Improving Abstract Interpretations
by Systematic Lifting
to the Powerset

Gilberto Filé Francesco Ranzato
Dipartimento di Matematica Pura ed Applicata
Universita di Padova

Via Belzoni 7, 35131 Padova, Italy
{gilberto,franz}@hilbert.math.unipd.it

Abstract

Operators that systematically produce more precise abstract interpretations from
simpler ones are interesting. In this paper we present a formal study of one such
operator: the powerset.

The main achievements of the paper are described below:

e A formal definition of the powerset operator is given. For any given ab-

stract interpretation D = (D, 01, ..., 0k), where D is the abstract domain and
01,...,0} are the abstract operations, this operator provides a new abstract
interpretation P(D) = (P(D),07,...,0%). Thus, the powerset concerns also

the abstract operations o}, that are constructively defined from the o;’s.

e A necessary and sufficient condition guaranteeing that P(D) is strictly better
than D is given.

e The general theory is applied to the well-known abstract interpretation PROP
for ground-dependence analysis of logic programs. It is shown that P(PROP)
is strictly better than PROP.

1 Introduction

It is widely acknowledged that the accuracy of a data-flow analysis depends on
the expressiveness of the abstract interpretation chosen. Thus, it becomes very
interesting to have operators that systematically produce new and possibly more
precise abstract interpretations from simpler ones. In this paper we study one
such operator: the powerset. The main motivation for studying the powerset is
obvious: it can generate very expressive interpretations. In fact, the powerset
abstract domain gains the capability of expressing the logical disjunction of the
properties represented by the original domain. Moreover, it is also worth noticing
that a “hidden” powerset operator is employed when defining analyses or abstract
semantics that collect sets of abstract values ([BGL93, CDG93]).

The powerset operator has also been studied by Cousot and Cousot in [CCT79]
(together with the cartesian product, the disjoint sum and the function space), and
later in [CC92]. In these papers the Cousots were concerned only with lifting ab-
stract domains to their powerset. Abstract operations for the new domain could be
defined as the usual optimal approximations of concrete ones. However, it is also
very important to be able to derive correct (not necessarily optimal) operations
directly from those of the original domain, as if these latter are finitely computable

(and the abstract domain is finite) then the former are too. In the paper we char-
acterize such a method of derivation. As far as the abstract domains are concerned,
in [FR94] it is shown that our definition is equivalent to that of [CC92].

Given any interpretation D = (D, 01,...,0k) abstracting the concrete one C =
(C,0§,...,0{), we describe how to systematically construct its powerset P(D) =
(P(D),o07,...,0;). The main questions about this construction are: Does P(D)
also abstract C? Is the abstract domain P(D) always better than D? The theory
developed in this paper answers these questions as follows.

1. We show that P(D) abstracts C when the following two conditions hold:

e the concrete domain C' is a complete meet-distributive lattice (this is
true for every lattice p(X) ordered with set-theoretic inclusion);

e every concrete operation oic is join complete (more precisely, it only

suffices join completeness on certain subsets of C').

2. As expectable, the abstract domain P(D) is never worse than D. P(D) is
strictly better than D iff the concretization map of the Galois connection
between C' and D is not join complete. Since this is a quite unusual condi-
tion, P(D) is very often strictly better than D. Furthermore, the powerset is
idempotent, i.e. P(P(D)) is equivalent to P(D).

The powerset operator defined in this paper can be used to lift any abstract
interpretation. In order to verify its usefulness, we apply it to the well-known ab-
stract interpretation PROP ([MS89, CFW91]), whose abstract domain consists of
(classes wrt semantic equivalence of) propositional formulae. PROP is used for the
groundness and equivalence analysis of logic programs. We show that P(PROP) is
strictly better than PROP. This result is somewhat surprising. In fact, one would
expect PROP to be able to “simulate” any element {f1,..., f,} of P(PROP) with
the formula f; V...V f,. However, we show that this is not the case.

