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Abstract. Let pm be a power of a prime number p, �pm be the dihedral group of
order 2pm and k be a field where p is invertible and containing a primitive 2pm-th root
of unity. The aim of this paper is computing the Brauer group BM(k, �pm , Rz) of the
group Hopf algebra of �pm with respect to the quasi-triangular structure Rz arising
from the group Hopf algebra of the cyclic group �pm of order pm, for z coprime with p.
The main result states that BM(k, �pm , Rz) ∼= �2 × k·/k·2 × Br(k) when p is odd and
when p = 2, BM(k, �2m , Rz) ∼= �2 × �2 × k·/k·2 × k·/k·2 × Br(k).

2000 Mathematics Subject Classification. 16W30, 16H05, 16K50.

Introduction. Let k be a ring with unity and H be a Hopf algebra over k with
bijective antipode. In [2] S. Caenepeel, F. Van Oystaeyen, and Y. H. Zhang defined
the Brauer group of the Hopf algebra H, denoted by BQ(k, H), consisting of Brauer
equivalence classes of H-Azumaya algebras. The Brauer group BQ(k, H) generalizes to
arbitrary Hopf algebras the Brauer-Long group of a commutative and cocommutative
Hopf algebra introduced in [10]. Thus the class of Hopf algebras with a Brauer group
theory is enlarged. In particular, it makes sense to think about the Brauer group of the
group Hopf algebra of a non abelian group. For G a finite abelian group the Brauer-
Long group of the Hopf algebra kG, denoted by BD(k, G) and studied in [9], was
proposed as a generalization of previous existing Brauer groups of graded algebras
like the Brauer-Wall group [20] or the Brauer group Bφ(k, G) of G-graded algebras
with respect to a pairing φ : G × G → k. See [5], [6], [7]. The Brauer group BD(k, G)
contains these other Brauer groups as subgroups.

In the generalization proposed in [2], the Brauer group Bφ(k, G) may be recognized
as the Brauer group of a coquasi-triangular Hopf algebra; see [3, Lemma 1.2]. For a
coquasi-triangular Hopf algebra (H, r) the Brauer group BQ(k, H) contains a subgroup
BC(k, H, r) consisting of classes of Hop-comodule algebras with H-action stemming
from the coquasi-triangular structure r. Dually, if (H, R) is a quasi-triangular Hopf
algebra, BQ(k, H) contains a subgroup BM(k, H, R) consisting of classes of H-module
algebras with H-coaction arising from the quasi-triangular structure R.

Let n be a nonnegative integer, let k be a field containing a primitive n-th root
of unity ω and such that n is invertible in k. In this paper we study the Brauer
group BM(k, �n, Rz) of the group Hopf algebra of the dihedral group given by
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�n = 〈g, h : gn = h2 = 1, gh = hgn−1〉 with respect to the quasi-triangular structures

Rz = 1
n


 ∑

0≤l,m<n

ω−lmgl ⊗ gzm


 , (0 ≤ z ≤ n − 1)

for z coprime with n. These quasi-triangular structures arise from the quasi-triangular
structure on the group Hopf algebra k�n. For n = pm a power of a prime number
p a concrete description of BM(k, �n, Rz) is given. It is proved in Theorem 3.5
that BM(k, �n, Rz) ∼= �2 × k·/k·2 × Br(k) if p is odd and BM(k, �n, Rz) ∼= �2 × �2 ×
k·/k·2 × k·/k·2 × Br(k) if p = 2. Here Br(k) denotes the usual Brauer group of k and
k·/k·2 is the multiplicative group of k modulo squares. For the case p = 2 the assumption
that ω = θ2 for a primitive 2n-root of unity θ ∈ k is needed.

The underlying idea in our study of BM(k, �n, Rz) is to relate it to the Brauer
groups BM(k, �2, R0) and BM(k, �n, Rz) which belong to the theory of the Brauer-
Long group and describe BM(k, �n, Rz) from the knowledge of them. The cases n
odd and n even are different and need to be treated separately. The inclusion map
i : �n → �n induces a group homomorphism i∗ : BM(k, �n, Rz) → BM(k, �n, Rz). It
is shown in Theorem 2.10 that Ker(i∗) ∼= k·/k·2 when n is odd and Ker(i∗) ∼= k·/k·2 × �2

when n is even. Any [β] ∈ k·/k·2 and ā ∈ �2 is represented in Ker(i∗) by the algebra
A(β, ωa). As an algebra A(β, ωa) is the 2 × 2 matrix algebra M2(k) and the �n-action
is defined by letting g and h act by conjugation by the elements

u =
(

ωa 0
0 1

)
, v =

(
0 β

1 0

)
,

respectively. The algebra C(1) = k〈δ : δn = 1〉 with g-action given by g · δ = ωz−1
δ is

�n-Azumaya. The class of C(1) in BM(k, �n, Rz) lies in the image of i∗ since the g-
action may be extended to a �n-action by setting h · δ = ωrδn−1 for 0 ≤ r ≤ n − 1.
With this �n-action C(1) is �n-Azumaya. When n is odd the isomorphism class of
this �n-module algebra is independent of r while when n is even there are exactly
two inequivalent �n-Azumaya algebra structures on C(1) depending on the parity of r
(Proposition 2.12). If k is algebraically closed and n is a power of a prime p not dividing
z it is known that BM(k, �n, Rz) ∼= �2 and it is generated by [C(1)]. From these facts it
is derived that BM(k, �n, Rz) ∼= BM(k, �n, Rz) ∼= �2 if p is odd (Corollary 2.13), and
BM(k, �n, Rz) ∼= �2 × �2 if p = 2 (Corollary 2.16).

This result is used to determine BM(k, �n, Rz) for k arbitrary by going to its
algebraic closure k. The inclusion map ι : k → k induces a group homomorphism
ι∗ : BM(k, �n, Rz) → BM(k, �n, Rz). When n is odd the kernel of ι∗ is the subgroup
BAz(k, �n, Rz) consisting of classes of BM(k, �n, Rz) containing a representative
element which is classically Azumaya. It is shown in Proposition 3.2 that Ker(ι∗) ∼=
k·/k·2 × Br(k). The group k·/k·2 is represented by the algebras A(β, 1) for [β] ∈ k·/k·2.
When n = 2q with q even, Ker(ι∗) ∼= k·/k·2 × k·/k·2 × Br(k). For q odd, Ker(ι∗) is
isomorphic to the direct product of k·/k·2 and the group extension k·/k·2 × {−,−}Br(k)
where {−,−} : k·/k·2 × k·/k·2 → Br(k) is the 2-cocycle mapping ([a], [b]) to [{a, b}].
Here {a, b} denotes the quaternion algebra generated by x, y subject to the relations
x2 = a, y2 = b and xy = −yx. In both cases the first copy of k·/k·2 is represented by
the algebras A(β, 1) and the second copy is represented by the algebra A(t) defined
as follows: for [t] ∈ k·/k·2, A(t) = M2(k) as an algebra and the �n-action is given by h
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acting trivially and g acting by conjugation by

u =
(

0 t
1 0

)
.

When n is a power of a prime number the map ι∗ is surjective and split and its image
commutes with Ker(ι∗) (Theorem 3.5).

1. Preliminaries. Throughout k will be a field and H a finite dimensional Hopf
algebra over k. For general facts on Hopf algebras and related notions we refer the
reader to [8], [14], and [17]. In this section we recall the construction of the Brauer
group BM(k, H, R) of a finite dimensional quasi-triangular Hopf algebra (H, R) over
a field k; see [2], [3].

