Recognising dualities in finite simple groups

M. Costantini*, S. E. Stonehewer and G. Zacher*

(Communicated by R. Schmidt)

Introduction

Given a group G, a subgroup K of G is called *cocyclic* (in G) if the interval [G/K] is anti-isomorphic to the lattice of subgroups of a cyclic group. Let us denote by CG the partially ordered set of all cyclic subgroups of G and by Co G the partially ordered set of all cocyclic subgroups of G. We shall consider groups G, \overline{G} for which the following properties hold:

 D_1 : there exists an anti-isomorphism τ of Co G onto $C\overline{G}$, D_2 : every subgroup of G is the intersection of cocyclic subgroups, D_3 : if X, Y, Z are cocyclic subgroups of G, then

 $X \ge Y \cap Z$ if and only if $X^{\tau} \le \langle Y^{\tau}, Z^{\tau} \rangle$.

Two groups G, \overline{G} will be said to be in *D*-situation (relative to the map τ) if the properties D_1, D_2, D_3 hold. Also a group G will be said to admit a *D*-situation if there exist a group \overline{G} and a map τ such that G and \overline{G} are in *D*-situation. In [12] it was shown that a finite soluble group admits a *D*-situation if and only if G has an auto-duality. The aim of this paper is to prove the following result.

Theorem. A finite simple group G admits a D-situation if and only if G is abelian.

Section 1 contains several preliminary results and technicalities. Section 2 deals with the alternating groups and the simple Chevalley groups, Section 3 with the twisted simple groups of Lie type, and finally in Section 4 we consider the sporadic simple groups. Our terminology and notation are quite standard (see for example [10] and [11]). When discussing simple groups, we follow mainly [1], [2] and [6]. We denote by C_m the cyclic group of order *m* and by S_n the symmetric group of degree *n*. For each prime *p*, G_p denotes a Sylow *p*-subgroup of the group *G*, *Z*(*G*) is the center of *G*, and

^{*}The first and third author are grateful to the MURST and the CNR for financial support during the preparation of this paper

 $\omega(G)$ is the set of prime divisors of the order of G. The quaternion group of order 8 is denoted by Q_8 and the four-group by V. Thus $V \cong C_2 \times C_2$. We denote by $(CG)_2$ the set of all subgroups of G that can be generated by at most two cyclic subgroups. Dually, $(Co G)_2$ denotes the set of all subgroups of G that are the intersection of at most two cocyclic subgroups. We write X < G when X is a maximal subgroup of G. Also A < B means that A is a proper subgroup of B, and $A \lhd B$ means that $A \trianglelefteq B$, but $A \neq B$. A Zassenhaus group is a group with all Sylow subgroups cyclic. If P is a parabolic subgroup of a group of Lie type of characteristic p, then the unipotent radical of P is its maximal normal p-subgroup, denoted by U_P . All groups considered here are finite.

1 Preliminary results

Let G and \overline{G} be two groups in D-situation via the map τ . Then the maps

$$\begin{cases} \delta: L(G) \to L(\bar{G}), & H \mapsto \langle X^{\tau} \, | \, X \in \operatorname{Co}[G/H] \rangle \\ \bar{\delta}: L(\bar{G}) \to L(G), & \bar{H} \mapsto \bigcap_{\bar{X} \in C\bar{H}} \bar{X}^{\tau^{-1}} \end{cases}$$
(1)

are inclusion-reversing, with $\delta \overline{\delta} = 1$. Moreover, by [12],

$$\delta |(\operatorname{Co} G)_2 \text{ is an anti-isomorphism of } (\operatorname{Co} G)_2 \text{ onto } (C\overline{G})_2$$

whose inverse is $\overline{\delta} |(C\overline{G})_2$. (2)

The map δ is a duality if and only if G is projective to \overline{G} , in which case G is soluble and projective to an abelian group (see [15] and [17]).

Assume now that G is a finite simple group of Lie type and consider a maximal unipotent subgroup U of G. Let $B = \mathcal{N}(U)$ be the Borel subgroup above U, let H be a complement of U in B, as defined in [1], and let $N \leq \mathcal{N}(H)$ be such that N/H is the Weyl group. Then it is known that

$$\text{if } U \leqslant M < G \text{ then } B \leqslant M.$$
(3)

(see for example [3]). If one considers the map $\delta: G \to \overline{G}$, then since [G/B] is a Boolean lattice, $\overline{B} = B^{\delta}$ is a cyclic group of square-free order and, by (3), it is generated by the set of minimal subgroups of $\overline{U} = U^{\delta}$. It follows that the minimal subgroups of \overline{U} are all normal in \overline{U} , and the Sylow subgroups are either cyclic or generalized quaternion.

Assume that the Sylow 2-subgroup of \overline{U} is a generalized quaternion group \overline{Q} and set $\overline{T} = \overline{Q}\overline{B} \leq \overline{U}$. By [8], $L(\overline{T}) = (C\overline{T})_2$, so there exists $T \in [B/U] \cong [H/1]$ such that $\overline{T} = T^{\delta}$ and, by (2), $\delta | [B/T]$ is an anti-isomorphism of [B/T] onto $\overline{T}/\overline{B} \cong \overline{Q}/Z(\overline{Q})$. So $\overline{Q}/Z(\overline{Q})$ is a modular group, since H is abelian, and therefore it is the four-group. Hence $\overline{Q} = \langle \overline{x}, \overline{y} \rangle$ is the quaternion group.

Now assume that \overline{U} non-soluble. By [13, Theorem A], we have a Hall factorization

$$\overline{U}/\langle \bar{x}^2 \rangle = (\overline{L}/\langle \bar{x}^2 \rangle) \times (\langle \overline{Z}, \bar{x}^2 \rangle/\langle \bar{x}^2 \rangle)$$

with $\overline{L}/\langle \overline{x}^2 \rangle \cong \text{PSL}_2(p)$ and \overline{Z} a Zassenhaus group of odd order. Since

$$\langle \bar{x}^2 \rangle \leqslant \bar{L} \cap \bar{B} \trianglelefteq \bar{L} \leqslant \bar{U},$$

we conclude that $\overline{L} \cap \overline{B} = \langle \overline{x}^2 \rangle$, a contradiction. We have therefore proved

 \overline{U} is a soluble group with all Sylow subgroups cyclic or quaternion. Moreover $L(\overline{U}) = (C\overline{U})_2$ by [8], and the minimal subgroups of \overline{U} are normal. (4)

Proposition 1.1. Let G be a simple group of Lie type, with B a Borel subgroup of G, U its unipotent radical and H a maximal torus of B. Assume that G is in D-situation with \overline{G} and $\delta : G \to \overline{G}$ is the associated anti-monomorphism of L(G) into $L(\overline{G})$. Then the following are true.

- (i) B
 B is a cyclic group of square-free order generated by the minimal subgroups of
 Ū, and δ|[G/U] is an anti-isomorphism of [G/U] onto [*Ū*/1].
- (ii) If $\overline{U} \neq \overline{B}$, then there is a Hall factorization

$$\overline{U}/\overline{B}=P_1\times P_2\times\cdots\times P_t\times C.$$

Here $t \ge 0$, C is cyclic, and, for i > 1, P_i is a P-group of order p_iq_i with $p_i > q_i$ while either

- (a) P_1 is a P-group of order p_1q_1 with $p_1 > q_1$, or
- (b) P_1 is the four-group, and this is the case if and only if \overline{U} contains a quaternion subgroup.
- (iii) The Sylow subgroups of H are elementary abelian of order p_i^2 or cyclic.
- (iv) $\overline{U} = \overline{U}_1 \ltimes \overline{U}_2$, where \overline{U}_2 is a Hall subgroup and a Zassenhaus group, and there is a Hall decomposition

$$\overline{U}_1 = \overline{R}_1 \times \overline{R}_2 \times \cdots \times \overline{R}_t.$$

Here, for i > 1, \overline{R}_i a non-cyclic Zassenhaus group of order $p_i^2 q_i^2$ with center of order q_i . In case (a), \overline{R}_1 is a non-cyclic Zassenhaus group of order $p_1^2 q_1^2$ with center of order q_1 , and in case (b), \overline{R}_1 is the quaternion group. Moreover

$$\overline{B} = (\overline{B} \cap (\overline{R}_1 \times \cdots \times \overline{R}_t)) \times (\overline{B} \cap \overline{U}_2).$$

Proof. As already pointed out, $\delta | [G/U]$ is an anti-isomorphism of [G/U] onto $[\overline{U}/1]$. In particular we have a duality of $B/U \cong H$ onto $\overline{U}/\overline{B}$, and so, by (4) and [11, Theorem 8.2.2], (ii) must hold. Then (iii) follows from (ii).

Write $\overline{B} = \overline{B}_1 \times \overline{B}_2$, with $\omega(\overline{B}_2) = \omega(\overline{B}) \setminus \omega(P_1 \times \cdots \times P_t)$. We have

$$\overline{U}/\overline{B} \cong \overline{U}_1/\overline{B}_1 \times \overline{U}_2/\overline{B}_2,$$

for certain subgroups \overline{U}_1 , \overline{U}_2 , with

$$\overline{U}_1/\overline{B}_1 \cong P_1 \times \cdots \times P_t, \quad \overline{U}_2/\overline{B}_2 \cong C.$$

Then $\overline{U}_1 \cap \overline{U}_2 = \overline{B}_1 \cap \overline{B}_2 = 1$, and hence $\overline{U} = \overline{U}_1 \overline{U}_2$. Moreover, since $\Phi(\overline{U}_1) = \overline{B}_1 \leq \overline{U}$, we have $\overline{U}_2 \leq \overline{U}$ and $\overline{U}_1 = \overline{R}_1 \times \cdots \times \overline{R}_t$, where \overline{R}_i has the required structure, while \overline{U}_2 is a Zassenhaus group with $\overline{U}_2' \leq \overline{B}_2 = \overline{B} \cap \overline{U}_2$.

