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Abstract

We show that the Brauer grolgM (k, Hy, R g) of the quasitriangular Hopf algeb(@/,, R g)
is a direct product of the additive group of the fididand the classical Brauer grougy, (k,Z,)
associated to the bicharactgron Z», defined by (x, y) = %Y, with w a 2vth root of unity.

0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Let k be a field andH be a Hopf algebra ovekt with bijective antipode. The
Brauer group ofH, denoted byBQ(k, H), was introduced in [4] and later on studied
in [5,22,24]. This Brauer group is a special case of the Brauer group of a braided
monoidal category introduced in [23]. In fadBQ(k, H) is the Brauer group of the
category) Dy of Yetter—Drinfel'd modules oveH. If (H, R) is a quasitriangular Hopf
algebra, the category of left/-modulesy M is a braided monoidal subcategory of
YDy and Br(ygM) is a subgroup oBQ(k, H), denoted byBM(k, H, R). Dually, if
(H,r) is a coquasitriangular Hopf algebra, the categonf of right H-comodules is
a braided monoidal subcategory 3D . The Brauer grouBr(M*) is a subgroup of
BQ(k, H), denoted byBC(k, H,r). In this paper we computBM and BC for all the
quasitriangular structures (and coquasitriangular structures) of the family of Hopf algebras
H, = (g,x: g2 =1, x2=0, gx + xg = 0) with v an odd natural numbeg, a group-
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like element, and: a (g", 1)-primitive element. The antipode is defined Byg) = g1,

S(x) = g"x. This family of Hopf algebras was introduced by Radford in [19] and they are
a generalization of Sweedler Hopf algetifa. The Hopf algebragi, have a family of
guasitriangular structures

1 2v-1 o ,3 2v—-1 o
Rs,ﬁ — 2_\)( Z a)—tlgt ® gsl> + 2_V< Z a)_’lg’x ®gsl+vx)’ (11)

i,i1=0 i,/=0

whereg € k and 1< s < 2v is odd. The Brauer group of Sweedler Hopf algelrzand the
quasitriangular structurBo—in our notationv = 1, R1 o—was computed in [23]. It turns
out to be a direct sum of the additive group of the fiétd+) and the classical Brauer—
Wall group ofk. The Brauer group correspondingite= 1 andt = g is isomorphic to the
aforementioned, as it was shown in [7].

Since H, is self-dual, each quasitriangular structuikgg can be seen as a coquasi-
triangular structurers g and BC(k, H,, rs.g) = BM(k, H,, R, g). In order to compute
BM(k, H,, R p), we first prove thaBM (k, H,, R, g) andBM(k, H,, R; o) are isomorphic.

This is achieved by showing théll,,, R 0) and(H,, R; g) are twist-equivalent. By general
theory, the categories of modules for both quasitriangular pairs are then equivalent as
braided monoidal categories. Then the corresponding Brauer groups are isomorphic. Hence
we are reduced to computing the Brauer grddM(k, H,, R; 0). The quasitriangular
structure R, o is also a quasitriangular structure diZo, and the inclusion map
i:(kZpy, Rs.0) — (Hy, Rs,0) is a quasitriangular map. On the other hand, the projection
mapp: (H,, Rs,0) = (kZ2,, Rs,0) is also a quasitriangular map. Singg is a Radford’s
biproductbykZ,,, we have thap oi = idxz,, . Thus, the maps induced at the Brauer group
level

BM(k, Hy, Ry 0) 2= BM(k, kZ2,, Ry.0)
p

satisfy i* o p* = id. We prove that Kegg*) is isomorphic to(k,+) and commutes
with BM(k, kZ2,, Rs.0). ThenBM(k, H,, Rs.0) = (k, +) x BM(k, kZ2,, Ry.0). So the
computation ofBM (k, H,, R; 0) reduces to the computation 8M(k, kZ2,, R, 0). The
quasitriangular structur®; o on kZ,, can be viewed as a bicharactgron Z,,, and the
Brauer grouBM of kZ5, with respect taR; o is just the classical Brauer gro, (k, Z>,)
defined in [9,12], which is a generalization of the Brauer—Wall group, see [25]. The Brauer
group By, (k, G) for an abelian grougs can be described by an exact sequence due to
Childs, see [8] and the conceptual proofin [2].

2. Preliminaries

From now onk stands for a field of characteristic different from 2 aHdis a finite-
dimensional Hopf algebra with antipode Unless otherwise stated, all tensor products,
Hom, and End will be over the fielél. For general facts on Hopf algebras we refer the
reader to [13,17].
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2.1. TheBrauer group

In this section we recall the construction of the Brauer group (see [4,5]) of a quasi-
triangular Hopf algebra. Suppose that= Y. R® ® R® ¢ H ® H is a quasitriangular
structure onH . The category; M of left H-modules is a braided monoidal category with
braiding given by

Yun:MON—>N@M, m@nr> Y (R?.n)® (R -m),

forallm € M,n € N. Given twoH -module algebrad, B, thebraided product of A andB,
denoted byA # B, is an H-module algebra and it is defined as follows: asFsmodule,
A#B = A ® B, while the multiplication is given by

(a#x)(b#y) =aypa(x#b)y =Y a(R? - b)#(RY -x)y,

foralla,be A, x,y € B. The H-oppositealgebra of A, denoted byA, is equal toA as an
H-module but with multiplication given byb = > (R® - b)(RM - a) for all a, b € A.
For a finite-dimensional leff{-module M, End M) is an H-module algebra with the
H-structure defined by

(h- f)m)=Y_"hay- f(Sth)-m).

Similarly, End M)°P is a left H-module algebra with

(h- fYm) = hey - f(S T hay) -m).