The rest of the paper is organized as follows. Section 2 contains useful definitions
and results about abstract interpretation theory; particularly important are the no-
tions concerning the comparison of abstract interpretations wrt their precision. The
powerset operator is defined in Sections 3 and 4: Section 3 is concerned with lifting
the abstract domain, whereas in Section 4 the corresponding abstract operations
are defined. The results above mentioned in the points 1 and 2 are shown in these
two sections. The application of the powerset to PROP is described in Section 5.
Finally, Section 6 contains some concluding remarks.

The results given here are described and shown in detail in the full version of
the paper [FR94].

2 Preliminaries
We start by recalling the definitions of Galois connection and insertion.?

Definition 2.1 If C' and D are posets and a : C' — D, v : D — (' are monotonic
functions such that Ve € C. ¢ <¢ v(a(c)) and Vd € D. a(y(d)) <p d, then we call
the quadruple (v, D, C, «) a Galois connection (G.c.) between C and D.

If in addition Vd € D. a(y(d)) = d, then we call (v, D,C,a) a Galois insertion
(G.i.) of Din C.

IFor the notions of lattice theory the reader is referred to the classical textbook [Bir67].

We also recall that the above definition of G.c. is equivalent to that of adjunction:
(v, D,C,a) is an adjunction if Ve € CVd € D. a(c) <p d & ¢ <¢ v(d). a (v) is
called a left (right) adjoint to v ().

In the setting of abstract interpretation, C' and D are called, respectively, the
concrete and the abstract domain, whereas « and v are called the abstraction and
the concretization map, respectively. The abstract domain consists of approximated
representations of properties of the values of the concrete domain. Both on the
concrete and on the abstract domain, a partial order relation describing the relative
precision of the values is defined: & < y means that x is more precise than y.
The concretization function gives the concrete value corresponding to an abstract
property, whereas for a concrete value the abstraction function gives its best (wrt
the ordering of D) abstract approximation. If (y, D, C, «) is a G.i., then it is possible
to verify that the concretization and abstraction mappings, v and «, are 1-1 and
onto, respectively. Thus in this case, each value of the abstract domain D is useful
in the representation of the concrete domain C as all the elements of D represent
distinct members of C'.

We next recall some well-known results concerning Galois connections and in-

sertions (see [CCT9, GHK'80, MSS86]).

Proposition 2.2

(i) If (v,D,C,«) is a G.c. between the posets C and D, then a preserves lub’s
and ~y preserves glb’s.

(i) If (v, D,C,) is a G.i. of the poset D in the complete lattice C, then D is a
complete lattice too.

(i1i) Let C and D be posets, and let v : D — C' that preserves glb’s; in addition,
for all ¢ € C assume that Mp{d € D :c <¢ v(d)} exists.
If we define o: C — D as a(c) =MNp{d € D : ¢ <¢ v(d)}, then (v,D,C, a)
is a G.c. between C and D.
Moreover, if v is 1-1 then we obtain a G.i. of D in C.

In case C' and D are complete lattices, (i) says us that o and v are complete join
and complete meet morphisms, respectively. In a G.c., and thence in an adjunction
as well, one mapping uniquely determines the other (see e.g. [GHKT80]). Then «
defined in (iii) will be the only mapping such that (v, D, C,a) is a G.c. (it is “the”
left adjoint to 7). Moreover, starting with « : C — D it is possible to state the
dual version of (iii). We will assume from now on that both concrete and abstract
domains C, D are posets, unless otherwise asserted.

Ifof, ..., okc are all the operations defined on the concrete domain that express
the semantics, then C = (C, of, cen okc> is called the concrete interpretation. Thus
if (y,D,C,«) is a G.c., it is necessary to define the abstract operations over the
abstract domain D, simulating the behavior of the concrete operations on the prop-
erties represented by D. Therefore for each concrete operation oic C"x X — C,
there must be defined a corresponding abstract operation o; : D™ x X — D,
that approximates it.2 We will call D = (D, 01,...,0%) an abstract interpretation.
Sometimes, with a slight abuse of terminology, we will call (v, D,C,a) an (ab-
stract) interpretation, disregarding the abstract operations. For both concrete and
abstract operations we require, as usual, the monotonicity. In the rest of the paper,

2Both at the concrete and at the abstract level, X is any possible set of auxiliary parameters
also mathematically unstructured.

for simplicity of notation, we will consider both the concrete and the abstract oper-
ations working on a single argument, viz., oc : C' X X — ', and correspondingly,
op : D x X — D. The extension to the product domain is notationally tedious,
but conceptually straightforward. Furthermore, we will always refer to properties
of the concrete and abstract operations (e.g. monotonicity and join completeness)
wrt their first argument.

