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Abstract 
The branch of Control Theory for Lagrangian mechan- 
ical systems where configuration variables are used as 
control variables is called here Hyper-impulsive control 
theory. We suppose that part of system’s coordinates 
are ‘controllized’ i.e. identified with a control function 
U that can be discontinuous. Due to the presence of 
the derivative of U in the dynamic equation, the result- 
ing motion is discontinuous both in the configurations 
and momenta in the general case (hyper-impulsive mo- 
tion). In this paper we briefly review the theory of 
hyper-impulsive motion, we study in detail the robust- 
ness of hyper-impulsive control and we apply the the- 
ory to test mechanical systems: the rigid body, a planar 
space robot and the ball in the hoop system. 

1 Introduction 
Some authors ([3],[5] ,[SI) have considered the possibility 
of realizing a control over (some of) the mechanical sys- 
tem’ configuration variables by using the reaction forces 
internal to the system as control forces. To mathemat- 
ically describe this, we suppose that the manifold M 
representing the possible configurations of the system 
is fibered over a manifold N that represents the state 
of the constraints. Then we assign a path u ( t )  in the 
base space N ,  that is an open loop control, and we as- 
sume that workless reaction forces can steer the whole 
system along a path q ( t )  in M that projects on u(t) .  
The (kinematic) control thus realized by assigning the 
value of some of the system’ configuration variables (in 
some coordinate chart) is generally more flexible and 
accurate with respect to the dynamic control prescrib- 
ing force values; moreover it is widely used in presence 
of nonholonomic constraints as the ones arising in the 
dynamics of free-flying space robots. 

In this paper we focus on the case where the control 
function to be implemented presents (finite) disconti- 
nuities; this is frequently the case for optimal trajec- 
tories related to optimal control problems. On a lo- 

cal trivialiaation of the fibration, with fibered coordi- 
nates q = (z, U ) ,  the dynamic equations of the system 
in phase space z = (c,p), when the control is u(t),read 

where dot denotes time derivative and denotes trans- 
position. Here F is a smooth drift vector field and G 
and R are smooth vector fields respectively linear and 
quadratic on U .  

Note that when the control u(t) is discontinuous, 
defining the solution of (1.1) is a nontrivial problem. 
A key result in [2] is that a measurable control U can 
be successfully implemented only if equation (1.1) is 
h e a r  on i. This allows to define the solution z(u(.), .) 
of (1.1) for a nonsmooth control U in a weak sense, i.e. 
as the limit of the sequence z,(u,, .) of solutions cor- 
responding to a sequence U, of more regular controls 
approaching U .  Note that, in the general case, a dis- 
continuity on the control U induces a discontinuity on 
the solution z(u, . ) .  These results are used in [3] to 
construct a theory of hyper-zmpulsive motions in which 
discontinuities of the configurations (c, u) are allowed, 
thereby extending the classical theory of impulsive mo- 
tion for mechanical systems (which only allows for d i s  
continuity of momenta p ) .  

One of the major difficulties of the theory is that, 
when dealing with multi-dimensional controls, the 
hyper-impulsave motion depends ([Z]) on the choice of 
the approximating sequence in the general case. In [4] 
we characterized completely this dependence using the 
dynamzc connectzon in [6] which arises naturally in this 
context. 

The main result of the paper [4] is that the state 
z (T+)  of the system in phase space t = ( z , p )  after a 
jump of the control ~ ( t )  at t = T can be determined 
by parallel transport of z ( T - )  along a path y joining 
u(T+) with U ( . - )  relatively to the dynamic connection 
on the fibration T : V * M  ---+ N .  

Note that, in the general case, the state z ( + )  de- 
pends on the path y; each choice of y is called here a 
control-completzon of the discontinuous control U .  In 
particular, when the dynamic connection is flat, the 
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parallel transport depends only on the homotopy class 

In this paper we briefly review the theory of hyper- 
impulsive motion, we study in detail the robustness of 
hyper-impulsive control and we apply the theory to 
test mechanical systems: the rigid body, a planar space 
robot and the ball in the hoop system. 

of y. 