An H-module algebraA is called H-Azumaya if it is finite-dimensional and the
following H-module algebra maps are isomorphisms:

F:A#A—EndA), Fa#b)(c)=Y a(R?® . c)(RP-b);

G:A#A— EndA), G@a#b)(c)= Z(R(Z) -a)(RWY - ¢)b.

Let Az(H) denote the set of isomorphism classestbfAzumaya module algebras. We
say thatA, B € Az(H) are Brauer equivalent, denoted byA ~ B, if there exist finite-
dimensionalf -modulesM, N suchthal#End M) = B#End N) asH-module algebras.
The relation~ is an equivalence relation and the quotient®dtk, H, R) = Az(H)/ ~ is
agroup. GiverjA], [B] € BM(k, H, R), the multiplication i A][B] = [A# B], the inverse
is [A]~1 =[4], and the neutral element is representedByd M)] whereM is a finite-
dimensionalH -module.

The Brauer grouBQ(k, H) of the category of Yetter—Drinfel'd modules is just the
Brauer groupBM(k, D(H), R) where D(H) is the Drinfel'd double ofH and R its
canonical quasitriangular structure.
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For a coquasitriangular Hopf algebiH, ) the category\? of right H-comodules is
a braided monoidal category with braiding defined by

MQN—->NQM, mQ@nr Z”l(O) @ myr(na ®may),

forallm e M, n € N. SinceH is finite-dimensional, the grou®C(k, H, r) is isomorphic
to BM(k, H*, R), where H* is the dual Hopf algebra off and R is the quasitriangular
structure ofH* induced byr. When H is the group algebra of an abelian gro@phen,
identifying kG with (kG)*, a dual quasitriangular structureon (kG)* is nothing but
a bicharacter on G. It turns out thaBM(k, kG, r*) = By (k, G), the Brauer group of
graded Azumaya algebras introduced in [9,12]. The grBypk, G) is described by an
exact sequence having the classical Brauer group of theBigld as a kernel and a group
of (G x G)-graded Galois extensions Gat, G x G) as a cokernel, see [8].

2.2. An equivalence of categories

Recall that a convolution invertible map: H ® H — k is called a 2cocycle if it
satisfies the following equalities:

() cth®@l)=c(1®h) =e(h)l,
(i) Yo ®hw)o(ghe ®@m)=> ohw @mau)o(g®hemy),

forall g, h,m € H. Itis well known that a new Hopf algebid,, called thes -twist of H,
can be associated #@. As a coalgebrad, = H while the multiplication is defined by

a-b=Y olaw ®ba)axbeo Haa ®ba) (2.1)

forall a, b € H see [10]. If(H, r) is coquasitriangular, thefH,,, r,) is coquasitriangular
with r, = o7 % r * 0~ wherer is the usual flip map and is the convolution product.
It is also well known thatM* is equivalent toM > as a braided monoidal category.
As a consequence, their Brauer groups are isomorphicB#k, H, r) = BC(k, Hy, 75 ),
see [7].

3. TheHopf algebra H,

Let v be an odd number and letbe a field containing a primitiveizh root of unityw
and where 2 is invertible. LetH, denote the Hopf algebra ovkrgenerated by andx
such that

¢ =1, gx +xg=0, x2=0,
with coproduct

Alg)=g®g, AX)=x®¢g" +1®x,
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and antipode

S =gt Sx)=g"x.

The Hopf algebras of typ#, are a particular case of the family of pointed Hopf algebras
constructed in [19, Section 5.1]. We use a simpler notation than Radford’s because we
consider only the quasitriangular algebras. The Hopf algéhris just the Sweedler Hopf
algebraH,. On the other hand, for every Hy is a Hopf subalgebra off,,. Also, H4 may
be viewed as a factor off, by the Hopf ideal generated kyy— g". This means thati,
can be expressed as a Radford’s biproduct where the Hopf algebra factor is isomorphic to
Hy, see [21]. We can also considHr, as a Radford’s biproduct where the Hopf algebra
factor is the group algebra @, , the cyclic group of order2 Note thatkZ,, is a Hopf
subalgebra ot, and a Hopf algebra factor by mappirdo O.

In [13, Proposition 8] it is shown thdi, is self-dual with isomorphism

®:H,— H, g—G,x—X, (3.1)

whereG is the algebra homomorphism defined@yg) = w andG(x) = 0, andX is the
linear map defined by (g/x™) = 81.m forall 0 <! < 2v andm € {0, 1}.

The quasitriangular structures di, are computed in [13, Corollary 3]. The quasi-
triangular structures are parametrized by p&it$8) wheres is an odd positive integer
1< s <2vandg € k. They are given by formula (1.1). Observe ttfatg can be viewed
as a quasitriangular structure @@, and that the projection off, onto kZ2, maps
(H,, Rs,g) onto (kZ3,, R, 0). The projection ofH, onto H4 mappingg” to the nontriv-
ial group-like element of Hs maps(H,, Rs g) onto (Ha, Rg) where

1
Rﬁ=§(1®1+C®1+1®C—c®6)+g(x®x+x®cx+cx®cx—cx®x).

Itis not difficult to verify that(H,, Ry, g) is minimal if and onlyif 8 £ 0and (s,v) =1
(see [20]). It is proved in [19, Corollary 3c] thaH,, R, g) is triangular if and only if
s = v. HenceH, does not admit minimal triangular structures unless1.

