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Abstract

We show that the Brauer groupBM(k,Hν,Rs,β) of the quasitriangular Hopf algebra(Hν,Rs,β)

is a direct product of the additive group of the fieldk and the classical Brauer groupBθs (k,Z2ν)

associated to the bicharacterθs on Z2ν defined byθs(x, y)= ωsxy , with ω a 2νth root of unity.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let k be a field andH be a Hopf algebra overk with bijective antipode. The
Brauer group ofH , denoted byBQ(k,H), was introduced in [4] and later on studied
in [5,22,24]. This Brauer group is a special case of the Brauer group of a braided
monoidal category introduced in [23]. In fact,BQ(k,H) is the Brauer group of the
categoryYDH of Yetter–Drinfel’d modules overH . If (H,R) is a quasitriangular Hopf
algebra, the category of leftH -modulesHM is a braided monoidal subcategory of
YDH and Br(HM) is a subgroup ofBQ(k,H), denoted byBM(k,H,R). Dually, if
(H, r) is a coquasitriangular Hopf algebra, the categoryMH of right H -comodules is
a braided monoidal subcategory ofYDH . The Brauer groupBr(MH) is a subgroup of
BQ(k,H), denoted byBC(k,H, r). In this paper we computeBM and BC for all the
quasitriangular structures (and coquasitriangular structures) of the family of Hopf algebras
Hν = 〈g,x: g2ν = 1, x2 = 0, gx + xg = 0〉 with ν an odd natural number,g a group-
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like element, andx a (gν ,1)-primitive element. The antipode is defined byS(g) = g−1,
S(x)= gνx. This family of Hopf algebras was introduced by Radford in [19] and they are
a generalization of Sweedler Hopf algebraH4. The Hopf algebrasHν have a family of
quasitriangular structures

Rs,β = 1

2ν

(
2ν−1∑
i,l=0

ω−ilgi ⊗ gsl

)
+ β

2ν

(
2ν−1∑
i,l=0

ω−ilgix ⊗ gsl+νx
)
, (1.1)

whereβ ∈ k and 1� s � 2ν is odd. The Brauer group of Sweedler Hopf algebraH4 and the
quasitriangular structureR0—in our notationν = 1,R1,0—was computed in [23]. It turns
out to be a direct sum of the additive group of the field(k,+) and the classical Brauer–
Wall group ofk. The Brauer group corresponding toν = 1 andt = β is isomorphic to the
aforementioned, as it was shown in [7].

SinceHν is self-dual, each quasitriangular structureRs,β can be seen as a coquasi-
triangular structurers,β and BC(k,Hν, rs,β) ∼= BM(k,Hν,Rs,β). In order to compute
BM(k,Hν,Rs,β), we first prove thatBM(k,Hν,Rs,β) andBM(k,Hν,Rs,0) are isomorphic.
This is achieved by showing that(Hν,Rs,0) and(Hν,Rs,β) are twist-equivalent. By general
theory, the categories of modules for both quasitriangular pairs are then equivalent as
braided monoidal categories. Then the corresponding Brauer groups are isomorphic. Hence
we are reduced to computing the Brauer groupBM(k,Hν,Rs,0). The quasitriangular
structure Rs,0 is also a quasitriangular structure onkZ2ν and the inclusion map
i : (kZ2ν,Rs,0)→ (Hν,Rs,0) is a quasitriangular map. On the other hand, the projection
mapp : (Hν,Rs,0)→ (kZ2ν,Rs,0) is also a quasitriangular map. SinceHν is a Radford’s
biproduct bykZ2ν , we have thatp ◦ i = idkZ2ν . Thus, the maps induced at the Brauer group
level

BM(k,Hν,Rs,0)
i∗−→←−
p∗

BM(k, kZ2ν,Rs,0)

satisfy i∗ ◦ p∗ = id. We prove that Ker(i∗) is isomorphic to(k,+) and commutes
with BM(k, kZ2ν , Rs,0). Then BM(k,Hν,Rs,0) ∼= (k,+) × BM(k, kZ2ν,Rs,0). So the
computation ofBM(k,Hν,Rs,0) reduces to the computation ofBM(k, kZ2ν , Rs,0). The
quasitriangular structureRs,0 on kZ2ν can be viewed as a bicharacterθs on Z2ν , and the
Brauer groupBM of kZ2ν with respect toRs,0 is just the classical Brauer groupBθs (k,Z2ν)

defined in [9,12], which is a generalization of the Brauer–Wall group, see [25]. The Brauer
groupBθs (k,G) for an abelian groupG can be described by an exact sequence due to
Childs, see [8] and the conceptual proof in [2].

2. Preliminaries

From now onk stands for a field of characteristic different from 2 andH is a finite-
dimensional Hopf algebra with antipodeS. Unless otherwise stated, all tensor products,
Hom, and End will be over the fieldk. For general facts on Hopf algebras we refer the
reader to [13,17].
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2.1. The Brauer group

In this section we recall the construction of the Brauer group (see [4,5]) of a quasi-
triangular Hopf algebra. Suppose thatR =∑R(1) ⊗ R(2) ∈ H ⊗ H is a quasitriangular
structure onH . The categoryHM of left H -modules is a braided monoidal category with
braiding given by

ψMN :M ⊗N→N ⊗M, m⊗ n �→
∑(

R(2) · n)⊗ (R(1) ·m),
for allm ∈M, n ∈N.Given twoH -module algebrasA,B, thebraided product ofA andB,
denoted byA #B, is anH -module algebra and it is defined as follows: as anH -module,
A #B =A⊗B, while the multiplication is given by

(a #x)(b #y)= aψBA(x #b)y =
∑

a
(
R(2) · b) #

(
R(1) · x)y,

for all a, b ∈A, x, y ∈B. TheH -opposite algebra of A, denoted byA, is equal toA as an
H -module but with multiplication given byab =∑(R(2) · b)(R(1) · a) for all a, b ∈ A.
For a finite-dimensional leftH -moduleM, End(M) is anH -module algebra with the
H -structure defined by

(h · f )(m)=
∑

h(1) · f
(
S(h(2)) ·m

)
.

Similarly, End(M)op is a leftH -module algebra with

(h · f )(m)=
∑

h(2) · f
(
S−1(h(1)) ·m

)
.