It will be useful to observe that, in the above situation, the number of maximal subgroups of G containing U is equal to the number of distinct prime divisors of $|\overline{U}|$.

Lemma 1.2. Let G be a group in D-situation with \overline{G} . If $H \leq X \in Co G$, then $X^{\delta} \leq H^{\delta}$.

Proof. This is clear if $H \in \text{Co } G$. Otherwise we have $H = X \cap Y$ for some $Y \in \text{Co } G$ and, by (2), $H^{\delta} = \langle X^{\delta}, Y^{\delta} \rangle$. Let $X^{\delta} < \overline{T} \leq H^{\delta}$; then $\overline{T} \in (C\overline{G})_2$, so by (2) there exists a (unique) subgroup $T \leq G$ such that $\overline{T} = T^{\delta}$. It follows that $H \leq T < X$. Hence H = T, and $X^{\delta} < H^{\delta}$.

Proposition 1.3. Let K be a maximal subgroup of the group L and suppose that K is a cyclic p-group. Then either L is metacyclic or $L = Q \rtimes K$, where Q is an elementary abelian Sylow subgroup of L of order q^{α} with $\alpha > 1$ on which K acts irreducibly.

Proof. Assume that L is not metacyclic. Then K is a Sylow p-subgroup of L with $\mathcal{N}(K) = K$, so that $L = Q \rtimes K$ for some subgroup Q of L. But $K \lt L$ implies that Q is an elementary abelian q-group on which K must act irreducibly.

Corollary 1.4. Let G be a group in D-situation with \overline{G} and let $K \in \operatorname{Co} G$ be such that [G/K] is a chain. If $H \leq K$, then H^{δ} has the structure of the group L in 1.3, and $\delta | [G/H]$ is an anti-isomorphism onto $[H^{\delta}/1]$ when H^{δ} is metacyclic.

Proof. By Lemma 1.2 we have $K^{\delta} < H^{\delta}$, and the result follows by Proposition 1.3 and (2).

Proposition 1.5. Let G be a simple non-abelian group in D-situation with \overline{G} and let S be a minimal subgroup of G such that [G/S] is a chain of length n. Then \overline{G} is a Frobenius group, with $\overline{S} = S^{\delta}$ a cyclic subgroup of order p^n (for some prime p) and with Frobenius kernel Q an elementary abelian group of order q^{α} for some $\alpha > 1$. The number N of maximal subgroups of G is given by $N = 1 + q + \cdots + q^{\alpha}$.

Proof. Clearly \overline{S} is cyclic of order p^n for some prime p. If \overline{G} is metacyclic, then the simple non-abelian group G is dual to \overline{G} , by (2). According to [15], this is a contradiction. Thus, by Proposition 1.3, $\overline{G} = Q \rtimes \overline{S}$ and Q is an elementary abelian q-group of order q^{α} , for some $\alpha > 1$, on which \overline{S} acts irreducibly.

Clearly if n = 1, then \overline{G} is a Frobenius group. Thus suppose that n > 1 and let S < M < G. Since $\mathcal{N}(M) = M$, for $x \in G \setminus M$ we have $M^x \neq M$ and $[G/S^x]$ is also

a chain of length *n*, with $S^x < M^x < G$. Therefore $\overline{S^x}$ is a cyclic group of order p^n , since n > 1, and $\overline{S} \cap \overline{S^x} = 1$ since $\overline{M} \cap \overline{M^x} = 1$. But then also $\overline{S} \cap \overline{S^y} = 1$ for any $1 \neq y \in Q$, that is, \overline{G} is a Frobenius group.

Finally N equals the number of minimal subgroups of \overline{G} , which is $1 + q + \cdots + q^{\alpha}$. The result follows.

For future use and as a complementary statement to Proposition 1.1, we prove

Lemma 1.6. Let G be a group with subgroups R, S, B, P such that $R \triangleleft P$, $P/R \cong S_3$, $R < S \triangleleft P$, R < B < P and [G/B] is a Boolean lattice. Assume also that every maximal subgroup of G containing S also contains P. If G is in D-situation with a group \overline{G} , then \overline{R} is a Zassenhaus group and the minimal subgroups of \overline{R} generate the square-free cyclic group \overline{B} .

Proof. Note that, by our assumption, we have $P \neq G$. It is clear that the square-free cyclic group $\overline{P} = P^{\delta}$ is generated by the minimal subgroups of \overline{S} and, since $\overline{P} \triangleleft \overline{S}$ by Lemma 1.2, \overline{S} is a Zassenhaus group with just one Sylow subgroup of order r^2 , where $|\overline{S} : \overline{P}| = r$. We have

$$|\overline{B}| = rp_1 \dots p_t p_{t+1}, \quad |\overline{P}| = rp_1 \dots p_t, \quad |\overline{S}| = r^2 p_1 \dots p_t,$$

for some $t \ge 0$. Since $R \lt B$ and $\overline{P} \lhd \overline{B}$, we have

$$\overline{P} \trianglelefteq \langle \overline{B}, \overline{S} \rangle = \overline{R} \in (C\overline{G})_2.$$

By Proposition 1.3, either $\overline{R}/\overline{P}$ is a *P*-group of order pq with $p \ge q$, or $\overline{R}/\overline{P}$ is a Frobenius group *F* of order pq^{α} with $\alpha > 1$ and elementary abelian Frobenius kernel F_q .

Suppose that we have the second case. Whenever $\overline{P} < \overline{X} < \overline{R}$, it follows that \overline{X} is 2-generated. Therefore there exists a unique X satisfying R < X < P such that $\overline{X} = X^{\delta}$. Then we have a contradiction, since [P/R] has only 4 maximal subgroups. Therefore $\overline{R}/\overline{P}$ is a P-group of order pq with $p \ge q$. But $|\overline{S}:\overline{P}| = r$ and $|\overline{B}:\overline{P}| = p_{t+1}$, so that $p \ne q$. Again every $\overline{X} \in [\overline{R}/\overline{P}]$ is 2-generated, and hence $\delta |[P/R]$ is a duality onto $[\overline{R}/\overline{P}]$, so that $\overline{R}/\overline{P} \cong S_3$.

Suppose that $|\overline{R} : \overline{B}| = 3$. Then $|\overline{B} : \overline{P}| = 2$ and hence $2 \not| P|$. Thus $|\overline{S} : \overline{P}| = 3$ and so $\overline{R}_3 \cong C_9$ and \overline{B}_2 acts non-trivially on \overline{R}_3 . But then \overline{B}_2 acts non-trivially on \overline{B}_3 , a contradiction since \overline{B} is abelian. Thus we are left with the case when $|\overline{R} : \overline{B}| = 2$. Then $\overline{B} \leq \overline{R}$, $(\overline{R})_3$ has order 3 and $|\overline{S} : \overline{P}| = 2$. Hence r = 2, the Sylow 2-subgroups of \overline{R} are cyclic of order 4, and $p_{t+1} = 3$. So the Zassenhaus group \overline{R} has order $12p_1 \dots p_t$ and the involution in \overline{B} is central. Therefore the minimal subgroups of \overline{R} are in \overline{B} .

Proposition 1.7. Let G be an indecomposable Zassenhaus group, p a prime divisor of |G'| and φ a projectivity of G. If G is not a P-group of order pq with p > q, then φ is regular at p.

Proof. Let S be a Sylow p-subgroup of G'. If φ is singular at p, then $S \leq Z(G)$, by [11, Lemmas 4.2.2 and 4.2.3]. This is a contradiction.

2 Alternating groups and simple Chevalley groups

In this section we deal with alternating groups and simple Chevalley groups in D-situation.

Proposition 2.1. The alternating group $G = A_n$ admits a D-situation if and only if $n \leq 3$.

Proof. We suppose that $n \ge 5$. We denote by G_i the stabilizer of *i* for each $i \le n$, and by $G_{i,j}$ the intersection $G_i \cap G_j$ for $i \ne j$. Since G is (n-2)-transitive, we have $G_{i,j} < G_i < G$.

We show that if $G_{i,j} \leq M < G$, then M is not transitive. We may assume M different from G_i . Since $G_{i,j}$ has index n(n-1), if M were transitive, then $|M : M_i| = n$, and $M_i = M \cap G_i = G_{i,j}$. Hence |G : M| = n - 1 < n, which is a contradiction. From the classification of the maximal non-transitive subgroups of G (see [7]), it follows that in $[G/G_{i,j}]$ there are only three maximal subgroups: G_i , G_j and $W_{i,j}$, where $W_{i,j}$ is the stabilizer of the subset $\{i, j\}$. Moreover, since $|W_{i,j} : G_{i,j}| = 2$, we have $G_{i,j} < W_{i,j}$. Hence $[G/G_{i,j}]$ is the lattice of subgroups of the four-group. By Corollary 1.4, $\overline{G}_{i,j}$ is a four-group. In particular $[\overline{G}_i, \overline{G}_j] = 1$.