Definition 2.3 ([CC77]) Let (v, D,C,a) be a G.c..

(i) Let oc : C' x X — C be a concrete operation, and let op : D x X — D be
a corresponding abstract operation.
We say that op approxzimates (or is an approzimation of) oc ifVd € DNz € X.

oc(v(d),) <¢ y(op(d, z)).

(i) 1f of,. . .,okC are the concrete operations respectively approximated by o1,. . ., o,
then we say that D = (D, 01,...,0%) abstracts C = (C,0{,...,0%).

The next definition compares the precision of representation of two different
domains that abstract the same concrete domain.

Definition 2.4 ([CFW92]) Let (v1, D1,C,a1) and (72, D2, C,a3) be G.i’s. De-
fine the following maps:

f: Dy — Dy qg: Dy — Dy
f(d1) = az(vi(d1)) g(da) = ai(y2(d2)).

We say that Dy C-abstracts Dy if (g, D2, D1, f) is a G.i..
Furthermore, we say that Do properly C-abstracts Dy, if Dy C-abstracts Dy and if
D1 does not C-abstract Dy (i.e. (f, D1, Da,g) is not a G.i.).

The fact that Dy C-abstracts D1 intuitively means that D; is “less abstract” than
Dy wrt C', and thus D;’s quality of representation is not worse; the quality is surely
better in the case of proper abstraction. This intuition is made more precise by the
following result.3

Proposition 2.5 ([CFW92]) Let (v1,D1,C, a1) and (2, D2, C,) be G.i.’s.
Dy (properly) C-abstracts Dy iff v2(D2) € y1(D1) (v2(D2) C y1(D1)).

Notice that if Dy properly C-abstracts D; then there exists d; € D; such that
¢ = y1(d1) & y2(D2), or equivalently ¢ = v1(a1(¢)) but ¢ <¢ 72(a2(¢)), i.e. there
exists a concrete value ¢ that can be represented in D without loss of information,
whereas this is not possible in Ds.

The next definition formalizes a classical criterion of comparison between ab-
stract interpretations ([CC79]). It is concerned only with the precision of the anal-
yses, whereas it completely neglects their complexity.

Definition 2.6 If D; = (Dy,01*,...,0.") and Dy = (Da,07?,...,05?) both ab-
stract the concrete interpretation C = (C,0¢,...,0%), then we say that D; is better
than D5 if:

e Dy C-abstracts Dy;

3In the paper we write S C T if S is a proper subset of T, and, as usual, if < is a partial
ordering then a < b stands for a < b and a # b.

e every abstract operation OZ-D ' is (a) better (approximation of of) than the
corresponding operation oD 2
ie. Ve € OVr € X. vi(oF (oq(),2)) <c Y2(0P? (aa(c), z)).

Moreover, we say that D is strictly better than Dy if:
e Dy is better than Do;
e D, properly C-abstracts Dy;

1

strictly better than the corresponding
D>

e there exists at least one operation o}

Do Dy Do

0j %, 1.e. 0;" is better than oj is not better than 0 ! (thence, there

exist ¢ € C' and = € X such that 71(Hai(e),z)) <c 72(2(aa(e), x))).

and 0;

Lemma 2.7 If OD1 is better than 0 2 and (v1,D1,C 1) is a G.i., then 0?1 is

strictly better than 0]1?2 iff 3d1 € Dy .3:1: eX.y(]Dl (d1,2))<c 72(0?2 (a2(71(dy)), x)).

