

Fig. 2.

Analyses of r.c. rectangular sections by using F. Hennebique shear theory (1899). Relationships between three of the parameters T (shear force), σ_{st} (stirrup stress), A_{sw} (stirrup area), b (width of the section), Δ_x (stirrup pitch), with the fourth one assumed constant (mean value), beam depth = 1 m, cover = 0.03 m, longitudinal bars area $A_s = 80$ cm².

Fig. 3.

Analyses of r.c. rectangular sections by using M. Considère shear theory (1899).

Relationships between three of the parameters T (shear force), σ_{st} (stirrup stress), A_{sw} (stirrup area), b (width of the section), Δ_x (stirrup pitch), with the fourth one assumed constant (mean value), beam depth = 1 m, cover = 0.03 m, longitudinal bars area $A_s = 80$ cm².

Fig. 4.

Analyses of r.c. rectangular sections by using S. Canevazzi shear theory (1901). Relationships between three of the parameters T (shear force), σ_{st} (stirrup stress), A_s (longitudinal bars area), A_{sw} (stirrup area), b (width of the section), Δ_x (stirrup pitch), with the fourth and fifth ones assumed constant (mean value), beam depth = 1 m, cover = 0.03 m.