Now let *i*, *j*, *k* be distinct. If $G_{i,j,k} = G_i \cap G_j \cap G_k$, then $\overline{G}_{i,j,k} = \overline{G}_i \times \overline{G}_j \times \overline{G}_k$. On the other hand, $G_{i,j,k} = W_{i,j} \cap W_{i,k}$, so that $\overline{G}_{i,j,k} = \overline{W}_{i,j} \times \overline{W}_{i,k}$, which is a contradiction. The general conclusion follows from [12].

We deal next with Chevalley groups. Let $G = \mathscr{L}(\mathscr{H})$ be a simple Chevalley group associated with the Lie algebra \mathscr{L} of rank l, where K is a field of $q = p^{\alpha}$ elements with p a prime. If G is in D-situation with \overline{G} , then by Proposition 1.1 we know that H has to be 2-generated. On the other hand

$$H \cong (\underbrace{K^* \times \cdots \times K^*}_{l})/T,$$

where K^* is cyclic of order q - 1 and T is a cyclic group of known order or the fourgroup (see [1, p. 122]). One concludes that for $|K| \neq 2$, G has to belong to one of the families

$$A_l, B_l, C_l \quad \text{with } l \leq 3, \quad G_2 \quad \text{or} \quad D_4(3). \tag{5}$$

We consider each of these possibilities, assuming that $|K| \neq 2$.

Suppose that G has type A_l . Here T is cyclic of order d = (l + 1, q - 1).

Consider first the case when l = 3. So d = 2 or 4. If d = 2, then for H to be 2-generated, we must have q - 1 = 2, i.e. $G = A_3(3)$. We shall deal with this case later. If d = 4, then for H to be 2-generated, we must have q - 1 = 4. But then H is of exponent 4 and not cyclic, in contradiction to Proposition 1.1 (iii).

Now suppose that l = 2. So d = 1 or 3. We have two maximal parabolic subgroups P_1 , P_2 and a graph automorphism γ of G of order 2 such that $P_1^{\gamma} = P_2$, $U^{\gamma} = U$ and $\{r, s\} = \omega(\overline{U})$. We see that d = 1 if and only if $3 \not\mid q - 1$. Here $H \cong K^* \times K^*$, and since H_r has to be elementary abelian of order r^2 , $\overline{U}/\overline{B}$ is a P-group or a four-group. In the former case, $\overline{U}/\overline{B}$ has order rs with r > s. Then \overline{U} is a Zassenhaus group of order r^2s^2 . Since $\delta |[G/U]$ is a duality onto \overline{U} (by Proposition 1.1), $\overline{\delta\gamma\delta}|\overline{U}$ is singular, in contradiction to Proposition 1.7. If $\overline{U}/\overline{B}$ is the four-group, then $\overline{U} = Q_8 \ltimes C_r$ (with r an odd prime), by Proposition 1.1, and $\overline{\delta\gamma\delta}$ cannot have a 2-singularity on \overline{U} . Suppose that d = 3. If q - 1 = 3, then H is cyclic of order 3, so $|\overline{U}| = r^2 t$ and $\overline{\delta\gamma\delta}|\overline{U}$ cannot exist. If $q - 1 \neq 3$, then H_3 is cyclic, so $\overline{U}/\overline{B}$ is isomorphic to the direct product $V \times C$ of the four-group V and a cyclic group C, and we conclude the argument as before.

We are left with the case when l = 1. Here $G = \text{PSL}_2(q)$, with $q \neq 2, 3, H \cong K^*/C_d$ and d = (2, q - 1). The Borel subgroups are maximal in G and so $\overline{U}/\overline{B}$, $\overline{U^g}/\overline{B^g}$ are cyclic, where $B \cap B^g = H$. It follows that \overline{U} , $\overline{U^g}$ and H are cyclic of prime-power order. Since $\text{PSL}_2(5) \cong A_5$ and $\text{PSL}_2(9) \cong A_6$, we may assume $q \neq 2, 3, 5, 9$. But then we have either $H < \mathcal{N}(H) < G$ or H < B < G (by [14, Example 7 on p. 417]) and [G/H] contains either three atoms or three coatoms. Hence \overline{H} is the four-group, by Corollary 1.4. Therefore $\overline{U} \cong \overline{U^g} \cong C_{2^\alpha}$ with $\alpha \ge 2$, and since $\langle \overline{U}, \overline{B^g} \rangle = \overline{G} = \langle \overline{U^g}, \overline{B} \rangle$, we conclude that $\overline{G} \cong C_{2^\alpha} \times C_2$, in contradiction to (2) and the simplicity of G.

Suppose that *G* has type G_2 . Here d = 1, $H \cong K^* \times K^*$ and there are two maximal parabolic subgroups P_1 , P_2 above *B*. Hence $\overline{U}/\overline{B}$ is either a *P*-group of order *rt*, with r > t, or a four-group. Thus q - 1 = r or 2. We distinguish two cases. Let q = 3. Then by Proposition 1.1, $\overline{U} = Q_8 \ltimes C_t$ and $G = G_2(3)$. There exists a graph automorphism γ of order 2 such that $P_1^{\gamma} = P_2$ and $U^{\gamma} = U$. But $\overline{\delta}\gamma\delta$ cannot exist on \overline{U} .

Now suppose that q > 3. Then $G = G_2(2^{\alpha})$, with $\alpha > 1$, since q = 1 + r where r is an odd prime. Here \overline{U} is a non-cyclic Zassenhaus group of order r^2t^2 , with r > t, while H is elementary abelian of order r^2 . Let $\Pi = \{r_1, r_2\}$ be a fundamental system for G, $L_i = H\langle X_{r_i}, X_{-r_i} \rangle$, and let $P_i = U_{P_i}L_i$ be the Levi decomposition. Since r, but not r^2 , divides $|PSL_2(2^{\alpha})|$, we have $L_i > \langle X_{r_i}, X_{-r_i} \rangle \cong PSL_2(2^{\alpha})$. But H normalizes every root subgroup, and hence $L'_i = \langle X_{r_i}, X_{-r_i} \rangle$. We have $P_i/U_{P_i} \cong L_i/1$; in particular $P'_i = UL'_i$ has index r in P_i . Moreover $B \neq UL'_i$, since L'_i is simple. Let $|\overline{P_1}| = r$, $|\overline{P_2}| = t$. From the duality $\delta : [G/U] \rightarrow [\overline{U}/1]$ we deduce that there are $r^2 + 1$ maximal subgroups of P_2 containing U. But H acts on these maximal subgoups, fixing at least two of them, namely B and P'_2 . Since the orbits have length 1 or r, and r does not divide $r^2 - 1$, we have at least a third maximal subgroup X of P_2 containing U and fixed by H. But then $B = UH \leq \mathcal{N}(X)$ and P = BX. In particular $X \leq P_2$, so that $P'_2 \leq X$. Hence $X = P'_2$, which is a contradiction.

Suppose that G has type B_2 . Let d = 1. If $\overline{U}/\overline{B}$ is a non-abelian P-group of order rt, with r > t, then H is elementary abelian of order r^2 , q - 1 = r and $G = B_2(2^{\alpha})$ with $\alpha \ge 2$. But G has a graph automorphism γ of order 2 interchanging the two maximal parabolic subgroups above B. Then $\overline{\delta}\gamma\delta$ cannot be an autoprojectivity of \overline{U} , by Proposition 1.7. On the other hand, if $\overline{U}/\overline{B}$ is the four-group, then H is the four-group and q - 1 = 2, contradicting d = 1. Thus suppose that d = 2. In this case we

have $H \cong (K^* \times K^*)/C_2$ and since H_2 has to be homocyclic, it must be cyclic, i.e. we have q - 1 = 2 and $G = B_2(3)$. We postpone the treatment of this group.

Suppose that G has type B_3 or C_3 . We must have d = 2, since otherwise $H \cong K^* \times K^* \times K^*$. So $H \cong (K^* \times K^* \times K^*)/C_2$ and, by Proposition 1.1, we conclude that q - 1 = 2, i.e. q = 3. We deal with the groups $A_3(3)$, $B_3(3)$ and $C_3(3)$ simultaneously. Now H is the four-group, and hence $\overline{U} \cong Q_8 \ltimes (C_s \times C_t)$. Let P be the minimal parabolic subgroup associated with the fundamental root r and such that $\overline{U}/\overline{P} \cong Q_8$. Using the Levi decomposition with $L = H \langle X_r, X_{-r} \rangle$ we have one of the following:

$$\langle X_r, X_{-r} \rangle \cong \begin{cases} \mathrm{SL}_2(3) \\ \mathrm{PSL}_2(3) \end{cases}$$

where X_r is isomorphic to C_3 and is a Sylow 3-subgroup of L, by [1, Section 8.5]. In both cases, $[L/X_r]$ contains the interval $[HX_r/X_r]$ which is isomorphic to [H/1], and also the subgroup $\langle X_r, X_{-r} \rangle$ which is not in $[HX_r/X_r]$. This is a contradiction, since, by (1), δ induces a duality from [P/U] onto $[\overline{U}/\overline{P}] \cong [Q_8/1]$, while $[P/U] \cong [L/X_r]$.

Suppose that $G = D_4(3)$. Since H, and so $\overline{U}/\overline{B}$, is the four-group and $|\omega(\overline{U})| = 4$, we have $\overline{U} \cong Q_8 \ltimes (C_r \times C_s \times C_t)$. If P is the minimal parabolic subgroup such that $[\overline{U}/\overline{P}] \cong [Q_8/1]$, then using the same argument as in the previous case, we reach a contradiction.