3 The Powerset Abstract Domain P(D)

In this section we describe the powerset operator on abstract domains. The con-
struction relies on [CFW93]. The extension to the abstract operations is treated in
the next section.

In what follows we assume that C is the concrete domain, D is an abstract
domain and (v, D,C,«) is a G.c.. For the following definitions the assumption of
treating a G.c. between C' and D suffices. Only at the moment of comparing P(D)
and D we will need to assume that there is a G.i. of D in C. We also assume that the
concrete domain is a completely meet-distributive lattice, i.e. C' must be a complete
lattice such that for each family {c} };g](i) C C, MierUje ()¢5 = Uper,_, Mier cfp(i),
where Fy_ s is the set of the functions ¢ defined over I and with values ¢(i) € J(i).
This condition on the concrete domain C' is not very restrictive, as it is satisfied by
the powerset of any set, ordered with the set-theoretic inclusion, and most concrete
domains drawn in literature are of this sort. Notice that if we assume a G.i. of D in
C, then, by Proposition 2.2 (i), the fact that C is a complete lattice implies that
so is D.

We define the following relation between subsets of D:

if S1,52 € D then S; =, S2 < Ucy(S1) = Uey(S2),

where as usual Uc@) = L. Obviously =, is an equivalence relation on p(D), and
if S C D we denote its equivalence class by [S], = {Z C D : S =, Z}. By this
definition, two sets of abstract values are equivalent if the disjunctions (i.e. lub’s) of
their concrete meanings coincide. The abstract domain that we obtain by applying
the powerset operator to D is defined as

P(D) ¥ o(D),., ={[8];: § € D}.

P(D) is defined as the quotient of (D) modulo = in order to identify the equiv-
alent subsets. An element [S], of the new abstract domain P(D) assumes the
intuitive meaning of logical disjunction of the abstract properties represented by
the elements in S.

We define the fat of [S], € P(D) as W[S]y = U{Z C D:Z € [S],}. We will now
see that W[S], =, S, and thus [W[S],], = [S],. Since W[S], is a superset of each
member of [S],, we will use it as the canonical representative of the class.

Lemma 3.1 For [S], € P(D),
(i) W[S), =, S;
(i) ¥[S]y = {d € D : y(d) <c¢ Ucy(S)}-
We now define the following relation on P(D):
if [S], [Ty € P(D) then [S], E [T], < w[S], € W[T],.

Notice that C is a partial order on P(D) (antisymmetry follows by Lemma 3.1 ().
In P(D) there are the top and the bottom elements: indeed by the ordering defini-
tion T p(py = [D]y, and using Lemma 3.1 (i) it is easy to verify that L ppy = [0].
If, in addition, in D there is the top T p (it is possible to show that this holds if we
start from a G.i. rather than a G.c.), then T ppy = [{Tp}]5.

Proposition 3.2 P(D) is a complete lattice,

where if S = {[Si], € P(D) :i € I} then Up(pyS = [Uier W [Si]4]y and Np(p)S =
[Nier & [Si]4]4-

Indeed, the lub can be simplified as follows: UppyS = [UierSily-

Next we are going to define the concretization map from the new powerset
domain P(D) in C:
~v*: P(D) — C
7 ([5]h) = ber(S).

Obviously the concretization is well-defined, and its definition is very natural (recall
the disjunctive meaning of each [S],, above mentioned).

We exploit the hypothesis of complete meet-distributivity of the concrete domain
C in the proof of the next lemma.

Lemma 3.3 v* is a I-1 complete meet morphism.

The above lemma and Proposition 2.2 (iii) suggest to define the abstraction map
as the left adjoint to v* in the usual way:

a*: C — P(D)
a*(¢c) = Npp){lS]y € P(D) : ¢ <c v ([S]4)}-

Therefore, we have shown the following result.

Proposition 3.4 If (v, D,C,«) is a G.c., where C is a completely meet-distributive
lattice, then (v*, P(D),C,a*) is a G.i..

Let us now turn to the comparison of P(D) with D. Of course the precision of
P(D) is not worse than that of D.

Proposition 3.5 D C-abstracts P(D).