Let (H, R) be a quasi-triangular Hopf algebra with quasi-triangular structure
R = ∑

R(1) ⊗ R(2) ∈ H ⊗ H. Any left H-module algebra A is naturally endowed with a
standard right H-comodule algebra structure

ρ : A → A ⊗ Hop, a 
→
∑ (

R(2) · a
) ⊗ R(1). (1)

The braided product A#B of two left H-module algebras A, B is again a left H-module
algebra and it is defined as follows: as a vector space A#B = A ⊗ B, with multiplication
and H-action defined by

(a#b)(a′#b′) =
∑

a
(
R(2) · a′)#

(
R(1) · b

)
b′,

h · (a ⊗ b) =
∑ (

h(1) · a
) ⊗ (

h(2) · b
)
,

for all a, a′ ∈ A, b, b′ ∈ B, h ∈ H. The H-opposite algebra A of a left H-module algebra
A is equal to A as a left H-module but with multiplication given by

a ∗ b =
∑(

R(2) · b
)(

R(1) · a
)
,

for all a, b ∈ A. For a finite dimensional left H-module M, the endomorphism algebra
Endk(M) becomes a left H-module algebra with H-action

(h · f )(m) =
∑

h(1) · f
(
S
(
h(2)

) · m
)
,

for all h ∈ H, f ∈ Endk(M), and m ∈ M, where S denotes the antipode of H. Similarly,
the usual opposite algebra Endk(M)op becomes a left H-module algebra with H-action

(h · f )(m) =
∑

h(2) · f
(
S−1(h(1)

) · m
)
,

for all h ∈ H, f ∈ Endk(M)op, and m ∈ M.

A finite dimensional left H-module algebra A is called H-Azumaya if the following
two left H-module algebra maps are isomorphisms:

F : A#A → Endk(A), F(a#b)(c) =
∑

a
(
R(2) · c

)(
R(1) · b

)
,

G : A#A → Endk(A)op, G(a#b)(c) =
∑ (

R(2) · a
)(

R(1) · c
)
b,
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for all a, b, c ∈ A and a, b ∈ A. Let Az(H, R) denote the set of isomorphism classes of
H-Azumaya algebras. The following equivalence relation in Az(H, R) is introduced:
two H-Azumaya module algebras A, B are called Brauer equivalent, denoted by A ∼ B,
if there are two finite dimensional left H-modules M, N such that A#End(M) ∼=
B#End(N) as left H-module algebras. The quotient set BM(k, H, R) = Az(H, R)/ ∼
turns out to be a group with product induced by the braided product; that is, for
[A], [B] ∈ BM(k, H, R), [A][B] = [A#B]. The inverse of [A] is [A] and the identity element
is [k]. Note that for a finite dimensional left H-module M, End(M) is a representative
element of [k]. The group BM(k, H, R) is called the Brauer group of H with respect to
the quasi-triangular structure R.

The Brauer group BM(k, H, R) has a functorial behaviour at the field level
and at the Hopf algebra level. Any field homomorphism f : k → k′ induces a group
homomorphism f∗ : BM(k, H, R) → BM(k′, H ⊗ kk′, Rk′ ) by mapping the class [A]
into the class [A ⊗k k′]. Any quasi-triangular map χ : (H, R) → (H ′, R′) induces a
group homomorphism χ∗ : BM(k, H ′, R′) → BM(k, H, R), [A] 
→ [A] by pulling back
the action of H ′ on A along the map χ .

For a coquasi-triangular Hopf algebra (H, r) a dual construction of the Brauer
group holds; one considers right Hop-comodule algebras and uses the coquasi-
triangular structure in order to define a braiding, braided product, H-opposite
algebras, and H-Azumaya algebras. The group obtained in this way is denoted
by BC(k, H, r) and it is called the Brauer group of H with respect to the coquasi-
triangular structure r. For a quasi-triangular Hopf algebra (H, R), H∗ is a coquasi-
triangular Hopf algebra with coquasi-triangular structure r induced on H∗ by R. Then
BM(k, H, R) ∼= BC(k, H∗, r). If H is commutative and cocommutative, then r induces
a pairing φ on H and the Brauer group BC(k, H, r) is isomorphic to the Brauer group
Bφ(k, H) of φ-Azumaya algebras. See [3, Lemma 1.1], [4, p. 329], [7], [15] for more
details.

Let (D(H),R) be the Drinfel’d double of H equipped with its canonical quasi-
triangular structure R. The Brauer group BQ(k, D(H),R) is usually denoted by
BQ(k, H) and it is called the Brauer group of H. If H admits a quasi-triangular structure
R, then BM(k, H, R) is a subgroup of BQ(k, H). Similarly, if (H, r) is a coquasi-
triangular structure, then BC(k, H, r) is a subgroup of BQ(k, H). All these Brauer
groups are particular cases of Brauer groups of a braided monoidal category. See [19].

When H is the group algebra H = kG of some group G we denote BM(k, H, R) by
BM(k, G, R).

2. The Brauer group BM (k, �n, R). From now on k is a field containing a
primitive 2n-th root of unity θ and n is invertible in k. Let k· denote the multiplicative
group of k. Consider the dihedral group �n = 〈g, h : gn = h2 = 1, gh = hgn−1〉. We
identify �n with 〈g〉. The quasi-triangular structures on k�n were studied in [21].
It is proved in [21, Proposition 3.2] that for n �= 4, (k�n, R) is a quasi-triangular Hopf
algebra if and only if (k�n, R) is quasi-triangular. For n = 4 there are more quasi-
triangular structures arising from the subgroups 〈h, g2〉, 〈hg, g2〉 which are isomorphic
to �2 × �2. The quasi-triangular structures on k�n are computed in [16, p. 219]. These
are of the form,

Rz = 1
n


 ∑

0≤l,m<n

ω−lmgl ⊗ gzm


 ,
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for 0 ≤ z ≤ n − 1, where ω is a primitive n-th root of unity. Let i : k�n → k�n be the
inclusion map and p : k�n → k�2, g 
→ 0̄, h 
→ 1̄ be the canonical projection map. We
have quasi-triangular maps,

(k�n, Rz)
i� (k�n, Rz)

p
� (k�2, R0),

where R0 = 1 ⊗ 1 is the trivial quasi-triangular structure on k�2. The functorial
behaviour of the Brauer group BM(k,−) yields a sequence

BM(k, �2, R0)
p∗

� BM(k, �n, Rz)
i∗� BM(k, �n, Rz).

We describe explicitly these homomorphisms. Any �n-Azumaya algebra is a �n-
Azumaya algebra by forgetting the action of h. Indeed, a �n-module algebra is �n-
Azumaya if and only if it is �n-Azumaya. This is due to the fact that the quasi-triangular
structures on k�n and k�n are the same. Thus we get a map i∗ : BM(k, �n, Rz) →
BM(k, �n, Rz), [A] 
→ [A] but with the latter A considered as a �n-module algebra.
Similarly, any �2-Azumaya module algebra is a �n-Azumaya module algebra via p, and
we have a map p∗ : BM(k, �2, R0) → BM(k, �n, Rz), [A] 
→ [A].