An H -module algebraA is calledH -Azumaya if it is finite-dimensional and the
following H -module algebra maps are isomorphisms:

F :A #A→ End(A), F (a # b̄)(c)=
∑

a
(
R(2) · c)(R(1) · b);

G :A #A→ End(A)op, G(ā #b)(c)=
∑(

R(2) · a)(R(1) · c)b.
Let Az(H) denote the set of isomorphism classes ofH -Azumaya module algebras. We
say thatA,B ∈ Az(H) are Brauer equivalent, denoted byA ∼ B, if there exist finite-
dimensionalH -modulesM,N such thatA#End(M)∼= B#End(N) asH -module algebras.
The relation∼ is an equivalence relation and the quotient setBM(k,H,R)= Az(H)/∼ is
a group. Given[A], [B] ∈ BM(k,H,R), the multiplication is[A][B] = [A#B], the inverse
is [A]−1= [A], and the neutral element is represented by[End(M)] whereM is a finite-
dimensionalH -module.

The Brauer groupBQ(k,H) of the category of Yetter–Drinfel’d modules is just the
Brauer groupBM(k,D(H),R) whereD(H) is the Drinfel’d double ofH and R its
canonical quasitriangular structure.
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For a coquasitriangular Hopf algebra(H, r) the categoryMH of rightH -comodules is
a braided monoidal category with braiding defined by

M ⊗N→N ⊗M, m⊗ n �→
∑

n(0)⊗m(0)r(n(1) ⊗m(1)),

for all m ∈M, n ∈N. SinceH is finite-dimensional, the groupBC(k,H, r) is isomorphic
to BM(k,H ∗,R), whereH ∗ is the dual Hopf algebra ofH andR is the quasitriangular
structure ofH ∗ induced byr. WhenH is the group algebra of an abelian groupG then,
identifying kG with (kG)∗, a dual quasitriangular structurer on (kG)∗ is nothing but
a bicharacterr on G. It turns out thatBM(k, kG, r∗) ∼= Bφ(k,G), the Brauer group of
graded Azumaya algebras introduced in [9,12]. The groupBφ(k,G) is described by an
exact sequence having the classical Brauer group of the fieldBr(k) as a kernel and a group
of (G×G)-graded Galois extensions Galφ(k,G×G) as a cokernel, see [8].

2.2. An equivalence of categories

Recall that a convolution invertible mapσ :H ⊗ H → k is called a 2-cocycle if it
satisfies the following equalities:

(i) σ(h⊗ 1)= σ(1⊗ h)= ε(h)1,
(ii)

∑
σ(g(1)⊗ h(1))σ (g(2)h(2)⊗m)=∑σ(h(1)⊗m(1))σ (g⊗ h(2)m(2)),

for all g,h,m ∈H. It is well known that a new Hopf algebraHσ , called theσ -twist of H ,
can be associated toH . As a coalgebraHσ =H while the multiplication is defined by

a · b=
∑

σ(a(1)⊗ b(1))a(2)b(2)σ
−1(a(3)⊗ b(3)) (2.1)

for all a, b ∈H see [10]. If(H, r) is coquasitriangular, then(Hσ , rσ ) is coquasitriangular
with rσ = στ ∗ r ∗ σ−1 whereτ is the usual flip map and∗ is the convolution product.
It is also well known thatMH is equivalent toMHσ as a braided monoidal category.
As a consequence, their Brauer groups are isomorphic, i.e.,BC(k,H, r)∼= BC(k,Hσ , rσ ),
see [7].

3. The Hopf algebra Hν

Let ν be an odd number and letk be a field containing a primitive 2νth root of unityω
and where 2ν is invertible. LetHν denote the Hopf algebra overk generated byg andx
such that

g2ν = 1, gx + xg = 0, x2= 0,

with coproduct

∆(g)= g⊗ g, ∆(x)= x ⊗ gν + 1⊗ x,
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and antipode

S(g)= g−1, S(x)= gνx.

The Hopf algebras of typeHν are a particular case of the family of pointed Hopf algebras
constructed in [19, Section 5.1]. We use a simpler notation than Radford’s because we
consider only the quasitriangular algebras. The Hopf algebraH1 is just the Sweedler Hopf
algebraH4. On the other hand, for everyν, H4 is a Hopf subalgebra ofHν . Also,H4 may
be viewed as a factor ofHν by the Hopf ideal generated byg − gν . This means thatHν

can be expressed as a Radford’s biproduct where the Hopf algebra factor is isomorphic to
H4, see [21]. We can also considerHν as a Radford’s biproduct where the Hopf algebra
factor is the group algebra ofZ2ν , the cyclic group of order 2ν. Note thatkZ2ν is a Hopf
subalgebra ofHν and a Hopf algebra factor by mappingx to 0.

In [13, Proposition 8] it is shown thatHν is self-dual with isomorphism

Θ :Hν→H ∗ν , g �→G, x �→X, (3.1)

whereG is the algebra homomorphism defined byG(g)= ω andG(x)= 0, andX is the
linear map defined byX(glxm)= δ1,m for all 0 � l < 2ν andm ∈ {0,1}.

The quasitriangular structures onHν are computed in [13, Corollary 3]. The quasi-
triangular structures are parametrized by pairs(s, β) wheres is an odd positive integer
1 � s < 2ν andβ ∈ k. They are given by formula (1.1). Observe thatRs,0 can be viewed
as a quasitriangular structure onkZ2ν and that the projection ofHν onto kZ2ν maps
(Hν,Rs,β) onto (kZ2ν,Rs,0). The projection ofHν ontoH4 mappinggν to the nontriv-
ial group-like elementc of H4 maps(Hν,Rs,β) onto(H4,Rβ) where

Rβ = 1

2
(1⊗ 1+ c⊗ 1+ 1⊗ c− c⊗ c)+ β

2
(x ⊗ x + x ⊗ cx + cx ⊗ cx − cx ⊗ x).

It is not difficult to verify that(Hν,Rs,β) is minimal if and only if β �= 0 and (s, ν)= 1
(see [20]). It is proved in [19, Corollary 3c] that(Hν,Rs,β) is triangular if and only if
s = ν. HenceHν does not admit minimal triangular structures unlessν = 1.

SinceHν is self-dual and quasitriangular, it is coquasitriangular, with a family of
coquasitriangular structures parametrized again by the pairs(s, β) and given byrs,β :=
(Θ ⊗Θ)(Rs,β). By direct computation one gets:

rs,β =
2ν−1∑
n,m=0

ωsnm
(
gn
)∗ ⊗ (gm)∗ + β

2ν−1∑
n,m=0

(−1)mωsnm
(
gnx

)∗ ⊗ (gmx)∗.
SinceHν is self-dual and pointed,Hν has the Chevalley property, see [1]. In particular,

this implies that each pair(Hν,Rν,β) is a Drinfel’d twist of a modified supergroup algebra,
that is, we can twist the coproduct ofHν in such a way that the quasitriangular structure
Rν,β gets twisted into the trivial quasitriangular structure or into a quasitriangular structure
of the form 1

2(1⊗ 1+ 1⊗ a + a ⊗ a − a ⊗ a) for some group-likea of order 2. As the
Hopf algebra structure onHν is essentially unique once the algebra structure is fixed, it is
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natural to expect that this twist will not affect the coproduct but only the quasitriangular
structure. We compute explicitly this twist in the dual perspective, using twists coming
from cleft extensions. At the same time, we show that similar results hold for a generals,
i.e., (Hν,Rs,β) is always a twist of (Hν,Rs,0). Besides, we will show that(Hν,Rs,β) can
not be a twist of (Hν,Rs ′,β) for s �= s′.

