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We prove that the lattice of subgroups of every finite simple
group is a complemented lattice.

1. Introduction.

A group G is called a K-group (a complemented group) if its subgroup lattice
is a complemented lattice, i.e., for a given H ≤ G there exists a X ≤ G such
that 〈H,X〉 = G and H∧X = 1. The main purpose of this Note is to answer
a long-standing open question in finite group theory, by proving that:

Every finite simple group is a K-group.

In this context, it was known that the alternating groups, the projective
special linear groups and the Suzuki groups are K-groups ([P]).

Our proof relies on the FSGC-theorem and on structural properties of the
maximal subgroups in finite simple groups. The rest of this paper is divided
into four sections. In Section 2 we collect some criteria for a subgroup of
a group G to have a complement and recall some useful known results. In
Section 3 we deal with the classical groups, in 4 with the exceptional groups
of Lie type and in Section 5 with the sporadic groups.

With reference to notation and terminology, we shall follow closely those
in use in [P] and [S]. All groups are meant to be finite.

2. Preliminaries.

We begin with the following:

Proposition 2.1. Given the group G, let T , X be subgroups of G such that
T ≤ X < G. If the interval [X/T ] is a complemented lattice and if X is
contained in only one maximal subgroup M of G, then every H ≤ G with
H 6≤ M and H ∧ T = 1 has a complement in G.

Proof. Let C be a complement of 〈H,T 〉 ∧ X in [X/T ]. Then 〈H,C〉 =
〈H,T, C〉 ≥ 〈〈H,T 〉∧X, C〉 = X. Since H 6≤ M , we conclude that 〈H,C〉 =
G. Moreover H ∧ C = H ∧ X ∧ C ≤ 〈H,T 〉 ∧ X ∧ C = T , hence H ∧ C ≤
H ∧ T = 1. �
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The condition on M in Proposition 2.1 means that [G/X] is a mono-
coatomic interval with coatom M .

Corollary 2.2. Let X be a K-subgroup and [G/X] a monocoatomic interval
with coatom M . Then every H ≤ G not contained in MG has a complement
in G. In particular G/MG is a K-group.

Proof. There exists a g ∈ G such that Hg 6≤ M . By Proposition 2.1 with T =
1, Hg has a complement. Hence also H has a complement C in G. Moreover,
if MG < H, then CMG/MG is a complement of H/MG in G/MG. �

Proposition 2.3. Let G be a simple group and [G/X] a monocoatomic in-
terval with coatom M . If N is a central subgroup of M of prime order with
N ≤ X and if X/N is a K-group, then G is a K-group.

Proof. Let H be a proper subgroup of G. Since MG = 1, without loss of
generality we may assume H 6≤ M . If now H ∧ N = 1, by Proposition 2.1
H has a complement in G. Assume now N ≤ H; there exists a g ∈ G such
that Ng ∧ H = 1. So if H has no complement in G, by Proposition 2.1 we
must have Ng ≤ C(H). It follows that if F = {Nx | x ∈ G} and F1 = {Nx |
Nx 6≤ H}, then N (H) ≥ 〈H,F1〉 ≥ 〈F〉 = G, a contradiction. �

We finally recall:
(2.1) The direct product of a family of groups is a K-group if and only if

each factor is a K-group,
see Corollary 3.1.5 in [S].
(2.2) If G contains an abelian subgroup A generated by minimal normal

subgroups of G and a complement K to A that is a K-group, then G
is a K-group,

see Lemma 3.1.9 in [S].
(2.3) The symmetric and alternating groups, the projective special linear

groups Ln(q) and the simple Suzuki groups 2B2(q) are K-groups,
see [P].

For our purpose it will be convenient to know which non-simple groups
of Lie type ([C], p. 175, p. 268) are complemented.

Proposition 2.4. The following non-simple groupsof Lie type areK-groups:

L2(2), L2(3), Sp4(2), G2(2), 2G2(3).

The following non-simple groups of Lie type are not K-groups:
2B2(2), 2F4(2), U3(2).

Proof. In fact L2(2) ∼= S3, L2(3) ∼= A4, Sp4(2) ∼= S6, and we are done by
(2.3). In G2(2) there is a monocoatomic interval [G2(2)/H] with H ∼= L3(2)
and corefree coatom, by Theorem 2.5 in [Co]: Hence G2(2) is a K-group by



FINITE SIMPLE GROUPS ARE K-GROUPS 247

(2.3) and Corollary 2.2. The group 2G2(3) has a corefree maximal subgroup
isomorphic to Z7 : Z6 ([K3]): Hence it is a K-group by (2.2). On the other
hand, we have 2B2(2) ∼= Z5 : Z4 ([A]), U3(2) ∼= 32 : Q8 ([KL], p. 43) and
finally | 2F4(2) : 2F4(2)′ | = 2, but all involutions of 2F4(2) are contained in
2F4(2)′ ([AS], p. 75). �

To prove the main theorem, we take a counterexample L of minimal order
and show that such a group L does not exist.

