Pacific Journal of Mathematics

THE FINITE SIMPLE GROUPS HAVE COMPLEMENTED SUBGROUP LATTICES

Mauro Costantini and Giovanni Zacher

Volume 213 No. 2 February 2004

THE FINITE SIMPLE GROUPS HAVE COMPLEMENTED SUBGROUP LATTICES

Mauro Costantini and Giovanni Zacher

We prove that the lattice of subgroups of every finite simple group is a complemented lattice.

1. Introduction.

A group G is called a K-group (a *complemented* group) if its subgroup lattice is a complemented lattice, i.e., for a given $H \leq G$ there exists a $X \leq G$ such that $\langle H, X \rangle = G$ and $H \wedge X = 1$. The main purpose of this Note is to answer a long-standing open question in finite group theory, by proving that:

Every finite simple group is a K-group.

In this context, it was known that the alternating groups, the projective special linear groups and the Suzuki groups are K -groups ($[P]$).

Our proof relies on the FSGC-theorem and on structural properties of the maximal subgroups in finite simple groups. The rest of this paper is divided into four sections. In Section 2 we collect some criteria for a subgroup of a group G to have a complement and recall some useful known results. In Section 3 we deal with the classical groups, in 4 with the exceptional groups of Lie type and in Section 5 with the sporadic groups.

With reference to notation and terminology, we shall follow closely those in use in [P] and [S]. All groups are meant to be finite.

2. Preliminaries.

We begin with the following:

Proposition 2.1. Given the group G , let T , X be subgroups of G such that $T \leq X \leq G$. If the interval $[X/T]$ is a complemented lattice and if X is contained in only one maximal subgroup M of G, then every $H \leq G$ with $H \nleq M$ and $H \wedge T = 1$ has a complement in G.

Proof. Let C be a complement of $\langle H, T \rangle \wedge X$ in $[X/T]$. Then $\langle H, C \rangle =$ $\langle H, T, C \rangle \ge \langle \langle H, T \rangle \wedge X, C \rangle = X$. Since $H \nleq M$, we conclude that $\langle H, C \rangle =$ G. Moreover $H \wedge C = H \wedge X \wedge C \leq \langle H, T \rangle \wedge X \wedge C = T$, hence $H \wedge C \leq$ $H \wedge T = 1.$

The condition on M in Proposition 2.1 means that $[G/X]$ is a monocoatomic interval with coatom M.

Corollary 2.2. Let X be a K-subgroup and $|G/X|$ a monocoatomic interval with coatom M. Then every $H \leq G$ not contained in M_G has a complement in G. In particular G/M_G is a K-group.

Proof. There exists a $g \in G$ such that $H^g \nleq M$. By Proposition 2.1 with $T =$ 1, H^g has a complement. Hence also H has a complement C in G. Moreover, if $M_G < H$, then CM_G/M_G is a complement of H/M_G in G/M_G .

Proposition 2.3. Let G be a simple group and $[G/X]$ a monocoatomic interval with coatom M . If N is a central subgroup of M of prime order with $N \leq X$ and if X/N is a K-group, then G is a K-group.

Proof. Let H be a proper subgroup of G. Since $M_G = 1$, without loss of generality we may assume $H \nleq M$. If now $H \wedge N = 1$, by Proposition 2.1 H has a complement in G. Assume now $N \leq H$; there exists a $g \in G$ such that $N^g \wedge H = 1$. So if H has no complement in G, by Proposition 2.1 we must have $N^g \leq \mathcal{C}(H)$. It follows that if $\mathcal{F} = \{N^x \mid x \in G\}$ and $\mathcal{F}_1 = \{N^x \mid$ $N^x \nleq H$, then $\mathcal{N}(H) \geq \langle H, \mathcal{F}_1 \rangle \geq \langle \mathcal{F} \rangle = G$, a contradiction.

We finally recall:

(2.1) The direct product of a family of groups is a K-group if and only if each factor is a K-group,

see Corollary 3.1.5 in [S].

- (2.2) If G contains an abelian subgroup A generated by minimal normal subgroups of G and a complement K to A that is a K -group, then G is a K-group,
- see Lemma 3.1.9 in [S].