We choose the dual point of view and we want to twist the product and the
coquasitriangular structure ofHν by means of a 2-cocycle. Such cocycles correspond
to Hν-cleft extensions ofk, i.e., convolution invertible mapsφ :Hν → B whereB is an
Hν-comodule algebra such thatk is the set of coinvariants ofB, see [3,10]. With the same
technique as in [11,16], we can always make sure thatφ satisfies

φ
(
gj
)= φ(g)j , φ

(
gj x

)= φ(g)j φ(x),

even thoughφ need not be an algebra map. Let us denoteφ(g)= u andφ(x)= v and letρ
denote theHν-comodule structure map onB. We have:

ρ
(
v2) = ρ

(
φ(x)2

)= ρ
(
φ(x)

)2= ((φ ⊗ id)∆(x)
)2

= (v⊗ gν + 1⊗ x)(v⊗ gν + 1⊗ x)= v2⊗ 1.

Since the space of coinvariants isk, it follows thatv2 = µ ∈ k. Similarly, one shows that
there must holduv + vu= tuν for somet ∈ k and thatu2ν = λ ∈ k with λ invertible.

Therefore, we get a family of comodule algebrasB(µ, t, λ) parametrized byµ, t ∈ k
and λ ∈ k, λ �= 0. We can always chooseφ such thatλ = φ(1) = 1. Therefore, the
extensions are given by the algebrasB(µ, t,1), i.e., the algebras generated byu andv
with relations

u2ν = 1, uv + vu= tuν, v2= µ,

and with comodule structure

ρ(u)= u⊗ g, ρ(v)= v⊗ gν + 1⊗ x.

SinceHν is pointed andφ(g) is invertible,φ is convolution invertible. The convolution
inverse is given by:

φ−1(gj )= u−j , φ−1(gj x)= {uν−j v − tu−j for j even,
−uν−jv for j odd.

It can be directly checked thatB(µ, t,1) is indeed aHν-cleft extension ofk, hence we can
construct the corresponding 2-cocycles:

σ(a⊗ b)=
∑

φ(a(1))φ(b(1))φ
−1(a(2)b(2))

for all a, b ∈Hν . We obtain:
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σ
(
gj ⊗ gm

)= 1, σ
(
gj ⊗ gmx

)= 0,

σ
(
gj x ⊗ gm

)= {0 form even,
t for m odd,

σ
(
gj x ⊗ gmx

)= (−1)mµ.

The convolution inverse ofσ is easily computed:

σ−1(gj ⊗ gm
)= 1, σ−1(gj ⊗ gmx

)= 0,

σ−1(gjx ⊗ gm
)= {0 form even,

−t for m odd,
σ−1(gjx ⊗ gmx

)= (−1)m+1µ.

The new product in the twisted Hopf algebra is given by formula (2.1) and it is:

gr · gm = gr+m,

x · g = σ(x ⊗ g)gν+1σ−1(gν ⊗ g)+ σ(1⊗ g)xgσ−1(gν ⊗ g)

+ σ(1⊗ g)gσ−1(x ⊗ g)= tgν+1+ xg+ tg,

g · x = σ(g⊗ x)gν+1σ−1(g⊗ gν)+ σ(g⊗ 1)gxσ−1(g⊗ gν)

+ σ(g⊗ 1)gσ−1(g⊗ x)= gx,

x · x = σ(x ⊗ x)gν+νσ−1(gν ⊗ gν)+ σ(x ⊗ 1)gνxσ−1(gν ⊗ gν)

+ σ(x ⊗ 1)gνσ−1(gν ⊗ x)+ σ(1⊗ x)xgνσ−1(gν ⊗ gν)

+ σ(1⊗ 1)x2σ−1(gν ⊗ gν)+ σ(1⊗ 1)xgσ−1(gν ⊗ x)

+ σ(1⊗ x)gνσ−1(x ⊗ gν)+ σ(1⊗ 1)xσ−1(x ⊗ gν)+ σ(1⊗ 1)1σ−1(x ⊗ x)

= µ+ 0− tx −µ=−tx.

Whent = 0, the product inHν remains unchanged by the twist. For the twists associated
to B(µ,0,1), the coquasitriangular structurers,β is twisted into(στ) ∗ rs,β ∗ σ−1, which
must be of the formrs ′,γ for some odds′ between 1 and 2ν − 1 and someγ ∈ k. Since

ωs ′j l = rs ′,γ
(
gj ⊗ gl

)= ((στ) ∗ rs,β ∗ σ−1)(gj ⊗ gl
)= rs,β

(
gj ⊗ gl

)= ωsjl

for everyj andl, it follows thats′ = s. To findγ we compute(
(στ) ∗ rs,β ∗ σ−1)(gjx ⊗ glx

)= rs,γ
(
gj x ⊗ glx

)= (−1)lωsklγ .

We obtain

(
(στ) ∗ rs,β ∗ σ−1)(gj x ⊗ glx

)
= σ

(
glx ⊗ gj x

)
rs,β

(
gj+ν ⊗ gl+ν

)
σ−1(gj+ν ⊗ gl+ν

)
+ σ

(
gl ⊗ gj

)
rs,β

(
gj+ν ⊗ glx

)
σ−1(gj+ν ⊗ gν

)
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+ σ
(
gl ⊗ gj x

)
rs,β

(
gj+ν ⊗ gl

)
σ−1(gj+ν ⊗ glx

)
+ σ

(
glx ⊗ gj

)
rs,β

(
gj x ⊗ gl+ν

)
σ−1(gν ⊗ gl+ν

)
+ σ

(
gl ⊗ gj

)
rs,β

(
gj x ⊗ glx

)
σ−1(gν ⊗ gν

)
+ σ

(
gl ⊗ gj

)
rs,β

(
gj x ⊗ gl

)
σ−1(gν ⊗ glx

)
+ σ

(
glx ⊗ gj

)
rs,β

(
gj ⊗ gl+ν

)
σ−1(gj x ⊗ gl+ν

)
+ σ

(
gl ⊗ gj

)
rs,β

(
gj ⊗ glx

)
σ−1(gj x ⊗ gν

)
+ σ

(
gl ⊗ gj

)
rs,β

(
gj ⊗ gl

)
σ−1(gjx ⊗ glx

)
= (−1)kµrs,β

(
gj+ν ⊗ gl+ν

)+ rs,β
(
gj x ⊗ glx

)+ (−1)l+1rs,β
(
gj ⊗ gl

)
µ

= (−1)lωsjl(β − 2µ).