The rest of this section is devoted to studing the above sequence. Let us first note
that for the case z = 0, i.e., R0 = 1 ⊗ 1, the Brauer group BM(k, �n, R0) is already
known. It consists of classes of �n-module algebras which are classically Azumaya. By
[10, Theorem 1.12], BM(k, �n, R0) ∼= Br(k) × H2(�n, k) where H2(�n, k) is the second
cohomology group of �n with values in k. We will concentrate on the case z �= 0 and
we will describe BM(k, �n, Rz) in terms of BM(k, �n, Rz) and BM(k, �2, R0). These
two groups belong to the classical theory of the Brauer group of an abelian group. See
[4], [9], [10]. The Brauer group BM(k, �2, R0) ∼= k·/k·2 × Br(k). See [10, Theorem 1.12].
The Brauer group BM(k, �n, Rz) is just the group Bφz (k, �n) of φz-Azumaya algebras
with φz : �n × �n → k being the pairing induced by Rz. See [3, Lemma 1.2], [4, pp. 329,
341, 434]. For this description we have identified k�n and (k�n)∗ as Hopf algebras. The
Brauer group Bφz (k, �n) was first defined by Child, Garfinkel and Orzech in [5] and it
can be described by an exact sequence due to Childs. See [6] .

Recall that the action of a Hopf algebra H on an algebra A is called inner if there
is a convolution invertible linear map π : H → A such that

h · a =
∑

π
(
h(1)

)
aπ−1(h(2)

)
,

for all h ∈ H, a ∈ A. The action is called strongly inner if π may be chosen as an algebra
map. The Skolem-Noether Theorem for Hopf algebras claims that the action of any
Hopf algebra on a classically Azumaya algebra is inner. See [12]. The following lemma
will be very useful in the sequel.

LEMMA 2.1. Let (H, R) be a quasi-triangular Hopf algebra and A be a matrix algebra
which is an H-Azumaya module algebra. Then [A] is trivial in BM(k, H, R) if and only if
the action of H on A is strongly inner.

Proof. This is proved in [18, Lemma 2] for the Drinfel’d double of a Hopf algebra
with its canonical quasi-triangular structure. The same proof works for any quasi-
triangular Hopf algebra. �

PROPOSITION 2.2. Let A be a �n-module algebra which is classically Azumaya. The
following statements hold.
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(i) A contains a subalgebra generated by u, v subject to the relations un = α, v2 =
β, uv = γ vun−1, with α, β, γ ∈ k· satisfying γ nαn−2 = 1.

(ii) The action of �n on A is strongly inner if and only if there are s, t ∈ k· such that
α = tn, β = s2 and γ = (t−1)n−2.

(iii) If n = 2q is even, then the action of �n on A is strongly inner if and only if there
are s, t ∈ k· such that α = tn, β = s2 and γ q = α1−q.

Proof. (i) Since A is classically Azumaya, the Skolem-Noether Theorem yields
that the action of �n on A is inner. Let π ∈ Homk(k�n, A) be a convolution invertible
map such that σ · a = π (σ )aπ−1(σ ) for all σ ∈ �n. As σ is a group-like element,
π−1(σ ) = π (σ )−1.

Let u = π (g) and v = π (h). Then a = 1 · a = gn · a = una(u−1)n for all a ∈ A. Since
A is central, there is α ∈ k· such that un = α. Similarly, v2 = β for some β ∈ k·. From
the equalities,

(gh) · a = g · (h · a) = uvav−1u−1,

(gh) · a = (hgn−1) · a = h · (gn−1 · a) = vun−1a(u−1)n−1v−1,

we deduce that there exists γ ∈ k· satisfying uv = γ vun−1. Multiplying this latter
equality on the left by un−1 we get αv = γ nvun(n−1) = γ nαn−1v. Hence γ nαn−2 = 1.

(ii) Assume that the action of �n on A is strongly inner, and let ζ : k�n → A be a
convolution invertible algebra map such that σ · a = ζ (σ )aζ (σ )−1 for all σ ∈ �n, a ∈ A.

The elements ū = ζ (g) and v̄ = ζ (h) satisfy

ūn = 1, v̄2 = 1, ūv̄ = v̄ūn−1.

Since g · a = uau−1 = ūaū−1 for all a ∈ A, there is an element t ∈ k· such that u = tū.

Then, α = un = tnūn = tn. Similarly, there is s ∈ k· such that v = sv̄, and β = s2. Now,
γ stn−1v̄ūn−1 = γ vun−1 = uv = tsūv̄ = tsv̄ūn−1. Therefore, γ = (t−1)n−2.

Conversely, suppose that α = tn, β = s2, and γ = (t−1)n−2 for some s, t ∈ k·. Define

ζ (g) = 1
t

u, ζ (h) = 1
s
v,

and extend it to an algebra map from �n into A. This map is well-defined and gives
the same action as π.

(iii) If the action of �n is strongly inner, then from (ii) we obtain

α1−q = (t2q)1−q = (t−1)2q(q−1) = γ q.

Conversely, if α = tn, β = s2 and γ q = α1−q, then

α = (αγ )q, γ = ((αγ )−1)q−1.

By part (ii) it is enough to show that αγ is a square in k. Since α = t2q = (αγ )q there
exists a q-th root of unity ξ = θ4r for some r such that αγ = ξ t2 = (θ2rt)2. Hence the
statement. (iii) holds. �

REMARK 2.3. The elements u, v of Proposition 2.2 (i) are unique up to scalar
multiples. The subalgebra generated by them is completely determined by the
�n-action and we will call it the induced subalgebra on A by the �n-action. If we
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take different generators u′ and v′, then u′ = tu and v′ = sv for some nonzero scalars t
and s and the corresponding constants will be α′ = tnα, β ′ = s2β and γ ′ = (t−1)n−2γ .

The set G = {(α, γ ) ∈ k· × k· : γ nαn−2 = 1} is a group with multiplication induced
from k· × k·. We introduce the following equivalence relation on G. Two elements
(α, γ ), (α′, γ ′) ∈ G are equivalent, denoted by (α, γ ) ∼ (α′, γ ′), if there is t ∈ k· such
that α′ = tnα and γ ′ = (t−1)n−2γ. The quotient setG = G/ ∼ is a group. Any �n-module
algebra which is classically Azumaya has associated a unique invariant ([β], [(α, γ )]) ∈
k·/k·2 ×G.

REMARK 2.4. Note from the proof of Proposition 2.2 that the action of g is strongly
inner if and only if α is a n-th power in k and that in this case one can always choose u
and v such that un = 1 and uv = γ vu−1 with γ n = 1.

LEMMA 2.5. (i) If n is odd, then G is trivial.
(ii) If n is even, then G ∼= k·/k·2 × �2.

Proof. (i) We only need to show that if n is odd we can always find t ∈ k· such
that α = tn and γ = t2−n. Since γ nαn = α2 this is equivalent to α = tn and αγ = t2.
As (2, n) = 1, there exist integers a and b for which 1 = 2a + nb. Then α = α2aαnb =
(αγ )anαbn and αγ = (αγ )2a(αγ )nb = (αγ )2aα2b so that we may take t = αa+bγ a.

(ii) Suppose that n = 2q and let [(α, γ )] ∈ G. From γ nαn−2 = 1, it follows that
γ qαq−1 = ±1. It may be checked that the map

� : G → k·/k·2 × �2, [(α, γ )] 
→ ([γα], γ qαq−1)

is an isomorphism. �
COROLLARY 2.6. With notation as in Proposition 2.2 (i), for n odd we can always

choose u such that un = 1 and uv = vun−1.

Any �n-module algebra A becomes a �n-comodule algebra with comodule
structure as in (1) for the quasi-triangular structure Rz. Hence A is a �n-graded algebra.
An element a ∈ A has degree r, denoted by deg(a) = r, if ρ(a) = a ⊗ gr. Equivalently,
gz · a = ωra. If A, B are �n-module algebras, then the multiplication in the braided
product A#B is given by

(a#b)(a′#b′) = aa′#
(
gdeg(a′) · b

)
b′ (2)

for homogeneous a, a′ ∈ A and b, b′ ∈ B.

