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A b s t r a c t .  C o m p l e t e n e s s  in a b s t r a c t  i n t e r p r e t a t i o n  is a n  ideal  a n d  r a r e  s i t u a t i o n  
w h e r e  t h e  a b s t r a c t  s e m a n t i c s  is ab le  to  t a k e  full  a d v a n t a g e  of t he  power  of r ep re -  
s e n t a t i o n  of t he  u n d e r l y i n g  a b s t r a c t  d o m a i n .  In th i s  p a p e r ,  we deve lop  a n  a l g e b r a i c  
t h e o r y  of  c o m p l e t e n e s s  in a b s t r a c t  i n t e r p r e t a t i o n .  We show t h a t  c o m p l e t e n e s s  is a n  
a b s t r a c t  d o m a i n  p r o p e r t y  a n d  we p rove  t h a t  t h e r e  a lways  ex is t  b o t h  the  g r e a t e s t  
c o m p l e t e  r e s t r i c t i o n  a n d  t h e  l eas t  c o m p l e t e  ex t ens ion  of a n y  a b s t r a c t  d o m a i n ,  w i th  
r e s p e c t  to  c o n t i n u o u s  s e m a n t i c  f unc t i ons .  U n d e r  c e r t a i n  h y p o t h e s e s ,  a c o n s t r u c t i v e  
p r o c e d u r e  for  c o m p u t i n g  these  c o m p l e t e  d o m a i n s  is g iven .  T h e s e  m e t h o d o l o g i e s  pro-  
v ide  a d v a n c e d  a l g e b r a i c  too l s  for  m a n i p u l a t i n g  a b s t r a c t  i n t e r p r e t a t i o n s ,  wh ich  c a n  
be  f ru i t fu l l y  used  b o t h  in p r o g r a m  a n a l y s i s  a n d  in s e m a n t i c s  des ign .  

1 I n t r o d u c t i o n  

Abstract  interpretat ion [8~ 9] is a widely established methodology for programming 
language semantics approximation, which is primari ly used for specifying and then 
validating static program analyses. Given a so-called concrete semantics defined by a 
concrete domain C (a complete lattice) and a semantic function ~.] : Program -+ C, 
an abstract  interpretat ion is specified by an abstract  domain A (a complete lattice) 
and an abstract  semantic function J[.]~ : Program -+ A, where the relationship between 
concrete and abstract  objects is formalized by a pair of adjoint maps a : C -+ A 
and V : A -+ C such tha t  a(c)  ~ A  a means that  a is a correct approximation of 
c. Then, a typical soundness theorem for an abstract  interpretat ion goes as follows: 
For all programs P ,  c~([P])) --<A liP] ~. It is well-known [8] that  for the non-restrictive 
case of least fixpoint based semantics, i.e. where ~P] - yp (Tp)  and [P]~ = Ifp(T~p) 
for some monotone operators Tp : C --+ C and T~p : A --+ A indexed over Program., 
soundness is implied by the following stronger, but  nevertheless much easier to check, 
condition: ~ o Tp <--A T~p o c~. 

While soundness is the basic requirement for any abstract  interpretation, the dual 
notion of completeness is instead an ideal and quite rare situation. Completeness arises 
when no loss of precision occurs by approximating c~([P]) with [P]~, i.e. when a(~[P]) = 
[ P ~ .  Roughly speaking, this means tha t  the abstract  semantics is able to take full 
advantage of the power of representation of the abstract  domain A. In this sense, 
complete abstract  interpretations can be rightfully considered as optimal. As before, 
for least fixpoint based semantics, completeness is implied by the following stronger 
condition called full completeness: ~ o Tp = T~p o ~ (cf. [9]). For instance, the classical 
na~'ve "rule of signs" abstract  interpretat ion is fully complete. In fact, the sign of a 
concrete integer multiplication can be exactly retrieved by the rule of signs applied to 
its arguments, i.e., by leaving out the details, sign(n  9 m) = sign(n) .~ sign(m), where 
.~ is the obvious abstract  multiplication between signs. 
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The problem of achieving the completeness for an abstract  interpretat ion,  by en- 
hancing either the abstract  domain or the abstract  semantic operators,  has been in- 
vestigated by a number of authors (see Section 9). While this has been successfully 
solved for some specific abstract  interpretat ions and analyses, the more general prob- 
lem of making a generic abstract  interpretat ion complete in the  best  possible way (i.e. 
involving the most simple abstract  domains and operators),  is still, to the best  of our 
knowledge, open. 

We at tack this problem from a domain perspective, since we show that ,  fixed a 
concrete semantics, both  completeness and fully completeness for an abstract  interpre- 
tat ion only depend on the underlying abstract  domain. Thus, we develop an algebraic 
theory of domain completeness within the  classical abstract  interpretat ion framework. 
We concentrate on the set of all the domains~ in the l a t t i c e / : c  of abstract  interpreta-  
tions of the fixed concrete domain C, which are complete and fully complete for a given 
family of semantic operators F ,  denoted resp. by A(C ,  F )  and F(C, F). In Section 4, 
we prove tha t  both  A(C ,  F )  and F(C,  F )  are always complete meet subsemilattices of 
/ : c -  Moreover, while we show that ,  in general, A(C ,  F )  is not a join subsemilatt ice of 
~c, even under very restrictive hypotheses on C and F ,  by contrast we prove that ,  
when the functions in F are (Scott-)continuous, F (C ,  F )  is a complete join subsemilat-  
tice of s c ,  and therefore a complete sublattice. It should be remarked that  this la t ter  
result is far from being trivial. 

Based on these results, in Section 5, we introduce a family of operators acting on 
abstract  domains, which transform non-complete domains into complete or fully com- 
plete ones. There are two possibilities for doing this: Either by refining domains, i.e. 
by enhancing their  precision by adding new elements, or by simplifying them by taking 
out some information which may cause incompleteness. Thus, following the ideas on 
systematic abstract  domain refinements and simplifications introduced in [14, 18], we 
define the complete and fully complete kernel operators ]K and ]C, and the least fully 
complete extension operator E. The first two are abstract  domain simplifications which, 
given a set of concrete monotone functions F and an input  abstract  domain A, give 
as output  the most concrete domains IK(A) and K:(A) which are more abstract  than 
A and complete, resp. fully complete, for any f E F .  E is instead an abstract  domain 
refinement which, given a set of concrete continuous functions F and A, returns the 
most abstract  domain ~(A) which is an extension (i.e. more precise) of A and fully 
complete for any f E F .  By the aforementioned negative findings on the structure of 
A(C,  F) ,  an analogous least complete extension operator  is not generally definable. 
These operators satisfy a number of relevant algebraic properties; in particular,  we 
show tha t  the least fully complete extension of a domain can be always achieved by 
decomposing the input  domain into simpler factors and then by refining these simpler 
domains. In Section 6, we present a constructive method for designing least fully com- 
plete extensions and fully complete kernels of abstract  domains, under the hypotheses 
that  the concrete semantic functions in F are additive. 