Recalling Definition 2.4, the above proposition tells us that (a* o, D, P(D),ao~*)
is a G.i.. In order to find a stronger relationship between D and P (D), we need to
assume, in addition to the complete meet-distributivity of C, also that (v, D, C, «)
is a G.i. (hence, as above observed, also D is a complete lattice).

Proposition 3.6 If (v,D,C,«a) is a G.i., then for every [S]y € P(D) and d € D,
0 07*(18) = UpS and a* o(d) = [{d}],.

The above proposition and the fact that for all d € D, v*([{d}],) = v(d), emphasize
that the expressive capabilities of D is maintained in P(D) by the elements [{d}].,
as one would expect.

We now establish a necessary and sufficient condition for having that D properly
C-abstracts P(D).

Theorem 3.7 Let (v,D,C,«a) be a G.i. (where C is a completely meet-distributive
lattice). Then D properly C-abstracts P(D) iff v is not join complete.

Corollary 3.8 (v,D,C,a) and (v*, P(D),C,a*) are equivalent interpretations iff
v is a complete join morphism.

In Section 5 we will show that the concretization map of the interpretation for
the analysis of logic programs with abstract domain Prop satisfies this condition,
viz. is not join complete.

The following are alternative ways of expressing the join completeness condition
of the concretization.

Proposition 3.9 In the hypotheses of Theorem 3.7 the following are equivalent:*
(i) ~v is a complete join morphism;
(ii) v(D) is closed under lub’s, i.e. VT C (D). Uec T € v(D);

(i1i) v(D) is a complete sublattice of C;

() ¥Y[S]y € P(D). Up S € &[S],.

It is easy to verify that v*(P(D)) \ v(D) = v*(P(D) \ {[{d}], : d € D}) (see
[FR94]). This observation suggests us to call new each element of the power domain
in P(D)\{[{d}]+ : d € D}. Thence, [S], € P(D) will be new iff Ucv(S) <c¢ v(LUpS).

As it is expectable, the powerset operator is idempotent: if we say that two
G.i.’s are equivalent when one abstract domain C-abstracts the other one and vice
versa (viz., by Proposition 2.5, the images of the domains via the concretization
mappings coincide), then the following holds.

Proposition 3.10 Let (v,D,C,a) be a G.c., where C is a completely meet-dis-
tributive lattice. Then (v*, P(D),C,a*) and (v**, P(P(D)),C,a**) are equivalent
interpretations.

4 Operations over P(D)

Let us suppose that the sufficient hypotheses for having that (v*, P(D),C, a*) is

a G.i. hold, viz. (v, D, C,«a) is a G.c. in which C is a completely meet-distributive

lattice. Moreover, let us suppose that oc : C x X — (' is a concrete operation

approximated by op : D x X — D. We want to define an operation over the

abstract domain P (D), such that it extends op and that still approximates oc.
Let us consider this operation over P(D):

4The equivalence (i) < (i) was already stated in [CC79].

o}, : P(D) x X — P(D)
0 (18] 2) = [{op(d,x) € D : d € 6[S],).

This mapping is well-defined, and its definition is fairly natural since it consists
in applying op to the elements of the canonical representative (the fat) of the
argument, and then to take the equivalence class of the obtained set. Furthermore,
since the definition of o}, is based on op, in the case that the initial abstract domain
D is finite and op is finitely computable (usually verified hypotheses), this operation
is also finitely computable (as each W[S], is finite). The monotonicity condition of
o}, also holds.

Proposition 4.1 o7, is monotonic.

Unfortunately, in general, it is not true that o}, approximates oc, i.e. it is
not necessarily true that if [S], € P(D) and z € X then oc(y*([S],),z) <c
v* (05 ([S]y,x)). An example showing this fact is given in [FR94]. However, we
describe below a sufficient condition for the correctness of the operation o7,.

Proposition 4.2 If oc is join complete on the concretization of fat sets, i.e. for
W[S]y €p(D) and € X, oc(Uc{y(d) : deW[S],}, z) = Uc{oc(v(d), z) : deW[S],},
then oy, is an approximation of oc.