Since H, is self-dual and quasitriangular, it is coquasitriangular, with a family of
coquasitriangular structures parametrized again by the paifs and given byr, g :=
(O ® ©)(Ry,p). By direct computation one gets:

2v-1 2v-1
rep= Z wsnm(gn)* ® (gm)* + B Z (_1)mwsnm(gnx)* ® (gmx)*.
n,m=0 n,m=0

SinceH,, is self-dual and pointed{, has the Chevalley property, see [1]. In particular,
this implies that each pai,, R, g) is a Drinfel'd twist of a modified supergroup algebra,
that is, we can twist the coproduct &f, in such a way that the quasitriangular structure
R, g gets twisted into the trivial quasitriangular structure or into a quasitriangular structure
of the form %(1 ®1+1®a+a®a—a®a) for some group-like: of order 2. As the
Hopf algebra structure oH,, is essentially unique once the algebra structure is fixed, it is
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natural to expect that this twist will not affect the coproduct but only the quasitriangular
structure. We compute explicitly this twist in the dual perspective, using twists coming
from cleft extensions. At the same time, we show that similar results hold for a general
i.e., (Hy, Ry p) isalways atwist of (H,, R 0). Besides, we will show thatH,, R g) can

not be atwist of (H,, Ry g) for s #s'.

We choose the dual point of view and we want to twist the product and the
coquasitriangular structure dff, by means of a 2-cocycle. Such cocycles correspond
to H,-cleft extensions ok, i.e., convolution invertible mapg: H, — B whereB is an
H,-comodule algebra such thais the set of coinvariants d@f, see [3,10]. With the same
technique as in [11,16], we can always make suredghestisfies

o(g') =0, d(g/x)=0() p(x),

even thouglyp need not be an algebra map. Let us derdt® = u and¢ (x) = v and letp
denote theH, -comodule structure map a#. We have:

2 : 2
p(v?) = p(¢(0)?) = p(¢(0)" = (@ @ iAW)

=(v®g" +1®x)(v®g”+l®x)=v2®1.
Since the space of coinvariantskisit follows thatv? = 1 € k. Similarly, one shows that
there must holdv 4 vu = ru" for somer € k and thaw?’ = A € k with A invertible.

Therefore, we get a family of comodule algebig., ¢, ») parametrized by, r € k

and A € k, L # 0. We can always choosg¢ such thath = ¢(1) = 1. Therefore, the
extensions are given by the algeb®&u, r, 1), i.e., the algebras generated hyand v
with relations

u? =1, uv +vu =tu”, Vo=,
and with comodule structure

pu)=u®g, p()=vRg" +1®x.

Since H,, is pointed andp(g) is invertible,¢ is convolution invertible. The convolution
inverse is given by:

RPN 1/ i\ _ Ju'Tlv—rtu=J for j even
o) =u 97 (s x)—{_uv—jv for j odd.

It can be directly checked th#(u, 7, 1) is indeed aH,,-cleft extension ok, hence we can
construct the corresponding 2-cocycles:

o@®b) =Y ¢aw)dba)s Hazba)

forall a, b € H,. We obtain:
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(g’ ®g") =1, o(g’ ® g"x)=0,

o(gx ®g") = {0 form even,

¢t form odd o(¢/x ®g"x) = (=1 .

The convolution inverse af is easily computed:
o g ® g") =1, o g/ ®¢"x)=0,

oL(g/x @ g") = {O form even,

—t form odd o Hglx@g"x) = (=1" Iy

The new product in the twisted Hopf algebra is given by formula (2.1) and it is:

r m r—+m

8§ 8 =8 )
xg=0(x0gg" Mo M ®g +o(1®gxgo (' ®g)
+o(l®g)go tx®g) =1g"" +xg+1g.
g-x=0(®x)¢" o (g®e") +0o(g®gxo g ®g")
+o(g®Dgo M (g®x) =gx,
xx=0(x@xg Mo g ®@g) +o(r @ g'xo e ®gY)
+o(x®Dg"o Mg  ®x) +o(l®x)xg"s (g" ®g")
+o1@Dx% (" ®g") +0(1® Dxgo t(g" ®x)
+0(1l®x)g"c tx®g)+0(l®@xo tx®g") +0(1® Dlo t(x ® x)
=u+0—rtx —pu=—tx.
Whent = 0, the product inH, remains unchanged by the twist. For the twists associated

to B(u, 0, 1), the coquasitriangular structurgg is twisted into(o t) * ry g * o1, which
must be of the formy ,, for some odd’ between 1 andi2— 1 and some € k. Since

M =ry (¢ ®)=(0r)*rspxa7Y) (g @) =rp(sf @ g) = !
for everyj andl, it follows thats’ = s. To find y we compute
((or) xrspxo ) (g/x @ g'x) =7y, (g7x ® g'x) = (=D ™ y.
We obtain
(o) *rspxo ) (g/x ® g'x)

= cr(glx ®g/x)rsp(g/t' ® gl”)cr*l(gj” ® gl+”)
+o(d @gl)rsp(e ™ @g'x)o Mg/ @)
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+o(g' @/ x)rp(e’ M @8 )o Mg/ @ ')
(glx ®g )rs ,s(g X ®gl+u)0’7 (gv ®gl+u)
+o(¢g ®g)rsp(g’x®@g'x)o (g ®¢")
+o(g'®g/)rplg’x @8 )o (s ® ')
(glx®g )r /3( ]®gl+u) (gjx®gl+v)
+o(¢ ®g’)rsp(s! ®@gx)oH(gx®¢")
+o(s'®g')rple’ @80 g/x @ g'x)
=(=Dfpursp(e/™ ®@g™) +rp(e/x ® g'x) + (=D p(gf @8
= (D' (p - 2u).
Proposition 3.1. The dual quasitriangular Hopf algebras (H,, ry,g) with g € k are all

twist-equivalent to (H,, rs,0) for every odd s between 1 and 2v — 1. Thereis no 2-cocycle
twisting ry g intory: ,, .