As a relevant example, we reconstruct the Cousot and Cousot [8] abstract  domain 
of integer intervals as the least fully complete extension for integer addit ion of the  
rule of signs domain. Clearly, to be an abst ract  domain is a relative notion. Thus, 
our systematic operators can be also applied to refine or simplify domains for analysis 
relatively to other more precise - but  still approximated - ones. In Section 8, we show 
how to apply our operators to devise an intelligent s trategy for improving the precision 
of abstract  domains, which takes into account the efficiency/precision trade-off in a 
systematic refinement step. We apply this idea to compare the expressive power of 
some well-known abstract  domains for ground-dependency analysis of logic programs. 
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2 B a s i c  N o t i o n s  

The structure (uco(C), E, u, n, )~z.T, Az.z) denotes the complete lattice of all upper 
closure operators (shortly closures) on a complete lattice (C, <, V, A, T, _L) (i.e., mono- 
tone, idempotent and extensive operators on C), where (i) p _E ~ iff Vx E C. p(x) <_ 
~/(z), ( i i )(UiElPi)(x ) = x r Vi E I. pi(z)  = x; (iii)(I~iElPi)(x ) = AiElPi(X); 
(iv) Ax.T and Ax.x axe, respectively, the top and bottom. The complete lattice of all 
lower closure operators on C is denoted by leo(C) and is dually isomorphic to uco(C). 
Recall that each closure p E uco(C) is uniquely determined by the set of its fixpoints, 
which is its image, i.e. p(C) = {x E C I p(x) = x}, that p _ ~/ i f f~(C)  C p(C),  
and that a subset X C C is the set of fixpoints of a closure iff X is meet-closed, i.e. 
X = Ad(X) = {AY [ Y C X} (note that T E X). (p (C) ,<)  is a complete meet 
subsemilattice of C, while it is a complete sublattice iff p is completely additive. Let 
us also recall that uco(C) is dual-atomic, i.e., for any p E uco(C), p = MzEp(C)\{T}~x , 
where each closure ~x = {T,x},  for x E C \ {T}, is a dual-atom in uco(C). 

In the standard Cousot and Cousot abstract interpretation theory, abstract do- 
mains can be equivalently specified either by Galois connections (GCs) or by closure 
operators (see [9]). In the first case, the concrete domain C and the abstract domain 
A (both assumed to be complete lattices) are related by a pair of adjoint functions of 
a GC (a, C, A, ~,). If (o~, C, A, "11) is a Galois insertion (GI), each element in A is useful 
to represent the concrete domain C, being a onto. Any GC (a, C, A,"7) may he lifted 
to a GI by reduction of the abstract domain A, i.e. by identifying in an equivalence 
class those elements in A having the same concrete meaning. In the second case in- 
stead, an abstract domain is specified as (the set of fixpoints of) an upper closure on 
the concrete domain. These two approaches are completely equivalent: If p E uco(C) 
and A ~- p(C) (with L : p(C) -+ A and t -1 : A -+ p(C) being the isomorphism) then 
(L o p, C, A, ~-1) is a GI; if (~, C, A, "7) is a GI then PA = ~/o ~ E uco( C) is the closure 
associated with A such that pA(C)  "~ A; moreover, these two constructions are one 
the inverse of the other. Hence, we will identify uco(C) with the so-called lattice of 
abstract interpretations of C, viz. the complete lattice of all abstract domains of the 
concrete domain C. Often, we will find convenient to identify closures with their sets 
of fixpoints, denoted as sets by capital Latin letters; instead, when viewing closures as 
functions, they will be denoted by Greek letters. We keep this soft ambiguity, since one 
can distinguish their use as functions or sets, according to the context. The ordering 
on uco(C) corresponds precisely to the standard order used in abstract interpretation 
to compare abstract domains with regard to their precision: A1 is more precise than 
A2 iff A1 ___ As in uco(C). The lub and glb on ueo(C) have therefore the following 
meaning as operators on domains. Suppose {Ai}iE I C_ uco(C): (i) WiEIAi is the most 
concrete among the domains which are abstractions of all the Ai's, i.e. it is their least 
common abstraction; (ii) MiEIA i is (isomorphic to) the well-known reduced product of 
all the Ai's, and, equivalently, it is the most abstract among the domains (abstracting 
C) which axe more concrete than every Ai. Whenever C is a meet-continuous com- 
plete lattice (i.e., for any chain Y _ C and x E C, x A (VY) : VyEy(X A y)), uco(C) 
enjoys the lattice-theoretic property of pseudocomplementedness (cf. [17]). This prop- 
erty allowed to define the operation of complementation of abstract domains (cf. [6]), 
namely an operation which, starting from any two domains D _E A, where D is meet- 
continuous, gives as result the most abstract domain D ~ A, such that  (D ~ A)MA = D. 
A (conjunctive) decomposition of an abstract domain A E uco(C) is any tuple of do- 
mains (Di)iEl C uco(C) such that  A = MiEIDi. Complementation is important for 
decomposing abstract domains: If D _K A then (D ~ A, A) is a (binary) decomposition 
for C, and more general decompositions can be obtained by complementation (see [6]). 
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3 C o m p l e t e n e s s  i n  A b s t r a c t  I n t e r p r e t a t i o n  

Let Program denote the  set of (syntactically well-formed) programs. The concrete stan- 
dard semantics is in general specified by a semantic function [-] : Program --+ C, where 
C is a concrete semantic domain of denotations, which we assume to be a complete 
lattice. If an abstract  interpretat ion is specified by a GI (c~, C, A, ~/) and by an abstract  
semantic function [.]~ : Program -+ A, then ~.~ is a sound abstract  semantics, or 
(correctly) approximates [.], if, for any program P, (~(~P~) <--A ~P]~, or, equivalently, 
~P] <_ c "Y([P]~). The pa t te rn  of definition of [.] obviously depends on the considered 
programming language and on the semantics style adopted. We follow here a customary 
least fixpoint semantic approach, which is general enough to subsume and include most 
kinds of semantic specifications (see [12]). In the following, for two complete lattices C 
and D, we denote by C-~-+D, C - ~ D ,  and C a ~D, respectively, the set of all mono- 
tone, (Scott-)continuous and (completely) additive (i.e. preserving all lub's) functions 
from C to D. A concrete semantics is therefore specified by a pair (C, T), where C 
is a complete latt ice and T : Program -~ ( C - - ~ C ) .  For P E Program, we use Tp to 
denote more compactly T(P) .  The least fixpoint semantics of any program P is then 
given by [P] ---- Ifp(Tp) E C. On the abstract  side, for some T ~ : Program --+ ( A - ~ A ) ,  
the abstract  least fixpoint semantics is analogously defined by [P]~ = Ifp(T~p). 

Given a concrete semantics 8 = (C, T) and an abstract  semantics $5 _-- (A, T~), 
related by a GI (a,  C,A, 'y) ,  8 ~ is called a sound abstract ion of 8 if for all P E 
Program, a( l fp(Tp))  <-A Ifp(T~p). This soundness condition can be more easily verified 
by checking whether for all P E Program, a o Tp ~A T~p o a ,  or, equivalently, a o Tp o 
~' ~ c  T~. We distinguish between these two forms of soundness and we say tha t  S ~ is 
a fully sound abstract ion of 8 if for all P E Program, a o Tp ~--A T~p o c~. 

