphisms
I]])Xypiq :Vp);nfq.

Finally, note that %p% 4] and Ip 4lq] are microlocally free outside of the zero
section.

Theorem 7. There are natural isomorphisms in D°(Zp-):
D ~ «
Il R = IpZ,  In—ql

In fact, the more general statement obtained by replacing the Spencer complex
with a “BGG sequence’ also holds, but we will discuss this matter elsewhere. Here,
we will obtain Theorem 7 as a corollary of Theorem 8 below, which computes the
Radon transforms of Vps’ itself.

Note that for ¢ = n the above statement gives the isomorphism

Op[-n]° 2 < Op-
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For ¢ = 0 and n — 1 one recovers the isomorphisms (3.4) form=n+1 and m = 0,
respectively. In fact, using the identification (3.1) one has an identification

IpP ~Fp(n+1)@det V.

The case g = n — 1 is related to the so-called Andreotti-Norguet correspondence, of
which a %-module interpretation was given in [9]. Finally, note that taking

holomorphic solutions in the analytic category we get the isomorphisms in Db(k[p)*)
25lq) - R 92" "],
describing the Radon transform of the sheaf of closed g-forms.

3.3. Euler complex
Denote by 6 the Euler vector field on the vector space V, which is the infinitesimal
generator of the action of the multiplicative group k*. As any vector field, 6 acts on
differential forms in two ways, by interior product and Lie derivative:
e, =01e: Q-0
h) =Lo: Q-9
Recall that there is a long exact sequence

\% eV
0—>Q'{/+1 o —>Q{/ —O>Q(\)/—>k{o}w -0,

and that e(y, h;V, and the exterior differential df, are related by the homotopy

formula

h =e)odi+dl " e} . (3.9)
By (3.7), to ¢/ | and k) correspond Zy-linear morphisms
-1
e%/ :‘ypy—l_)yp(ya
h({/ : ypy —>ﬁp§7

and we consider the Euler complex defined by

0 o
suly = (Ipy S IpY — s P L Ip ).
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Recall that there is a quasi-isomorphism
suty[n+ 115 B0 (3.10)

Note also that on V there is a natural identification
Y q q
_ e 4 _ ~
Sp, —zg’uv—;@\/(?/@\ Ov=7v® [\ V. (3.11)

Remark 3. The Euler vector field is written 0 =377, x;0y, in the system of

coordinates (xo,...,x,), and using the identification (3.11) one checks the
equalities

AV (PRP) =D PO, ®0, n0", ¢ (PRI) =Y P;@0dy A,
Jj=0 =0
h,(P®0") = P(0 + q)® 0",

where we set o = (a1, ..., %) with 0<oy <+ <oy <n, 0" =0y, A - Ay, , and we
used the notation

_— 0, if j#o; for any i,
O, NO* = ‘ ——
j (_1)1718&1 /\"'axa,"'/\a

Xy

ifj:OCi.

From (3.9), it follows that /%, induces endomorphisms of the complexes ¥pY and
&us,, and we can consider the complexes ¢pYY and &uy, y defined by the short exact

sequences

-
0> p) = Ip) - Spl’ -0,

0— Eufy = Euyy — Euly g —0.

Lemma 3. In D®(%y) one has the isomorphisms Uy =B oy [—n] @ Bioyv[—n — 1]
and SpY ' ~ 0y @ Oy]1].

Proof. By (3.10) there is a distinguished triangle

h . i
93{0}‘\/ —>93{0}|\/ Hﬁ)u\/ye[l’l + 1} +—>,
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where /i is defined by the commutative diagram with exact rows

FpY —> Y, —> By 0
lh{, lh’;fl lh
IpY > S = Bioyy —>0
Let us use the notations in Remark 3. For o = (0,1, ...,n) one has

h(q(P®d") = q(" (P®9"))

= (P(Z X0y + 1+ 1) ®a“>
j=0

=q <p (Z axjx,> ®8“> = q<e<\’/ (Z PO, @D, Aa“>> =0.
j=0 i=0

So i = 0, and the first isomorphism is proved. The proof of the second isomorphism
is like the one above, using (3.8) instead of (3.10). O

Consider the maps P LA VERY) By (3.11) one has identifications

q
Iyt = eul, y~ 7 ()@ \V, (3.12)

so that

q
D Sp, "’ = Dj*6ul, ;=D Ts(q)® \ V.