Proposition 3.1. The dual quasitriangular Hopf algebras (Hν, rs,β) with β ∈ k are all
twist-equivalent to (Hν, rs,0) for every odd s between 1 and 2ν − 1. There is no 2-cocycle
twisting rs,β into rs ′,γ .

Proof. The first statement is obtained taking the cocycle associated to theHν -cleft
extensionB(β/2,0). For the second statement, suppose that there is a 2-cocycle twisting
rs,β into rs ′,γ for s �= s′. Then, by composition of twists, there would be a 2-cocycleσ

twisting rs,0 into rs ′,0. This would imply that

rs ′,0
(
gj ⊗ gl

)= ωs ′j l = (στ ∗ rs,0 ∗ σ−1)(gj ⊗ gl
)= σ

(
gl ⊗ gj

)
σ
(
gj ⊗ gl

)−1
ωsjl .

Since the restriction of a 2-cocycle onHν to the group algebra of the cyclic group generated
by g is necessarily symmetric,σ(gl ⊗ gj )σ (gj ⊗ gl)−1= 1 and therefores = s′. ✷

From Proposition 3.1 the category of rightHν-comodules with braiding induced byrs,β
is tensor equivalent to the category of rightHν-comodules with braided induced byrs,0.
The invariance of the Brauer group under equivalences implies the following.

Corollary 3.2. For any β ∈ k and any odd 1 � s � 2ν, BC(k,Hν, rs,β)∼= BC(k,Hν, rs,0).
Dually, BM(k,Hν,Rs,β)� BM(k,Hν,Rs,0).

4. The Brauer group of (Hν,Rs,β)

In this section we compute the Brauer groupBM(k,Hν,Rs,β) for each s and β .
By Corollary 3.2, we are reduced to computing the Brauer groupBM(k,Hν,Rs,0). Our
calculation of this group is based on the ideas used in [22] where the Brauer group of
Sweedler Hopf algebra is computed.
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Let i : Z2ν → Hν and p :Hν → Z2ν be the canonical inclusion and projection,
respectively. ConsideringRs,0 as a quasitriangular structure onkZ2ν , these maps are
quasitriangular. They induce group homomorphism at the Brauer group level

BM(k,Hν,Rs,0)
i∗−→←−
p∗

BM(k, kZ2ν,Rs,0).

Note that for anyHν-Azumaya module algebraA, i∗ maps[A] onto[A]with A considered
as aZ2ν-Azumaya module algebra. Sincep ◦ i = id, i∗ ◦p∗ = id, and thusi∗ is surjective.
So we need to compute Ker(i∗).

Let α,β, γ ∈ k. We denote byA(α,β, γ ) thegeneralized quaternion algebra generated
by u andv with relationsu2= α, v2= β , anduv + vu= γ . This algebra can be endowed
with a naturalH4-action, thestandard H4-action, given by:

g ⇀u=−u, g ⇀ v =−v, x ⇀ u= 0, x ⇀ v = 1. (4.1)

If the discriminantd = γ 2 − 4αβ �= 0, the generalized quaternion algebra is called
nonsingular. By [22, Proposition 5],A(α,β, γ ) is anH4-Azumaya algebra if and only
if it is nonsingular.

Lemma 4.1. Let A=A(α,β, γ ) be an Hν-module algebra for which the action of the Hopf
subalgebra generated by gν and x is the standard H4-action. Then:

(i) If α �= 0 or γ �= 0, the action of g necessarily coincides with the action of gν ;
(ii) If α = γ = 0, also the possibility g ⇀ u= ωtu and g ⇀ v =−v + λu for λ ∈ k and t

odd and different from ν can occur.

Proof. (i) Let us writeg⇀u= x1+x2v+x3u+x4uv, with x1, . . . , x4 ∈ k. The condition
(gx + xg)⇀u= 0 yieldsx2= x4= 0. It is easily computed that for everym� 1

gm ⇀u= x1

(
m−1∑
l=0

xl3

)
+ xm3 u. (4.2)

By assumption,gν ⇀ u=−u, hence formula (4.2) form= ν implies

x1

(
ν−1∑
l=0

xl3

)
= 0, xν3 =−1.

Sincex3 is not aνth root of unity,
(∑ν−1

l=0 x
l
3

) �= 0 and thusx1= 0. Asx2ν
3 = 1, there is an

odd positive integert < 2ν such thatx3= ωt , henceg ⇀u= ωtu.
Let us setg ⇀ v = y1 + y2v + y3u + y4uv, with y1, . . . , y4 ∈ k. The condition

(gx + xg)⇀ v = 0 yieldsy2=−1 andy4= 0. An easy computation shows that

gm ⇀ v =
{
v − y3u

(∑m−1
l=0 (−1)lωlt

)
if m is even,

y1− v + y3u
(∑m−1

l=0 (−1)lωlt
)

if m is odd.
(4.3)
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By hypothesis,gν ⇀ v =−v, so formula (4.3) form= ν implies

y1= 0, y3

(
ν−1∑
l=0

(−1)lωlt

)
= 0. (4.4)

Assume thatα �= 0. From the equalityα = g ⇀ u2 = (g ⇀ u)2 = ω2tα we conclude
thatωt = −1, hencet = ν. Replacingωt = −1 in (4.4) one getsy3ν = 0, soy3 = 0 and
thereforeg ⇀ v =−v. In other words, ifα �= 0, the action ofg coincides with the action
of gν .

Suppose now thatα = 0. Then from (4.3) and (4.4) we obtain only

g⇀u= ωtu, g ⇀ v =−v + y3u.

Assume thatγ �= 0. From the equality

β = g ⇀v2= (g ⇀ v)2= (y3u− v)(y3u− v)=−y3(uv + vu)+ β,

we gety3 = 0. But thenγ = g ⇀ (uv + vu) = −ωt(uv + vu) = −ωtγ . It follows that
ωt =−1, i.e., thatt = ν. The first statement is proved.

(ii) It is easy to check that in caseα = γ = 0, the action defined by

g ⇀u= ωtu, g ⇀ v =−v+ λu, x ⇀ u= 0, x ⇀ v = 1,

for λ ∈ k and t < 2ν an odd nonnegative integer different fromν, yields anHν-module
algebra structure onA for whichgν ⇀ u=−u andgν ⇀ v =−v. ✷
Lemma 4.2. Let A and B be two Hν-module algebras. The braided product A #B with
respect to the quasitriangular structure Rs,0 is the same as the θs -twisted Z2ν-graded
product of Z2ν -graded algebras, where θs is the Z2ν-bicharacter given by θs(x, y)= ωsxy .
TheHν-opposite algebraA ofA is the same as the Z2ν-graded θs -twisted opposite algebra.