(2.3) The symmetric and alternating groups, the projective special linear groups $L_n(q)$ and the simple Suzuki groups ${}^2B_2(q)$ are K-groups, see $[P]$.

For our purpose it will be convenient to know which non-simple groups of Lie type $([C], p. 175, p. 268)$ are complemented.

Proposition 2.4. The following non-simple groups of Lie type are K -groups:

$$
L_2(2), L_2(3), Sp_4(2), G_2(2), {}^2G_2(3).
$$

The following non-simple groups of Lie type are not K-groups:

$$
{}^{2}B_{2}(2), {}^{2}F_{4}(2), U_{3}(2).
$$

Proof. In fact $L_2(2) \cong S_3$, $L_2(3) \cong A_4$, $Sp_4(2) \cong S_6$, and we are done by (2.3). In $G_2(2)$ there is a monocoatomic interval $[G_2(2)/H]$ with $H \cong L_3(2)$ and corefree coatom, by Theorem 2.5 in $[Co]$: Hence $G_2(2)$ is a K-group by (2.3) and Corollary 2.2. The group ${}^{2}G_{2}(3)$ has a corefree maximal subgroup isomorphic to $Z_7: Z_6$ ([K3]): Hence it is a K-group by (2.2). On the other hand, we have ${}^{2}B_{2}(2) \cong Z_{5}^{2}: Z_{4} ([A]), U_{3}(2) \cong 3^{2}: Q_{8} ([KL], p. 43)$ and finally $|{}^2F_4(2) : {}^2F_4(2)'| = 2$, but all involutions of ${}^2F_4(2)$ are contained in ${}^{2}F_{4}(2)'$ ([AS], p. 75).

To prove the main theorem, we take a counterexample L of minimal order and show that such a group L does not exist.

3. The simple classical groups.

We are going to assume in this section that $L = G_0(n,q)$, a (simple) classical group as in [KL].

a) $G_0(n,q)$ is not of type A_m , $n = m+1$, $m \geq 1$. See (2.3).

b) $G_0(n,q)$ is not of type C_m , $n = 2m$, $m \geq 2$.

Proof. Let r be a prime divisor of m, so that $m = rt$, $t \geq 1$. By Theorem 1 and Theorem 2 in [L], the interval $[PSp(2m, q)/PSp(2t, q^r)]$ is monocoatomic. Moreover $PSp(2t, q^r)$ is simple, since $q^r \geq 4$, of order less than the order of L, hence a K-group. But then by Corollary 2.2, L is a K-group, a contradiction.

c) $G_0(n,q)$ is not of type 2A_m , $n = m + 1$, $m \ge 2$.

Proof. We consider first the cases $(n,q) = (3,3), (3,5)$. The groups $U_3(3)$ and $U_3(5)$ are K-groups: In fact one has $PSL_2(7) < U_3(3)$ and $A_7 < U_3(5)$ ([K1], §5). Assume now $(n, q) \neq (3, 3), (3, 5)$. With reference to the notation in [BGL], p. 388, let G be the simple adjoint algebraic group over $\overline{\mathbb{F}}_q$ with associated Dynkin diagram of type A_m , $\lambda = \sigma_q$ and $\mu = \sigma_q$: We have $G_{\lambda} =$ $PGL_n(q), G_\mu = PGU_n(q), O^{p'}(G_\lambda) = L_n(q), O^{p'}(G_\mu) = U_n(q) = G_0(n, q),$

$$
T := O^{p'}(G_{\mu} \cap G_{\lambda}) = \begin{cases} PSp_n(q) & \text{if } n \text{ is even} \\ \Omega_n(q) & \text{if } nq \text{ is odd} \\ Sp_{n-1}(q) & \text{if } n \text{ is odd and } q \text{ is even.} \end{cases}
$$

From Theorem 2 in [BGL] it follows that $[U_n(q)/T]$ is monocoatomic. Moreover, T is a K-group, either because it is simple of order less than $|L|$, or because it is isomorphic to $Sp_4(2)$ (Proposition 2.4): Hence $G_0(n,q)$ is a K -group, a contradiction.

d) $G_0(n,q)$ is not of type B_m , $n = 2m + 1$, $m \geq 3$, q odd.