Suppose finally that *G* has type $B_2(3)$ (= $C_2(3)$). Referring to [2, p. 26], we see that *G* has order $2^{6}3^{4}5$. Let Φ^+ be a positive root system and let Π be the fundamental system contained in Φ^+ . We have $\Pi = \{\alpha_1, \alpha_2\}$, and we assume α_1 long, α_2 short. Then $\Phi^+ = \{\alpha_1, \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + 2\alpha_2\}$, $U = X_{\alpha_1}X_{\alpha_2}X_{\alpha_1+\alpha_2}X_{\alpha_1+2\alpha_2}$, B = HU, $H \cong C_2$ and $B' = X_{\alpha_2}X_{\alpha_1+\alpha_2}X_{\alpha_1+2\alpha_2}$, by [1, p. 175]. Let $P_1 = \langle B, X_{-\alpha_1} \rangle$, $P_2 = \langle B, X_{-\alpha_2} \rangle$ be the minimal parabolic subgroups above *B*. By [1, p. 186], we have

$$\langle X_{\alpha_1}, X_{-\alpha_1} \rangle \cong \mathrm{SL}_2(3), \quad \langle X_{\alpha_2}, X_{-\alpha_2} \rangle \cong \mathrm{PSL}_2(3),$$

and hence $H \leq \langle X_{\alpha_1}, X_{-\alpha_1} \rangle$ and $H \cap \langle X_{\alpha_2}, X_{-\alpha_2} \rangle = 1$. The unipotent radical U_{P_1} of P_1 is $X_{\alpha_2}X_{\alpha_1+\alpha_2}X_{\alpha_1+2\alpha_2}$, and thus it coincides with B'. Moreover, $P_1 = U_{P_1}L_1$, with

$$L_1 = H\langle X_{\alpha_1}, X_{-\alpha_1} \rangle = \langle X_{\alpha_1}, X_{-\alpha_1} \rangle \cong SL_2(3).$$

Since $SL_2(3)' = Q_8$, we have

$$P_1' \geq \langle B', Q_8 \rangle = U_{P_1}Q_8$$
 and $P_1/U_{P_1}Q_8 \cong L_1/Q_8 \cong C_3$.

Hence $P'_1 = U_{P_1}Q_8$ has index 3 in P_1 . On the other hand we have $P_2 = U_{P_2}L_2$ and $L_2 = H\langle X_{\alpha_2}, X_{-\alpha_2} \rangle \cong S_4$. In this case $P'_2 = \langle U, X_{-\alpha_2} \rangle$ has index 2 in P_2 . Since l = 2 and $H \cong C_2$, we have $|\overline{U}| = r^2 p$ and $\overline{B} = C_r C_p$. But

$$[P_2/U] \cong [S_4/(S_4)_3] \cong C_p \times C_r,$$

so that $\overline{U} = C_{r^2} \times C_p$. Moreover it is clear that $|\overline{P}_1| = p$ and $|\overline{P}_2| = r$, since $P'_2 > U$, and $P'_2 \neq B$.

Suppose that there exists a maximal subgroup M of G containing P'_1 but different from P_1 . By index considerations, and from the fact that $(P_1)_2 \not\cong (P_2)_2$, we must have $M = P_1^g$ for some $g \notin P_1$. Let $X = (P'_1)^{g^{-1}}$. From $P'_1 < P_1^g$ it follows that $|P_1 : X| = 3$ and $X \neq P'_1$, since $g \notin P_1 = \mathcal{N}(P'_1)$. If $X \leq P_1$, then $X = P'_1$, a contradiction. Then $P_1/X_{P_1} \cong S_3$, and there exists $Y \leq P_1$ of index 2, again a contradiction. It follows that $[G/P'_1]$ is a chain of length 2.

Now *H* is the center of L_1 , and so $Y = U_{P_1}H$ is normal in P_1 . We have $[P_1/Y] \cong [L_2/H] \cong [A_4/1]$. Since $|\overline{P}_1| = p$ and \overline{P}'_1 is a chain of length 2, we also have $\overline{P}'_1 \cong C_{p^2}$, so that $\overline{P}'_1 \leq Z(\langle \overline{P}'_1, \overline{B} \rangle) = Z(\overline{Y})$. Now $\overline{Y}/\overline{P}_1$ is generated by the two minimal subgroups $\overline{B}/\overline{P}_1$ and $\overline{P}'_1/\overline{P}_1$. Also $\overline{B} < \overline{Y}$. Hence $\overline{Y}/\overline{P}_1$ is either cyclic, a *P*-group of order pq or a Frobenius group of order pq^{α} in which $[P_1/Y]$ dually embeds. Since $[P_1/Y] \cong [A_4/1]$, we are left with the case when $\overline{Y}/\overline{P}_1$ is a Frobenius group. But δ induces a bijection between the set of maximal subgroups of P_1/Y and the set of minimal subgroups of $\overline{Y}/\overline{P}_1$. In fact, if $\overline{X}/\overline{P}_1$ is a minimal subgroup of $\overline{Y}/\overline{P}_1$, then \overline{X} is 2-generated, and hence $\overline{X} = X^{\delta}$ for a unique $X \leq G$. But then $X \in [P/Y]$ and is maximal. On the other hand, if $Y < M < P_1$, then $\overline{P}_1 < \overline{M}$, by Lemma 1.2. Finally we deduce that P_1/Y has five maximal subgroups. Since there are no solutions to the equation $5 = 1 + q + \cdots + q^{\alpha}$, we have proved that

a finite simple Chevalley group admits no D-situation for $|K| \neq 2$.

To complete our consideration of finite simple Chevalley groups in *D*-situation, we are left with the case when the field *K* has two elements. Here $l \ge 2$ and a Borel subgroup *B* coincides with its unipotent subgroup *U*. Let *P* be a minimal parabolic subgroup over *B* and let $P = U_P L$ be a Levi decomposition of *P*. Then $L \cong S_3$ and $|U: U_P| = 2$. Set $S = U_P L_3$. Since S < P we have $S \in (\text{Co } G)_2$ and, by [3], *S* has the following property:

if
$$S \leq M \leq G$$
 then $P \leq M$.

It follows that if G is in D-situation with \overline{G} , then by Lemma 1.6 the minimal subgroups of \overline{U}_P generate the cyclic group \overline{B} of square-free order. We are indebted to B. Stellmacher for the following argument.

Let \tilde{P} be the maximal parabolic subgroup of G such that $P \cap \tilde{P} = U$, and let x be an involution of L not contained in \tilde{P} . Now $U_P \leq \tilde{P} \cap \tilde{P}^x$ and $x \in \mathcal{N}(\tilde{P} \cap \tilde{P}^x)$. Moreover $x \notin \tilde{P} \cap \tilde{P}^x$. Hence $[G/\tilde{P} \cap \tilde{P}^x]$ contains at least the three distinct elements \tilde{P} , \tilde{P}^x and $\langle x \rangle (\tilde{P} \cap \tilde{P}^x)$. This is a contradiction to the fact that $[G/M \cap M_1]$ has just 4 elements for any two distinct maximal subgroups M and M_1 above U_P .

3 Simple twisted groups of Lie type

We begin with twisted groups G^1 obtained from Chevalley groups $G = \mathscr{L}(\mathscr{K})$ whose Dynkin diagram has only single bonds. We denote by K_0 the subfield of fixed points

of *K* under the corresponding field automorphism. Therefore $|K_0| = q$ and $|K| = q^2$ for types 2A_l , 2D_l , 2E_6 , and $|K| = q^3$ for 3D_4 , where *q* is some prime power.

Suppose that we have $G^1 = {}^2A_l(q^2) \cong \text{PSU}_{l+1}(q^2)$ with $l \ge 2$. Here we are using [1, Theorem 14.5.1]. We consider separately the cases when l = 2, 3, 4, 5 and $l \ge 6$.

Let l = 2. Then $H^1 \cong K^*/C_d$, where d = (3, q + 1). We have $B^1 < G^1$, H^1 cyclic, and since H^1 is dual to $\overline{U}^1/\overline{B}^1$, it is a *p*-group. Suppose that *q* is even. Then q > 2since otherwise G^1 is not simple. For d = 1 we have $q^2 - 1 = p^a$, an equation with no solution. For d = 3, we have 3 | (q+1), and q+1 > 3 because q > 2. But then since $(q^2-1)/3 = p^a$, we must have p | (q-1) and p | (q+1), contradicting the fact that *q* is even.

Therefore we suppose that q is odd. For d = 1, $q^2 - 1 = p^{\alpha}$ implies p = 2, q = 3, that is, $G_1 = \text{PSU}_3(9)$ and $H^1 \cong C_8$. For d = 3, $(q^2 - 1)/3 = p^{\alpha}$ implies p = 2, $q - 1 = 2^m$ and $q + 1 = 3 \cdot 2^n$, m > 0 and n > 0. If m = 1, then q = 3, and $3 \not\downarrow (q + 1)$. Hence n = 1, so that q + 1 = 6 and q = 5. It follows that $G^1 = \text{PSU}_3(25)$ and $H^1 \cong C_8$. Thus we have to consider $\text{PSU}_3(9)$ and $\text{PSU}_3(25)$.