LEMMA 2.7. Let A, B be �n-module algebras and let B be a classically Azumaya
algebra such that g acts strongly innerly on it. Then, A#B ∼= A ⊗ B as �n-module algebras.
In particular, if A and B are both classically Azumaya with a strongly inner g-action,
A#B is again so.

Proof. The proof is inspired by [9, Lemma 2.2]. Since the action of g is strongly
inner on the Azumaya algebra B there exists uB ∈ B with g · b = uBbu−1

B for every b ∈ B
and un

B = 1. Similarly, there exists vB ∈ B such that h · b = vBbv−1
B for every b ∈ B with

uBvB = γ vBu−1
B and γ n = 1. Let ζ = θ r ∈ k· be a 2n-th root of unity for which ζ 2 = γ .

We check that the map

� : A#B → A ⊗ B, a#b 
→ a ⊗ ζ deg(a)u− deg(a)
B b,
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for a ∈ A homogeneous, is a �n-module algebra isomorphism. For a, a′ ∈ A
homogeneous, and b, b′ ∈ B,

�((a#b)(a′#b′)) = �
(
aa′#

(
gdeg(a′) · b

)
b′)

= aa′ ⊗ ζ deg(a)+deg(a′)u− deg(a)
B u− deg(a′)

B

(
udeg(a′)

B bu− deg(a′)
B

)
b′

= (
a ⊗ ζ deg(a)u− deg(a)

B b
)(

a′ ⊗ ζ deg(a′)u− deg(a′)
B b′)

= �(a#b)�(a′#b′).

So the map � is an algebra homomorphism and it is clearly bijective because
uB is invertible. The inverse �−1 : A ⊗ B → A#B is defined as �−1(a ⊗ b) =
a#ζ− deg(a)udeg(a)

B b for a ∈ A homogeneous and b ∈ B. We next show that � is a �n-
module isomorphism. Notice that the action of g does not change the degree of an
element in A and the action of h maps elements of a given degree into elements of
opposite degree. Then, we have

g · �(a#b) = g · (
a ⊗ ζ deg(a)u− deg(a)

B b
)

= (
g · a ⊗ ζ deg(a)uBu− deg(a)

B bu−1
B

)
= (

g · a ⊗ ζ deg(g·a)u− deg(g·a)
B g · b

)
= �(g · (a#b)),

h · �(a#b) = (h · a) ⊗ ζ deg(a)vBu− deg(a)
B bv−1

B

= (h · a) ⊗ ζ deg(a)γ − deg(a)udeg(a)
B (h · b)

= (h · a) ⊗ ζ− deg(a)udeg(a)
B (h · b)

= (h · a) ⊗ ζ deg(h·a)u− deg(h·a)
B (h · b)

= �(h · (a#b)).

To prove the last statement of the lemma, assume that A is also a classically Azumaya
algebra with a strongly inner g-action, and let uA, vA be generators of the induced
subalgebra such that un

A = 1. Then A#B ∼= A ⊗ B is again classically Azumaya and
u := �−1(uA ⊗ uB) satisfies g · (a#b) = u(a#b)u−1 for every a ∈ A and b ∈ B and un =
1#1. �

COROLLARY 2.8. The subset BAzg(k, �n, Rz) of classes in BM(k, �n, Rz) that
can be represented by an Azumaya algebra with strongly inner g-action is an abelian
subgroup of BM(k, �n, Rz). If n is odd, BAzg(k, �n, Rz) coincides with BAz(k, �n, Rz),
the subgroup of BM(k, �n, Rz) of elements which can be represented by an Azumaya
algebra.

Proof. The last statement follows by Corollary 2.6. �
LEMMA 2.9. If [A] in BM(k, �n, Rz) can be represented by a classically Azumaya

algebra A, then all other representatives will be also classically Azumaya. Moreover,
with notation as in Remark 2.3, we may associate to [A] the invariant ([βA], [(αA, γA)]) ∈
k·/k·2 ×G and this assignment does not depend on the representative of [A].

Proof. If B is any other representative of the class [A] then there are �n-modules P
and Q such that A#End(P) ∼= B#End(Q). Using Lemma 2.7,

A ⊗ End(P) ∼= A#End(P) ∼= B#End(Q) ∼= B ⊗ End(Q).
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Therefore B ⊗ End(Q) is classically Azumaya. Then the algebra B is also Azumaya
because it is the centralizer of End(Q) in a classically Azumaya algebra. This
gives the first statement. We prove the second one. By Lemma 2.7, uA#End(P) =
�−1(uA ⊗ uEnd(P)) and vA#End(P) = �−1(vA ⊗ vEnd(P)) are generators for the induced
subalgebra of A#End(P). Similarly for B#End(Q). Since the �n-action on End(P) and
End(Q) is strongly inner, then

αA#End(P) = αAαEnd(P) = αAtn, αB#End(Q) = αBαEnd(Q) = αBt′n,
βA#End(P) = βAβEnd(P) = βAs2, βB#End(Q) = βBβEnd(Q) = βBs′2,
γA#End(P) = γAγEnd(P) = γAt2−n, γB#End(Q) = γBγEnd(Q) = γBt′2−n

,

for some t, t′, s, s′ ∈ k·. By Remark 2.3, there are s̃, t̃ ∈ k· such that αAtn = t̃n
αBt′n,

βAs2 = s̃2βBs′2 and γAt2−n = t̃2−nγBt′2−n. Hence the second statement is proved. �
THEOREM 2.10. There are exact sequences of groups,

1 �� k·/k·2 �� BM(k, �n, Rz)
i∗

�� BM(k, �n, Rz), (3)

for n odd and

1 �� k·/k·2 × �2
�� BM(k, �n, Rz)

i∗
�� BM(k, �n, Rz), (4)

for n even.

Proof. The kernel of i∗ is given by elements which can be represented by a matrix
algebra with a strongly inner g-action. Therefore it is a subgroup of the abelian group
BAzg(k, �n, Rz). Let A be a representative of an element in Ker(i∗). Its induced
subalgebra is generated by uA, vA such that un

A = 1, v2
A = βA and uAvA = γAvAu−1

A ,
for βA ∈ k· and γA ∈ k· an n-th root of unity. For n odd we can always make
sure that γA = 1 by Corollary 2.6. For n = 2q even, γ

q
A = ±1. In light of Lemma

2.9, the maps Invo : Ker(i∗) → k·/k·2, [A] 
→ [βA] for n odd, and Inve : Ker(i∗) →
k·/k·2 × �2, [A] 
→ ([βA], γ q

A) for n = 2q even are well defined. We check that they
are group homomorphisms. If A, B are in Ker(i∗) and have induced subalgebras
generated by uA, vA and uB, vB respectively, then by Lemma 2.7, the induced subalgebra
of A#B is generated by u = �−1(uA ⊗ uB) and v = �−1(vA ⊗ vB). Hence v2 = βAβB and
uv = γAγBvu−1. The injectivity follows by Lemma 2.1, Remark 2.4 and Proposition
2.2 (ii), (iii).

Finally we prove the surjectivity of these two maps. Let γ be an n-th root of unity.
Consider the matrix algebra A(β, γ ) = M2(k). Let

u =
(

γ 0
0 1

)
, v =

(
0 β

1 0

)
.