In abstract  interpretat ion,  the term completeness is used dually to the above notion 
of soundness [9, 11, 22]. Again, one distinguishes between a weaker form of complete- 
ness, involving least fixpoiuts only, and a stronger one (but easier to verify) involving 
semantic functions. We say tha t  $~ is a (fully) complete abstract ion of S if for all 
P E Program, (T~p o a <_A a o Tp) Ifp(T~p) <--A a(I fp(Tp)) .  Because soundness is 
always required in abstract  interpretat ion,  in the following we abuse terminology and 
say that  8 ~ is (fully) complete for S if for all P E Program, ( n o  Tp = T~ o n )  
a(Ifp (Tp))  = Ifp(T~p). We also use such notions of completeness and full completeness 
locally for a given pair of semantic functions T~p and Tp. 

C o m p l e t e n e s s  a s  a D o m a i n  P r o p e r t y .  For a pair of semantic functions Tp : C -+ C 
and T~p : A --~ A, when a o Tp  o ~f <_C T~p holds, T~p is t radi t ional ly  called a 
correct approximation of Tp [9]. I t  is also well-known since [9, Corollary 7.2.0.4], 
that  the abstract  domain A induces a best correct approximation of Tp given by 
TAp = a o Tp o % Consequently, A always induces an (automatical ly)  fully sound 
abstract  semantics (A, AP. TpA). By contrast,  this is not t rue for completeness, i.e., 
for a given abstract  domain A it may well happen that  it is not possible to define 
a fully complete or merely complete abstract  semantics based on A - on the con- 
trary, this is the most frequent situation. Furthermore, if A admits  a fully complete 

A A abstract  semantic operator  T~, then T~ is fully complete as well, and T~ = T~: 
T~p = T~p o c~ o ~/ = (~ o Tp  o ~ = T A. Likewise, if T~p is complete then T~ is com- 
plete: ~(l fp(Tp))  <--A lfp(TAp) <--A Ifp(T~p) ~- (~(lfp(Tp)). Thus, we get the following 
important  characterization of completeness as a domain property:  

It is possible to define a (fully) complete abstract semantic operator on an 
abstract domain A if  and only if  the best correct approximation induced by A 
is (fully) complete. 
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4 The  Lattice of  Comple te  Abstract  Interpretations 
We have seen that  one can consider, without loss of generality, completeness and full 
completeness for best correct approximations only. Moreover~ by the equivalence be- 
tween the GI and closure operator  approaches to abstract  domain design, completeness 
and full completeness can be equivalently specified for closure operators: In fact~ it turns 
out that  for a GI (a~ C,A,"/)  and f : C---~C, the best correct approximation fA  is 
(fully) complete iff 7(c~(lfp(f))) = Ifp(7 o a o f )  ((7 o a)  o f = (7 o a)  o f o (7 o a)) .  
Thus, in the following, we will s tudy completeness and full completeness relatively to 
closure operators and generic (monotone) functions from a purely algebraic point of 
view, and say tha t  A is (fully) complete for f if fA  is (fully) complete. We generalize 
full completeness to cope with generic (possibly nonmonotone) n-ary functions. If ~" 
denotes a generic tuple of objects, then ~i denotes its i - th  component. 

D e f i n i t i o n  4.1 Let C be a complete lattice. 
(i) Given f : C n --+ C (n >_ 1), p E uco(C) is fully complete for f if for any ~ E C n, 

p(f(~)) = p(f(p(xl ) ,- . ,  p(~n))). 
(ii) Given f E C - - ~ C ,  p E uco(C) is complete for f if p(tfp(f)) = tfp(p o f ) .  

W'e denote the condition in (i) simply by p o f = p o f o p. Note that  (i) encompasses 
also functions of type  C --+ (C -+ . . .  (C --+ C ) . - . ) ,  by ':Curryfying" them; moreover, 
Ifp(p o f )  in (ii) could be equivalently replaced by Ifp(p o f o p). 

For f C C n --+ C, we define F ( C , f )  _C uco(C) to be the set of fully complete 
closures on C f o r f : F ( C , f ) = { p E u c o ( C )  [ p o f = p o f o p } . I f f :  C m > C t h e n w e  
define A ( C , f )  C uco(C) as the set of complete closures on C for f :  A ( C , f )  = {p E 
uco(C) [ p(lfp(f)) = I fp(pof)} .  Also, if 77 e uco(C) then F t n ( C , f )  and A t n ( C , f )  are 
the set of closures on (y (C) , -<c )  that  axe, respectively, fully complete and complete 
(for f) ;  since p E uco(rl(C)) iff p E uco(C) and p E ~, then, by denoting t ~ the 

tn an principal filter of uco(C) generated by ~, we have that  F ( C , f )  = F ( C , I )  M ~y d 
A t ' ( C , f )  ----- A ( C , f )  M l"r]. If (c~, C,A,3,) is a GI such that  -~oa  = 77, then F t A ( c , f )  
and A $A (C, f )  are alternative notat ions for F ~' ( C, f )  and A t ,  ( C, f )  respectively. We 
can also define completeness and full completeness relatively to any set of concrete 
functions: If F C C n -+ C and G C C - - ~ C  then F ( C , F )  = MIeFF(C , f  ) and 
A( C, G) = fqgeG/k( C,g)  (obviously, P(C,I~) = A(  C,O) = uco( C)). We can then 
restate  the basic Cousot and Cousot [9] result on completeness using our notat ion as 
follows: I f F  C_ C m>C then F ( C , F )  C A ( C , F ) .  

E x a m p l e  4.2 Consider the classical "rule of signs" domain Sign in Fig. 1, which is an 
abstract ion of (p(T]), C_) [8]. If ps denotes the closure on (p(7]), C_) corresponding to 
Sign, i.e. Sign ~- ps(p(7])), as noted by [22], it is easy to check that  ps is fully complete 
for the mul t ip l ica t ion* :tv(T]) ~--+ p(7/) given b y X *  Y =  { n - m  [ n e X, m C Y } .  
Moreover, Sign (i.e. ps) is not fully complete for integer addition @ : p(77) 2 ---> go(W): 
For instance, p s ( p s ( { - 3 , - 1 }  G ps({4,7}))  = ps(7]) ---- Z ,  whereas p s ( { - 3 , - 1 }  @ 
{4,7}) = ps({1,3,4,6})  = 0+.  Also, consider the unary monotone function f tha t  
selects, e.g., even numbers, i.e. f = AX. X fq 7]even. While Sign is not fully complete 
for f (e.g., p s ( f ( { - 1 , 2 } ) )  = O+ r 77 = ps ( f (p s ( { -1 ,2} ) ) ) ) ,  it is instead complete 
for f :  ps(Ifp(f)) = ps(O) = ~ = lfp(ps o f ) .  Consider now the latt ice uco(Sign) in 
Fig. 1 of all possible abstractions of Sign, and the monotone unary square operation 
sq = AX. X * X.  It is a routine task to check tha t  the sets of complete and fully 
complete abstractions of Sign for sq are as follows: 
(i) AtSign(p(77), sq) = uco(Sign) \ {ph}: In fact, ph(Ifp(sq)) = p5(0) = - 0 ,  whilst 
Ifp(p5 o sq) = 7 /  and this holds for p5 only; 
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7"/ P2 

- 0 7 0 +  to6 ~ ? P l o  

Pl~/~rpi3 
ps = Sign 

p~ = ( z ,  0+}  
p 3 = ( z , 0 }  
p4 = ( ~ ,  O} 
p~ = ( ~ ,  - 0 }  
p~ = { z ,  0+,  O} 
p7 = {~ ,  0+, 0} 
ps = {~ ,  0, 0} 
p~ = {:~, - o ,  o} 

plo = {~r, -o ,  ~} 
pll ~-- { ~ ,  0-~, 0, 0} 
p~2 = {7], -0 ,  0+, O} 
p~3 = {~z, - 0 ,  o, O} 

Fig.  1. The lattices Sign and uco(Sign). 