2 Control equations 
Let y = ( 2 , ~ )  be local coordinates on M adapted to  
the fibration T : M + N ;  we make the fundamental 
hypothesis that, 

(H) for every t ,  the reaction forces that implement the 
constraint y E u ( t )  are ideal (workless) with respect to 
the set V&)M = ker Tq(t)r of the virtual displacements 
compatible with the constraint y E u( t ) .  

Let 

2T(y,q) = q t g ( q ) q  = it& + XtMy+ ytMtX + 
be the local block representation of the kinetic energy, 

where A, B are symmetric and invertible respectively 
k x k and ( n  - k )  x (n - k) matrices. If T(y,q)  is 
the kinetic energy of the unconstrained system (MI g), 
then the kinetic energy of the system subject to the 
timedependent constraint y G u ( t )  is T ( z ,  u ( t ) ,  i, h( t ) ) .  
The dynamic equation can be put in Hamiltonian form; 
introducing the quantities A and IC below: 

(2.1) 

A(y) = d-lA4, K ( q )  = B - M t A - ' M ,  

whose geometric meaning is explained in Sect.2.1 -see 
(2.4) and (2.5)-, the control equations are 

x = A-lp-AAu, 
dA l . , d K  p+pt-?i + -U -7i. (2.2) 1 ,dd-l  

P = - 5 P x  dz 2 ax 

Note that, by the above hypothesis, the reaction 
forces that implement the constraint do not appear in 
the above equation. To our analysis, it is necessary to 
dispose of the dynamic equations in their global (i.e. 
chart-independent) form. These are provided by the 
following Theorem in [6]. Let V M  = kerTr  be the 
vertical subbundle and V * M  the dual of V M .  Denote 
with p~ : T * M  + M the cotangent projection and 
set ii := T o p ~ ,  Now, to every 
y E N ,  the fiber ii-'(y), canonically simplectomorphic 
to T+(T-' (y)), represents the phase space of the system 
constrained to the x- fiber over y. 

Suppose that a control vector field Y is given on N 
and that the path u( t )  is an integral curve of Y .  Then 
(see [SI, [4]) the dynamic equations (2.2) are the local 
expression of a vector field D y  over V ' M  that projects 
on Y by F . Moreover, the field D y  is tangent to the 
fiber of .ii only if the control is vanishing. 

ii : V ' M  + N .  

Theorem 2.1 To every control vector field Y on N ,  
the correspondnag dynamic vector field D y  can be ex- 
pressed as the sum of three terms: 

D y  = XI{ ,  - X K ,  + hor(Y) 

where X ,  is the Harndtonian vector field correspond- 
ing to the case of locked control, XxY is the Hamil- 
tonian vector field on V * M  associated to Icy and hor 
is the honrontal lift of an Ehresmann connection on 
?r : V * M  + N entirely determined by r and the met- 
ric. 

The horizontal lift of a vector Y E T N  has the local 
expression 

(2.3) 
a a ,dA a 
ay ax ax a p  

hor(Y) = (- --A- + p  --)Y. 

2.1 Bundle-like metrics 
The first requirement to perform hyper-impulsive con- 
trol is that the dynamic equations (2.2) are at most 
linear on ti, i.e. that K = K(y). Note that this con- 
dition on the form of the kinetic energy metric is in- 
dependent of the coordinate system. To see this, call 
H M  the subspace orthogonal to VM = ker TT with re- 
spect to  g Therefore .H M can be equivalently assigned 
through the following connection one-form] called me- 
chanzcal connection 

(2.4) 
a 4 4  = (ciz + A(Y)dY) @ Z I  

whose kernel and range are respectively H M  and V M .  
The orthogonal splitting of a vector into its horizontal 
and vertical components (i.e. along H M  and V M  re- 
spectively) is intrinsic; using the above decomposition, 
we get the induced splitting of the kinetic energy metric 
tensor into its vertical and horizontal part: 

d Y ) 4  @ dY = A(q)4!I) @ 4 Y )  + K W Y  c3 &I (2.5) 

where K ( q )  = B - IZ/ftd-lM. Now we say that 

Definition 2.1 The kznetzc energy metrzc g 2s a 
bundlelike metric f o r  the fibratton 7r . M + N iff 
K = IC(y) an the abozle orthogonal splattsng of g .  