It is easy to verify that un = 1, v2 = β and uv = γ vu−1. Thus the conjugation by u
and v give to A a �n-module algebra structure. Consider the �n-action induced by
restriction. Since A(β, γ ) is classically Azumaya and it has a �n-trivial graded center, it
is �n-Azumaya. Hence A(β, γ ) is �n-Azumaya. Clearly, if n is odd, Invo(A(β, γ )) = [β]
and if n = 2q is even Inve(A(β, γ )) = ([β], γ q). Hence both maps are surjective. �

REMARK 2.11. The Brauer group BM(k, �n, Rz) may be identified with the Brauer
group Bφz (k, �n) where φz : �n × �n → k, (gi, gj) 
→ ωzij is the pairing induced by the
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quasi-triangular structure Rz, [3, Lemma 1.2]. When n = pm is a power of a prime
number p with p invertible in k, k containing a primitive 2n-th root of unity and φz is
non-degenerate (equivalently, z is coprime with n), the multiplication rules of Bφz (k, �n)
are known. See [4, Corollary 13.12.36]. As a set Bθz (k, �n) = �2 × k·/k·n × Br(k). The
product is given by

(±, S, A)(+, S′, A′) = (±, SS′, AA′|S′#S|),
(±, S, A)(−, S′, A′) = (∓, S−1S′, AA′|S′#S−1|).

We identify these rules in Bφz (k, �n); see [1, p. 235]. For α ∈ k·, the algebra C(α) =
k〈δ : δn = α〉 with �n-action given by g · δ = ωz−1

δ is �n-Azumaya. The symbol −
is represented by [C(1)]. Each [α] ∈ k·/k·n is viewed in Bφz (k, �n) as [C(α)#(k�n)∗].
For [α], [β] ∈ k·/k·n, the braided product C(α)#C(β) is an Azumaya algebra. See
[11, Proposition 2.1], [4, p. 359]. By |C(α)#C(β)| we denote the underlying algebra.
It is generated by two elements x, y subject to the relations xn = α, yn = β, yx =
ωz−1

xy. The Brauer group Br(k) is embedded as usual as the subgroup of ordinary
Azumaya algebras with trivial �n-action. In particular, if k is algebraically closed,
BM(k, �n, Rz) ∼= �2 and it is generated by [C(1)].

By the Remark above, if k is algebraically closed and n is a power of a prime p not
dividing z, then the exact sequences (3), (4) in Theorem 2.10 become

1 � BM(k, �n, Rz)
i∗� �2

(5)

for n odd and

1 � �2 � BM(k, �n, Rz)
i∗� �2

(6)

for n even. In this setting BM(k, �n, Rz) is thus always an abelian group. In particular,
for n odd, we can prove that BM(k, �n, Rz) ∼= �2 by showing that it is nontrivial. The
even case is slightly more complicated. We will prove that BM(k, �2m , Rz) ∼= �2 × �2

by showing that i∗ is surjective and split. For this purpose, we study all possible lifts of
the �n-action on C(α) to a �n-action.

In the sequel we shall assume that z is coprime with n and we shall denote by s the
inverse of z modulo n.

PROPOSITION 2.12. Consider the algebra C(α) = k〈δ : δn = α〉 with �n-action given
by g · δ = ωsδ. Then, C(α) is �n-Azumaya if and only if there is λ ∈ k· such that λnαn−2 =
1. In this case, h · δ = λδn−1. Furthermore (i) and (ii) hold.

(i) If n is odd all possible lifts of the �n-action give isomorphic �n-module algebras.
(ii) If n = 2q, there are either 0 or 2 possible isomorphism classes of lifts of the

�n-action according to the existence of a λ as above. Two lifts corresponding to λ and λ′

are isomorphic if and only if λq = (λ′)q.

Proof. From [11, p. 442], C(α) is �n-Azumaya. Recall that an algebra is �n-
Azumaya if and only if it is �n-Azumaya. So it is enough to check whether we can
give C(α) a �n-module algebra structure. It is easy to see that for λ, α ∈ k· satisfying
λnαn−2 = 1, the action given by g · δ = ωsδ, h · δ = λδn−1 makes C(α) into a �n-module
algebra.

Conversely, the h-action on C(α) maps eigenvectors of the g-action of eigenvalue
ωt into eigenvectors of eigenvalue ω−t. As s is coprime with n, the eigenspaces for the
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g-action are 1-dimensional. Thus, necessarily h · δ = λδn−1. From the equations

δ = h2 · δ = h · (h · δ) = h · (λδn−1) = λ(h · δ)n−1 = λ(λδn−1)n−1 = λnδ(n−1)2

= λnαn−2δ,

it follows that λnαn−2 = 1.

For λ ∈ k· such that λnαn−2 = 1 let Cλ(α) denote the lift of C(α) with h · δ = λδn−1.

Consider two lifts Cλ(α) and Cλ′(α). Then (λ′)n = λn, so that λ′ = ζλ for an n-th root
of unity ζ = ωr for some integer r. It is easy to check that if r = 2t is even, then the
map � : Cλ(α) → Cλ′(α), δ 
→ ωtδ is a �n-module algebra isomorphism.

(i) For n odd, we can always make sure that r is even.
(ii) For n = 2q even, r is even if and only if λq = (λ′)q. Hence if λq = (λ′)q, then

Cλ(α) and Cλ′(α) are isomorphic as �n-module algebras. Conversely, suppose now
that � : Cλ(α) → Cλ′(α) is an isomorphism of �n-module algebras. Then �(δ) = ωrδ

for some r because (s, n) = 1 and δn = α. Since the elements �(h · δ) = λ′ω−tδn−1 and
h · �(δ) = ωtλδn−1 coincide, it follows that λ′ = ω2tλ. Therefore λq = λ′q. �

For n a power of an odd prime number and k algebraically closed the computation
of BM(k, �n, Rz) derives from the sequence (5) and Proposition 2.12 (i).

COROLLARY 2.13. Let n = pm for an odd prime p and let k be algebraically closed.
Then, for every z not divisible by p, BM(k, �n, Rz) ∼= �2. The non trivial element is [C1(1)].

For n a power of 2 and k algebraically closed more work is needed to compute
BM(k, �n, Rz).

PROPOSITION 2.14. Let n = 2q and let Cλ(α), Cλ′(α) be as above. Then we have
[Cλ′(α)] = [Cλ(α)] in BM(k, �n, Rz) if and only if λq = λ′q.

Proof. If λq = λ′q, we know from Proposition 2.12 (ii) that Cλ(α) and Cλ′(α)
are indeed isomorphic. Conversely, suppose that Cλ(α) and Cλ′(α) represent the
same element in BM(k, �n, Rz), and let P, Q be two �n-modules such that
Cλ(α)#End(P) ∼= Cλ′(α)#End(Q) as �n-module algebras. It follows from Lemma 2.7
that Cλ(α) ⊗ End(P) ∼= Cλ′(α) ⊗ End(Q) as �n-module algebras. Then the centres
Cλ(α) ⊗ k and Cλ′(α) ⊗ k of these two algebras are isomorphic as �n-module algebras.
By Proposition 2.12 (ii), λq = λ′q. �

From now on the algebra C1(1) will be denoted by C0̄(1) both for n even or odd.
For n even, C1̄(1) will denote Cωs (1).

LEMMA 2.15. With notation as above, the classes [C0̄(1)] (n even or odd ), [C1̄(1)] and
[C0̄(1)#C1̄(1)] have all order 2 in the corresponding BM(k, �n, Rz). Moreover, [C0̄(1)]
commutes with [C1̄(1)].