(ii) F ~Sian (p(77), sq) = ueo(Sign) \ {pb, plo}: For p5 and plo, just consider X = {0}. 
Observe that  A(p(7/) ,  sq) is not a complete sublattice of uco(p(7/)): In fact, pg, plo E 
A(p(7/), sq), whereas p9 Upio = p~ r A(p(W), sq). Similarly, it is not difficult to check 
that  F ~Sign (p(77), . )  = uco(Sign) \ {p2, pb, p6, pie}. [] 

The following result summarizes some helpful basic properties of the set of complete 
and fully complete abstract  domains. 

P r o p o s i t i o n  4.3 Let f : C n -+ C, g:  C ~ C, and h : C ~ ) C .  
(i) Ax. Tc ,  Ax.x e P(e,.f) NA(C,h). 

(ii) For all c e C, F(C,  AZ. c) - nee(C) = A ( C , A x .  c). 
(iii) F(C,)~Z. Vin=l ~i) = uco(C). 
(iv) p E F ( C ,  AZ. Ai=,Zi)  r VX C C. l X[ < w ~ p ( A X ) = A p ( X ) .  
(v) /]  p  9 r ( c ,  {f, g}) then p  9 r ( c ,  g o f ) .  

(vi) / f p , 7 /  9  and p o ~ ? = ~ o p  then p o ~ l  9  F ( C , f ) .  
(vii) For all i  9 [1, n], F ( C , f )  = F(C,  {AZE C n- l ,  f ( ( z l ,  ..., xi-1, c, xi, ..., xn-1))}ceC).  

For F C c n - - ~ C  and G C C---~C, we now consider both F ( C , F )  and A(C,  G) 
equipped with the pointwise partial order _ of relative precision of domains, inherited 
from the lattice of abstract interpretations nee(C).  Our first finding is that  F(C,  F) 
and A(C,  G) are always (the sets of fixpoints of) lower closures on uco(C), i.e. complete 
meet subsemilattices of uco(C). The fact that  full completeness for monotone unary 
functions is preserved by glb was already observed in [6, Proposition 5.2.3]. 

T h e o r e m  4.4 If  F C C n - ~ C ,  G C C - ~ C  then F( C , F ) , A (  C, G)  9 Ico(uco( C)).  

As far as the lub is concerned, in Example 4.2 we observed that ,  in general, a subset 
of complete closures A(C,  f )  is not closed under lub's. 

E x a m p l e  4.5 Let us consider the finite chain of five points C = {0 < 1 < 2 < 3 < 4} 
and the function f : C --~ C defined as f = {0 ~-~ 0,1 ~ 0, 2 ~-~ 0, 3 ~-~ 4, 4 ~-~ 4}. Note 
that  f is monotone and hence it is both additive and co-additive, while Ifp(f) = O. 
Next, consider the closures pl,p2  9 uco(C) given by pl = {1, 3, 4} and p2 = {2, 3, 4}. 
It is not difficult to verify that  pl,p2  9 A ( C , f ) :  pk(Ifp(f)) = k = Ifp(p k o f ) .  It turns 
out that  pi U p2 = {3, 4} does not belong to A(C,  f ) .  In fact, (pl U p2)(lfp (f)) = 3, while 
(p~ U p2) o f = {0 ~+ 3, 1 ~-+ 3, 2 ~t 3, 3 ~-> 4, 4 ~+ 5}, and hence Ifp((pl U p2) o f )  = 4. [] 
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In general, i.e. with no hypothesis on C and f ,  also F ( C , f )  is not closed under 
lub's, as the following example shows. 

E x a m p l e  4.6 Let the w + 1 ordinal be C, and consider the upper closure f E uco(C) 
defined by f (C)  = {x I x < w} U {w + 1} (thus, f is the identity on C \ {w} whereas 
maps w to the top ~ + 1). Next, consider the closures pi,p2 E uco(C) defined by 
pi = { x < w  I x i s e v e n } U { w , w + l }  andp2  = { x < w  I x is odd} U {w,w + l}. It is 
immediate to verify tha t  pi of  = f o p i  (i = 1, 2), and therefore, by Proposition 4.3 (vii), 
p i, p~ E F(C,  f ) .  Moreover, for the lub pi U p2 = {w, w + 1 }, we have that  (pi U p2)o f = 
pi U p2 whilst (pi U p2) o f o (pi U p2) = Ax. w + 1, and therefore pi U pe • F(C,f) .  [] 

Note that ,  in Example 4.6, f lacks of the continuity property. Indeed, the following key 
result shows tha t  for continuous functions, lub's of fully complete closures are still fully 
complete, i We already s ta ted this fact, for continuous unary functions, in [18]. 

T h e o r e m  4.7 I rE  C_ C n c ~C then r ( C , F )  e uco(ueo(C)). 

Continuity is a well-known and sufficiently weak hypothesis, which makes the above 
result widely applicable in programming language semantics and analysis. 

C o r o l l a r y  4.8 If F C Cn-5-~C then F(C,F)  is a complete sublattice of uco(C). 
Moreover, if uco( C) is pseudocomplemented then F(C,  F) is pseudocomplemented. 

In general, F (C,  F )  is not a sub-pseudocomplemented latt ice of ueo(C): In Exam- 
ple 4.2, the pseudocomplement of p7 in uco(Sign) is pl0 while it is pi3 in F(p(7/) ,  sq). 

5 C o m p l e t e n e s s  b y  D o m a i n  T r a n s f o r m e r s  

The notion of abstract domain refinement has been studied in [14], and more recently in 
[18], as a formalization and generalization for most of the systematic operators enhanc- 
ing the precision of abstract  domains (e.g. reduced product  and disjunctive completion). 
For a fixed concrete domain C, a (unary) abstract  domain refinement is defined as a 
mapping ~ : uco(C) -~ ueo(C), such tha t  ~ is monotone, and, for any A E uco(C), 
~(A)  is more precise than  A (i.e., ~ is reductive: ~(A) ___ A). Moreover, most of the 
times, refinements are idempotent ,  i.e. they upgrade domains all at once. This last con- 
dition evidently defines idempotent refinements as lower closure operators on uco( C), 
i.e. mappings in lco(ueo(C)). A dual theory holds for abstract  domain simplifications, 
that  are defined as upper  closures in uco(uco(C)) (cf. [18]). Following this framework 
and exploiting the results of Section 4, we introduce the complete and fully complete 
kernel simplifications, for a set F of monotone functions, and the least fully complete 
extension refinement, for a set F of continuous functions. The (fully) complete kernel 
of an abstract  domain A is defined as the most concrete domain abstract ing A which 
is (fully) complete for any ] E F ,  while the least fully complete extension of A is the 
most abstract  domain which is more precise than A and fully complete for any f E F;  
by the negative observations of Section 4, a similar least complete extension refinement 
is not in general definable. 

C o m p l e t e  K e r n e l  O p e r a t o r s .  Let us introduce the following basic definitions. 