3. The simple classical groups.

We are going to assume in this section that L = G0(n, q), a (simple) classical
group as in [KL].

a) G0(n, q) is not of type Am, n = m + 1, m ≥ 1.
See (2.3).

b) G0(n, q) is not of type Cm, n = 2m, m ≥ 2.

Proof. Let r be a prime divisor of m, so that m = rt, t ≥ 1. By Theorem
1 and Theorem 2 in [L], the interval [PSp(2m, q)/PSp(2t, qr)] is mono-
coatomic. Moreover PSp(2t, qr) is simple, since qr ≥ 4, of order less than
the order of L, hence a K-group. But then by Corollary 2.2, L is a K-group,
a contradiction. �

c) G0(n, q) is not of type 2Am, n = m + 1, m ≥ 2.

Proof. We consider first the cases (n, q) = (3, 3), (3, 5). The groups U3(3)
and U3(5) are K-groups: In fact one has PSL2(7) <·U3(3) and A7 <·U3(5)
([K1], §5). Assume now (n, q) 6= (3, 3), (3, 5). With reference to the notation
in [BGL], p. 388, let G be the simple adjoint algebraic group over Fq with
associated Dynkin diagram of type Am, λ = σq and µ = 2σq: We have Gλ =
PGLn(q), Gµ = PGUn(q), Op′

(Gλ) = Ln(q), Op′
(Gµ) = Un(q) = G0(n, q),

T := Op′
(Gµ ∩Gλ) =


PSpn(q) if n is even
Ωn(q) if nq is odd
Spn−1(q) if n is odd and q is even.

From Theorem 2 in [BGL] it follows that [Un(q)/T ] is monocoatomic. More-
over, T is a K-group, either because it is simple of order less than |L |, or
because it is isomorphic to Sp4(2) (Proposition 2.4): Hence G0(n, q) is a
K-group, a contradiction. �

d) G0(n, q) is not of type Bm, n = 2m + 1, m ≥ 3, q odd.
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Proof. Assume q = pf , with f > 1 and let r be a prime divisor of f . Then by
Theorem 1 in [BGL], [PΩn(q)/PΩn(q1/r)] is monoatomic, a contradiction.
Therefore we must have q = p. Now, by §5 in [K1] and Proposition 4.2.15
in [KL], G0(n, q) contains a maximal subgroup M which is a split extension
of an irreducible elementary abelian 2-group by An or Sn. Therefore M is
a K-group by (2.2), and G0(n, q) is a K-group, a contradiction. �

e) G0(n, q) is not of type Dm, n = 2m, m ≥ 4.

Proof. Let V = Fn
q be the natural (projective) module for G0(n, q), and let

W be a nonsingular subspace of V of dimension 1. Since Ω := G0(n, q) is a
counterexample of minimal order, the socle soc HΩ of the stabilizer HΩ of
W in Ω, which is isomorphic to Ωn−1(q) if q is odd, and to Spn−2(q) if q is
even, must be contained, by Corollary 2.2, in an element KΩ of C(Ω) ∪ S
different from HΩ (for the definition of the family C(Ω) ∪ S we refer to §1.1
and §3.1 in [KL]).

By order considerations, one can prove that only condition (i) of Theorem
4.2 in [Li] applies: This means that KΩ must be an element of C(Ω). Since
HΩ ∈ C1, one is left to show that there does not exist an element KΩ in Ci,
for an i 6= 1, such that soc HΩ < KΩ < Ω.

For q odd, the arguments used in the proof of Proposition 7.1.3 in [KL]
show that such a KΩ does not exist, taking into account that in our situation
n2 = n−1 ≥ 7. To deal with the case when q is even, again one can proceed
using arguments suggested in the proof of Lemma 7.1.4 in [KL]. �

f) G0(n, q) is not of type 2Dm, n = 2m, m ≥ 4.

Proof. Following the notation in [BGL], let G be the simple adjoint alge-
braic group over Fq with associated Dynkin diagram of type Dm, λ = σq

and µ = 2σq. Then Op′
(Gλ) = PΩ+

n (q), Op′
(Gµ) = PΩ−

n (q) = G0(n, q),

T := Op′
(Gµ ∩Gλ) =

{
Ωn−1(q) if q is odd
Spn−2(q) if q is even.