Proof. As the braided product of �n-module algebras coincides with the
braided product of �n-module algebras, the algebra Cā(1)#Cb̄(1) is a matrix algebra
([11, Proposition 2.4]) with strongly inner g-action. We prove that the �n-action on
Cā(1)#Cb̄(1) for a, b = 0, 1 is strongly inner if and only if a = b. Let δ, η denote
generators of C(1). Let u = ζ (δn−1#η) with ζ an n-th (respectively 2n-th) root of unity
for n odd (respectively even) for which ζ 2 = ωs. By induction, ur = ζ 2r−r2

δn−r#ηr, so
that un = 1. It may be checked that the g-action on Cā(1)#Cb̄(1) is given by conjugation
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by u. The h-action on Cā(1) and Cb̄(1) is defined by

h · δj = ωsajδ−j, h · ηj = ωsbjη−j.

Let

v =




1
n

n−1∑
i,j=0

ζ ijδi#ηj if n is odd,

1
q

q−1∑
i,j=0

ω−sai−sbj+2sijδ2i#η2j if n = 2q.

We claim that the element v satisfies v2 = 1 and h · (δi#ηj) = v(δi#ηj)v−1. We prove it
for n = 2q; the odd case is proved similarly.

v2 = 1
q2

q−1∑
i,j=0

q−1∑
l,m=0

ω−sa(i+l)−sb(j+m)+2sij+2slm+4sjlδ2(i+l)#η2(j+m)

= 1
q2

q−1∑
r,t=0

q−1∑
l,m=0

ω−sar−sbt+2sr(t−m)+2sltδ2r#η2t

= 1
q2

q−1∑
r,t=0

ω−sar−sbt+2str


 q−1∑

l,m=0

ω−2srm+2stl


 δ2r#η2t

= 1#1.

In order to prove that the h-action is conjugation by v we show that v(δi#ηj) =
ωsai+sbj(δ−i#η−j)v. We do so for the even case. The odd case is done similarly.

v(δi#ηj) = 1
q

q−1∑
l,m=0

ω−sal−sbm+2slm+2simδ2l+i#η2m+j

= 1
q

q−1+i∑
l′=i

q−1+j∑
m′=j

ω−sal′−sbm′+sai+sbj+2sl′m′−2sl′jδ2l′−i#η2m′−j

= ωsai+sbj(δn−i#ηn−j)

(
1
q

q−1∑
l′=0

q−1∑
m′=0

ω−sal′−sbm′+2sl′m′
δ2l′#η2m′

)

= ωsai+sbj(δn−i#ηn−j)v,

where in the second equality the limits of the sums are reduced modulo q if necessary.
Hence, for n odd, [C0̄(1)]2 = 1 because v2 = 1#1 is a square in k. For n = 2q we still
have to compute γ q where γ is defined as usual. Using the commutation rules for v

and δi#ηj and the expression of powers of u we find that

vun−1 = ζ−3v(δ#ηn−1) = ζ−3ωs(a−b)(δn−1#η)v = ω−2sωs(a−b)uv.

Thus γ = ω2sωs(b−a). Hence γ q = 1 if and only if a = b. It follows that [C0̄(1)]2 =
[C1̄(1)]2 = 1 while [C0̄(1)#C1̄(1)] = [C0̄(1)][C1̄(1)] �= 1. The algebra C0̄(1)#C1̄(1) is a
matrix algebra with strongly inner g-action and so [C0̄(1)#C1̄(1)] is in the kernel of i∗.
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Its image through the map Inve of Theorem 2.10 is ([1],−1). A similar argument applies
to [C1̄(1)#C0̄(1)] = [C1̄(1)][C0̄(1)]. Since Inve is injective, both classes coincide. �

COROLLARY 2.16. Let k be algebraically closed, n = 2m and let z be odd. Then
BM(k, �n, Rz) ∼= �2 × �2. It is generated by [C0̄(1)] and [C1̄(1)].

Proof. By Lemma 2.15 the map i∗ in sequence (4) is surjective and split. Hence
BM(k, �n, Rz) ∼= �2 × �2 with generators [C0̄(1)] and [C1̄(1)]. �

3. The map ι∗. In this section we study the Brauer group BM(k, �n, Rz) when
the field k is not necessarily algebraically closed. Let k denote the algebraic closure of
k. The inclusion map ι : k → k induces a group homomorphism ι∗ : BM(k, �n, Rz) →
BM(k, �n, Rz), [A] 
→ [A ⊗ kk]. We describe the kernel of ι∗.

LEMMA 3.1. If n is odd there is an exact sequence

1 � BAz(k, �n, Rz) � BM(k, �n, Rz)
ι∗� BM(k, �n, Rz),

where BAz(k, �n, Rz) = BAzg(k, �n, Rz) is the set consisting of classes of BM(k, �n, Rz)
represented by classically Azumaya algebras.

If n = 2q is even, then Ker(ι∗) consists of classically Azumaya algebras with α, γ in
the induced subalgebra satisfying γ qαq−1 = 1.

Proof. The kernel of ι∗ consists of classes of �n-Azumaya algebras [A] such that
[A ⊗ kk] becomes Brauer-trivial in BM(k, �n, Rz). Hence A ⊗ kk is a matrix algebra
over k with strongly inner �n-action, and consequently, an Azumaya algebra over k.
But it is well known that A is Azumaya over k if and only if Ak̄ = A ⊗ kk̄ is Azumaya
over k.

If n is odd, then [A] ∈ BAz(k, �n, Rz). Conversely, for n odd and A a �n-Azumaya
module algebra which is classically Azumaya, A ⊗ kk is Azumaya over k. But the only
Azumaya algebras over an algebraically closed field are matrix algebras. Moreover,
from Proposition 2.2, the �n-action on A ⊗ kk is strongly inner since k̄ is algebraically
closed. Then A ⊗ kk is Brauer-trivial in BM(k, Dn, Rz) by Lemma 2.1.

If n = 2q and [A] ∈ Ker(ι∗), then Ak̄ = A ⊗ kk̄ is a matrix algebra over k. So A is
Azumaya over k. The induced subalgebra B on Ak̄ is generated by u and v such that
un = α and uv = γ vun−1 with α, γ ∈ k̄ satisfying γ qαq−1 = 1 by Proposition 2.2. On
the other hand, B = B′ ⊗ kk where B′ is the induced subalgebra on A. Let u′, v′ be the
generators of B′. The elements u, v in B must be scalar multiples of u′, v′. If u = tu′

and v = sv′ for some s, t ∈ k̄, then α′ = tnα and γ ′ = (t−1)n−2γ , so that

γ ′qα′q−1 = (t2−n)qγ q(tn)q−1αq−1 = (tq−1)2−nt2−n(tq−1)n−2(tq−1)2γ qαq−1 = γ qαq−1.

Conversely, if A is a �n-Azumaya module algebra which is classically Azumaya and
satisfying γ qαq−1 = 1, then A ⊗ kk̄ is Brauer trivial in BM(k̄, �n, Rz) because k̄ is
algebraically closed. �

PROPOSITION 3.2. (i) For n odd, BAzg(k, �n, Rz) ∼= k·/k·2 × Br(k).
(ii) For n even, BAzg(k, �n, Rz) ∼= �2 × k·/k·2 × Br(k).

Proof. We know from Corollary 2.8 that BAzg(k, �n, Rz) is abelian. The assignment
τ : BAzg(k, �n, R) → Br(k) which maps [A] into [A] by forgetting the �n-action is
a group homomorphism by Lemma 2.7. Moreover, any k-Azumaya algebra may
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be endowed with the trivial �n-action becoming clearly �n-Azumaya. Thus the
map so defined splits τ . Hence BAzg(k, �n, Rz) ∼= Br(k) × Ker(τ ). As in the proof of
Theorem 2.10 we can show that Ker(τ ) ∼= k·/k·2 for n odd, and Ker(τ ) ∼= k·/k·2 × �2

for n even. In both cases Ker(τ ) is represented by the classes of the algebras A(β, γ )
for β ∈ k· and γ an n-th root of unity. �

For a, b ∈ k· let {a, b} denote the quaternion algebra generated by x, y such that
x2 = a, y2 = b and xy = −yx. Since this algebra is also generated by x and θqbxy−1,

we have that {a, b} = {a, ab}. When b = 1, {a, 1} is a matrix algebra. For more details
on these algebras see [11], [13, Section 15].