Proof. Assume $q = p^f$, with $f > 1$ and let r be a prime divisor of f. Then by Theorem 1 in [**BGL**], $[P\Omega_n(q)/P\Omega_n(q^{1/r})]$ is monoatomic, a contradiction. Therefore we must have $q = p$. Now, by §5 in [K1] and Proposition 4.2.15 in $[\mathbf{KL}], G_0(n,q)$ contains a maximal subgroup M which is a split extension of an irreducible elementary abelian 2-group by A_n or S_n . Therefore M is a K-group by (2.2) , and $G_0(n,q)$ is a K-group, a contradiction.

e)
$$
G_0(n,q)
$$
 is not of type D_m , $n = 2m$, $m \ge 4$.

Proof. Let $V = \mathbb{F}_q^n$ be the natural (projective) module for $G_0(n, q)$, and let W be a nonsingular subspace of V of dimension 1. Since $\overline{\Omega} := G_0(n,q)$ is a counterexample of minimal order, the socle soc $H_{\overline{\Omega}}$ of the stabilizer $H_{\overline{\Omega}}$ of W in $\overline{\Omega}$, which is isomorphic to $\Omega_{n-1}(q)$ if q is odd, and to $Sp_{n-2}(q)$ if q is even, must be contained, by Corollary 2.2, in an element $K_{\overline{\Omega}}$ of $\mathcal{C}(\overline{\Omega}) \cup \mathcal{S}$ different from $H_{\overline{\Omega}}$ (for the definition of the family $\mathcal{C}(\Omega) \cup \mathcal{S}$ we refer to §1.1 and $\S 3.1$ in $[KL]$).

By order considerations, one can prove that only condition (i) of Theorem 4.2 in [Li] applies: This means that $K_{\overline{\Omega}}$ must be an element of $\mathcal{C}(\Omega)$. Since $H_{\overline{\Omega}} \in \mathcal{C}_1$, one is left to show that there does not exist an element $K_{\overline{\Omega}}$ in \mathcal{C}_i , for an $i \neq 1$, such that soc $H_{\overline{\Omega}} < K_{\overline{\Omega}} < \Omega$.

For q odd, the arguments used in the proof of Proposition 7.1.3 in $\vert {\bf KL} \vert$ show that such a $K_{\overline{\Omega}}$ does not exist, taking into account that in our situation $n_2 = n-1 \ge 7$. To deal with the case when q is even, again one can proceed using arguments suggested in the proof of Lemma 7.1.4 in $\vert {\bf KL} \vert$.

f)
$$
G_0(n,q)
$$
 is not of type 2D_m , $n = 2m$, $m \geq 4$.

Proof. Following the notation in $[\textbf{BGL}]$, let G be the simple adjoint algebraic group over $\overline{\mathbb{F}}_q$ with associated Dynkin diagram of type D_m , $\lambda = \sigma_q$ and $\mu = {}^{2}\sigma_{q}$. Then $O^{p'}(G_{\lambda}) = P\Omega_{n}^{+}(q)$, $O^{p'}(G_{\mu}) = P\Omega_{n}^{-}(q) = G_{0}(n, q)$,

$$
T := O^{p'}(G_{\mu} \cap G_{\lambda}) = \begin{cases} \Omega_{n-1}(q) & \text{if } q \text{ is odd} \\ Sp_{n-2}(q) & \text{if } q \text{ is even.} \end{cases}
$$

By Theorem 2 in [BGL], $[G_0(n,q)/T]$ is monocoatomic. Since $n \geq 8$, T is simple, hence $G_0(n,q)$ is a K-group, a contradiction.

We have therefore completed the proof that L is not a classical group.

4. The simple exceptional groups of Lie type.

Now we are going to show that the minimal counterexample L cannot be an exceptional group of Lie type $G(q)$.

a) $G(q)$ is not of type G_2 , 2G_2 .