By Theorem 2 in [BGL], [G0(n, q)/T ] is monocoatomic. Since n ≥ 8, T is
simple, hence G0(n, q) is a K-group, a contradiction. �

We have therefore completed the proof that L is not a classical group.

4. The simple exceptional groups of Lie type.

Now we are going to show that the minimal counterexample L cannot be an
exceptional group of Lie type G(q).

a) G(q) is not of type G2, 2G2.
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Proof. If r is a prime divisor of f , where q = pf , write q = qr
0
. Then

G(q0) <·G(q) ([Co], Theorem 2.3, 2.4, [K3], Theorem A, C). Hence by
Proposition 2.4, we have L = G2(p), for an odd prime p. But then G2(2) is
maximal in G2(p) by [K3], and we are done by Proposition 2.4. �

b) G(q) is not of type F4.

Proof. F4(q) contains a quasisimple maximal subgroup M of type B4(q),
with | Z(M) | = (2, q − 1) ([LSS], p. 322). But then, by Proposition 2.3,
F4(q) is a K-group. �

c) G(q) is not of type E6, E7, E8.

Proof. We have F4(q) <·E6(q) ([LS], Table 1), which excludes E6.
If L is of type E7, there exist subgroups H ≤ M <·G such that |M : H | =

|Z(H) | = (2, q− 1) and H/Z(H) ∼= L2(q)×PΩ+
12(q) ([LS], Table 1). Hence

H/Z(H) is a K-group by (2.1). We claim that [G/H] is monocoatomic.
Clear if q is even. For q odd, suppose H < M1 <·G, with M1 6= M . Since
|M : H | = 2, we have |M1 | > |M | ≥ q64. By the Theorem in [LS], M1

either is a parabolic subgroup, or it appears in Table 1 in [LS]: However,
both situations are excluded by rank or order considerations. So again by
Proposition 2.3, G is a K-group, a contradiction.

Finally assume G is of type E8. There exist subgroups H ≤ M <·G such
that | M : H | = | Z(H) | = (2, q − 1), with H/Z(H) ∼= PΩ+

16(q) ([I], p.
286, [LS], Table 1), hence a K-group. Using the Theorem in [LS] again one
shows that [G/H] is monoatomic, giving rise to a contradiction. �

d) G(q) is not of type 2B2.
See (2.3).

e) G(q) is not of type 2F4.

Proof. The group 2F4(2) is not simple, and we have seen that it is not a K-
group (Proposition 2.4). Its derived subgroup (the Tits group) is simple and
it is a K-group, since it has a maximal subgroup isomorphic to L2(25) ([A]).
So now assume L = 2F4(22m+1), with m ≥ 1. By the Main Theorem in [M],
there exist H <·M <·L such that |M : H | = 2 and H ∼= Sp4(22m+1). Since
the nonabelian composition factors of maximal subgroups of L not conjugate
to M are of type A1(q), 2B2(q), U3(q) and 2F4(q1/r), r an odd prime, one
concludes that [G/H] is monocoatomic. �

f) G(q) is not of type 2E6.

Proof. In fact we have F4(q) <· 2E6(q) from Table 1 in [LS]. �
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g) G(q) is not of type 3D4.

Proof. From the Theorem in [K2], we have G2(q) <· 3D4(q). Since G2(q) is
a K-group, we get a contradiction. �

This concludes the proof that L is not a group of Lie type.

5. Sporadic simple groups.

We are left to deal with the sporadic groups: To this end, for each group we
exhibit a maximal subgroup which is a K-group. From the tables in [A] we
have:

L2(11) <·M11, L2(11) <·M12, A7 <·M22, M22 <·M23, M23 <·M24,

L2(11) <·J1, A5 <·J2, L2(19) <·J3, 43 : 14 <·J4, M22 <·HS,

A7 <·Suz, M22 <·McL, A8 <·Ru, S4 × L3(2) <·He, 67 : 22 <·Ly,

A7 <·O′N, M23 <·Co2, M23 <·Co3, Co3 <·Co1, S10 <·Fi22,

S12 <·Fi23, F i23 <·Fi′24, A12 <·HN, S5 <·Th, 31 : 15 <·BM,

31 : 15× S3 <·M .

We have thus completed the proof of the main theorem:

Theorem. Every finite simple group is a K-group.

Acknowledgements. We are grateful to E. Vdovin for helpful discussions.
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