Clearly, if o¢ is join complete it also verifies the condition of the above proposition,
and thus, in such a case, o}, approximates oc. Even though this condition may seem
restrictive, in Section 5 we will show that it is satisfied by the concrete interpretation
usually adopted for the analysis of logic programs. The concrete domain consists
of sets of idempotent substitutions, and the concrete operation is the unification.
This operation is join complete.

We next investigate the relationship existing between op and o},. We already
know that D C-abstracts P(D). Therefore, it is not surprising that o7, is an exten-
sion of op. Furthermore, o}, is a better approximation of oc than op.

Proposition 4.3 If oc is join complete on the concretization of fat sets then:
(1) o}, extends op, i.e. Vd € DNz € X. o},([{d}]~,z) = [{op(d,x)}]y;
(i1) of, is better than op (cf. Definition 2.6).

It is straightforward to verify that (i) of the above proposition also implies that op
approximates o%, wrt the G.i. (a* o+, D, P(D), a0 v*).

If D = (D,o1,...,0x) is an abstract interpretation, then we will denote by
P(D) = (P(D),o7,...,05) that obtained applying the powerset operator to D. The
following theorem summarizes some of the results so far achieved.

Theorem 4.4 Let C = (C, olc, .. ,og> be a concrete interpretation abstracted by
D = (D,o1,...,0k), and let P(D) = (P(D),0%,...,0}) be the powerset of D. If C
is a completely meet-distributive lattice and Oic is join complete on the concretization
of fat sets for all i, then:

(i) P(D) abstracts C;
(i) P (D) is better than D.

5 Powerset of the Abstract Interpretation PROP

5.1 The Concrete Interpretation LP

We briefly recall, from the framework of [Cor92], the concrete interpretation for the
analysis of logic programs.

Let us consider a finite set of variables. In order to fix the notation, we will

consider the set V,, = {z; : 1 < i < n}, for some n € IN that is assumed to
be large enough for the analysis of any program. Moreover, we will consider an
alphabet F of function symbols. Function symbols (of arity > 1) will be denoted
by g, h, and constant symbols by a,b. If E is any syntactic object then Var(FE) will
denote the set of variables occurring in . The set of the idempotent substitutions
over V,, and over the set of terms built on V,, and F will be denoted by Subst,,.
Substitutions will be denoted by o, 9, d, 7, their domain of definition by Dom/(o),
and their composition by o. The empty substitution will be denoted by e. If
o is a substitution and F is any syntactic entity, then o(FE) will stand for the
result of applying ¢ to E. Observe that Subst, is not closed under composition
(e.g., {x1/x2} o {xa/g(x1)} = {x1/9(x1),22/g(x1)} is not idempotent). We also
recall the well-known correspondence between idempotent substitutions and sets
of syntactic equations in solved form ([LMMS88]). Thus, if ¢ is an idempotent
substitution, by Eqn(o) we will denote the corresponding set of term equations in
solved form. Over Subst, it is defined the usual relation of “more general than”:
if 01,09 € Subst,, then o1 <oy < Y € Subst,,. 01 = o9 0 V.
Notice that < is a pre-order but not a partial order over Subst,. For any set E
of term equations, mgu(F) is as follows: if F is not unifiable then mgu(E) = 0,
otherwise mgu(E) = {d} for any idempotent mgu ¢ of F (recall from [LMMS88] that
all the idempotent mgu’s of F are equal up to renaming).

The concrete domain is p(Subst,). The partial ordering is the set-theoretic
inclusion C, that makes p(Subst,) a complete lattice.

Concrete unification is defined as follows:

uc : p(Substy,) x Subst, — p(Subst,)
uc(X,0) = Uaez mgu(Eqn(o) U Eqn(9)).

Notice that ug is the usual unification: if o is a calling substitution and J is an idem-
potent mgu of an equation between atoms H = B then mgu(Eqgn(c) U Eqn(d)) =
o omgu(Ho = Bo), up to renaming ([CDY91, Cor92]).
In conclusion, the concrete interpretation is LP,, = (p(Subst,),uc).