Proof. If r is a prime divisor of f, where $q = p^f$, write $q = q_0^r$. Then $G(q_0) < G(q)$ ([Co], Theorem 2.3, 2.4, [K3], Theorem A, C). Hence by Proposition 2.4, we have $L = G_2(p)$, for an odd prime p. But then $G_2(2)$ is maximal in $G_2(p)$ by [**K3**], and we are done by Proposition 2.4.

b) $G(q)$ is not of type F_4 .

Proof. $F_4(q)$ contains a quasisimple maximal subgroup M of type $B_4(q)$, with $|Z(M)| = (2, q - 1)$ ([LSS], p. 322). But then, by Proposition 2.3, $F_4(q)$ is a K-group.

c) $G(q)$ is not of type E_6 , E_7 , E_8 .

Proof. We have $F_4(q) < E_6(q)$ ([LS], Table 1), which excludes E_6 .

If L is of type E_7 , there exist subgroups $H \leq M < G$ such that $|M : H|$ = $|Z(H)| = (2,q-1)$ and $H/Z(H) \cong L_2(q) \times P\Omega_{12}^+(q)$ ([LS], Table 1). Hence $H/Z(H)$ is a K-group by (2.1). We claim that $[G/H]$ is monocoatomic. Clear if q is even. For q odd, suppose $H < M_1 < G$, with $M_1 \neq M$. Since $|M : H| = 2$, we have $|M_1| > |M| \geq q^{64}$. By the Theorem in [LS], M_1 either is a parabolic subgroup, or it appears in Table 1 in $[LS]$: However, both situations are excluded by rank or order considerations. So again by Proposition 2.3, G is a K-group, a contradiction.

Finally assume G is of type E_8 . There exist subgroups $H \leq M < G$ such that $| M : H | = | Z(H) | = (2, q - 1)$, with $H/Z(H) \cong P\Omega_{16}^{+}(q)$ ([I], p. 286, $[LS]$, Table 1), hence a K-group. Using the Theorem in $[LS]$ again one shows that $[G/H]$ is monoatomic, giving rise to a contradiction.

d) $G(q)$ is not of type 2B_2 . See (2.3).

e) $G(q)$ is not of type 2F_4 .

Proof. The group ${}^2F_4(2)$ is not simple, and we have seen that it is not a Kgroup (Proposition 2.4). Its derived subgroup (the Tits group) is simple and it is a K-group, since it has a maximal subgroup isomorphic to $L_2(25)$ ([A]). So now assume $L = {}^{2}F_4(2^{2m+1})$, with $m \geq 1$. By the Main Theorem in [M], there exist $H \leq M \leq L$ such that $|M : H| = 2$ and $H \cong Sp_4(2^{2m+1})$. Since the nonabelian composition factors of maximal subgroups of L not conjugate to M are of type $A_1(q)$, ${}^2B_2(q)$, $U_3(q)$ and ${}^2F_4(q^{1/r})$, r an odd prime, one concludes that $[G/H]$ is monocoatomic.

f) $G(q)$ is not of type 2E_6 .

Proof. In fact we have $F_4(q) < \cdot^2 E_6(q)$ from Table 1 in [LS].

g) $G(q)$ is not of type 3D_4 .

Proof. From the Theorem in [**K2**], we have $G_2(q) < \sqrt[3]{3}D_4(q)$. Since $G_2(q)$ is a K-group, we get a contradiction. \square

This concludes the proof that L is not a group of Lie type.

5. Sporadic simple groups.

We are left to deal with the sporadic groups: To this end, for each group we exhibit a maximal subgroup which is a K-group. From the tables in $[A]$ we have:

 $L_2(11) \langle M_{11}, L_2(11) \langle M_{12}, A_7 \langle M_{22}, M_{22} \langle M_{23}, M_{23} \langle M_{24}, M_{24} \rangle \rangle$ $L_2(11) \langle \cdot, J_1, A_5 \langle \cdot, J_2, L_2(19) \langle \cdot, J_3, 43 : 14 \langle \cdot, J_4, M_{22} \langle \cdot, HS,$ $A_7 \leq Suz$, $M_{22} \leq McL$, $A_8 \leq Ru$, $S_4 \times L_3(2) \leq He$, $67:22 \leq Ly$, $A_7 < O'N$, $M_{23} < C_2$, $M_{23} < C_3$, $C_3 < C_1$, $S_{10} < F_{22}$, $S_{12} < F_{i23}$, $Fi_{23} < F_{i24}'$, $A_{12} < HN$, $S_5 < Th$, $31 : 15 < BM$, $31: 15 \times S_3 \lt M$.