Proof. The braiding inA⊗B is determined by the action ofRs,0 and it is

ψAB(c⊗ b) := 1

2ν

2ν−1∑
i,l=0

ω−il
(
gsl ⇀ b

)⊗ (gi ⇀ c
)
.

The cyclic groupZ2ν = 〈g〉 acts onA andB, and sinceg2ν = 1 andω ∈ k, the action
of g onA andB is diagonalizable. The algebrasA andB inherit theZ2ν-gradings from
the eigenspace decomposition for the action ofg, which are, in fact, algebra gradings
becauseA andB areHν-module algebras. We denote byAj the eigenspace corresponding
to the eigenvalueωj and we say thatc ∈A hasdegree j if c ∈Aj . Similarly forB. Then,
for c ∈Am andb ∈ Bn we have
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ψAB(c⊗ b) = 1

2ν

2ν−1∑
i,l=0

ω−ilωslnωimb⊗ c= 1

2ν

2ν−1∑
l=0

ωsln

2ν−1∑
i=0

ωi(m−l)b⊗ c

= ωsmnb⊗ c.

Hence the braiding is theθs -twistedZ2ν-graded braiding. Since the braided product and
the braided opposite product are completely determined by the braiding and the product in
the algebras, we have the statement.✷
Remark 4.3. Observe that the braiding is, in fact, aZ2ν/(s,ν)-braiding because the effect
of the braiding on homogeneous elements depends only on the class modulo 2ν/(s, ν) of
the degrees. Another way to say this is to define the degrees as deg′(a) = sh if a is an
eigenvector ofg of eigenvalueωh. Then it is clear that the grading is aZ2ν/(s,ν)-grading
because a degree appears if and only if it is a multiple ofs in Z2ν . With this new definition
of grading we see that the braiding induced byRs,0 can also be seen as theZ2ν/(s,ν)-graded
θ1-twisted flip operator with bicharacterθ1(t ⊗ y)= ωty .

As the braidingψBA induced by the quasitriangular structureRs,0 is nothing but
aZ2ν -graded andθs -twisted flip operator, we can view the Brauer groupBM(k, kZ2ν,Rs,0)

as the Brauer groupBθs (k,Z2ν) which is a generalization of the Brauer–Wall group for
any cyclic groupZn with respect to a bicharacter onZn, see [9,12,18] and [6, pp. 329,
341, 423, 434]. In fact, sincekZ2ν � (kZ2ν)

∗, the dual quasitriangular structuresrs,0 on
(kZ2ν)

∗ induce the bicharacterθs on Z2ν . Then

BM(k, kZ2ν,Rs,0)� BC
(
k, (kZ2ν)

∗, rs,0
)� Bθs (k,Z2ν),

where the last isomorphism is explained in [5, Lemma 1.2].

We denote byA(α,β, γ ;H4) the generalized quaternion algebraA(α,β, γ ), together
with the standard action ofH4. If A(α,β, γ ) is nonsingular then this uniquely determines
anHν -module algebra structure onA(α,β, γ ), which we call againstandard and denote
by A(α,β, γ ;Hν). We want to describe whichHν-module algebras with underlying
algebra of typeA(α,β, γ ) areHν-Azumaya algebras. The following lemma shows that
A(α,β, γ ;H4), with the action extended toHν in a nonstandard way, isnot Hν-Azumaya.

Lemma 4.4. The algebra A=A(0, β,0), with the action given by g⇀u= ωtu with t odd
and t �= ν, g⇀ v =−v + λu for λ ∈ k, x ⇀u= 0, and x ⇀ v = 1, i.e., with the action of
Lemma 4.1 (ii), is notan Hν-Azumaya algebra.

Proof. First we observe that ifλ �= 0 we can replacev by v′ = v − λ
(ωt+1)u obtaining

(v′)2= β, uv′ + v′u= 0, u2= 0,

and

g ⇀u= ωtu, g ⇀v′ = −v′, x ⇀ u= 0, x ⇀ v′ = 1.
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The decomposition ofA into eigenspaces with respect to the action ofg is given byA0= k,
Aν = kv′, At = ku, andAt+ν = kuv′ = kuv. If A were anHν-Azumaya algebra then its
left Hν-center, i.e., the set{

b ∈A ∣∣ by =mAψAA(b⊗ y), ∀y ∈A}
with mA the product inA, would be trivial. But it is easy to check thaty = µ+ µ′u for
µ,µ′ ∈ k belongs to theHν-center ofA because

uy = µu= µu+ 0=mAψAA

(
u⊗ (µ+µ′u)

)
,

v′y = µv′ −µ′uv = µv′ +µ′ωsνtuv =mAψAA

(
v′ ⊗ (µ+µ′u)

)
,

uvy = µuv + 0=mAψAA

(
uv⊗ (µ+µ′u)

)
.

HenceA is notHν-Azumaya. ✷
The next lemma shows whenA(α,β, γ ) with the standardHν-action isHν-Azumaya.

Lemma 4.5. The algebra A(α,β, γ ;Hν) is Hν-Azumaya if and only if d �= 0.

Proof. TheHν-action onA(α,β, γ ;Hν) is the standard action and it is, in fact, an action
of the quotientHν/〈gν − g〉 � H4. Since the quasitriangular structureRs,0 is mapped
to the quasitriangular structureR0 of H4 under the projection, the braiding with respect
to any Rs,0 is nothing but the braiding induced byR0, i.e., theZ2-graded flip operator.
The algebraA(α,β, γ ;Hν) is Hν-Azumaya with respect to the quasitriangular structure
Rs,0=∑R1

s,0⊗R2
s,0 if and only if theHν-module algebra maps

F :A(α,β, γ ) #A(α,β, γ )→ End
(
A(α,β, γ )

)
,

F
(
a # b̄

)
(c)=

∑
a
(
R2
s,0⇀c

)(
R1
s,0⇀b

)
,

and

G :A(α,β, γ ) #A(α,β, γ )→ End
(
A(α,β, γ )

)op
,

G(ā #b)(c)=
∑(

R2
s,0⇀a

)(
R1
s,0⇀c

)
b,

are isomorphisms. Since the actions ofg and ofgν coincide, the mapsF andG coincide
with the similar maps with respect toH4 andR0. Hence they are isomorphisms if and
only if A(α,β, γ ;H4) is H4-Azumaya. By [22, Proposition 5], this happens if and only if
d �= 0. ✷

If Hν acts on an Azumaya algebraA which is anHν-module algebra, then the action is
inner by [15], i.e., there is a convolution invertible elementπ ∈Homk(Hν,A) for which

h⇀ b =
∑

π(h(1))bπ
−1(h(2))



524 G. Carnovale, J. Cuadra / Journal of Algebra 259 (2003) 512–532

for everyh ∈Hν and everyb ∈A. In general this action is notstrongly inner, i.e.,π is not
necessarily an algebra homomorphism.