For any t ∈ k· let A(t) denote the �n-module algebra constructed in the following
way: as an algebra A(t) = M2(k), and the �n-action is given by h acting trivially and g
acting as conjugation by

u =
(

0 t
1 0

)
.

LEMMA 3.3. With A(t) as above and n = 2q even, the following assertions hold.
(i) A(t) is a �n-Azumaya module algebra.

(ii) A(t) ∼= A(tr2) as �n-module algebras for any r ∈ k·.
(iii) If q is even, then A(t)#A(r) ∼= M2(k) ⊗ A(tr) as �n-module algebras where M2(k)

has trivial �n-action. If q is odd, then A(t)#A(r) ∼={t, r} ⊗ A(tr) as �n-module algebras
where {t, r} has trivial �n-action;

(iv) [A(t)] belongs to Ker(ι∗) and it has order two.

Proof. (i) We show that A(t) is a �n-Azumaya algebra and so a �n-Azumaya
algebra. We observe that since u2 = t and since z is odd in this case, the action of gz is
again conjugation by u. Therefore

gz ·
(

a b
c d

)
= g ·

(
a b
c d

)
=

(
d tc

t−1b a

)
.

There are only elements of degrees 0 and q in A(t), so that A(t) is in fact �2-graded.
The elements of degree 0 (even elements) and the elements of degree q (odd elements)
are given by matrices of the form(

a tc
c a

)
,

(
a −tc
c −a

)
,

respectively. It is easy to check that the graded center of A(t) is k, and consequently,
A(t) is �n-Azumaya.

(ii) The elements

x = θq
(

0 −t
1 0

)
, y =

(
1 0
0 −1

)
, (7)

are generators for A(t). These satisfy x2 = t, y2 = 1, xy = −yx and g · x = −x, g · y =
−y. For r ∈ k·, the isomorphism of �n-module algebras from A(t) to A(tr2) is given by
mapping x into rx and y into y.

(iii) Let M, M′ ∈ A(t) and N, N ′ ∈ A(r) be homogeneous. From (2),

(M#N)(M′#N ′) = MM′#
(
gdeg(M′) · N

)
N ′.
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As we saw in (i), deg(M′) is equal to 0 or q. If q is even, then the action by gq is trivial.
Thus A(t)#A(s) = A(t) ⊗ A(s). Let x, y be generators for A(t) and x′, y′ generators for
A(r) as in (7). Let

X = x#y′, Y = y#y′, Z = 1#y′, W = θq(xy#x′).

A computation shows that these elements satisfy the following relations:

X2 = t, Y 2 = 1, XY = −YX, Z2 = 1, W 2 = tr, ZW = −WZ,

XZ = ZX, XW = WX, YZ = ZY, YW = WY,

g · X = X, g · Y = Y, g · Z = −Z, g · W = −W.

This yields that A(t) ⊗ A(r) ∼={t, 1} ⊗ A(tr) as �n-module algebras with {t, 1} having
trivial g-action. Since {t, 1} ∼= M2(k) as algebras, the statement follows.

Assume now that q is odd. Then the action by gq is the same as the action by g.
Thus gq · N = (−1)deg(N)N. The product takes the form

(M#N)(M′#N ′) = MM′#(−1)deg(M′)deg(N)NN ′. (8)

Let X = θq(xy#1), Y = θq(x#x′), Z = 1#y′ and W = θq(xy#x′). Using the formula
(8), it may be checked that

X2 = t, Y 2 = tr, XY = −YX, Z2 = 1, W 2 = tr, ZW = −WZ,

XZ = ZX, XW = WX, YZ = ZY, YW = WY,

g · X = X, g · Y = Y, g · Z = −Z, g · W = −W .

From these relations, A(t)#A(r) ∼={t, tr} ⊗ A(tr) as �n-module algebras. Notice now
that {t, tr} ∼= {t, r} as algebras.

(iv) The elements αA(t), βA(t), and γA(t) of the induced subalgebra on A(t) are
αA(t) = tq, βA(t) = 1 and γA(t) = t1−q. As γ

q
A(t)α

q−1
A(t) = 1 and A(t) is a matrix algebra,

[A(t)] belongs to Ker(ι∗).
The algebra A(t)#A(t) is classically Azumaya since it belongs to Ker(ι∗). Moreover,

it has strongly inner �n-action. Note that uA(t)#A(t) = uA(t)#uA(t) and vA(t)#A(t) = 1
because uA(t) has degree 0 and the h-action is trivial on A(t). From this, αA(t)#A(t) =
tn, βA(t)#A(t) = 1 and γA(t)#A(t) = t2−n. If q is even, then A(t)#A(t) ∼= M2(k) ⊗ A(t2), and
so A(t)#A(t) is a matrix algebra. If q is odd, then A(t)#A(t) ∼={t, t2} ⊗ A(t2). But
{t, t2} ∼= {t, 1} and {t, 1} is a matrix algebra. Hence, in this case also A(t)#A(t) is a
matrix algebra. Finally, Lemma 2.1 implies that [A(t)#A(t)] is trivial. �

The map {−,−} : k·/k·2 × k·/k·2 → Br(k), ([a], [b]) 
→ [{a, b}] is a 2-cocycle, see
[13, p. 146]. Let k·/k·2 × {−,−}Br(k) denote the extension of k·/k·2 and Br(k) by this
cocycle.

THEOREM 3.4. With notation as above

Ker(ι∗) ∼=




k·/k·2 × Br(k) for n odd,

k·/k·2 × k·/k·2 × Br(k) for n = 2q, q even,

k·/k·2 × (k·/k·2 ×{−,−} Br(k)) for n = 2q, q odd.

Proof. For n odd, Lemma 3.1 and Corollary 2.8 establish that Ker(ι∗) =
BAzg(k, �n, Rz). Now Proposition 3.2 (i) applies. The case n even is more complicated
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and requires a different argument. The elements of Ker(ι∗) may all be represented by
classically Azumaya algebras with α, γ in the induced subalgebra satisfying γ qαq−1 =
1, by Lemma 3.1.

Suppose that n = 2q is even. Let [A] ∈ Ker(ι∗). Then A is classically Azumaya
and the elements αA, βA, and γA in the induced subalgebra satisfy γ

q
Aα

q−1
A = 1. For

tA = (αAγA)−1, the algebra A#A(tA) represents an element of Ker(ι∗) because A and
A(tA) do. Hence it is classically Azumaya. Moreover, it has strongly inner g-action
because uA#A(tA) = uA#uA(tA) and un

A#A(tA) = un
A#un

A(tA) = αA(αAγA)−q = 1 (the degree
of u in the induced subalgebra is always zero). Thus [A#A(tA)] ∈ BAzg(k, �n, Rz).
By Proposition 3.2,

[A#A(tA)] = [A(β, γ )][|A#A(tA)|] ∈ Ker(ι∗),

where [β] ∈ k·/k·2, γ is an n-th root of unity, and |A#A(tA)| denotes the underlying
algebra of A#A(tA) with trivial action. By Lemma 2.9 we obtain [γ ] = [γA#A(tA)] and
γ q = 1. By the proof of Theorem 2.10, [A(β, γ )] = [A(β, 1)] so we may assume that
the g-action on the right hand side is trivial and that the braided product of the
representative of elements of the right hand side with A(tA) is trivial. Hence

[A] = [A(β, 1) ⊗ |A#A(tA)| ⊗ A(tA)],

where both representatives are classically Azumaya. By Lemma 2.9, [β] = [βA] ∈ k·/k·2.
Thus the three classes [A(βA, 1)], [A(tA)] and |A#A(tA)| are uniquely determined by [A].