As a straightforward consequence, the control equation 
(1. 1)' whose local expression is (2.2), is linear in ti for 
every G (i e R E 0) if' and only if g is bundle-like . 

The following example will clarify the physical mean- 
ing of bundle-like metrics Suppose that the mechani- 
cal system is a collect Lon of rigid bodies linked by ideal 
joints and with a fixed point. Then the configuration 
manifold is a fiber bundle with SO(3) as fiber; the path 
z(t) on the fiber corresponds to a 'rigid motion' of the 
system, i.e. a motion with all the joints locked, while 
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a motion y ( t )  on the quotient (shape) space is a ‘pure 
deformation’. The term w ( q ) q  = i + Ay is the locked 
spatzal angular velocaty, i.e. the angular velocity of the 
rigid body instantaneously associated to the mechanical 
system by locking all the joints. 

The term K ( q )  is the kinetic energy corresponding 
to a ‘pure deformation’ and it defines a metric on the 
shape (joint) space. The condition K = K(y) then 
states that the deformation kinetic energy is indepen- 
dent of the orientation of the system in space and it 
is equivalent to the invariance of the horizontal kinetic 
energy for translations orthogonal to the fibers. 

2.2 Hyper-impulsive motions 
Let c > 0, U : [ -c ,c ]  + N be a smooth path on N 
presenting a first order discontinuity at t = 0, and set 

lim u ( t )  = PI, lim u ( t )  = P2, 
t+o- t-+O+ 

where PI and P2 are points of N .  The discontinuous 
control U can be physically realized as follows: first we 
define the sequence of smooth paths that run from PI 
to P2 at increasing speed; given a path y : [ O , q  + N 
with y(0) = PI ,  y ( T )  = Pz, let A E [1,+00) and set: 

T 
0 5 t 5 - *  x y x ( t )  = ?(At), 

Hence, for X 2 1,  

T 
x yx(0) = y(0) = Pl, yx(-) = y ( T )  = PZ! k ( t )  = X i ( A t ) .  

Then the discontinuous control U can be realized as the 
limit for + $00 of the continuous piecewisesmooth 
control u y :  

Let z x ( t )  = z ( y x ( t ) , t )  be the maximalsolution of the 
following family of control problems with XK E 0 and 
y = y x ( t ) ,  that we rewrite as 

i = XH,, + hor(j) ,  z ( 0 )  = t ( O - ) .  

Theorem 2.2 ([4]) The state of the system zmmedz- 
ately after the jump of the control U?, dejned as the 
Ezmat 

m 

coancides with the value at t = T of the solution z(  .) 
of the paradlel transport equataon 

i = hor(j) ,  z ( 0 )  = .(a-) (2.7) 

relatively to  the dynamic connection. 

By Theorem 2.2, at  each time where the control has 
a jump (a finite discontinuity), i) the phasespace state 
of the system immediately after the jump is obtained by 
parallel translating the initial phase-space state along 
a path that ‘bridges’ the discontinuity; ii) by (2.3), the 
configuration .(a+) of the system after the jump can 
be obtained by parallel transport relatively to the me- 
chanzcal connection (2.4) on the fibration T : M + N .  

The state of the system after the jump is unaffected 
by the drift field X H ~ .  This implies that the result 
of the above Theorem remains true when the system is 
acted on by external positional forces, independent of ;i. 
The state of the system after a jump of the control has 
finite amplitude but the above formula no longer holds 
when dissipating forces depending linearly or quadrat- 
ically on i (e.g. in underwater systems) are taken into 
account for the physical device realizing the jump of 
the controlled coordinates. 

3 Robust ness of hyper-impulsi- 
ve control 

Given two vector fields X, Y on N ,  the curvature Q of 
the dynamic connection is the vertical-valued two form 
defined on N as 

R(X, Y )  = hor([X, Y ] )  - [horX, horY], (3.1) 
where the map hor -see (2.3)-is the inverse of Tii re- 

stricted to H ( V * M ) .  The curvature of the connection 
relates the Lie brackets in N and H ( V * M )  and is a mea- 
sure of the failure of the horizontal distribution to be in- 
tegrable. Indeed, by Frobenius’ Theorem, the horizon- 
tal distribution is integrable iff R = 0. Now we investi- 
gate the dependence of the parallel transport upon the 
path. This is essential to enquiry about the robustness 
of the control. Given a path U ,  let z ( t )  = ( z ( t ) , p ( t ) )  
be the solution of the parallel transport equation (2.7), 
whose local form is -see (2.3)- 