Let us define theinduced subalgebra with respect to the action as the (uniquely
determined) algebra generated byu := π−1(gν) andv := π−1(x). It turns out that this
algebra is of the formA(α,β, γ ) with α �= 0. By [22, Lemma 1], the action ofH4 is
strongly inner if and only if d = 0 andα is a square ink. The action ofH4 onA is given
by

gν ⇀ b= u−1bu, x ⇀ b= bv− vu−1bu. (4.5)

Lemma 4.6. Let Hν act on an Azumaya algebra A. If the action of Hν is not strongly inner
but the action of g is strongly inner, then the restriction of the action to H4 is not strongly
inner and the action of gν is strongly inner.

Proof. If Hν acts on an Azumaya algebraA then there is a convolution invertible element
π ∈Hom(Hν,A) for which

h⇀ b =
∑

π(h(1))bπ
−1(h(2))

for everyh ∈ Hν and everyb ∈ A. Since the action ofg is strongly inner there exists
π :Hν→ A for which the restriction tokZ2ν is an algebra homomorphism. This implies
that the action ofgν is strongly inner. It suffices to prove that ifπ is not an algebra
homomorphism then the restriction ofπ to H4 cannot be an algebra homomorphism. Ifπ

is not an algebra homomorphism, it will not preserve at least one of the relations,x2= 0,
or gx+ xg = 0. If π(x)2 �= 0 thenπ |H4 is not an algebra homomorphism and we are done.
Suppose thatπ does not preservegx + xg = 0 and thatπ preservesgνx + xgν = 0. We
will get a contradiction. Since

(gx)⇀ b= g ⇀ (x ⇀ b), ∀b ∈A,

we obtain

π(g)bπ−1(gx)+ π(gx)bπ−1(gν+1)= π(g)
(
bπ−1(x)+ π(x)bπ−1(gν)

)
π(g)−1

for all b ∈A. Asπ restricted tokZ2ν is an algebra homomorphism, we have

π−1(x)=−π(x)π(g)−ν, π−1(gx)=−π(g)−1π(gx)π(g)−ν−1.

Hence

π(g)
[−bπ(x)+ π(x)b

]
π(g)−ν−1= π(g)

[−bπ(g)−1π(gx)+ π(g)−1π(gx)b
]
π(g)−ν−1

for all b ∈A. Sinceπ(g) is invertible, we obtain

b
[−π(x)+ π(g)−1π(gx)

]= [−π(x)+ π(g)−1π(gx)
]
b, ∀b ∈A.
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SinceA is central, there existst1 ∈ k such thatπ(g)π(x) = π(gx) + t1π(g). Similarly,
using

(xg)⇀ b=−(gx)⇀ b = x ⇀ (g ⇀b), ∀b ∈A,
one shows that there existst2 ∈ k for whichπ(g)π(x)=−π(gx)+ t2π(g). Therefore,

π(x)π(g)+ π(g)π(x)= (t1+ t2)π(g).

It can be proved by induction onm that

π(g)mπ(x)=
{
π(x)π(g)m for m even,
−π(x)π(g)m + (t1+ t2)π(g)

m for m odd.

Hence, ifπ restricted toH4 were an algebra map, this would mean that(t1+ t2)π(g)ν = 0.
Sinceπ(g) is invertible, this would imply thatt1 + t2 = 0, i.e., the relationgx + xg = 0
would be preserved byπ , a contradiction. ✷
Lemma 4.7. Let A be an Hν-module Azumaya algebra such that A is an Azumaya algebra.
Assume that the action of g is strongly inner but the action of Hν is not strongly inner.
Then there exist A(α,β, γ )⊂ A, a nonsingular generalized quaternion algebra and B an
Azumaya subalgebra of A, commuting with A(α,β, γ ), such that

A�A(α,β, γ )⊗B

as Hν-module algebras.
The action of gν on A(α,β, γ ) coincides with the action of g, the action of gν and x on

B is trivial, and the action of g on B is a Zν-action. Hence, the action on A is completely
determined by an H4-action on A(α,β, γ ) and by a Zν -action on B .

Proof. By Lemma 4.6,H4 does not act onA in a strongly inner way butgν does. By
[22, Corollary 2],A � A(α,β, γ ) ⊗ B asH4-module algebras whereA(α,β, γ ) is the
(nonsingular) induced subalgebra andB commutes withA(α,β, γ ). It is Azumaya and the
action ofH4 on A(α,β, γ ) is given by (4.5), while the action ofH4 on B is trivial. We
need to show that the induced subalgebraA(α,β, γ ) and the subalgebraB are preserved
by the action ofg. Since the action ofg is strongly inner andg is group-like, there exists
an invertiblew = π−1(g) ∈A for which

wν = π−1(g)ν = π(g)−ν = π(g−ν)= π(gν)−1= π−1(gν)= u,

andg ⇀ b=w−1bw for everyb ∈A. Multiplying the equality

0= (gx + xg)⇀ b =w−1bvw−w−1vu−1buw+w−1bwv− vu−1w−1bwu (4.6)

byw on the left and using the fact thatu andw commute, we obtain

b(vw+wv)= (vw +wv)w−1u−1bwu.
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This formula for b = w yields w2v = vw2, hencew2 commutes withA(α,β, γ ).
Therefore,w2 belongs to eitherk orB.

• If w2 ∈ k then

u=wν =w1+2ν−1
2 = tw

for somet ∈ k. Hencew ∈ A(α,β, γ ), soA(α,β, γ ) is Hν-stable. Besides, for every
b ∈B, g ⇀ b=w−1bw= u−1bu= b. Henceg acts trivially onB.
• If w2 ∈ B then u = wν = wb̄ for b̄ = w2(ν−1)/2 ∈ B. Sincew is invertible, b̄ is

invertible. The action ofg on u is trivial becausew commutes withu, and the action
of g onv is given by

g ⇀v =w−1vw = b̄u−1vub̄−1= (u−1vu
)= gν ⇀ v,

so the action ofg on the induced subalgebra coincides with the action ofgν . Hence
A(α,β, γ ) isHν-stable. Forb ∈B we have

g ⇀ b=w−1bw= b̄u−1bub̄−1= b̄(gν ⇀ b)b̄−1= b̄bb̄−1.

Sinceb̄νbb̄−ν = gν ⇀ b = b, it follows that b̄ν ∈ k. Hence, the action ofg on B is
determined by aZν-action onB.