Proof. The first statement is obtained taking the cocycle associated taHtheleft
extensionB(B/2, 0). For the second statement, suppose that there is a 2-cocycle twisting
rs,p into ry ,, for s #s’. Then, by composition of twists, there would be a 2-cocycle
twisting s g into ry . This would imply that

reolg’ ®8) =’ = (oTxr0x oY) (g @) =0 (sl @ ¢/ )o (g’ ® g!) re.

Since the restriction of a 2- cocycle ®h to the group algebra of the cyclic group generated
by g is necessarily symmetrie,(g' ® g/)o (¢! ® ¢')~! =1 and therefore =s'. O

From Proposition 3.1 the category of righit-comodules with braiding induced by g
is tensor equivalent to the category of righi§-comodules with braided induced by.
The invariance of the Brauer group under equivalences implies the following.

Corollary 3.2. For any g € k and any odd 1 < s < 2v, BC(k, H,, rs,5) = BC(k, Hy, 1,0).
Dually, BM(k, H, Ry, g) =~ BM(k, Hy, Rs 0).

4. TheBrauer group of (H,, R, g)

In this section we compute the Brauer groBm(k, H,, Ry g) for eachs and g.
By Corollary 3.2, we are reduced to computing the Brauer giMigk, H,, R, 0). Our
calculation of this group is based on the ideas used in [22] where the Brauer group of
Sweedler Hopf algebra is computed.
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Let i:Zy, — H, and p:H, — Z3, be the canonical inclusion and projection,
respectively. Considerin®; o as a quasitriangular structure @Zp,, these maps are
quasitriangular. They induce group homomaorphism at the Brauer group level

BM(k. H,, Ry 0) == BM(k. kZ2,, Ry.0).
=

Note that for anyH{,,-Azumaya module algebr, i* maps[A] onto[A] with A considered
as aZ,,-Azumaya module algebra. Singeo i =id, i* o p* =id, and thus* is surjective.
So we need to compute Kgt).

Leta, B, y € k. We denote by («, 8, ) thegeneralized quaternion algebra generated
by u andv with relationsu? = «, v2 = 8, anduv + vu = y. This algebra can be endowed
with a naturalH,-action, thestandard Hs-action, given by:

g—u=-u, g—v=-0, xAuzo, x—v=1 (41)

If the discriminantd = y2 — 4af # 0, the generalized quaternion algebra is called
nonsingular. By [22, Proposition 5],A(«a, B, y) is an Hy-Azumaya algebra if and only
if it is nonsingular.

Lemmad4.l.Let A = A(a, B, y) bean H,-module algebra for which the action of the Hopf
subalgebra generated by ¢V and x isthe standard Hs-action. Then:

(i) Ifa#0o0ry #0, theaction of g necessarily coincideswith the action of g”;
(i) Ifa =y =0, alsothepossibilityg ~u=ow'uandg —~v=—-v+iuforrckandt
odd and different from v can occur.

Proof. (i) Let us writeg — u = x1 + x2v + x3u + x4uv, With x1, . .., x4 € k. The condition
(gx + xg) = u = 0yieldsxz = x4 = 0. It is easily computed that for every > 1

m—1
gmAu=x1<le3>+xg'u. (4.2)
=0

By assumptiong” — u = —u, hence formula (4.2) fon = v implies

v=1
x1<2xé>=0, xg=-1
=0

Sincexs is not avth root of unity, (3"} x4) # 0 and thuscy = 0. Asx2” = 1, there is an
odd positive integer < 2v such thatrz = o', henceg — u = o'u.
Let us setg — v = y1 + y2v + ysu + yauv, with y1,...,ya € k. The condition
(gx + xg) — v =0yieldsy, = —1 andy4 = 0. An easy computation shows that
m—1 1.0t ; i
vV — y3u " (—D'w if m is even,
gm —~py= { Y (ZZ—O ) (43)

y1— v+ y3u (Z;':Ol(—l)la)l’) if m is odd.
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By hypothesisg” — v = —v, so formula (4.3) forn = v implies

v—1
y1=0, yg(Z(—l)la)l’) =0. (4.4)
=0

Assume thatr # 0. From the equality = g — u? = (g — u)? = %« we conclude
thatw' = —1, hence = v. Replacinge’ = —1 in (4.4) one getyzv =0, soyz =0 and
thereforeg — v = —v. In other words, ife #£ 0, the action ofg coincides with the action
of g".

Suppose now that = 0. Then from (4.3) and (4.4) we obtain only

g—u=ou, g—v=—v-+y3u.
Assume thay # 0. From the equality
B=g—v?=(g—v)? = (yau — v)(yau — v) = —y3(uv + vu) + p,

we getyz = 0. But theny = g — (uv + vu) = —o' (uv + vu) = —o'y. It follows that
o' =—1,i.e., that = v. The first statement is proved.
(i) It is easy to check that in cagse= y = 0, the action defined by

géu:a)tu, g—v=—-v+Au, x—=u=0, x—v=1,

for A € k andr < 2v an odd nonnegative integer different framyields anH,-module
algebra structure oA for whichg" — u = —u andg” ~v=—-v. O

Lemma 4.2. Let A and B be two H,-module algebras. The braided product A # B with
respect to the quasitriangular structure Ry o is the same as the 9,-twisted Z»,-graded
product of Z,,-graded algebras, where 6, isthe Z,,-bicharacter given by 6 (x, y) = »®*”.
The H,-oppositealgebra A of A isthesameasthe Z, -graded 6 -twisted opposite algebra.