We now state some properties of LP,,, that will be useful later on.

Lemma 5.1
(i) {p(Substy,), C) is a completely meet-distributive lattice.

(i) uc is a complete join morphism.

5.2 The Abstract Interpretation PROP
In this subsection the abstract interpretation PROP is recalled from [MSJ94].

The concrete and the abstract interpretation share the set of variables: V), is
both the set of program variables and the set of propositional variables. If T is a
(non-empty) set of logical connectives (in our approach the propositional constants

F and T are not included in T'), then the set of well-formed propositional formulae
built on V,, and T’ will be denoted by ,(I"). Formulae will be denoted by f, f;.
As usual, if f, f1, fo are formulae and M is a truth assignment (over V,,), then we
write M = f to indicate that M is a model of f, fi1 = f2 to indicate that fs is a
semantic consequence of f1, and f; = f» to indicate that fi; and fo are semantically
equivalent (viz., f1 |E f2 and vice versa). Moreover, by A,, we will denote the set
of the truth assignments, and if M € A, it will be also denoted by the n-uple
(M(z1),...,M(xzy)).

The abstract domain consists of classes, wrt =, of propositional formulae built
with the connectives A, V, <. Hence,

Prop, Q,({A,V, <}),_ U{F},

where F denotes the class of the unsatisfiable formulae. For simplicity of notation
we will write f for the class of formulae equivalent to f (this does not cause any
problem, as each operation involving classes of formulae does not depend on the
selected representative). Prop,, is ordered by semantic consequence: f; < fo if
fi = f2. By this ordering, Prop,, assumes the (finite) complete lattice structure:
the lub (glb) is the disjunction V (conjunction A), the top is the class of the formula
x1 < x1 (= T), and the bottom is F. In [CFW91], Cortesi et al. semantically
characterized the domain Prop,,: they showed that Q,,({A,V, <}),_ coincides with
(the equivalence classes of) all the formulae that are satisfied by the unitary truth
assignment, i.e. the assignment making true each variable of V,.

Next we recall the definition of the concretization map. We need to introduce
an auxiliary function mapping each substitution to a truth assignment satisfying
only the variables that the substitution grounds:

assign : Subst, — V, — {false, true}
assign o x; iff Var(o(z;)) = 0.
The concretization « is defined as follows:
v : Prop, — p(Subst,)
v(f) = {o € Subst,, : Vo' Q0. assigno’ = f}.

By this definition, v maps any formula f to the set of substitutions o having the
property that when further instantiated to some substitution ¢’, the corresponding
truth assignment assign o’ satisfies f. In the sequel, we will also use the following
notation: M, = {assigno’ € A, : o' € Subst,, ¢’ 1o}.

Exploiting Proposition 2.2 (%), the abstraction map is defined as the usual left
adjoint to ~:

o : p(Subst,) — Prop,,
a(X) = Mf € Prop, : X C~(f)}-
Proposition 5.2 ([CFW91]) (v, Prop,,, p(Subst,,), «) is a G.i..

When « is applied to a singleton {o} we will write « (o), for simplicity of notation.
In [CFW94], an explicit definition of the abstraction map « was given, showing
that it acts in a very natural way.

Proposition 5.3 For o€ Subst,, a(o)=N{x— AVar(o(z))€ Prop,,: x€Dom(o)}
(as usual N = T, and thus if Var(o(z)) = 0, viz. 0(z) is a ground term, we simply
obtain the conjunct x).

The above proposition enables us to explicitly compute « for any ¥ € p(Substy,),
since from Proposition 2.2 (%) it follows that a(X) = V{a(co) € Prop,, : 0 € X}.
Also notice that from the above proposition a(e) = T follows as well.

We next recall the abstract operation approximating the concrete unification
uc. It consists of taking the conjunction of the formula f (that represents the
current set of substitutions) with the abstraction of the mgu ¢:

u: Prop, x Subst, — Prop,,
u(f,6) = f nald).