In particular, the action ofHν on an Azumaya algebra is completely determined by an
H4-action on a quaternion algebra and akZν-action on the Azumaya subalgebraB. ✷
Remark 4.8. Observe that this proof recovers the result of Lemma 4.1 that ifα �= 0 then
the action ofg on a generalized quaternion algebra must coincide with the action ofgν .

Corollary 4.9. Let A(α,β, γ ) be a quaternion algebra with d = γ 2− 4αβ �= 0, which is
an Hν-module algebra. Then

A(α,β, γ )�A
(
d,−αd−1,0;Hν

)
as Hν-module algebras.

Proof. By [22, Lemma 3],A(α,β, γ ) � A(d,−αd−1,0;H4) as H4-module algebras.
Sinced �= 0, eitherα or γ is nonzero. Now Lemma 4.1 applies.✷
Corollary 4.10. Under the hypothesis of Lemma 4.7 on A, the induced subalgebra
A(α,β, γ ) is always nonsingular and it is always an Hν-Azumaya algebra.

Proof. By the discussion at the end of [22, Lemma 1],A(α,β, γ ) is always nonsingu-
lar. By Corollary 4.9,A(α,β, γ )� A(d,−αd−1,0;H4) asHν -module algebras. The dis-
criminant ofA(d,−αd−1,0) is equal to 4α �= 0 becauseα = π−1(gν)2 is invertible. By
Lemma 4.5,A(α,β, γ ) isHν-Azumaya. ✷
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Lemma 4.11. Let A be an Azumaya algebra satisfying the hypothesis of Lemma 4.7. With
notation as before, A= A(α,β, γ ;Hν) #B with respect to every quasitriangular structure
of the form Rs,0 as Hν-module algebras. Moreover, A is Hν-Azumaya if and only if B is
Hν-Azumaya.

Proof. By Lemma 4.7,gν acts trivially onB andg acts likegν onA(α,β, γ ). Hence, the
gradings induced by the eigenspaces decomposition for the action ofg are:

B =
ν⊕
l=0

B2l , A(α,β, γ ;Hν)=A(α,β, γ ;Hν)0⊕A(α,β, γ ;Hν)ν,

i.e., the only eigenvaluesg onB are given byeven powers ofω, while the only eigenvalues
of g on A(α,β, γ ;Hν) are given byω0 = 1 andων = −1. By Lemma 4.2, the braided
product A(α,β, γ ;Hν) # B with respect to the quasitriangular structureRs,0 is the
θs -twisted graded flip operator

(a #b)(c #d)= ωs(degc)(degb)ac #bd

for homogeneousa and b. Since for these algebrasωs(degb)(degc) = 1 for every
homogeneousc and b, the braided product coincides with the ordinary tensor product
independently ofs.

By definition,A isHν-Azumaya with respect toRs,0 if theHν-module algebra maps

FA :A # Ā→ End(A), FA
(
a # b̄

)
(c)= ωs deg(b)deg(c)acb,

for b andc homogeneous and

GA : Ā #A→ End(A)op, GA(ā #b)(c)= ωs deg(a)deg(c)acb,

for a andc homogeneous, are isomorphisms. By [4, Proposition 2.4.2(c)], asHν-module
algebras,

Ā�A(α,β, γ )⊗B � B #A(α,β, γ )� B ⊗A(α,β, γ ),

where the second isomorphismχ is given on homogeneous elements by

χ
(
a #b

)= ω−s(dega)(degb)b̄ # ā = b̄ # ā,

and the third isomorphism follows from the fact that the braiding betweenA(α,β, γ )

and B is trivial. Moreover, if an algebraA is Z2ν -graded, then also End(A) will be
Z2ν-graded: heref ∈ End(A) has degreed if for every homogeneous elementa ∈A, f (a)
is homogeneous of degreed + dega. By [4, Proposition 4.3], there is an isomorphismξ
between End(A(α,β, γ ) # B) and End(A(α,β, γ )) # End(B) given, on homogeneous
elements, by

ξ
(
f #f ′

)
(a #b)= ω−s(dega)(degf ′)f (a) #f ′(b)= f (a) #f ′(b),
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because the grading on End(B) will only have even degrees. IfA isHν-Azumaya, then

ξ ◦FA ◦
(
idA ⊗ χ−1) :A #B #A(α,β, γ )→ End

(
A(α,β, γ )

)
# End(B)

and

GA ◦
(
χ−1⊗ idA

)
:B #A(α,β, γ ) #A→ End(A)op

are isomorphisms. On homogeneous elementsa, c, e ∈ A(α,β, γ ) (i.e., of degree 0 orν),
b, d,f ∈B (i.e., of even degree) one has

FA ◦
(
idA ⊗ χ−1)((a #b) #

(
d̄ # c̄

))
(e #f )

= FA
(
(a #b) #

(
c #d

))
(e #f )= ωs(deg(c#d))(deg(e#f ))(a #b)(e #f )(c #d)

= ωs(deg(c)+deg(d))(deg(e)+deg(f ))(aec #bfd)= ωs deg(c)deg(e)(aec #bfd)

= ωs deg(c)deg(e)aec #ωsdeg(d)deg(f )bf d

= FA(α,β,γ )(a # c̄)(e) #FB
(
b # d̄

)
(f ),

where the third equality follows from the first part of the lemma, the fifth follows from the
fact thatB has only even degrees andA(α,β, γ ) has only degrees that are multiples ofν.
Similarly one proves that

ξ ◦GA ◦
(
χ−1 # id

)((
b̄ # ā

)
# (c #d)

)
(e #f )=GA(α,β,γ )(ā # c)(e) #GB

(
b̄ #d

)
(f ).

SinceA(α,β, γ ) is Hν-Azumaya (by Lemma 4.5) and since we are dealing with tensor
products over the fieldk, FA andGA are isomorphisms if and only ifFB andGB are
so. ✷
Theorem 4.12. The Brauer group BM(k,Hν,Rs,0) is isomorphic to the direct sum of (k,+)
and Bθs (k,Z2ν), where θs : Z2ν ×Z2ν→ k is the bicharacter induced on Z2ν by Rs,0.