Proof. The braiding inA ® B is determined by the action &; o and it is

2v—-1

1 o :
Yap(c®b) = % 'IX:O(U 11(851 —~b)® (¢ —¢).
=

The cyclic groupZ,, = (g) acts onA and B, and sinceg?” = 1 andw € k, the action
of g on A and B is diagonalizable. The algebrasand B inherit theZ,,-gradings from
the eigenspace decomposition for the actiorgpfvhich are, in fact, algebra gradings
becaused andB are H,-module algebras. We denote |y the eigenspace corresponding
to the eigenvalue’ and we say that € A hasdegree j if ¢ € Aj. Similarly for B. Then,
for c € A,, andb € B, we have
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1 2v—-1 1 2v—-1 2v—1
'WAB(C (34 b) = 2—\) Z (,()_ll(,()Sln(,()”nb Qc= 2_V Z a)Sln Z a)t(m—l)b Qc
i,1=0 =0 i=0
= ’"pQec.

Hence the braiding is the -twisted Z,,-graded braiding. Since the braided product and
the braided opposite product are completely determined by the braiding and the productin
the algebras, we have the statemert

Remark 4.3. Observe that the braiding is, in factZa,(,.-braiding because the effect
of the braiding on homogeneous elements depends only on the class modislo 2 of
the degrees. Another way to say this is to define the degrees ga)degh if a is an
eigenvector ofg of eigenvalues”. Then it is clear that the grading isZ, (s, -grading
because a degree appears if and only if it is a multipleinfZ,,. With this new definition
of grading we see that the braiding inducedryy, can also be seen as thg, (;,,)-graded
01-twisted flip operator with bicharactéi(r ® y) = .

As the braidingyz4 induced by the quasitriangular structuRg o is nothing but
aZy,-graded and;-twisted flip operator, we can view the Brauer gr@&@M (k, kZ2,, R; 0)
as the Brauer groupy, (k, Z2,) which is a generalization of the Brauer—Wall group for
any cyclic groupZ,, with respect to a bicharacter &,, see [9,12,18] and [6, pp. 329,
341, 423, 434]. In fact, sinckZy, ~ (kZ2,)*, the dual quasitriangular structurgsy on
(kZ2,)* induce the bicharacté& onZ»,. Then

BM (ks kZZIM RS,O) ~ Bc(kv (kZZV)*y rS,O) ~ B(QS (kv ZZU):
where the last isomorphism is explained in [5, Lemma 1.2].

We denote byA(«, 8, y; Hs) the generalized quaternion algebté, 8, ), together
with the standard action dfl4. If A(«, 8, y) is nonsingular then this uniquely determines
an H,-module algebra structure of(e, 8, ), which we call agairstandard and denote
by A(a, B,y; H)). We want to describe whicl,-module algebras with underlying
algebra of typeA(a, B, y) are H,-Azumaya algebras. The following lemma shows that
A(a, B, y; Hyg), with the action extended tH,, in a honstandard way, i®t H,-Azumaya.

Lemma4.4. Thealgebra A = A(0, B, 0), with the action given by g — u = »'u with ¢ odd
andr#v,g—~v=—v+ruforrek,x ~u=0,andx - v=1,i.e, with the action of
Lemma 4.1 (ii), isnotan H,-Azumaya algebra.

Proof. First we observe that if # 0 we can replace by v' =v — (wfk—+1)” obtaining

W)? =8, uv' +v'u=0, u?=0,
and

g—u=ou, g—v =7, x—u=0, x—v =1
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The decomposition o into eigenspaces with respect to the actiop @&f given byAg = &,
A, =kv', A, =ku, and A, = kuv' = kuv. If A were anH,-Azumaya algebra then its
left H,-center, i.e., the set

{beaby=mavarb®y), Vye Al

with m 4 the product inA, would be trivial. But it is easy to check that= u + p/u for
wu, i’ € k belongs to thed,-center ofA because

uy = pu=pu+0=maaa(u® (u+ p'n)),

/ !, sVt

vy = wv' — puv=pv' + o™ uv =mapaa (v @ (n + 1'n)),

uvy = puv +0=maas(uv® (u+ p'u)).

HenceA is notH,-Azumaya. O
The next lemma shows whefi«, 8, y) with the standardd, -action isH,-Azumaya.
Lemma4.5. Thealgebra A(a, 8, y; Hy) is H,-Azumaya if and only if d #£ 0.

Proof. The H,-action onA(«, 8, y; H,) is the standard action and it is, in fact, an action
of the quotientH, /(g" — g) >~ Ha. Since the quasitriangular structuRg ¢ is mapped

to the quasitriangular structumy of H4 under the projection, the braiding with respect
to any R; o is nothing but the braiding induced Ry, i.e., theZ,-graded flip operator.
The algebraA(«, 8, y; H,) is H,-Azumaya with respect to the quasitriangular structure
Ryo=Y Rl ® Rio if and only if the H,-module algebra maps

F:A(,B,y)#A(o, B, y) — End(A(a, B, 7/)),
F(a#b)(c)= Za(RSZ’O —¢)(R}g—b),

and

G: A, B.y)#A(a. B, y) — End A, B.v))*,
G@a#b)(c) = Z(Rio —a)(R}o— c)b,

are isomorphisms. Since the actionsgadind ofg” coincide, the map# andG coincide
with the similar maps with respect td4 and Rg. Hence they are isomorphisms if and
only if A(w, 8, y; Ha) is Ha-Azumaya. By [22, Proposition 5], this happens if and only if
d#0. D

If H, acts on an Azumaya algebsawhich is anH,-module algebra, then the action is
inner by [15], i.e., there is a convolution invertible element Hom, (H,,, A) for which

h—=b=>Y m(ha)br *(hz)
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for everyh € H, and every € A. In general this action is natrongly inner, i.e., is not
necessarily an algebra homomorphism.