Assume that q is even. We prove that the map

� : Ker(ι∗) −→ k·/k·2 × k·/k·2 × Br(k)

[A] 
→ ([βA], [(αAγA)−1], [|A#A((αAγA)−1)|])

is an isomorphism. We first check that it is well defined. Assume that [A] = [B] in
Ker(ι∗). Let tA = (αAγA)−1 and tB = (αBγB)−1. By Lemma 2.9 and Lemma 2.5, [βA] =
[βB] and [tA] = [tB] in k·/k·2. By Lemma 3.3 (ii), A(tA) ∼= A(tB). Then [A#A(tA)] =
[B#A(tB)] in BM(k, �n, Rz). There are finite dimensional �n-modules P, Q such that

(A#A(tA))#End(P) ∼= (B#A(tB))#End(Q)

as �n-module algebras. Since End(P), End(Q) are classically Azumaya with strongly
inner g-action, from Lemma 2.7 it follows that

(A#A(tA)) ⊗ End(P) ∼= (B#A(tB)) ⊗ End(Q)

as algebras. Hence [|A#A(tA)|] = [|B#A(tB)|] in Br(k). This proves that � is well-
defined. Secondly, we show that � is a group homomorphism. Let [A], [B] ∈ Ker(ι∗)
and assume that

[A] = [A(βA, 1)][|A#A(tA)|][A(tA)], [B] = [A(βB, 1)][|B#A(tB)|][A(tB)],

[A#B] = [A(βA#B, 1)][|(A#B)#A(tA#B)|][A(tA#B)].

Observe that when q is even [A(tA)] commutes with [A(tB)] in light of Lemma 3.3,
[A(tA)] commutes with the elements [A(β, 1)] and with the elements of Br(k) since these
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have trivial g-action. This implies that [B][A(tA)] = [A(tA)][B]. Then

[A#B][A(tA#B)] = [A][B][A(tA)][A(tB)]

= [A][A(tA)][B][A(tB)]

= [(A#A(tA))#(B#A(tB))]

= [(A#A(tA)) ⊗ (B#A(tB))],

where in the last equality we have used Lemma 2.7 since the g-action on B#A(tB) is
strongly inner. Hence

[|(A#B)#A(tA#B)|] = [|(A#A(tA))| ⊗ |(B#A(tB))|]
in Br(k). Using all the preceding facts, we have

[A#B] = [A][B]

= [A(βA, 1)][|A#A(tA)|][A(tA)][A(βB, 1)][|B#A(tB)|][A(tB)]

= [A(βA, 1)][A(βB, 1)][|A#A(tA)|][|B#A(tB)|][A(tA)][A(tB)]

= [A(βA, 1)#A(βB, 1)][|A#A(tA)| ⊗ |B#A(tB)|][A(tA)#A(tB)]

= [A(βAβB, 1)][|(A#A(tA))|][|(B#A(tB))|][A(tAtB)], (9)

where in the last equality we have used Lemma 3.3 (iii) and Theorem 2.10. Finally
we show that � is bijective. It is clearly surjective since to any ([β], [λ], [D]) ∈
k·/k·2 × k·/k·2 × Br(k) we can associate [A(λ−1) ⊗ A(β, 1) ⊗ |D|] ∈ Ker(ι∗). To prove
the injectivity, let [A] ∈ Ker(�). Then βA, tA are squares and |A#A(tA)| is a matrix
algebra. Thus [A] = [A(1, 1)][|Mm(k)|][A(s2)] for some m ∈ � and s ∈ k· such that
tA = s2. Then [A] is represented by a matrix algebra with strongly inner �n-action.
Lemma 2.1 implies that [A] is trivial.

For q odd, the same proof works but we have to modify the multiplication on
k·/k·2 × k·/k·2 × Br(k). With notation as in (9), for q odd we have by Lemma 3.3
A(tA)#A(tB) ∼= {tA, tB} ⊗ A(tAtB). Then

[|(A#B)#A(tA#B)|] = [|(A#A(tA))| ⊗ |(B#A(tB))| ⊗ {tA, tB}].
Notice that [B][A(tA)] = [A(tA)][B] is true in this case because {tA, tB} ∼= {tB, tA}. �

THEOREM 3.5. Let p be a prime number not dividing z, m ∈ �, and n = pm. Let k be
a field containing a primitive 2n-th root of unity and let n be invertible in k. Then

BM(k, �n, Rz) ∼=
{

k·/k·2 × Br(k) × �2 if p is odd,

k·/k·2 × k·/k·2 × Br(k) × �2 × �2 if p = 2.

Proof. By Corollary 2.13, Corollary 2.16, Lemma 3.1 and Theorem 3.4 we have
exact sequences

1 � k·/k·2 × Br(k) � BM(k, �n, Rz)
ι∗� �2

for p odd and

1 � k·/k·2 × k·/k·2 × Br(k) � BM(k, �n, Rz)
ι∗� �2 × �2

for p = 2.
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Let Cā(1)k = Cā(1) ⊗ kk for a = 0, 1. The nontrivial element of the latter term
in the first exact sequence is represented by C0̄(1)k. The latter term in the second
exact sequence is given by the group generated by [Cā(1)k] with a = 0, 1. Hence ι∗ is
surjective in both cases. Mapping [Cā(1)k] to [Cā(1)] we obtain a group homomorphism
in light of Lemma 2.15, that splits ι∗. Then BM(k, �n, Rz) is a semidirect product
of k·/k·2 × Br(k) and �2 for n odd and a semidirect product of k·/k·2 × k·/k·2 × Br(k)
and �2 × �2 for n even. If n is odd, since the elements representing BAz(k, �n, Rz) have
trivial g-action, the braided product of such an element and C0̄(1) is just the usual
tensor product. Thus the elements of BAz(k, �n, Rz) commute with [C(1)0̄] and we
have the direct product decomposition for BM(k, �n, Rz). If n is even the elements
representing the first copy of k·/k·2 and those representing Br(k) have trivial g-action.
Hence they commute with the elements of �2 × �2. The second copy of k·/k·2 is
represented by the algebras A(t) defined in the proof of Theorem 3.4, with �n-grading
inducing a �2-grading, which we will denote by deg′ . Let δ be the generator of C(1)
and let M, N ∈ A(t) with M homogeneous. By formula (2),

(δi#M)(δj#N) = δi+j#(gjmod 2 · M)N = (−1)(jmod 2) deg′(M)δi+j#MN.

Thus Cā(1)#A(t) ∼= Cā(1) ⊗ 2A(t). Here ⊗ 2 denotes the �2-graded tensor product.
Similarly,

(M#δi)(N#δj) = MN#
(
gdeg(N) · δi

)
δj

= ωsiq deg′(N)MN#δi+j

= (−1)(imod 2) deg′(N)MN#δi+j.

Since A(t) ⊗ 2Cā(1) ∼= Cā(1) ⊗ 2A(t) as �n-module algebras, [A(t)] commutes with
[Cā(1)] for a = 0, 1. Therefore the kernel of ι∗ commutes with �2 × �2 and we are
done. �
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