We can then consider the complexes

. 4 Y

0 n

St = (76(0) % Tp(1) @V > - % Tp(n+1)@det V),

whose differentials are induced, via Lemma 2, by those of #pY? and Euy, 4,
respectively.

Lemma 4. The complex @@Nuﬂg is exact, and there is a distinguished triangle in Db(@p)

@P[l]—’yﬁm—’@u}ﬂ-
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Proof. By Lemma 3 one has the isomorphisms in D®(Zy)):

D?‘C*g{lﬂ; ~ Dj*quﬁ ~ Dj*(%{o}‘\/[—n] @g{o}‘\/ [—I’l — ]]) ~0,

hence g"\ﬁn'j, is exact by Lemma 2. Again by Lemma 3, one has the isomorphisms in
D*(2y):

Dr*Fpf ~Dj* S pY ~Dj* (Oy @ Oy [1]) ~ D" (Op ® Op[1]).

It follows from Lemma 2 that

H (Sp.)~

0, for j#0,1,
{ orJ# (3.13)

Op, forj=0,-1,

and hence there is a distinguished triangle as stated. [

Recall that a form we;j~' QY is the pull-back w = n*a of a form e Q% if and only if

v,
hq w =0,
e}l/flco:O.

In other words, there is a quasi-isomorphism

qis

Ipg < Euplql, (3.14)
and moreover the Spencer differentials df correspond to the morphisms of complexes
d) : 6us g — 1]« Euz 'lg].

Note also that by Lemma 4 there is a quasi-isomorphism %;q[q] 8 (g"ﬂ[ﬁ g +1].
Interchanging the role of Spencer and Euler, let us set the following definition.
Definition 1. For 0<{g<n set
@‘"ué = Ho(ypﬂifﬁ»l[q + 1])7
and consider the complex

en—]

0
Euly = (Eub, ié)u[}m—» s Eulh)
whose differentials are induced by the morphisms of complexes

ey : yp[;qﬂ[q + l]aypiqﬂ[q +2].
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Note that by Lemma 4 there is a quasi-isomorphism
suly & Sp2 ala + 1],
but one should beware that %ﬂi a4 %ﬂ;qﬂ [¢ + 1]. Note also that, by definition

sy = pt.

Lemma 5. For 0<g<n there are isomorphisms in D®(Zp)

Euz lq)~Spt lq).

Proof. Denoting by s* and s. the simple complexes associated with a double
complex, one has

Sugla)=s"(SPLynila+ 1= IpLynlg+2) = S IpL, 0l + 1),

dv

/\/ Vo~
Gz g+ 2 EE 1),

d\/
«—

SpY gl ~=se(Euz " g + 1]

One concludes by noticing that the first double complex coincides with the second
one after interchanging the roles of rows and columns. [J

In particular, for ¢ = 0 we get a quasi-isomorphism

Moreover, using the distinguished triangle

o, >q+1 > . +1
Sug ™ > Eug ' sul[—q) =,

one gets short exact sequences
0— coker d, — &uf, —coker d,, | >0 (3.15)

which should be compared with the usual

0— coker d”

qH—»,VpE;—»cokerdf—»O. (3.16)

To end this section, it is interesting to note that the distinguished triangle in

Lemma 4 does not split. In other words, the complex ?[;ip is not isomorphic to the
direct sum Op @ Op[l1].
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Proposition 4. The morphism o : Op — Op[2] induced by the distinguished triangle in
Lemma 4 is not zero in Homg, (Op, Op[2]) ~k.
Proof. Using (3.13), from the distinguished triangle

—p  +1

—_— Vo o— \%
Vpé'f d—>Vp”j d—>yp>1 =
we get the long exact cohomology sequence

A%
05 0p - 65 Do — 0p >0,

which describes « as a Yoneda extension. Since im dV¥ = Zp@p = Zp, this sequence
decomposes into the short exact sequences

0— Op — Eu,— TpOp —0,

Oﬁm@p@p%@p%@pﬁo, (317)

which are but (3.15) and (3.16) for ¢ = 0. These sequences describe, as Yoneda
extensions, the morphisms f: ZpO@p — Op[l] and y : Op > ZpOp[l], respectively, and
one has o = f[1] oy. Note that f and y are essentially unique, since

HOI’IIL_@P (@u:u@um, @p[l])zszomgp(@p,@p@p[l]),

as follows by applying the functors RHomg, (e, Up) and RHomg, (Op,e) to the
exact sequence (3.17). Note also that f#0+#7y since