Given a smooth homotopy ys ( t )  = y ( t ,  s )  of U with 
yo = u and fixed endpoints, we denote with z 8 ( t )  the 
solution of (3.2) for U = ys. The sensitivity of the 
system with respect to variations of the path around 
u( t )  is expressed by 

8% 
a s  

Sz( t )  = ( d X ( t ) ,  6p( t ) )  = -(t, 0 )  

Proposition 3.1 The variation Sz of the parallel 
transport at t = T is given by  

T 
u) &(T) = R(T, r ) d M ) ( z ,  u)(by,is)dr 

b )  6 p ( T )  = / R-’(T, 7 ) d D ) ( z , p ,  u)(Sy, iL)d7 
T 

0 
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where Sy = g(t,O) , R ( t ,  r )  is the fundamental matrix 
solution of the h e a r  system 

and s1 = (R(M),  
connection. 

is the curvature of the dynamic 

Proof. We prove a) first. The proof of b) goes exactly 
the same way. We consider equation (3.2)l for U = ys. 
Since 

ax dA . a 
-(t, 0) = 6~ = ( - - u ) ~ x  - - ( A ( x , ~ ~ ) + ~ ) ,  
d S  8 X  d S  

the variation bx is the solution of the linear non homo- 
geneous equation 

d 
d S  

(*) 82 = D(t)Sz + b ( t ) ,  where b = - - A ( X , ~ ~ ) + ~ .  

Let R(t ,  r )  = R(t,O)R-l(r, 0) be the fundamental ma- 
trix solution with initial point 0 of the associated ho- 
mogeneous system. The general solution of (*) is then 

6x = 1 R(t, r ) b ( r ) d r .  
T 

Therefore ( dy(0) = dy(T) = 0), 

d r  d r  

= - l T { R g J y U  - [-R(---i)A l3A + 
d X  

OA dA . 
d X  d U  

R(-(-Ati) + -u) ]dy}dr  

since &;R(t, T )  = -R(t, .)D(r) and 5 = -AG. There- 
fore 

= I?' R(T, r ) d M ) ( x ,  u)(6y, ?i)dr .  

To prove b), note that 

aA a aA 
(**) s p  = dpt -U + p t - ( - - j s )  = -SptD(t) + c ( t )  ax as ax 

Hence the homogeneous system associated to (**) is 
the adjoint system of the homogeneous system associa- 
ted to (*). Therefore, its fundamental matrix is simply 
R-'(t, T ) .  The general solution of (3.2)2 is 

ET 
Sp = - /, R-'(t, r)c(t)dr.  

From now on, the proof follows the same pattern used 
above. 

0 

When the curvature Q is zero, the horizontal distri- 
bution is integrable and the connection is called flat. 
In this case the horizontal lift of a path lies on a sin- 
gle leaf of the horizontal foliation and, by the above 
Proposition, Sr = 0; therefore two paths that can be 
continuously deformed one into the other give the same 
state for the system after the jump, that is the parallel 
transport depends only on the homotopy class of the 
path. As a straightforward consequence, if N is simply 
connected, that is ever,y closed path can be continuously 
shrunk to a point, the parallel transport is independent 
of (the homotopy class of) the path in the base N .  

4 Mechanical examples 
We can resume the results of the previous Sections as 
follows: 

a) discontinuous control laws can be safely imple- 
mented provided that the dynamic equations are lin- 
ear on U ,  that is the kinetic energy is bundlelike; the 
resulting motion is hyper-impulsive, 

b) the point in phase-space, describing the state of 
the system after a jump of the (multi-dimensional) con- 
trol, depends on: 

b.1) the control completion y if the dynamic connec- 
tion has nonvanishing curvature, 

b.2) the homotopy (class of 7 if the dynamic connec- 
tion is flat, 

b.3) is independent of the path y if the dynamic con- 
nection is flat and base manifold N of ?r : M + N is 
simply connected, 

Now we apply our analysis to systems which may be 
interesting for practical applications: 

1) The rigid body fibration. 