D e f i n i t i o n  5.1 For F C C n --~ C, G C C - ~ C ,  def ine /cC, IK C : uco( C) --+ uco( C) 
such t h a t / c C ( x )  = Vl{~" E uco(C) I f( E_ Y, Y E F(C,F)}  and IKC(x)  -- N{Y  E 
uco(C) t XE_ Y, Y E A ( C , G ) } .  [] 

1 Amato and Levi [1] have independently made an observation similar to Example 4.5, and stated 
an analogous but weaker result to Theorem 4.7 for additive functions. 
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When F = ~f}, we write K:~ and IK~. By definition, K. C, lK C  9 uco(uco(C)), i.e. both 
/C~ and IK o are idempotent abstract domain simplifications (cf. [18]). We say that  
leE U (1[(O C) is safely defined when for any Z  9 uco(C), lcC(x)   9 r ( O , F )  (]Koc(X)  9 
A(C, G)). In this case, we call /C C and ]K C G, respectively, the fully complete kernel 
operator for F (in C) and the complete kernel operator for G (in C). By Theorem 4.4, 
IKo C is always safely defined, while monotonicity on F is enough for K~F C. 

E x a m p l e  5.2 The domain {7/, -0 ,  0} in Example 4.2 is not fully complete for sq and 
{77, 0 - }  is not even complete for sq. By Theorem 4.4, there exist their (fully) complete 
kernels, and from the diagram of uco(Sign) in Fig. 1 we derive that/Cs~q (2z) ({77, - 0 ,  0}) = 
{77, 0} and IKsP(q =) ({7/, - 0 } )  = {7/}. Let us also consider the following abstract domain 
Sign + depicted below, introduced by Mycroft in [22, Sect. 3.1]. With respect to Sign 
of Example 4.2, Sign + comprises a new element denoting the integer interval [1, 9]. p+ 

7/ 

[1, 9] ~ ~ 0  0 

denotes the closure associated with Sign + (i.e. such that  
p+(~a(7/)) ~ Sign+). It is not difficult to check that  Sign + 
is fully complete for )~X.{n} * X iff n • [2,9]: In fact, 
for any n  9 [2, 9], there exists X C [1, 9] C 7/ such that  
p+({n}*X) C ps~({n}*p+(Z)) ( ifn = 2 then X = [1,2], 
and if n = 9 then X = [1, 1]). Note that  only by removing 
[1,9] from Sign + we get a fully complete domain for all 

n  9 77, viz. Sign. This observation implies that Sign is the fully complete kernel of 
Sign + for ),X. {n} * X when n  9 [2, 9]. Obviously, by the above considerations, Sign + 
is not fully complete for *, and indeed 1CP,(zZ)(Sign+) = Sign. [] 

T h e  Leas t  Ful ly  C o m p l e t e  E x t e n s i o n  O p e r a t o r .  Dually to what done above, we 
give the following definition. 

c c : ~co(C)-+ ~eo(C) Defin i t ion  5.3 For F C C • -+ C, G C C - ~ C ,  define $F,IE c 
as EC(x)  : U{Y 6 uco(C) I Y __U-X, Y 6 F ( C , F ) ]  and 1Ec(X) = U{Y e 
,,co(C) I Y g x ,  Y  9 A ( c ,  C)}. [] 

C C C C As before, when F = ( f}  we write E~ and IEf . By definition, both E F and IE c are 
c c abstract domain refinements in the sense of [14], i.e. EF, ]EG  9 uco(uco(C)). Similarly 

to what done above, we define EF C and ]E C to be safely defined when their ranges are 
subsets of F(C, F)  and A(C,  G), respectively. In this case, $ c  and IE C are called, 
respectively, the least fully complete extension operator (for F)  and the least complete 
extension operator (for G). 

Recall that, in Examples 4.2 and 4.5, we have shown that  even when the concrete 
domain is either an atomic complete Boolean algebra p(X),  or a finite chain and the 
concrete function is both additive and co-additive, a lub of complete closures is not 
necessarily still complete. Hence, this key observation precludes us the possibility of 
finding some reasonable conditions on C and/or G in order that  ]E C is safely defined. 
For instance, from the diagram of ueo(Sign) in Fig. 1 we derive that  the least complete 
extension for sq of {7 / , -0}  does not exist: In fact, {77,-0} just admits {7/ , -0 ,  0} 
and {7/,-0.O} as minimal complete extensions, and therefore, wrongly, we would get 
IEs~ zz)({7/, -0} )  = {7/ , -0} .  By contrast, when F consists of continuous functions, by 
Theorem 4.7, for any X  9 ueo(C), EC(x)  is the least fully complete extension of X, 
i.e. in this case SF 6' is safely defined. 

E x a m p l e  5.4 Since sq in Example 4.2 is obviously continuous, by Theorem 4.7, every 
abstract domain of p(7/) admits the least fully complete extension for sq. For instance, 
E~(~)[17/ = = sq , t  , - 0 } )  {7 / , -0 ,0}  and $,~(=)({7/,0+,0}) {7/, 0+, 0, 0}. n 
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A l g e b r a i c  P r o p e r t i e s .  We study now the basic algebraic properties of the above 
operators/C,  E, ][4[, and lE with respect to the operations of reduced product and least 
common abstract ion of domains. These results are part icularly important  in order to 
simplify the construction of complete domains. 

L e m m a  5.5 Let F C C n --~ C and G C C - ~ C .  Then, ( /ccF,uCo(C),uco(C),$c) 
IK C and ( G, uco( C), uco( C),lE C) are Galois connections. 

The following relevant algebraic properties are consequences of the above result. 

P r o p o s i t i o n  5.6 Let F C C n --~ C, G C C m)C,  X ,  Y E ueo(C) such that X U_ Y.  
(i) /C7 and ]K C are additive, and C C and lEC are co-additive. 
(i i)c/f  C is meet-continuous then CCF(X) = CCF(X ~ Y ) M  c C ( Y )  and lEC(x )  = 
IEG(X ~ Y) n l E C ( y ) .  

By point (i), the least (fully) complete extension of a domain A can always be 
obtained by computing separately the least (fully) complete extensions of the factors 
in a decomposition of A. This decomposition can be obtained by complementation. For 
instance, by (ii), if C is meet-continuous then E C ( x )  : c C ( x  ~ / C C ( x ) )  M/CC(x).  

The concrete domain C is not always the best place where completeness and full 
completeness for a semantic operator can be verified, as it might be far too concrete 
for this task. We show that  one can always refine or simplify a domain A abstracting 
C by our operators,  with the same result, on any (fully) complete abstraction D of C 
which is more concrete than A. We know that ,  for A E uco(C) a n d f  : C n -+ C (when 
needed, we assume n = 1), the best correct approximation of f for A is ira : A n __+ A 
defined as i rA = PA o f ,  where PA is the closure associated with A, and, on the right 
hand side, ir is thought of being restricted to A n. If F is a set of functions, then we 
denote by F A the corresponding set of best correct approximations for A. The idea 
is tha t  we can reason about completeness issues relatively to the concrete domain A 
and function fA ,  instead of, resp., C and jr. Note tha t  when ir is monotone then f A  
is monotone as well. Thus, for F C C n -~ C and G C C--~-+C, and for any A E 
uco(C), we can define the operators of Definitions 5.1 and 5.3 relatively to F(A, F A) 
and A(A,  GA), denoted by/C A, IKAG, CA, and IEAG, where the superscript is intended 
to mean tha t  the best correct approximations are considered. By Theorem 4.4, ]K A 
is always a complete kernel operator,  and, for F C C n - - ~ C ,  ]C~ is a fully complete 
kernel operator.  Moreover, it is easy to prove tha t  if ir : cn-z -yC  and A E F ( C , f ) ,  
then irA : An___~A. Thus, if F C Cn---~C and A E F ( C , f )  then also C A is a safely 
defined least fully complete extension operator.  