Let $G^1 = \text{PSU}_3(9)$. We refer to [2, p. 14]. Set $S = (G^1)_7$. There exists only one maximal subgroup above S, namely $M \cong \text{PSL}_2(7)$. We have $S < \mathcal{N}(S) = B < M$, and $[G^1/S]$ is a chain of length 3. By Proposition 1.5, \overline{G}^1 is a Frobenius group of order p^3q^{α} , where $\alpha > 1$. Now G^1 has N = 190 maximal subgroups, and so we have $N - 1 = 3^3.7$. If q is a prime divisor of N - 1, then $N = 1 + q + \cdots + q^{\alpha}$ has no solution.

Now let $G^1 = \text{PSU}_3(25)$, so that $|G^1| = 2^4 \cdot 3^2 \cdot 5^3 \cdot 7$. Set $S = (G^1)_2$. There exist four maximal subgroups M_i containing S, and one checks that $\mathcal{N}_{M_i}(S) = S$ for each i, and $S < M_i$ for one i, say i = 1. By Corollary 1.4, since \overline{S} has only four minimal subgroups, we have $|\overline{S}| = 3^2 \cdot 2^2$, with \overline{S}_3 cyclic acting irreducibly on the four-group \overline{S}_2 . Hence we have a duality between $[G^1/S]$ and $[\overline{S}/1]$, by (2). Since $M_1 \cap M_2 = S$ and $\overline{M}_1 \cup \overline{M}_2 < \overline{S}$, we have a contradiction.

Now let l = 3. Then $H^1 \cong (K^* \times K_0^*)/C_d$, where d = (4, q + 1). Here G^1 has two classes of maximal parabolic subgroups. Again we distinguish cases according to the parity of q. Suppose that $q = 2^n$. In this case d = (4, q + 1) = 1 and H^1 is cyclic if and only if q = 2. But then PSU₃(4) $\cong B_2(3)$, which has already been excluded in Section 2. We are left with n > 1. But by Proposition 1.1, $\overline{U}^1/\overline{B}^1$ is a *P*-group of order pq, with p > q, since $|H^1|$ is odd. Hence $(q - 1)^2(q + 1) = p^2$, a contradiction.

Now suppose that q is odd. Consider first the case when d = 2. Then $(H^1)_2 \ge (C_8 \times C_4)/C_2$ since $4 \not\upharpoonright (q+1)$. Hence $(H^1)_2$ is neither cyclic nor elementary abelian, and this is a contradiction by Proposition 1.1. Therefore we are left with d = 4. Suppose that q > 3. Then there exists an odd prime p such that $p \mid (q-1)$. Also $(H^1)_p$ is elementary abelian of order p^2 by Proposition 1.1. But then $\overline{U}^1/\overline{B}^1$ is a P-group, in contradiction to $H_2^1 \neq 1$. We are therefore left with q = 3, that is, with the group $G^1 = \text{PSU}_4(9)$.

Let P be a maximal parabolic subgroup isomorphic to $3^{1+4}_+.2S_4$ (see [2, p. 52]). Hence $[P/U_P] \cong 2S_4$, so that $[P/U^1] \cong [2S_4/(2S_4)_3]$, where $(2S_4)_3 \cong C_3$ and $(2S_4)_2 \cong Q_{16}$. But now in the interval $[2S_4/(2S_4)_3]$ there is a unique minimal subgroup R, and $[2S_4/R]$ is a diamond, by which we mean the Hasse diagram labelled B_4 in [11, p. 5]. Since $[2S_4/(2S_4)_3]$ is dual to $[\overline{U}^1/\overline{P}]$, the group $\overline{U}^1/\overline{P}$ has only one

Brought to you by | Tor / Vallisneri Authenticated | 147.162.22.206 Download Date | 11/18/12 3:23 PM maximal subgroup, but it is not cyclic. This contradiction completes the case when l = 3.

Suppose that l = 4. Then $H^1 \cong (K^* \times K^*)/C_d$, where d = (5, q + 1). Here G^1 has two classes of maximal parabolic subgroups. If q is odd, then $(H^1)_2$ is neither cyclic nor the four-group and we have a contradiction. Therefore we may assume that q is even. Since there are only two minimal parabolic subgroups above B^1 and $|H^1|$ is odd, H^1 must be either cyclic, or isomorphic to $C_p \times C_p$, with p odd. Hence we are left with q = 2, and $G^1 = U_5(2)$ (see [2, p. 72]).

Set $S = (G^1)_{11}$. Then there is a unique maximal subgroup M containing S with $M \cong PSL_2(11)$. It follows that $[G^1/S]$ is the chain

$$S < B = \mathcal{N}(S) < M < G^1$$

and \overline{G}^1 is a Frobenius group of order p^3q^{α} , with $\alpha > 1$, by Proposition 1.5. Now the number of maximal subgroups of G^1 is N = 26302, and N - 1 = 3.11.797. If qis a prime divisor of N - 1, then the equation $N = 1 + q + \cdots + q^{\alpha}$ has no solution, and we have a contradiction.

Now suppose that l = 5. Here $H^1 \cong (K^* \times K^* \times K_0^*)/C_d$, where d = (6, q + 1). If q is odd, then $(H^1)_2$ is neither cyclic nor the four-group and this is a contradiction. Thus we suppose that q is even. Suppose that q > 2. Then there is a prime p dividing q - 1. Hence H^1 contains a subgroup isomorphic to $C_p \times C_p \times C_p$, and this is also a contradiction. We are left with q = 2, that is with $G^1 = U_6(2)$. We postpone the treatment of this case.

Finally suppose that $l \ge 6$. Then $H^1 \cong R/C_d$, where $R \ge K^* \times K^* \times K^*$ and d = (l+1, q+1). If q is odd, then $(H^1)_2$ is neither cyclic nor the four-group and this is a contradiction. Therefore we suppose that q is even. If q > 2, then there is a prime p dividing q - 1. Hence H^1 contains a subgroup isomorphic to $C_p \times C_p \times C_p$, which is a contradiction. We are left with q = 2. Then H^1 contains a subgroup isomorphic to $C_3 \times C_3 \times C_3$, which again is a contradiction.

Suppose that $G^1 = {}^2D_l(K)$. Then

$$H^{1} \cong (K^{*} \times \underbrace{K_{0}^{*} \times \cdots \times K_{0}^{*}}_{l-2})/N,$$

where N = 1, C_2 or $C_2 \times C_2$, and $|N| = (4, q^l + 1)$. If q is odd, then $(H^1)_2$ is non-trivial and is neither cyclic nor the four-group. This is a contradiction, so assume that q is even. Then N = 1, and H^1 is 2-generated if and only if q = 2, that is, $G = {}^2D_l(4)$. We shall deal with this case later.

Suppose that $G^1 = {}^{3}D_4(q^3)$. Then $H^1 \cong K^* \times K_0^*$. We consider first the case when q is odd. If 4|(q-1), then $(H^1)_2$ is neither cyclic nor elementary abelian, which is a contradiction. Hence q-1=2m, where m is odd. Since G^1 has two minimal parabolic subgroups, we have

$$\overline{B}^1 \cong C_2 \times C_r, \quad \overline{U}^1 / \overline{B}^1 \cong \overline{V} \times \overline{C},$$

where \overline{V} is the four-group and \overline{C} is cyclic of odd order r^{α} with $\alpha \ge 0$. Hence either

 $H^1 \cong V$ or $H^1 \cong V \times C$, where *C* is a cyclic group of odd order. But then q-1=2, since otherwise *C* is not cyclic. Therefore we are left with q=3, that is, $G^1 = {}^{3}D_4(3^3)$. In this case, $\overline{U}_1 = Q_8 C_r$. Consider $B^1 < P < G^1$ such that $P^{\delta} = C_r$. Then $[P/U^1]$ is dual to $[Q_8/1]$, but $B^1/U^1 \cong V \times C_{13}$, which is a contradiction.

We now consider the case when q is even. If q > 2, then a prime p divides q - 1. Thus $H^1 \ge C_p \times C_p$, so that $|\overline{U}^1/\overline{B}^1| = pr$, with p > r. But then $H^1 = C_p \times C_p$, and we have a contradiction on considering the order of H^1 . Therefore we may assume that q = 2, that is, $G^1 = {}^{3}D_4(8)$ (see [2, p. 89]). Set $S = G_{13}$. There exists a unique maximal subgroup M containing S, namely $M = \mathcal{N}(S) = S \rtimes C_4$. Hence [G/S] is a chain of length 3 and \overline{G}^1 is a Frobenius group of order p^3q^{α} , with $\alpha > 1$. Now the number of maximal subgroups of G^1 is N = 5565964, and N - 1 = 3.13.43.3319. If q is a prime divisor of N - 1, the equation $N = 1 + q + \cdots + q^{\alpha}$ has no solution, and we have a contradiction, by Proposition 1.5.

Suppose that $G^1 = {}^2E_6(q^2)$. Now $H^1 \cong (K^* \times K^* \times K_0^* \times K_0^*)/C_d$ and d = (3, q+1). If q is odd, then $(H^1)_2$ is neither cyclic nor the four-group, which is a contradiction. Thus assume that q is even. If q > 2, then there is a prime p dividing q - 1. Hence H^1 contains a subgroup isomorphic to $C_p \times C_p \times C_p$, which again is a contradiction. We are left with q = 2, that is, $G^1 = {}^2E_6(4)$.

We postpone consideration of this group until later and continue with the Suzuki and Ree groups.