We have thus completed the proof of the main theorem:

Theorem. Every finite simple group is a K-group.

Acknowledgements. We are grateful to E. Vdovin for helpful discussions.

References

- [AS] M. Aschbacher and G. Seitz, Involutions in Chevalley groups, Nagoya Math. J., 63 (1976), 1-91, MR 0422401, Zbl 0359.20014.
- [BGL] N. Burgoyne, R. Griess and R. Lyons, Maximal subgroups and automorphisms of Chevalley groups, Pac. J. Math., 71 (1977), 365-403, MR 0444795, Zbl 0334.20022.
- [C] R.W. Carter, Simple Groups of Lie Type, Wiley, London, 1989, MR 1013112, Zbl 0723.20006.
- [A] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Oxford University Press, 1985, MR 0827219, Zbl 0568.20001.
- [Co] B.N. Cooperstein, *Maximal subgroups of* $G_2(2^n)$, J. Algebra, **70** (1981), 23-36, MR 0618376, Zbl 0459.20007.
- [I] N. Iwahori, Centralizers of involutions in finite Chevalley groups, in 'Seminar on Algebraic Groups and Related Topics' (eds. A. Borel et al.), Lecture Notes in Math., 131, Springer, Berlin, 1986, 267-295, MR 0258945, Zbl 0242.20043.
- [K1] P.B. Kleidman, The Low-Dimensional Finite Classical Groups and their Subgroups, Ph.D. Thesis, University of Cambridge, 1987.

- [K2] $_____\$ n The maximal subgroups of the Steinberg triality groups ${}^{3}D_{4}(q)$ and of their automorphism groups, J. Algebra, 115 (1988), 182-199, MR 0937609, Zbl 0642.20013.
- [K3] \Box , The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^{2}G_{2}(q)$, and their automorphism groups, J. Algebra, 117 (1988), 30-71, MR 0955589, Zbl 0651.20020.
- [KL] P.B. Kleidman and M.W. Liebeck, The Subgroup Structure of the Finite Classical Groups, London Math. Soc. Lecture Notes, 129, Cambridge University Press, 1990, MR 1057341, Zbl 0697.20004.
- [L] S. Li, Overgroups in $GL(nr, F)$ of certain subgroups of $SL(n, K)$, I, J. Algebra, 125 (1989), 215-235, MR 1012672, Zbl 0676.20030.
- [Li] M.W. Liebeck, On the orders of maximal subgroups of the finite classical groups, Proc. London Math. Soc., 50 (1985), 426-446, MR 0779398, Zbl 0591.20021.
- [LS] M.W. Liebeck and J. Saxl, On the orders of maximal subgroups of the finite exceptional groups of Lie type, Proc. London Math. Soc., 55 (1987), 299-330, MR 0896223, Zbl 0627.20026.
- [LSS] M.W. Liebeck, J. Saxl and G.M. Seitz, Subgroups of maximal rank in finite exceptional groups of Lie type, Proc. London Math. Soc., 65 (1992), 297-325, MR 1168190, Zbl 0776.20012.
- [M] G. Malle, The maximal subgroups of ${}^{2}F_{4}(q^{2})$, J. Algebra, 139 (1991), 52-69, MR 1106340, Zbl 0725.20014.
- [P] E. Previato, Some families of simple groups whose lattices are complemented, Boll. U.M.I., 6 (1982), 1003-1014, MR 0683488.
- [S] R. Schmidt, Subgroup Lattices of Groups, de Gruyter, Berlin, 1994, MR 1292462, Zbl 0843.20003.

Received December 24, 2002 and revised February 24, 2003.

Dipartimento di matematica pura ed applicata Universita di Padova ` via Belzoni 7, 35131 Padova ITALY E-mail address: costantini@math.unipd.it

Dipartimento di matematica pura ed applicata Universita di Padova ` via Belzoni 7, 35131 Padova ITALY E-mail address: zacher@math.unipd.it