Proof. We first show that there is a split exact sequence of groups

1→ (k,+)→ BM(k,Hν,Rs,0)→ Bθs (k,Z2ν)→ 1. (4.7)

Then we show that the subgroups on the right and on the left commute. We define
a mapΦ : (k,+)→ BM(k,Hν,Rs,0) by Φ(0) = [M2], the class of the algebraM2 of
2 × 2 matrices with trivial action, andΦ(α) = [A(α−1,−α−1,0;Hν)] for α �= 0. If
α + β = σ �= 0 then, by [22, Proposition 7] and Lemma 4.7,A(α−1,−α−1,0;Hν) #
A(β−1,−β−1,0;Hν) is isomorphic toA(σ−1,−σ−1,0;Hν)⊗M2 with trivial H4-action
onM2 and withg-action onM2, given by conjugation by an invertible elementb ∈M2 for
whichbν ∈ k. By Cayley–Hamilton theorem we know thatb2 ∈ kb+ k, b ∈ k becauseν is
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odd, so the action ofHν onM2 is trivial. Hence[M2] = [End(P )] = 1 for someHν-module
P with trivial action. Therefore, forα + β �= 0,

Φ(α) #Φ(β)= [A(σ−1,−σ−1,0;Hν

)]=Φ(α + β).

If α =−β , again by [22, Proposition 7], theH4-action on

A
(
α−1,−α−1,0;Hν

)
#A

(−α−1, α−1,0;Hν

)
is strongly inner and the above algebra is a 4× 4 matrix algebra isomorphic, as anH4-
module algebra, to End(P ) for someH4-moduleP . The action on the vector spaceP is
given bygν.p = up= u−1p andx.p=−vup for the induced elementsu andv identified
with the matrices. The action ofg onA(α−1,−α−1,0;Hν) and onA(−α−1, α−1,0;Hν)

coincides with the action ofgν , in view of Lemma 4.1. Then the action ofg on their
product coincides with the action ofgν , so that the action ofHν onA(α−1,−α−1,0;Hν)#
A(−α−1, α−1,0;Hν) is also strongly inner. The action of the matricesu and−vu on P
equipsP with anHν-module structure so that[

A
(
α−1,−α−1,0;Hν

)
#A

(−α−1, α−1,0;Hν

)]= [End(P )] = 1.

HenceΦ is a group homomorphism. It is injective because if we had

Φ(α)= [A(α−1,−α−1,0;Hν

)]= [1] = [End(X)]
for someHν-moduleX, then the action ofH4 would be strongly inner, which is impossible
becaused �= 0.

Let Ψ : BM(k,Hν,Rs,0)→ Bθs (k,Z2ν) be the homomorphism given by forgetting the
action ofx and using the identifications

BM(k, kZ2ν,Rs,0)� BC
(
k, k(Z2ν)

∗, rs,0
)� Bθs (k,Z2ν),

where the second is from [5, Lemma 1.2]. The homomorphismΨ is surjective because, by
taking the action ofx to be zero and the braidings induced byRs,0 and byθs to be identical,
a Z2ν -Azumaya algebra becomes anHν-Azumaya algebra.

Hence we only need to prove thatΦ(k,+) = Ker(Ψ ). The kernel ofΨ consists of
matrix algebras on which the action ofg is strongly inner. We check thatΦ(k,+) ⊆
Ker(Ψ ). We know, from Corollary 4.9, that

A
(
α−1,−α−1,0;Hν

)�A
(
4α−2,−4−1α,0;Hν

)
.

Since 4α−2 is a square, the action ofgν is strongly inner. By Lemma 4.1, the action of
g and ofgν coincide, hence the action ofg is strongly inner. The quaternion algebra is
a matrix algebra because 4α−2 is a square.

Now suppose thatA is anHν-Azumaya algebra such thatΨ ([A])= 1 and[A] �= 1 in
BM(k,Hν,Rs,0). We know that the action ofg is strongly inner becauseA � End(X),
a matrix algebra for someX, and the action ofg on A is given by conjugation by the
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matrix representing the action ofg on X. HenceA is Azumaya, andHν acts in a non-
strong inner way onA (otherwise[A] would be 1 inBM(k,Hν,Rs,0)). By Lemma 4.7,
A�A(α,β, γ )#B. Sincegν acts in a strongly inner way, we can make sure thatα = 1 �= 0
is a square, so the induced subalgebra is a matrix algebra. This implies thatB is a matrix
algebra, too. The action ofg on B is strongly inner and the action ofx is trivial, hence
B = End(Y ). By Lemma 4.11 and Corollary 4.10, bothA(1, β, γ ) andB areHν-Azumaya
so that

[A] = [A(1, β, γ ) #B
]= [A(1, β, γ )][End(Y )

]= [A(1, β, γ )]
andA(1, β, γ ) is nonsingular.

By Corollary 4.9,[A(1, β, γ )] = [A(d,−d−1,0;Hν)], i.e., the class ofA coincides
with the class of the nonsingular generalized quaternion algebra generated byu andv with
relationsuv + vu = 0, u2 = d , andv2 = −d−1, and standard action. If we replaceu by
u′ = d−1u then the action on the new basis is still standard and we have

A
(
d,−d−1,0;Hν

)�A
(
d−1,−d−1,0;Hν

)
.

Hence[A] = [A(d−1,−d−1,0;Hν)] = Φ(d), so the sequence is exact. The sequence is
split-exact because the map

Ψ ′ :Bθs (k,Z2ν)� BM(k, kZ2ν,Rs,0)→ BM(k,Hν,Rs,0),

obtained by extending the action ofkZ2ν toHν by lettingx act as 0, is a section ofΨ .
Let nowA be a representative of a class in(k,+) andB be a representative of a class

in Bθs (k,Z2ν). We want to show that the corresponding classes commute in the Brauer
group. By Lemma 4.2, the braiding between the two algebras is the same as theθs -twisted
Z2ν-graded product, where the grading onA andB is the eigenspace decomposition for
the action ofg. Besides, we know that the only possible degrees inA are 0 andν. Hence
the braided product inA #B is given by

(a #b)(c #d)= ωs deg(b)deg(c)ac #bd = ωsν deg(b)deg(c)ac #bd = (−1)deg(b)deg(c)ac #bd,

becauseν ands are odd. Therefore,

A #B � A⊗2 B � B ⊗2 A� B #A,

where⊗2 denotes theZ2-graded tensor product and the second isomorphism holds because
the Z2-graded flip is an algebra isomorphism (the category ofZ2-graded modules with
Z2-graded tensor product is symmetric). Hence the proof.✷
Corollary 4.13. Let ν be a product of r distinct primes p1, . . . , pr and let k be algebrai-
cally closed. Then

BM(k,Hν,Rs,0)� Z2× · · · × Z2︸ ︷︷ ︸
r+1 times

×(k,+).
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Proof. Following the idea of [14, the proof of Theorem 2.7], one checks that

Bθs (k,Z2ν)� BW(k)×Bθs1
(k,Zp1)× · · · ×Bθsr (k,Zpr ),

whereBW denotes the Brauer–Wall group ofZ2-graded algebras andsj = 2sν/pj modpj
for j = 1, . . . , r. By [12, Corollary 3.2],BW(k)� Z2 and eachBθsj

(k,Zpj )� Z2. ✷
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