Suppose that $G^1 = {}^2B_2(2^{2m+1})$ with $m \ge 1$. We refer to [5, §7]. Here the interval $[G^1/H^1]$ contains only three maximal subgroups, namely B^1 , $\mathcal{N}(H^1) = N^1$ and B^1_{op} . Moreover $|N^1: H^1| = 2$, so that, by Corollary 1.4, \overline{H}^1 is a four-group dual to $[G^1/H^1]$. This is a contradiction, since H^1 is not maximal in B^1 .

Suppose that $G^1 = {}^2G_2(3^{2m+1})$. This group is simple for $m \ge 1$ (see [1, Theorem 14.4.1]). Also $H^1 (\cong K^*)$ is cyclic of order $3^{2m+1} - 1$, and $B^1 < G^1$, by [5, p. 292]. So \overline{U}_1 is a cyclic *p*-group of order $p^{\alpha+1}$. Therefore $3^{2m+1} - 1 = r^{\alpha}$ for some prime *r*, so that r = 2, which implies $\alpha = 1$ and m = 0. This is a contradiction.

Suppose that $G^1 = {}^2F_4(2^{2n+1})$. This group is simple for $n \ge 1$ (see [1, p. 268]). In this case, G^1 has two classes of parabolic subgroups and $H^1 \cong K^* \times K^*$. Hence $\overline{U}^1/\overline{B}^1$ is a *P*-group and $\overline{U}^1 = C_{p^2}C_{t^2}$, $p = 2^{2n+1} - 1$ and $Z = Z(\overline{U}^1) = C_t$. Let P_1, P_2 be the minimal parabolic subgroups above B^1 . Then, by [9], we have $[P_1/U^1] \cong [P_2/U^1]$. This is a contradiction, since $[\overline{U}^1/C_t] \ncong [\overline{U}^1/C_p]$.

To conclude our consideration of the twisted groups, we deal with the cases which were excluded above, namely ${}^{2}\!A_{5}(4) \cong U_{6}(2)$, ${}^{2}\!D_{l}(4)$ and ${}^{2}\!E_{6}(4)$. We need a lemma similar to the result used in the case of Chevalley groups over a field of two elements. For this purpose we introduce some notation.

Let *G* be a simple Chevalley group over *K* with |K| = 4. Let Φ be the set of roots, Φ^+ a set of positive roots and Π the corresponding fundamental system. Let *U* be the maximal unipotent subgroup corresponding to Π , and *B* the corresponding Borel subgroup. For every root α , the root subgroup X_{α} is isomorphic to *K*. The subgroups B^1 , N^1 form a (B, N)-pair of the twisted group G^1 , by [1, Theorem 13.5.4]. Let Φ^1 be the corresponding root system of G^1 . Fix $r \in \Pi$ such that $r\rho = r$, where ρ is the symmetry of the Dynkin diagram we are considering. By [1, Proposition 13.6.3], we have $X_r^1 \cong K_0$. In particular it follows that

$$\langle X_r^1, X_{-r}^1 \rangle \cong \mathrm{SL}_2(2) \cong S_3.$$

Put $P = \langle B^1, X_{-r}^1 \rangle$. Then *P* is a minimal parabolic subgroup containing B^1 , $U_P = \langle X_s^1 | s \in (\Phi^1)^+ \setminus \{r\} \rangle$ is its unipotent radical and $P = U_P L$, with $L = H^1 \langle X_r^1, X_{-r}^1 \rangle$, is a Levi decomposition of *P*. Since $\langle X_r^1, X_{-r}^1 \rangle \cong S_3$ and $[H^1, X_{\pm r}^1] = 1$, we must have $H^1 \leq L$ and $L/H^1 \cong S_3$. Then $H^1 U_P \leq P$, and $P/H^1 U_P \cong S_3$. Moreover, *P* contains $S = U_P L_3$ as a subgroup of index 2, and $S \cap B^1 = H^1 U_P$.

Lemma 3.1. Every maximal subgroup of G^1 containing S also contains P.

Proof. We use the corresponding argument in [3], replacing U by B^1 .

Now, in order to exclude the remaining cases, we may proceed as we did for the simple Chevalley groups over the field of two elements, replacing U with B^1 and U_P by H^1U_P . Therefore we have proved the following statement:

no finite simple twisted group of Lie type admits a D-situation.

Finally in this section we consider the simple Tits group. Let $G^1 = ({}^2F_4(2))'$. We refer to [2, p. 74]. There exists a maximal parabolic subgroup P such that $B = U < P = U_P L$, where $P/U_P \cong L \cong S_3$. Set $S = U_P L_3$. Then P is the unique maximal subgroup containing S. By Lemma 1.6, \overline{S} is cyclic of order r^2 , and \overline{U}_P is an irreducible Zassenhaus group of order 12, since $\overline{U}_P/\overline{P}$ is isomorphic to S_3 . Let \tilde{P} be the other parabolic subgroup above B, and let x be an involution of L not contained in \tilde{P} . Now $U_P \leq \tilde{P} \cap \tilde{P}^x$ and $x \in \mathcal{N}(\tilde{P} \cap \tilde{P}^x)$. Moreover $x \notin \tilde{P} \cap \tilde{P}^x$. Hence $[G/\tilde{P} \cap \tilde{P}^x]$ contains at least the three distinct elements \tilde{P} , \tilde{P}^x and $\langle x \rangle (\tilde{P} \cap \tilde{P}^x)$. This is a contradiction to the fact that $[G/M \cap M_1]$ has just four elements for any two distinct maximal subgroups M and M_1 above U_P .

4 The sporadic groups

This section is devoted to showing that no sporadic simple group admits a *D*-situation. We consider all 26 of these groups in turn. In each case we include the Atlas reference.

1. $G = M_{11}$ ([2, p. 18]). Set $S = G_{11}$. Then

$$S \underset{5}{<} \mathcal{N}(S) \mathrel{<} M \cong L_2(11) \mathrel{<} G,$$

and [G/S] is a chain of length 3. Here the integer below the inclusion sign denotes index. Now the number of maximal subgroups of G is N = 309 and $N - 1 = 2^2.7.11$. If q is a prime divisor of N - 1, then the equation $N = 1 + q + \cdots + q^{\alpha}$ has no solution and we have a contradiction, by Proposition 1.5.

2. $G = M_{12}$ ([2, p. 31]). Again set $S = G_{11}$. There exist three conjugacy classes of maximal subgroups containing S, represented by

$$M_1 = M_{11}, \quad M_2 = M_{11}, \quad M_3 \cong L_2(11).$$

Moreover $\mathcal{N}(S) = S \rtimes C_5$ and the maximal subgroups containing it are exactly those indicated above. Since $N = \mathcal{N}(S)$ is maximal in M_3 , but is not maximal in M_{11} , the group \overline{N} cannot be metacyclic. Hence it is a Frobenius group of order pq^{α} with $\alpha > 1$, by Proposition 1.3, and this is a contradiction, since \overline{N} contains more than three minimal subgroups.

3. $G = M_{22}$ ([2, p. 39]). Again set $S = G_{11}$. Then

$$S \underset{5}{\leqslant} \mathcal{N}(S) \leqslant M \cong L_2(11) \leqslant G,$$

and [G/S] is a chain of length 3. Now the number of maximal subgroups of G is N = 2300 and $N - 1 = 11^2.19$. If q is a prime divisor of N - 1, then the equation $N = 1 + q + \cdots + q^{\alpha}$ has no solution, and we have a contradiction by Proposition 1.5.

4. $G = M_{23}$ ([2, p. 71]). Now set $S = G_{23}$. Then

$$S \mathop{<}_{11} \mathcal{N}(S) \mathop{<} G,$$

and [G/S] is a chain of length 2. Now the number of maximal subgroups of G is N = 44413 and $N - 1 = 2^2.3.3701$. If q is a prime divisor of N - 1, the equation $N = 1 + q + \cdots + q^{\alpha}$ has no solution, and we have a contradiction, again by Proposition 1.5.

5. $G = M_{24}$ ([2, p. 96]). Again set $S = G_{23}$. There exist two maximal subgroups from different conjugacy classes containing S, namely $M_1 \cong M_{23}$ and $M_2 \cong L_2(23)$. Both contain $\mathcal{N}(S)$ and we have

$$[G/S] = S \lt \mathscr{N}(S) \lt \mathscr{M}_{23}, L_2(23) \lt \mathscr{G}.$$

Hence S is not the intersection of cocyclic subgroups, and this is a contradiction.

6. $G = J_1$ ([2, p. 36]). Now set $S = G_{19}$. Then there exists a unique maximal subgroup M above S, namely $M = \mathcal{N}(S) \cong S \rtimes C_6$. Therefore \overline{S} has a unique minimal subgroup and is not cyclic. Hence \overline{S} is a quaternion group, which has three maximal subgroups, which is again a contradiction.

7. $G = J_2$ ([2, p. 42] and [4, p. 486]). Set $S = G_7$. There exist two maximal subgroups from different conjugacy classes containing *S*, namely $M \cong U_3(3)$ and $L \cong PGL_2(7)$. In fact there are exactly three maximal subgroups above *S*, namely *M*, M_1 and *L*, where M_1 is a conjugate of *M*. We have

$$M \cap L = M_1 \cap L = F \cong L_2(7)$$
 and $|L:F| = 2$.

Let $N = \mathcal{N}(S)$ and $B = M \cap N$. Then $N \leq L$ and |N : B| = 2. The interval [L/B] is a diamond. In particular it follows that N is cocyclic and B is maximal in N. By Lemma 1.2 and Proposition 1.3, we obtain information on the structure of \overline{B} .