Let us define thenduced subalgebra with respect to the action as the (uniquely
determined) algebra generated by= 7 ~1(g”) andv := 7 ~1(x). It turns out that this
algebra is of the formA (e, 8, y) with « # 0. By [22, Lemma 1], the action ofi, is
strongly inner if and only if d = 0 and« is a square itk. The action ofH4 on A is given

by
¢' =~ b=u"tbu, x —~b=bv—vu tbu. (4.5)
Lemma4.6. Let H, act on an Azumaya algebra A. If the action of H,, isnot strongly inner

but the action of g is strongly inner, then the restriction of the action to Hy is not strongly
inner and the action of gV is strongly inner.

Proof. If H, acts on an Azumaya algeb#sathen there is a convolution invertible element
7 € Hom(H,, A) for which

h—=b=>Y n(ha)br (hz)
for everyh € H, and everyb € A. Since the action of is strongly inner there exists
m : H, — A for which the restriction t&Z5, is an algebra homomorphism. This implies
that the action ofg” is strongly inner. It suffices to prove that if is not an algebra
homomorphism then the restriction mfto H4 cannot be an algebra homomorphismr If
is not an algebra homomorphism, it will not preserve at least one of the relatas,
orgx+xg=0.fr(x)2#0 thens |y, is not an algebra homomorphism and we are done.
Suppose that does not preservex + xg = 0 and thatr preserveg’x + xg” = 0. We
will get a contradiction. Since
(gx)—b=g—~(x—Db), VYbeA,
we obtain
m()br Y (gx) + m(gx)br (") = 7w (g) (b (x) + w(x)br H(g"))m(g) !
forall b € A. As & restricted tokZy, is an algebra homomorphism, we have
-1 _ —v -1 _ -1 —-v-1

T () =—m(x)r(g) ", n(gx) =—m(g) "m(gx)m(g) .
Hence
T(Q)[ b (x) + 7w ()] ()"t = (g)[—br(¢) T (gx) + 7 () Tw(gx)b]m ()"

forall b € A. Sincen (g) is invertible, we obtain

b[—m(x) + () T (gn)] = [~ (x) + w () tm(gx)]b. Vb e A.
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Since A is central, there existg € k such thatr(g)7w (x) = w(gx) + t17(g). Similarly,
using

(xg) ~b=—(gx)~b=x—(g—Db), VbeA,
one shows that there existse k for whichz (g)7 (x) = —7(gx) + ror (g). Therefore,

7 (x)m(g) +m(gm(x) = (t1+12)m(g).

It can be proved by induction on that

m ) ()™ for m even,
7 (g) () = { —(x)m(g)™ + (11 + ) (g)™ for m odd.

Hence, ifr restricted toH, were an algebra map, this would mean that- )7 (g)” = 0.
Sincer (g) is invertible, this would imply that; 4+ 7> = 0, i.e., the relatiorgx +xg =0
would be preserved by, a contradiction. O

Lemma4.7. Let A bean H,-module Azumaya algebra such that A isan Azumaya algebra.
Assume that the action of g is strongly inner but the action of H, is not strongly inner.
Then thereexist A(a, B8, y) C A, anonsingular generalized quaternion algebra and B an
Azumaya subalgebra of A, commuting with A(«, 8, y), such that

A~A(x,B,y)®B

as H,-module algebras.

Theaction of g on A(«, 8, y) coincideswith the action of g, the action of g¥ and x on
B istrivial, and the action of g on B isa Z,-action. Hence, the action on A is completely
determined by an H-actionon A(«, 8, y) and by a Z,,-action on B.

Proof. By Lemma 4.6,H, does not act or in a strongly inner way bug” does. By
[22, Corollary 2],A ~ A(«a, B, y) ® B as Hs-module algebras wherg(«, 8, y) is the
(nonsingular) induced subalgebra aldommutes withA («, 8, y). Itis Azumaya and the
action of Hy on A(a, B, y) is given by (4.5), while the action off4 on B is trivial. We
need to show that the induced subalgebra, 8, y) and the subalgebrA are preserved
by the action ofg. Since the action of is strongly inner ang is group-like, there exists
an invertiblew = 7 ~1(g) € A for which

w'=r"1g) =) ' =n(g ) =n") ="t =u,
andg — b = w~tbhw for everyb € A. Multiplying the equality

Youtbuw + wtbwv — vutwtbwu (4.6)

0= (gx+xg) = b=wtbvw—w"
by w on the left and using the fact thatandw commute, we obtain

b(vw + wv) = (vw + wv)w_lu_lbwu.
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This formula forb = w yields w?v = vw?, hence w?

Thereforew? belongs to eithek or B.

commutes withA(a, 8, y).

o If w2 ekthen

v—1
vV — wl+zT =rtw

u=w
for somer € k. Hencew € A(«, 8, ), SOA(w, B, y) is H,-stable. Besides, for every
beB,g—b=wthw=u"tbu=b. Henceg acts trivially onB. )

o If w?e B thenu = w” = wb for b = w?¥~Y/2 ¢ B. Sincew is invertible, b is
invertible. The action of onu is trivial becausev commutes with:, and the action
of g onv is given by

g—v= wtvw =bu"tvub™t = (u_lvu) =g" —v,

so the action of on the induced subalgebra coincides with the actiog*ofHence
A(a, B, y) is H,-stable. Fob € B we have

g—b=wtbw=>butbub 1 =b(g" — b)b L =bbb .

Sinceb'bb™" = g" — b = b, it follows thatb’ € k. Hence, the action of on B is
determined by &, -action onB.

In particular, the action oH,, on an Azumaya algebra is completely determined by an
Hy-action on a quaternion algebra ané#, -action on the Azumaya subalget®a O

Remark 4.8. Observe that this proof recovers the result of Lemma 4.1 that4fO then
the action ofg on a generalized quaternion algebra must coincide with the actigh of

Corollary 4.9. Let A(a, B8, y) be a quaternion algebra with d = y? — 4af8 # 0, which is
an H,-module algebra. Then

Ae, B,y)~ A(d, —ad™,0; H,)
as H,-module algebras.