T h e o r e m  5.7 Let F C C n --+ C, G C C - ~ C ,  and A E uco(C). 
(i) A E F ( C , F )  ~=~VX e I"A./CC(x) = / c A ( x )  r VX e SA. c C ( x )  = CEA(X). 

(ii) A e A(C ,  G) r VX e j'A. I K C ( x )  = I K A ( x )  r VZ E J'A. l E C ( x )  = l E A ( x ) .  

The following example shows how to practically exploit the properties in Propo- 
sition 5.6 and Theorem 5.7 to design the least fully complete extension of Mycroft 's 
domain Sign + for integer multiplication. 

E x a m p l e  5.8 Consider the domain Sign + in Example 5.2. We constructively define 
the least fully complete extension of Sign + for integer multiplication. As we observed in 
Example 5.2, Sign + is fully complete for irn = AX. {n} * X (which is obviously contin- 
uous) iff n • [2,9]. Let n E [2,9]. As we have shown in Example 5.2, /cy(zz)(Sign+) = 
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Z Z 7/ 7/ 0+ 0 0+ 0 0+ ,0 
L1,91( \ / E1,91( \ / Cl,91( \ / tl,9]f \ / 
tl,4]t \ / cl,31f \ / I \ / E1,41t \ / 

V El,~lt ,,V 

o 0 0 0 
EJnt(Sign +) s +) {g/nt(Sign+)}ne[a,9] $.~(zz)(Sign+) 

Fig .  2. Least fully complete extensions of Sign +. 

Sign and Sign + ~ Sign -= {7] [1, 9]}. By Proposit ion 5.6 (ii), we get s +) -= 
E~,(zz)(Sign+ ... 1C~,(zz)(Sign+)) r3 CP,(z~)(lC~,(z~)(Sign+)) = E,~(2z)({7/, [1, 9]}) lq Sign. We 

J ~  JT~ J ~  JTZ 2Z J 
compute the least fully complete extension ~,~( )({7], [1,9"]}) of the atomic domain 
{7], [1, 9]} by a recursive computation.  Conside~r the Cousot and Cousot [8] domain of 
integer intervals Int  9 ueo(p(7])) defined by 

;nt = {In, tll,~_<b u {(-oo, b]}~,~ u {5% + ~ ) } , ~  u {(-oo, +oo)} u {• 
It is easy to prove that  Int  9 F(p(7]) ,*)  and hence, for any n E 7] Int E F(~(7]) , fn) .  
Thus, by Theorem 5.7, for any n  9 7] and A such tha t  Int E A, E~nzZ)(A) = E/~t(A), 
and therefore we can consider the more abstract  (and simple) domain Int as concrete 
domain of reference. The following proposit ion characterizes the least fully complete 
extension in Int of any atomic domain of the form {7], [1, m]}. We assume that  m > 1 
and n e I2, m]. An analogous result hMds for m < - 1 ,  {77, Ira, 1]} and ~  9 Ira, 2]. 

~'~"~"7] [1, {z/, E]:~({7], [1, P r o p o s i t i o n  5.9 ]n t l  , m]}) = [1, m]} rl L-~I]}). 
The above recursive definition has a solution which can be obtained finitely for any 
n < m. For Sign +, i.e. m = 9, it provides the domains depicted in Fig. 2. In part icular,  
if F = {fn [ n  9 7]} then $$1~)(Sign+) = $~z~)(Sign+) = $1nt{/2,/s}l ,,Sign +'). [3 

6 S y s t e m a t i c  C o n s t r u c t i o n  o f  C o m p l e t e  D o m a i n s  

In Example 5.8 we have shown how to constructively design the least fully complete 
extension for integer multiplication of a simple domain for sign analysis. In this section, 
we show that  under some hypotheses on the semantic functions, a similar methodology 
can be always defined and applied to finite abst ract  domains in order to construct their  
least fully complete extensions and kernels. 

C o n s t r u c t i n g  L e a s t  F u l l y  C o m p l e t e  E x t e n s i o n s .  The following result gives a 
useful characterization of full completeness for additive functions. 

T h e o r e m  6.1 Let f : C--2-+C. Then, for all X  9 uco(C), X  9 F ( C , f )  r Vx  9 
x . v { y e c  I f ( y ) < x }   9  
Thus, when f is additive, it turns out tha t  ~IC(x)  is the least meet-closed set Y 
containing X such tha t  x  9 Y =~ V{y i f ( y )  < x}  9 Y. This domain can be con- 
structively obtained as the greatest (viz. most  abstract)  solution in ueo(C), smaller 
or equal to X, of the recursive abstract  domain equation Y = Y r3 ~ f ( Y ) ,  where 
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f I  = )~X. A4({V{y E C If~Y) < x} t x E X}). Note that  9 ~'1 : uco(C) --+ uco(C) is 
and therefore s is the limit of the (possibly transfinite) i teration monotone, se-  

q u e n c e  y0 = X, y ~ + l  = y ~  M ~ / ( y ~ )  i f a  is a successor ordinal, and Y~ = Vl6<o Y~ 
if a is a limit ordinal. Clearly, if C is finite, then this constructive method is termi- 
nating. It is not difficult to prove tha t  if f is in addition extensive and X = {T,x},  
with x E C \ {T}, is an atomic domain, then each element Y~ of the above iteration 
sequence having E/C({T, x}) as limit, is a chain. In this case, terminat ion for an atomic 
domain {T, x} is ensured by assuming the weaker hypothesis that  {$ x, <) is a well- 
ordered sublatt ice (i.e. it  does not contain infinite descending chains) of the (possibly 
infinite) concrete domain C. An analogous argument led us to the constructive charac- 
terization of Proposit ion 5.9. The interest in least fully complete extensions of atomic 
domains is justified by observing that ,  because uco(C) is always dual-atomic, for any 
abstract  domain there exists a canonical decomposition involving atomic domains only: 
If X E uco(C) then ({T,X})xEX\{T } is such acdecomposition of X. Then, by Propo- 
sition 5.6 (i), for any X E uco(C) and f : C---+C, s  = H~X\{T}s 
We also observe tha t  the extension of the above constructive methods to a finite set of 
functions F is straightforward. In fact, if Sol(f, X) denotes the solution of the above 
equation for f : C - ~ C  and X E ueo(C), then, independently from the order on which 
Lf I the function Ref, on the left, chooses 

un Ref(F, X) = i f  F = 0 then  X f in F by select, for any finite set 
e l s e  select f i n  F ;  ] F of additive functions, Ref(F, X) = 

Ref(F, Sol(f, X)). 8C (X). 