Homg, (§u, Op) = 0 = Homgy, (Up, Zp),

where the second equality is obvious, and the first one follows from the exact
sequence 0—Homg,, (6ul, Op) - T'(P; 0p(—1)) @ V* = 0 obtained by applying the
functor Homg, (e, Up) to the exact sequence Zp(1)®@V —&ud—0. To conclude,
consider the morphism of distinguished triangles:

Dp Op —— ZpOpQ) L
lo l a l B[1]
0 Opl2) — 4> Oppy ——=

If o« were zero, then f§ also would be zero, which is a contradiction. [

3.4. Radon transform of differential forms

Theorem 8. There are natural isomorphisms

IPES & s,
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Taking holomorphic solutions one get a description of the Radon transform of
the sheaf of differential forms which, using (3.15), should be compared with the
results in [8].

Proof. First, note that using the identification (3.12) one has

q
Sulyy © L=y (n+1-q)@det V'@ \ Vaop! . (3.18)

Since dV" and ey are interchanged by Fourier, one gets the following isomorphisms
< D 0
ugflal = L=IpLly fn+1- 4 (3.19)
One has the chain of isomorphisms

D (9P © #)~ Dj (DiDT Sp) © &1

D

~ Dj*[(DiD)* Sugflq)) © &)

S )

~ Dj*(6uy; hlg)
ok .0
= D] ‘yp\;n-ﬁ-l—q[n + 1 - Q}
~ Dn*Sup.?,
where the first isomorphism follows from Theorem 3, the second by (3.14), the fourth

by (3.19), and the last by the definition of &uj, ?. The third isomorphism follows
from Proposition 3, using the identification (3.12). O

Proof of Theorem 7. The proof goes as the one above, considering the chain of
isomorphisms:

B D PR D
Dn*(9pZ,lq ° %)~ Dj*[(DiDr*p% [q]) © Z]
” D < dv & < D
~ D/ [(DiDf . (6uSHl0] = - — sughlg)lg)) o £]

. . av av < D
~ D [se(Sugyl0] « - = Cughla)lg] &)

~ D s(IpL I+ 1) Egpll n+ 1 - q))g)
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* o >n+l v av’ /n+1 —q
~[D]s((§’u [n+1]—>-~~—>é’ n+1-—q))q

v

=~ D] So((@u\/* [niq] D (_ (@u\/ ()[ ])
~ [Dn*yp[p;nfq[n — 4],

where the sixth isomorphism is due to Lemma 3, and the fifth uses the same
argument as in Lemma 5. [

3.5. Quantization of the Radon transform for differential forms

According to [7], the integral kernel of the morphism

D

IpE g —ql>IpE g = #

in Theorem 7 is given by a section

D *
S”*q(x7y) eHomfZ[Px[P* (‘qp[;n—q[n - q] yp[;nfq[n - q]7 '@[UHP’XP*)'
Similarly, the integral kernel of the morphism
sl Spt R

in Theorem 8 is given by a section

z,,_q(x, .V) € Homf‘f?[@xp* (

D
Sy B EU, By pe).-
Let us describe them.

The canonical map k— A7V*® A? V induces a monomorphism

4
Oy oy~ (—>Q</ .Q({/*,

and we denote by o,(x,y) the image of 1. Equivalently, consider the maps

o N
ol mol. o .2l Lol X .,

where p is the projector to the (¢, ¢) component. Then o, is the symplectic form of
V x V*, and g, coincides, suitably normalized, with p(A\?a}).
Setting

”q(xJ’) = ZZCL_};J;?F
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one checks that

hYug(x,3) = hY uy(x,y) = 0,

d\/*evuq(x,y) = dwevuq(x,y) =0,

e\/*evu,ﬁl (x,9) = dvdy-ug_1(x,).
Then, one has

tl’l*li(xvy) = e\/un+1*q(x7y)7

AVAAY,
Snfq(xay) =e € un+17q(x7y)'
Using homogeneous coordinates,

n—q q

Ce1g —_— | —
Sn*q(X,y): <x7J/> det yadyvn-adyaax’“-,ax J(,U(X),

where | denotes the interior product, and o the Leray form. In particular, one has

,d.
5106,0) = —dudy- log{x, yy = —dy: ST
X070
and
W(X)NW
Sﬂ<xay) = Lng;)
{x,)
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