Proof. By [22, Lemma 3],A(x, B, y) ~ A(d, —ad~1,0; Hy) as Hs-module algebras.
Sinced # 0, eitherx or y is nonzero. Now Lemma 4.1 appliesO

Corollary 4.10. Under the hypothesis of Lemma 4.7 on A, the induced subalgebra
A(a, B, y) isalways nonsingular and it is always an H,-Azumaya algebra.

Proof. By the discussion at the end of [22, Lemma A}, 8, y) is always nonsingu-
lar. By Corollary 4.9.A(, B, ) >~ A(d, —ad~1,0; Hs) as H,-module algebras. The dis-
criminant of A(d, —ad 1, 0) is equal to 4 # 0 becauser = 7~ 1(g")? is invertible. By
Lemma4.5A (e, B, v) is H,-Azumaya. 0O
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Lemma4.11. Let A be an Azumaya algebra satisfying the hypothesis of Lemma 4.7. With
notation as before, A = A(«, 8, y; H,) # B with respect to every quasitriangular structure
of the form R; o as H,-module algebras. Moreover, A is H,-Azumaya if and only if B is
H,-Azumaya.

Proof. By Lemma 4.7¢" acts trivially onB andg acts likeg"” on A(«, 8, v). Hence, the
gradings induced by the eigenspaces decomposition for the actioaref

%
B=@DBa, Al p.v: H)=AB,y; H)o® A, B,y Hy)v,
=0

i.e., the only eigenvalueson B are given byeven powers ofw, while the only eigenvalues
of g on A(a, B, y; H,) are given byw® = 1 andw” = —1. By Lemma 4.2, the braided
product A(a, B, y; H,) # B with respect to the quasitriangular structuRgo is the
60s-twisted graded flip operator

(a#b)(c#d) = o' (9eX) D) 4o 41

for homogeneous: and b. Since for these algebras®(@€®)@ex) — 1 for every
homogeneous andb, the braided product coincides with the ordinary tensor product
independently of.

By definition, A is H,-Azumaya with respect t&; o if the H,-module algebra maps

Fo:A#A — EndA), Fa(a#b)(c) = w* 44U g0,
for b andc homogeneous and
Ga:A#A—EndA)®P,  Gaa#tb)(c) = o 99099 g ep

for a andc homogeneous, are isomorphisms. By [4, Proposition 2.4.2(cH,anodule
algebras,

A~A(a,B,y) @ B~B#A(a,B,y)~BR A, B, 7).
where the second isomorphisms given on homogeneous elements by
X (a #b) = sdegded) puz _ h#a,

and the third isomorphism follows from the fact that the braiding betwéén 3, y)
and B is trivial. Moreover, if an algebrai is Z,-graded, then also Exd) will be
Z,,-graded: herg’ € End(A) has degred if for every homogeneous elemant A, f(a)

is homogeneous of degrée+ dega. By [4, Proposition 4.3], there is an isomorphigm
between EnA(«, 8, y) # B) and EndA(«, 8, v)) # EndB) given, on homogeneous
elements, by

E(f# ) a#b) = s @OEUD (@) # f/(b) = fa)# f(b),
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because the grading on B} will only have even degrees. K is H,-Azumaya, then
EoFso(ids® x7Y):A#B#A(x, B,y) — EndA(a, 8, 7)) #End B)
and
Gao(x t®ids):B#A(e, B, y) #A— EndA)°P

are isomorphisms. On homogeneous elementse € A(«, 8, y) (i.e., of degree 0 ov),
b,d, f € B (i.e., of even degree) one has

Fao(ida ® x 1) ((a#b) #(d#&)) (e # /)
= Fa((a#b) #(c#d))(e# f) = o @CIHDIED) (4 #p) (e # ) (c #d)
— o (deg) +degd)) (dege)+ded 1) (o b fd) = o' 99 990 (e # b fd)
= * 9899 dede) o # ) degd) ded f)bfd
= Fa@.p.p(@#0)(e) # Fg(b#d)(f),
where the third equality follows from the first part of the lemma, the fifth follows from the

fact thatB has only even degrees addc, 8, y) has only degrees that are multiplesvof
Similarly one proves that

EoGao (x t#id)((b#a) #(c#d))(e# f)=Gawppa#c)e)#Gg(b#d)(f).

SinceA(w, 8, y) is H,-Azumaya (by Lemma 4.5) and since we are dealing with tensor
products over the field, F4 and G4 are isomorphisms if and only if and Gp are
s0. O

Theorem 4.12. The Brauer group BM(k, H,,, R o) iSisomorphictothedirect sumof (k, +)
and By, (k, Z2,), where 0, : Z, x Z, — k isthe bicharacter induced on Z», by R; o.

Proof. We first show that there is a split exact sequence of groups
1— (k,+)— BM(k, H,, Rs,0) > Bg, (k,Z2,) — 1. 4.7)

Then we show that the subgroups on the right and on the left commute. We define
a map®:(k,+) — BM(k, Hy,, Rs o) by ®(0) = [M>], the class of the algebraf, of
2 x 2 matrices with trivial action, an@ («) = [A(e~ 1, —a~1,0; H,)] for o # 0. If
o + B =0 # 0 then, by [22, Proposition 7] and Lemma 4&(«~ 1, —«~1,0; H,) #
A(B~L,—B71,0; H,) is isomorphic toA(c~1, —o 1, 0; H,) ® M> with trivial Hs-action
on M» and withg-action onM>, given by conjugation by an invertible elemeént M, for
whichb” € k. By Cayley—Hamilton theorem we know thist € kb + k, b € k because is
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odd, so the action off/, on M> is trivial. Hence{ M>] = [End(P)] = 1 for someH,,-module
P with trivial action. Therefore, fos + 8 # 0,