C o n s t r u c t i n g  F u l l y  C o m p l e t e  K e r n e l s .  The systematic construction of fully com- 
plete kernels relies on the above procedure for least fully complete extensions. As before, 
we consider atomic decompositions of the input domain, and the following result char- 
acterizes the fully complete kernel of a domain X in terms of the least fully complete 
extensions of the factors in the atomic decomposition of X. 
Theorem 6.2 / f f :  C-see then/C~(X)=n{E/C({T,x}) I  9 E X , s  c X}. 

The above result hints a systematic 
I n p u t  : Finite domain X 
O u t p u t  : Fully complete kernel K of X 
g := {T}; 
A := X; 
w h i l e  A # {T} d o  

x := choose(A \ {T}); 
i f  s  x}) C Z t h e n  

K := g v l g f ( { T , x } )  
e n d w h i l e  

constructive method to design fully 
complete of abstract  domains. The 
correctness of the algorithm on the left 
follows by Theorem 6.2. The function 
choose selects and removes an arbi- 
t rary  element from its input  domain. 
Clearly, when f is additive, the least 
fully complete extension of the atomic 
domains can be obtained by the con- 
structive method above. 

7 R e c o n s t r u c t i n g  t h e  I n t e g e r  I n t e r v a l  D o m a i n  
We observed in Example 4.2 tha t  Sign is not fully complete for integer addition | 
Instead, it is an easy task to prove that  the Cousot and Cousot integer interval domain 
Int of Example 5.8 is fully complete for addition, i.e. Int E F(p(•) ,  @). We can go 
beyond this expected result. Since @ is additive, and therefore continuous, the least 
complete extension of Sign with respect to G does exist, and the following theorem 
actually proves that  it coincides with Int. 
T h e o r e m  7.1 E~(zz)(Sign) = Int. 

Therefore, the domain Int for integer interval analysis can be reconstructed by a 
systematic domain refinement from the rule of signs domain Sign. 
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8 I n t e l l i g e n t l y  R e f i n i n g  D o m a i n s :  T h e  C a s e  o f  G r o u n d n e s s  A n a l y s i s  

We have seen that  for a fixed concrete least fixpoint semantics S = (C, f ) ,  any abstrac- 
tion D 6 uco( C) and its corresponding best correct approximation fD  : D -+ D au- 
tomatically induce a correct abstract  semantics Z D = (D, fV) .  Clearly, being abstract  
or concrete is a relative notion, and therefore if A 6 uco(C) is a domain abstract ing 
D, viz. D E A, we can reason on the completeness relationships between A and D, 
where Z D plays the role of the relative concrete semantics for A. In such a scenario, 
we simply say tha t  A is complete, resp. fully complete, for D when A 6 A(D, fD) ,  
resp. A 6 F(D, fD) .  In part icular,  this si tuation arises whenever ~ : uco(C) -~ uco(C) 
is some (possibly nonidempotent)  domain refinement, and therefore, for some abstract  
domain A, C E N(A) E A. In this case, we take into consideration the possible com- 
pleteness relations of A wrt the relative concrete semantics (~(A), f~(A)) .  Following the 
notation at the end of Section 5, we denote by E~ (A) the corresponding completeness 
transformer 9 This is a safely defined least fully complete extension operator  under the 
weak hypothesis tha t  the best correct approximation f~(A) : ~(A)  --+ N(A) is continu- 
ous. In general, we have tha t  ~(A) E s E A. We say tha t  ~(A)  is too refined 
when ]~(A) E E~(A)(A) holds. The in-tuition behind this definition is as follows. When, 
in the above scenario, it happens tha t  A is fully complete for D, then we can reasonably 
consider the abst ract  interpretat ion :~A : (A , fA)  as just  thinly less precise than Z D. 
tn other terms, the gap of precision between the abstract  interpretat ions •A and I D is 
very narrow, and therefore an efficiency/precision trade-off would suggest to prefer :I A 
to the more costly Z D. In particular,  whenever N(A) E c~(A)(A) ,one should prefer 

 9 . ~ ( A )  J . the thinly less refined domain C} (A) rather  than  the canomcal refinement ~(A).  
Thus, under the weak hypothesis that  each best  correct approximation f~(A) is con- 
tinuous, an intelligent "efficiency-oriented" version N* of a refinement N can therefore 
be defined as N* = AA. ET(A)(A). In the following, we i l lustrate a practical example of 
this idea in the field of ground-dependency analysis for logic programs. 

T h e  I n t e l l i g e n t  D i s j u n c t i v e  C o m p l e t i o n  o f  Def is Pos. Def and Pos are two 
well-known finite abstract  domains of propositional formulae widely used for ground- 
dependency analysis of logic programs [20]. We refer e.g. to [2] for the details of their 
definitions. These abstract  domains can be viewed as abstract ions of the s tandard  
concrete domain (iv(Atom), C) used in a collecting bo t tom-up  semantics for logic pro- 
grams (as usual, the set of atoms Atom is considered up to renaming). It turns  out 
that  iv(Atom) E Pos E Def. For instance, a pair (p(x, y, z), x A (y ++ z)) 6 Def C Pos 
represents each a tom p(h,  t2, ta) such that  for any its instance p(sl, s2, s3): (i) Sl is 
ground; (ii) vat(s2) -~ var(s3). In particular,  p(a, b, c) and p(a, x, g(x)) satisfy this 
property (where, as usual, a, b, c , . . .  denote ground terms).  

The disjunctive completion [9] is a well known abstract  domain refinement that  
enhances an abstract  domain so that  it becomes disjunctive, i.e. so that  the corre- 
sponding concretization map is additive. When the concrete domain C is completely 
distributive, as any powerset (iv(X), C) is, the disjunctive completion ]P(A) of an ab- 
stract domain A can be obtained by quotienting the powerset of A for the equivalence 
relation {<S, T) [ S, T C_ iv(A), VC~/(S) -- VC~/(T)} (see [15] for more details). The 
concretization of an equivalence class IS] of the disjunctive completion IP(A) is obvi- 
ously defined as Vc~(S) ,  while the abstract ion of IS] in A is given by VAS. It  has 
been shown in [15, Theorem 5.3] tha t  Pos is not disjunctive, i.e. IP(Pos) E Pos, while 
[19, Theorem 7.2] proved tha t  ]P(Def) = IP(Pos). Thus, it turns  out tha t  IP(Def) = 
IP(Pos) E Pos E Def. For example, by considering the following abstract  predicates 
(p(x, y), x) and (p(x, y), x --~ y), one has "yDel( <p(x, y), x) ) U ~/Del( (p(x, y), x -e y) ) C 
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"TDel( (p(x,  y), x V (x -+ y)) ) = 7Dey( (p(x,  y), true)) (it is enough to consider the a tom 
p(v,  w)),  and this shows that  De.[ and Pos are not disjunctive. 

Following the s tandard bot tom-up approach (e.g. [3]), we consider the well-known 
s-semantics S = (p (A tom) ,  T~)  of [13] as the concrete least fixpoint semantics of 
reference, which is fully abstract  for the observable given by the computed answer sub- 
st i tut ions of a logic program. Then, the abstract  domains Def,  Pos and their  common 
disjunctive completion ]P(Def) induce the abstract  semantics Def s = (Def ,  TDel) ,  
Ros s = (Pos, TP~ lP(Def)  s = (lP( Def) ,  T~(De$)), where each abstract  semantic op- 
erator is defined as the best correct approximation of T~ on the corresponding abstract  
domain. Let us turn to discuss the completeness issues between these abstract  seman- 
tics. I t  is known [20] that  Def  is not complete (and therefore fully complete) for Pos 

{T[~ }peProgram)UF( IP(De f ) , {T~  }PeProgram), and ]P(Def),  i.e. Def  f~ F(Pos,  Pos ~(Def) 
while [15, Proposition 5.13] proved tha t  Pos is fully complete (and hence complete) for 
lP(Def), i.e. Ros E r(lP(D4),  {Ty,(m4)}peP~ogr~m). 