Suppose that \overline{B} is a *p*-group. We have $\overline{F} < \overline{B}$ and $\overline{N} < \overline{B}$, and hence

$$\overline{L} = \overline{F} \cap \overline{N} \trianglelefteq \overline{B}.$$

But $[\bar{B}/\bar{L}]$ is a diamond and this is a contradiction. Suppose that \bar{B} is metacyclic. Then $|\bar{B}| = p^2 q$, with $|\bar{N}| = p^2$. But \bar{F} has order pq and has three minimal subgroups, so that p = q = 2, and this is a contradiction. Thus we are left with $\bar{B} = \bar{N}Q$, a group of order p^2q^{α} where $\alpha > 1$, with Q elementary abelian of order q^{α} . But then \bar{B} has at least four minimal subgroups, which is a contradiction.

8. $G = J_3$ ([2, p. 82]). Set $S = G_{19}$. There exist two maximal subgroups M_1 , M_2 containing S from different conjugacy classes, both isomorphic to $L_2(19)$. We have

$$[G/S] = S \lt \mathscr{N}(S) \lt \mathscr{M}_1, M_2 \lt \mathscr{G}.$$

Hence S is not the intersection of cocyclic subgroups.

9. G = HS ([2, p. 80]). This time set $S = G_5$. There are two maximal subgroups M_1 , M_2 containing S from different conjugacy classes, namely

$$M_1 \cong U_3(5) : 2, \quad M_2 \cong U_3(5) : 2.$$

We have $M_1 \cap M_2 = N = \mathcal{N}(S)$. Let U_i be the subgroup of M_i isomorphic to $U_3(5)$ for i = 1, 2. Then $U_1 \cap N = U_2 \cap N = X$ has index 2 in N. Since X is maximal in the cocyclic subgroup N, we have $\overline{N} < \overline{X}$. Moreover $\overline{N} \leq \overline{X}$, since \overline{N} is the subgroup generated by the minimal subgroups of \overline{X} . Since \overline{X} has only two minimal subgroups, we have $|\overline{X}| = p^{\alpha}q^{\beta}$, with $\alpha \geq 2$ and $\beta \geq 2$ since both \overline{U}_1 and \overline{U}_2 are cyclic. On the other hand we have $|\overline{X} : \overline{N}| = r$ for some prime r and $|\overline{N}| = pq$. Hence $|\overline{X}| = pqr$, which is a contradiction.

10. G = McL ([2, p. 100]). Now set $S = G_{11}$. There exist three maximal subgroups M_i containing S from different conjugacy classes. Here $M_1 \cong M_{22}$, $M_2 \cong M_{11}$, $M_3 \cong M_{22}$. In each M_i there exists a unique maximal subgroup containing S and also $\mathcal{N}(S)$ (each isomorphic to $L_2(11)$). It follows that S is not the intersection of cocyclic subgroups.

11. G = Suz ([2, p. 131]). Here set $S = G_{13}$. There exist four maximal subgroups M_i containing S from different conjugacy classes:

 $M_1 \cong G_2(4), \quad M_2 \cong L_3(3) : 2, \quad M_3 \cong L_3(3) : 2, \quad M_4 \cong L_2(25).$

Let $B = \mathcal{N}_{M_2}(S)$. We have the following inclusions:

$$B < L \cong L_2(13) < M_1 < G, \quad B < M_2 < G,$$
$$B < T \cong U_3(4) : 2 < M_1 < G.$$

In particular L and T are cocyclic and $L \cap T = B$. It follows that $\overline{B} = \langle \overline{L}, \overline{T} \rangle$ and $\overline{M}_2 < \overline{B}$. Now \overline{B} is not metacyclic, since the Dedekind chain condition is not satisfied, and hence it is a Frobenius group of order pq^{α} , where $\alpha > 1$, with an elementary abelian Sylow q-subgroup, by Proposition 1.3. We have $|\overline{M}_2| = p$ and $|\overline{M}_1| = q$ since \overline{M}_1 is not maximal in \overline{B} . It follows that \overline{L} and \overline{T} are both contained in \overline{B}_q , which is a contradiction, since $\overline{B} = \langle \overline{L}, \overline{T} \rangle$.

12. G = He ([2, p. 104]). Set $S = G_{17}$. There exists a unique maximal subgroup M containing S, namely M = H : 2, with $H \cong S_4(4)$. In H there are exactly two maximal subgroups L and L^* containing S and both are isomorphic to $L_2(16) : 2$. Let $N_1 = \mathcal{N}_H(S)$. Then we have

$$N_1 < L, \quad N_1 < L^*, \quad N_1 = L \cap L^*.$$

Since \overline{N}_1 has a unique minimal subgroup it follows that it is a generalized quaternion group. Now we have

$$\overline{L} < \overline{N}_1, \quad \overline{L}^* < \overline{N}_1, \quad \overline{M} < \overline{H} = \overline{L} \cap \overline{L}^* \trianglelefteq \overline{N}_1,$$

so that $\overline{N}_1/\overline{H}$ is a four-group, and this is a contradiction because $\overline{N}_1/\overline{H}$ has only two minimal subgroups, $\overline{L}/\overline{H}$ and $\overline{L}^*/\overline{H}$.

13. G = Ru ([2, p. 126]). Now set $S = G_{29}$. There exists a unique maximal subgroup $M \cong L_2(29)$ containing S as well as $N = \mathcal{N}(S) \cong S \rtimes C_{14}$. We conclude the argument as for $G = J_1$.

14. $G = \text{Co}_1$ ([2, p. 180] and [6, p. 304]). Here set $S = G_{13}$. There exist two maximal subgroups M_i containing S from different conjugacy classes, namely

$$M_1 \cong (3. \operatorname{Suz}) \rtimes C_2, \quad M_2 \cong (A_4 \times G_2(4)) \rtimes C_2.$$

We have $\mathcal{N}(S) \leq M_2$ and $\mathcal{N}(S) \cong ((S \rtimes C_6) \times A_4) \rtimes C_2$. Let $H = S \times V_4 \leq \mathcal{N}(S)$ $(V_4 \leq A_4)$. We claim that $H \leq M_1$. In fact we know that $|\mathcal{N}_{Suz}(S) : S| = 6$ and $D_{26} \leq \mathcal{N}_{Suz}(S)$. Hence no involution in 3. Suz centralizes S. Therefore $V_4 \leq M_1$, since V_4 centralizes S. It follows that M_2 is the unique maximal subgroup of G above H. Hence \overline{H} , having a unique minimal subgroup, is a cyclic p-group or a generalized quaternion group. But [G/H] is not a chain, since $((S \rtimes C_6) \times V_4)/H \cong C_6$. On the other hand, if \overline{H} is generalized quaternion, then all its subgroups are 2-generated, and $\delta |[G/H]$ is a duality onto \overline{H} . But \overline{H} has three maximal subgroups, which is a contradiction, since in [G/H] there are only two minimal subgroups.

15. $G = \text{Co}_2$ ([2, p. 154]). Set $S = G_{23}$. There exists a unique maximal subgroup $M \cong M_{23}$ containing S, and [G/S] is the chain

$$S < \cdot \mathcal{N}(S) < \cdot M < \cdot G,$$

where $\mathcal{N}(S) \cong S \rtimes C_{11}$. Hence \overline{G} is a Frobenius group of order $p^3 q^{\alpha}$, with $\alpha > 1$.

Now G has N = 3581796533 maximal subgroups, and $N - 1 = 2^2.23.101.385471$. If q is a prime divisor of N - 1, one checks that $N = 1 + q + \cdots + q^{\alpha}$ has no solution.

16. $G = \text{Co}_3$ ([2, p. 134]). Again set $S = G_{23}$. There exists a unique maximal subgroup *M* above *S* and it is isomorphic to M_{23} . Also [G/S] is the chain

$$S < \cdot \mathcal{N}(S) < \cdot M < \cdot G,$$

where $\mathcal{N}(S) \cong S \rtimes C_{11}$. So \overline{G} is a Frobenius group of order $p^3 q^{\alpha}$, with $\alpha > 1$. Now G has $N = 424\,818\,005$ maximal subgroups, and $N - 1 = 2^2.13^2.23.89.307$. If q is a prime divisor of N - 1, then $N = 1 + q + \cdots + q^{\alpha}$ has no solution.

17. $G = Fi_{22}$ ([2, p. 156]). Here set $S = G_{11}$. There are three maximal subgroups containing S from different conjugacy classes, namely

$$M_1 \cong 2.U_6(2), \quad M_2 \cong 2^{10}.M_{22}, \quad M_3 \cong M_{12}.$$

We have $|\mathcal{N}_{M_i}(S)| = 5.11$ for i = 2, 3 and $\mathcal{N}_{M_1}(S) = \mathcal{N}(S)$ has order 2.5.11. Now $[G/\mathcal{N}(S)]$ has only one maximal subgroup M_1 , and M_1 has at least five maximal subgroups above $T = \mathcal{N}(S)$, namely

$$2 \cdot M_{12}, \quad 2 \cdot (S_3 \times U_4(2)), \quad 2 \cdot U_5(2), \quad 2 \cdot M_{22}, \quad 2 \cdot M_{22}.$$

Since \overline{T} is a generalized quaternion group, it has only three groups covering \overline{M}_1 , and this is a contradiction.