Let G be a Lie group and let H be a closed subgroup. 
Then (see [l]) the coset space fibration ?r : G -+ G/H 
is a principal bundle fibration with structure group H .  
Every left-invariant metric on G defines a bundlelike 
metric. 

For our study, take G = S0(3), the configuration 
space of a force-free rigid body with a fixed point. As it 
is well known, an S0(3)-invariant metric is defined by 
the inertia tensor scalatr product on so(3), which defines 

c) two sufficiently close paths are homotopic. 
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P 

Figure 1: Planar space robot Figure 2: Ball in the hoop system 

a bi-invariant metric. Take H = S0(2),  the subgroup 
of rotations around an axis fixed in space. It is inter- 
esting to notice that the mechanical connection, defined 
by taking as the horizontal sub bundle the orthogonal 
complement to the vertical sub bundle, ~ ~ n n ~ t  be JQt.  
Indeed, since the base S2 = S0(3)/S0(2) is simply 
connected, if the connection is flat, then it is globally 
flat (see [4]) i.e. the bundle admits a global section and 
hence it is a trivial bundle, which is obviously false for 
the case at hand. 

2) Planar space robot 

We consider the planar space robot with two links 
depicted in Fig.1 for simplicity, but the results apply 
equally well to a robot with 7~ links. 

It is easy to see that the configuration of the sys- 
tem is the trivial fibration T : T 2  x S1 ---+ T2 ,  
T(&,&, Bo) = (SI, &), where T2 is the two-torus, an 
homotopically non trivial manifold. Since the kinetic 
energy of the system is defined by the inertia tensor 
I ( & ,  e,), which is independent of the base attitude 00, 
the kinetic energy metric g is bundle-like for the fi- 
bration. Therefore the system can undergo an hyper- 
impulsive (i.e. discontinuous) control in the link vari- 
ables 81 = u l ( t ) ,  0 2  = uz(t) .  The control equations are 
(dropping the subscript 0 for simplicity) 

where Q represents external forces. The mechanical 

The curvature R is generally non zero. Therefore, the 
state of the system after a jump of the control t -+ 
u( t )  = ( 6 1 ( t ) , & ( t ) )  between states u l  and u2 depends 
on the path y bringing ui(t-)  into ui(t+), i = 1,2. 

3) The ball in the hoop 

This mechanical system has been studied [7] in the 
context of Geometric Phase Theory and in [6] as a con- 
trol system. In our scheme, it represents a mechanical 
system to which hyper-impulsive control is not appli- 
cable. 

The system is formed by a rigid planar closed guide 
(the hoop) not necessarily circular, but star-shaped 
with respect to a point 0 on it, and a material point P 
that can slide without friction along the guide. Suppose 
that the hoop can rotate around the point 0 fixed in the 
plane with an assigned control law ,/3 = p(t). The posi- 
tion of the point P on the hoop is defined by the angle 
B formed by the vector OP = r(B) and the tangent in 0 
to the guide OA. Therefore the system is described by 
the trivial fibration T : T 2  + SI, ~ ( 6 ,  p)  = p. The ki- 
netic energy of the point P with respect to the inertial 
frame is 

2T = m [ f 2  +r2 (4 + j j2]  = m[ ( r f 2  + r2 ) i2  + 2r2e,8+r2,d2] 

where rf = g. Therefore 

- -  
connection coincides with the constraint that the com- 
ponent of the system’ angular momentum normal to  
the plane be equal to  zero: 

and the kinetic energy metric does not fulfill the r e  
quirement of Definition 2.1, hence hyper-impulsive con- 
trol theory is not applicable to this system. 

%(&, ’ % ) B O  -k 91 (61, &)& + 92(el j @2)62 = 0 .  
5 Conclusions The associated curvature is (see e.g. [9] for the explicit 

formulae for connection and curvature) We have presented a theory of hyper-impulsive control 
for mechanical systems. The theory tells if a mechan- 
ical system can safely undergo a discontinuity in the 
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configuration variables and it determines uniquely the 
phase-space state of the system after the jump when a 
control law ’bridging’ the discontinuity is provided. We 
have discussed robust,ness of the control system with re- 
spect to changes of the control law and we have applied 
the theory to test mechanical examples. 
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