E x a m p l e  8.1 Consider the programs P and Q below. 
P :  p ( x , y ) : -  q ( x , y ) , r ( x , y ) .  Q:  p ( x , a ) : - p ( z , z ) , p ( y , x ) .  

q (a ,x )  : - p(x,  x) : - 
q(x, a) : - p(a,  y) : - 

r ( ~ ,  ~ )  : - -  

It is e a s y t o  see tha t  (p(x,  y), x ++ y) E Ifp( TDp eI ), whilst (p( x, y), x A y) E lfp( TPp ~ = 
lfp(T~dge])).  Thus, in P ,  by either Pos or lP(Def) ,  we are able to infer tha t  any 
computed answer substi tution for the predicate p will ground both its arguments, 
while in Def  we can only conclude tha t  the first argument is ground iff the sec- 
ond is ground. Moreover, the Kleene iterations for T ~  ~ and T ~  (l)el) are as follows: 
(T~~  ~ = (p(x ,y ) , la l se ) ,  (T~~  1 = ( p ( x , y ) , y  --+ x), (T~~ 2 = ( p ( x , y ) , t r u e )  
(least fixpoint); (T~(DeI))  ~ = (p (x ,y ) , fa l se ) ,  (T~(Del) )  1 = (P(~,Y),[~ y, x]), 
(T~(Def) )  ~ = (p(x,  y), [x ~-~ y, x, y]) (least fixpoint). Thus, in Q, by lP(Def)  we are 
able to infer that  in each computer  answer substi tut ion for p, either its first argument 
is ground or its second argument is ground or they are equivalent. Instead, by using 
Pos we get no ground-dependency information. Nevertheless, by abstract ing in Pos the 
final output  (p(x,  y ), Ix ++ y, x, y]) of ]P ( Def  ) we get exactly the output  (p(x,  y), true) 
of Pos. [] 

We sharp the aforementioned result of [15, Proposit ion 5.13], and we show that  Pos 
is the least complete and fully complete extension of Def in IP(Def),  i.e., by lett ing 
F = { T~(P~ } P e Program, the following theorem holds. 

T h e o r e m  8.2 g~(Del ) (Def )  = ]EF(Def)(Def)  : Pos.  

To conclude, let us draw the practical consequences of Theorem 8.2, in view of the 
general observations made at the beginning of this section. If we want to systemati-  
cally design an abstract  domain for disjunctive ground-dependency analysis start ing 
from the existing domain Def,  then, according to the s tandard procedure of refin- 
ing Def  to its disjunctive completion, we should use the disjunctive domain lP(Def) .  
However, according to our definitions, lP(Def)  is too refined, since, by Theorem 8.2, 
g~(Def ) (Def )  = Pos is a proper abstract ion of IP(Def).  By contrast: following the 
"efficiency-oriented" strategy of refinement outlined above, the intelligent disjunctive 
completion is defined as P* = AA.EF(A)(A) ,  and therefore we get P*(De f )  = Pos. This 
still is a systematic step of refinement, and by doing this, it is important  to remark 
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that  we dramatical ly ~ain in efficiency: While ]P(Def) has an exponential size wrt  Def, 
i.e. [IP(Def)[ = O(21 ell), by contrast,  it is easy to verify that  [Pos[ = O([Def[) yet 
maintaining a relationship of full completeness between Pos and ]P(Def). 

9 R e l a t e d  W o r k  
The notion of completeness in abstract  interpretat ion has been first considered by 
Cousot and Cousot in [9], where the basic propert ies of complete abstractions in the  
approximation of fixpoint-based semantics have been proved. Completeness arises typ- 
ically among (concrete) semantics of programming languages at different levels of ab- 
straction. Cousot and Cousot proved in [10] tha t  some classical semantics of program- 
ming languages are (fully) complete abstract ions of a generalized SOS operat ional  
semantics, and Cousot [7] formalized the relationships between some well known type  
inference systems as complete (called exact) abstract  interpretations.  In logic program 
semantics, Giacobazzi [16] proved that  fully complete abstractions relating semantics 
provide a corresponding hierarchy of models for positive logic programs, while Comini 
and Levi [5] based their taxonomy of observables (perfect, denotational,  and semi- 
denotational) on the notion of full completeness, applied to some basic operators for 
building SLD-trees. Recently, Amato  and Levi [1] s tudied the lattice structure of these 
observables, which is basically the lat t ice of full complete abstractions of the above 
additive operators for building SLD-trees, and independently formulated an analogous 
but weaker result to our Theorem 4.7, for additive operators only. In program anal- 
ysis, Sekar et al. [24] focussed on completeness of Mycroft 's  [21] strictness analysis 
of functional programs. Their approach is ra ther  different from ours: They identified 
the greatest class Cl of programs such tha t  the strictness analysis of P is complete iff 
P E Cl. In our terminology, they have found the greatest set of programs C1 such tha t  
Strictness E A( C, { Tp }p~ Cl), where C and Tp are, respectively, the concrete domain 
and the semantic transformer in the s tandard  collecting denotational semantics of P .  
Reddy and Kamin [23] generalized [24] to first-order and typed higher-order functional 
languages. Steffen [25] is one of the first authors isolating completeness as a key prop- 
erty for analysis. His approach is "observation directed",  in the sense that  the design of 
a fully abstract  (complete) abstract  interpretat ion is directed by a certain observation 
level. This differs from our approach, which is, as the s tandard Cousot and Cousot 
theory of abstract  interpretation,  "semantics directed". A categorical generalization of 
Steffen's work has been successively s tudied in [26]. Colby [4] isolated the phenomenon 
of accumulated imprecision in abstract  interpretat ion,  which is essentially the same as 
the lack of full completeness. To overcome these problems, Colby proposes to consider 
a new enhanced so-called transfer relations language to express the net behavior of 
finite control paths  in the operational  semantics of programming languages, and he 
shows tha t  this allows to solve the problem in some relevant examples. Colby's  ap- 
proach is therefore orthogonal to ours: The whole semantic metalanguage is changed 
to gain precision. Finally, the most related work is certainly that  of Mycroft [22]. He 
considers a notion of completeness which is essentially equal to ours, except tha t  he 
develops his theory using a predicate-based approach to abstract  interpretat ion (a kind 
of logical view of classical abstract  interpretat ion).  Moreover, he argues tha t  the well- 
known state minimization algorithm for finite determinist ic au tomata  can be used to 
produce a canonical (fully) complete abstract  interpretat ion by removing useless do- 
main elements. Although the technical approach followed by Mycroft is quite different 
from ours, the  idea of systematically defining a canonical simplest complete abs t r ac t  
interpretat ion is basically the same idea of our complete kernel operators. This rela- 
tionship certainly deserves further investigation in order to see if these two systematic  
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methodologies actually have the same behavior. On the other hand, Mycroft does not 
consider the dual problem analogous to our least (fully) complete extension operators. 
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