P #O(P)=[A(c™  —071 0. H)]=D(a+p).
If « = —pB, again by [22, Proposition 7], th&s-action on
A(a*l, —a7 10 H,) #A(—ofl, a 10 H,)

is strongly inner and the above algebra is & 4 matrix algebra isomorphic, as dy-
module algebra, to Ené) for someH4-module P. The action on the vector spageis
given byg".p = up = u~1p andx.p = —vup for the induced elemenisandv identified
with the matrices. The action @fon A(e~ 1, —a~1,0; H,) and onA(—a~ 1,71, 0; H,)
coincides with the action o§”, in view of Lemma 4.1. Then the action gf on their
product coincides with the action @f, so that the action off, on A(«~1, —a~1,0; H,) #
A(—a~1, a7, 0; H,) is also strongly inner. The action of the matriceand —vu on P
equipsP with an H,-module structure so that

[A(e™ —a 1,0, H)) #A(—a a7, 0, H)] = [End P)] = 1.
Hence® is a group homomorphism. It is injective because if we had
@ (@) =[A(e™t, —a™t,0; H,)] = [1] = [EndX)]

for someH,-moduleX, then the action of{; would be strongly inner, which is impossible
becausel # 0.

Let ¥ :BM(k, H,, Rs 0) — By, (k,Z2,) be the homomorphism given by forgetting the
action ofx and using the identifications

BM (ka kZZU7 RS,O) ~ Bc(k7 k(ZZU)*a rS,O) x~ BQ‘ (k7 sz)a

where the second is from [5, Lemma 1.2]. The homomorphisis surjective because, by
taking the action of to be zero and the braidings induced®yp and byd; to be identical,
aZy,-Azumaya algebra becomes &f-Azumaya algebra.

Hence we only need to prove thét(k, +) = Ker(¥). The kernel of¢ consists of
matrix algebras on which the action gfis strongly inner. We check thae (k, +) C
Ker(¥). We know, from Corollary 4.9, that

Al —a™1,0, H,) ~ A(4a™2, —4710, 0; H,).

Since 42 is a square, the action @ is strongly inner. By Lemma 4.1, the action of
g and ofg¥ coincide, hence the action gfis strongly inner. The quaternion algebra is
a matrix algebra because % is a square.

Now suppose thatl is an H,-Azumaya algebra such th#t([A]) = 1 and[A] # 1 in
BM(k, Hy, Rs,0). We know that the action of is strongly inner becausg ~ End(X),
a matrix algebra for som&, and the action og on A is given by conjugation by the
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matrix representing the action gfon X. HenceA is Azumaya, andH, acts in a non-
strong inner way orA (otherwise[A] would be 1 inBM(k, H,, R, 0)). By Lemma 4.7,
A~ A(a, B, y)#B. Sinceg” acts in a strongly inner way, we can make sure ghatl £ 0
is a square, so the induced subalgebra is a matrix algebra. This implig® that matrix
algebra, too. The action @f on B is strongly inner and the action afis trivial, hence
B =EndY). By Lemma4.11 and Corollary 4.10, bati{1, 8, y) andB are H,-Azumaya
so that

[A1=[A@ B, y)#B]=[AQ B, y)][EndY)] =[AL B.)]

andA(1, B, y) is nonsingular.

By Corollary 4.9,[A(1, 8, y)] = [A(d, —d~1,0; H,)], i.e., the class ofA coincides
with the class of the nonsingular generalized quaternion algebra generateshtdy with
relationsuv + vu = 0, u2 = d, andv? = —d~1, and standard action. If we replageby
u’ = d~1u then the action on the new basis is still standard and we have

A(d, —d 1o H,)~ A(d’l, —d 1o H,).

Hence[A] = [A(d~1, —d~1,0; H,)] = ®(d), so the sequence is exact. The sequence is
split-exact because the map

W' By, (k,Z2,) ~BM(k, kZ2,, Ry.0) = BM(k, H,, Ry 0),

obtained by extending the actionkf,, to H, by lettingx act as 0, is a section &f .

Let now A be a representative of a class(iy +) and B be a representative of a class
in By, (k,Z2,). We want to show that the corresponding classes commute in the Brauer
group. By Lemma 4.2, the braiding between the two algebras is the samesadithsted
Z,,-graded product, where the grading Arand B is the eigenspace decomposition for
the action ofg. Besides, we know that the only possible degrees are 0 andv. Hence
the braided productid # B is given by

(a#b)(c#d) = @ 9€ID U0 g gt g — (v deAD) deUC) gty g — (—1)dedDIdedE) o gt g
because ands are odd. Therefore,

A#B>~AQ2B>~BQ2A~B#A,
where®> denotes th&,-graded tensor product and the second isomorphism holds because
the Z,-graded flip is an algebra isomorphism (the category sfgraded modules with

Z,-graded tensor product is symmetric). Hence the proaf.

Corollary 4.13. Let v be a product of » distinct primes p1, ..., p, andlet k be algebrai-
cally closed. Then

BM(k, Hy, Rs.0) ~Z2 X -+ x Z3 x(k, +).
—

r+1 times



G. Carnovale, J. Cuadra/ Journal of Algebra 259 (2003) 512-532 531

Proof. Following the idea of [14, the proof of Theorem 2.7], one checks that
B(QS (kv ZZU) ~ BW(k) X BGS:L (ks Zpl) X X BGSr (ks Zpr)s

whereBW denotes the Brauer-Wall group0$-graded algebras ang = 2sv/p; modp;
forj=1,...,r. By [12, Corollary 3.2]BW(k) >~ Z5 and each%:j (k,Zp))=2Zz. O
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