18. $G = \operatorname{Fi}_{23}$ ([2, p. 177] and [6, p. 304]). Now set $S = G_{23}$. There are two maximal subgroups containing *S* from different conjugacy classes, namely $M_1 \cong 2^{11} \cdot M_{23}$ and $M_2 \cong L_2(23)$. Let $B = \mathcal{N}_{M_2}(S)$. Then we know that $B = S \rtimes C_{11}$, and $S < B < M_2$. On the other hand, let $N \trianglelefteq M_1$ be such that $N \cong 2^{11}$ and $M_1/N \cong M_{23}$. Then SN/N is a Sylow 23-subgroup of M_1/N , and we know that $\mathcal{N}_{M_1/N}(SN/N) \cong SC_{11}$. Replacing M_1 and M_2 by conjugates if necessary, it follows that we may assume that $\mathcal{N}(S) \leq M_1$. In particular M_1 is the unique maximal subgroup conjugate to M_1 containing *S*.

Since $B < M_2 < G$, by Proposition 1.3, \overline{B} is either metacyclic or it is a Frobenius group. But we have $B < NB < M_1 < G$, so that \overline{B} is not metacyclic. Therefore \overline{B} is a Frobenius group of order pq^{α} with $\alpha \ge 2$. It follows that \overline{NB} is elementary abelian of order q^{β} with $\beta \ge 2$, since \overline{NB} is not cyclic. Let M be a maximal subgroup containing NB. Then M is conjugate either to M_1 or to M_2 . By order considerations, it must be conjugate to M_1 , and therefore $M = M_1$. This is a contradiction, since \overline{NB} has more than one minimal subgroup.

19. $G = \operatorname{Fi}_{24}'([2, p. 200] \text{ and } [6, p. 304])$. Set $S = G_{29}$. There exists a unique maximal subgroup M of G containing S, namely $M = \mathcal{N}(S) = S \rtimes C_{28}$. Hence \overline{S} is a generalized quaternion group, and we have a contradiction.

20. G = O'N ([2, p. 132]). Set $S = G_{31}$. There are two maximal subgroups M_i containing S. Both are isomorphic to $L_2(31)$ and contain $N = \mathcal{N}(S)$. We have

$$N = S \rtimes C_{15}, \quad N \lt \cdot M_1, \quad N \lt \cdot M_2, \quad M_1 \cap M_2 = N.$$

Let $X \in [N/S]$ be the subgroup of index 5 in N. Then X is not the intersection of cocyclic subgroups, since $[M_1/X]$ and $[M_2/X]$ are chains and X is not cocyclic.

21. G = Ly ([2, p. 174]). This time set $S = G_{67}$. There exists a unique maximal subgroup M containing S, namely $M = \mathcal{N}(S) = S \rtimes C_{22}$, and we have the usual contradiction.

22. $G = J_4$ ([2, p. 190] and [6, p. 304]). Here set $S = G_{43}$. There exists a unique maximal subgroup M containing S, namely $M = \mathcal{N}(S) = S \rtimes C_{14}$, and we conclude the argument as before.

23. G = HN ([2, p. 164]). Now set $S = G_{19}$. There exists a unique maximal subgroup M containing S, namely $M \cong U_3(8) : 3$. Let $N_2 = \mathcal{N}(S)$, H be the normal subgroup of M isomorphic to $U_3(8)$ and $N_1 = \mathcal{N}_H(S)$. Then $N_1 \lhd N_2 < M$. Suppose that $N_1 < X < M$ with $H \neq X \neq N_2$. Then $H \cap X = N_1 \trianglelefteq X$, so that $N_1 \trianglelefteq \langle X, N_2 \rangle$ = M. Hence $N_1 \trianglelefteq H$, which is a contradiction, since H is simple. But then \overline{N}_1 has a unique minimal subgroup but it is neither cyclic nor a quaternion group, and this is a contradiction.

24. G = Th ([2, p. 176] and [6, p. 304]). Set $S = G_{31}$. There are two maximal subgroups containing S from different conjugacy classes, namely

$$M_1 = \mathcal{N}(S) \cong S \rtimes C_{15}, \quad M_2 \cong 2^5 \cdot L_5(2).$$

Also M_2 has a minimal normal subgroup N with $M_2/N \cong L_5(2)$. Set $T = \mathcal{N}_{M_2}(S)$. Then |T:S| = 5 and $|M_1:T| = 3$. Consider the subgroup NT of M_2 . Thus $T < NT < M_2$. Since $T < M_1$, the Dedekind chain condition does not hold in \overline{T} and \overline{T} is a Frobenius group of order pq^{α} with $\alpha > 1$ and $|\overline{M}_1| = p$. But there are only four maximal subgroups of G containing T, namely M_1 and 3 subgroups conjugate to M_2 . This is a contradiction, since \overline{T} has at least seven minimal subgroups.

25. G = B ([16]). Set $S = G_{47}$. There exists a unique maximal subgroup containing S, namely $M = \mathcal{N}(S) = S \rtimes C_{23}$. It follows that [G/S] is a chain of length 2. Hence, by Proposition 1.5, \overline{G} is a Frobenius group of order p^2q^{α} with $\alpha > 1$. There exists in G a maximal subgroup M_1 of order 2^5 .3.5.31. Hence $M \cap M_1 = 1$, so that $\overline{G} = \langle \overline{M}, \overline{M}_1 \rangle$, which is a contradiction, since $\langle \overline{M}, \overline{M}_1 \rangle$ is contained in a subgroup of order pq^{α} of \overline{G} .

26. G = M ([2, p. 220] and [6, p. 305]). Here

$$|G| = 2^{46} \cdot 3^{20} \cdot 5^9 \cdot 7^6 \cdot 11^2 \cdot 13^3 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 47 \cdot 59 \cdot 71$$

We set $S = G_{59}$. There exists a maximal subgroup $M = \mathcal{N}(S) = S \rtimes C_{29}$. Assume there exists another maximal subgroup M_1 containing S. Then M_1 and M are not conjugate. It follows that $\mathcal{N}_{M_1}(S) = S$ and, by a theorem of Burnside, there exists a normal complement K of S in M_1 . For each prime p dividing |K|, S normalizes a Sylow p-subgroup of M_1 and acts faithfully on it since $\mathscr{C}(S) = S$. Therefore $p \neq 17, 19, 23, 29, 31, 47, 71$. Let P be one of these Sylow p-subgroups, so that $p \in \{2, 3, 5, 7, 11, 13\}$. Consider the chief factors of SP below P. Then the smallest values of *n* for which $GF(p^n)$ has a 59th root of 1 are 29 and 58, and n = 58 for p = 2. Therefore *S* cannot act faithfully, and we have a contradiction. Hence *M* is the unique maximal subgroup containing *S*.

There exists a maximal subgroup $M_1 = \mathcal{N}(G_{71}) \cong G_{71} \rtimes C_{35}$, and clearly we have $M \cap M_1 = 1$. Then we may conclude the argument as for G = B.

We have completed the examination of all sporadic groups. Taking into account the results from the previous sections we have therefore proved our Theorem.

References

- [1] R. W. Carter. Simple groups of Lie type (Wiley, 1989).
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson. *Atlas of finite groups* (Clarendon Press, 1985).
- [3] L. Di Martino and M. Tamburini. Do finite simple groups always contain subgroups which are not intersection of maximal subgroups? *Ist. Lombardo Accad. Sci. Lett. Rend. A* 114 (1980), 65–72.
- [4] L. Finkelstein and A. Rudvalis. Maximal subgroups of the Hall–Janko–Wales group. J. Algebra 24 (1973), 486–493.
- [5] B. Huppert and N. Blackburn. Finite groups, vol. 2 (Springer-Verlag, 1982).
- [6] C. Jansen, K. Lux, R. Parker and R. Wilson. *An Atlas of Brauer characters* (Clarendon Press, 1995).
- [7] M. W. Liebeck, C. E. Praeger and J. Saxl. A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111 (1987), 365–383.
- [8] A. Lucchini. A bound on the number of generators of a finite group. Arch. Math. (Basel) 53 (1989), 313–317.
- [9] G. Malle. The maximal subgroups of ${}^{2}F_{4}(q^{2})$. J. Algebra 139 (1991), 52–69.
- [10] D. J. S. Robinson. A course in the theory of groups (Springer-Verlag, 1982).
- [11] R. Schmidt. Subgroup lattices of groups (de Gruyter, 1994).
- [12] S. E. Stonehewer and G. Zacher. Recognising dualities of groups. Comm. Algebra 23 (1995), 2939–2958.
- [13] M. Suzuki. On finite groups with cyclic Sylow subgroups for all odd primes. Amer. J. Math. 77 (1955), 657–691.
- [14] M. Suzuki. Group theory, vol. 1 (Springer-Verlag, 1982).
- [15] M. Suzuki. On the lattice of subgroups of finite groups. Trans. Amer. Math. Soc. 70 (1951), 345–371.
- [16] R. A. Wilson. The maximal subgroups of the Baby Monster, I. J. Algebra 211 (1999), 1–14.
- [17] G. Zacher. Caratterizzazione dei gruppi immagini omomorfe duali di un gruppo finito. *Rend. Sem. Mat. Univ. Padova* 31 (1961), 412–422.

Received 21 October, 1999; revised 22 January, 2001

- M. Costantini, G. Zacher, Dipartimento di matematica pura ed applicata, Università di Padova, Via Belzoni 7, 35131 Padova, Italy
 E-mail: costantini@math.unipd.it
 zacher@math.unipd.it
- S. E. Stonehewer, Mathematics Institute, University of Warwick, Coventry CV4 7AL, England E-mail: ses@maths.warwick.ac.uk