Obviously u is well-defined (if f = ¢ then u(f,d) = u(g,d)), and its monotonicity
is trivial to verify.

Thus, the abstract interpretation is PROP,, = (Prop,,, u). The following sound-
ness result holds.

Proposition 5.4 ([MSJ94]) PROP,, abstracts LPy,.

5.3 The Abstract Interpretation P(PROP)

In this subsection the powerset operator is applied to PROP,,, and it is shown that
P(PROP,,) is strictly better than PROP,,.

Let P(Prop,,) be the abstract domain obtained applying to Prop,, the powerset
operator, as described in Section 3. Moreover, let a* and +* be the mappings
defined in the same section.

Proposition 5.5 (v*, P(Prop,,), p(Substy,),a*) is a G.i..

Proof. By Propositions 3.4 and 5.2, and Lemma 5.1 (7). m

Since Prop,, is a finite lattice all its subsets are finite too, and thus, to simplify
the notation, we will denote the generic element of P(Prop,,) by [f1, ..., fi]y. Notice
that, since y(F) =0, Lp(prop,) = [Fl4-

Observe that, by Proposition 3.5, we already know that Prop, p(Substy)-
abstracts P(Prop,,), namely (a* o+, Prop,,, P(Prop,),a o~*) is a G.i.. Our aim
is now to show that indeed P(Prop,,) is strictly o(Subst,)-abstracted by Prop,,.
To this end, by Theorem 3.7, it suffices to find two formulae of Prop,, for which
7 does not preserve the lub. The reason for this is very simple. Let f; and fs be
formulae of Prop,,, and let ¥1 = v(f1), X2 = v(f2) be the corresponding sets of
substitutions. Since (X1 U X3) = f1 V fa, this formula is the best approximation
of ¥1 UXy in Prop,,, but it may also represent more substitutions. In fact, it is not
true, in general, that y(f1 V f2) = v(f1) U~v(f2) = 1 UXs (only D holds). At the
contrary, [fi, fa]y € P(Prop,,) exactly represents 31 UXs (by definition of v*). Two
formulae showing this phenomenon are given in the example below.

Example 5.6 Let x1, x1 < x3 € Prop,, (n > 3).
We want to verify that v(x1)Uy(z1 < x2) C y(x1V(x1 <> x2)). Hence, it suffices to
find a substitution o € Subst,, such that o €y(x1V(x1 < x2)), o €y(x1)Uy(21 < 2).

Let o = {xa/g(x1,x3,...,23)}, where g is a function symbol of arity > 2.
Recall that o € v(f) VM € M,. M |= f. Since
M, = {(F,F,Fvg,...,0) 0, €{F, T} U{(T,F,F ug,...,0,) : v, €{F, T}}U

{(F,F, Tyvg, ..o vp) 0, €{F, THU{(T, T, T,v4,...,05) : v; €{F, T}},

we have that o € y(z1 V (x1 < 22)).
On the other hand, assigno = x1 and My > (T,F,F vy, ..., v,) B 21 < @9, ie.
o &y(x1)Uy(z1 < z2).

Theorem 5.7 If the alphabet F contains at least a function symbol of arity > 2,
then Prop,, properly o(Subst,)-abstracts P(Prop,,), for all n > 3.

Proof. Example 5.6 shows that v is not join complete, and thus, by Theorem 3.7,
we get the thesis. m

The restriction of the above theorem, namely the existence of a function symbol of
arity > 2, is of little importance, as the cases n =1, 2.

Let us dwell a moment on Example 5.6. Let ¥ = {0 = {x1/a},¥ = {x1/22}} €
p(Subst,,), for which a(o) = 21, a(¥) = 21 < x9, and thence a(X) = z1V (z1 < x2).
The formula z; abstractly represents all and only the substitutions grounding {z; },
whereas x1 < xo represents all and only the substitutions for which {x1} is equiv-
alent to {x2}. It is obvious that the formula z; V (21 < z2) does not represent all
and only the substitutions either grounding {1} or for which {z1} and {z3} are
equivalent, since n = {x2/g(z1,23)} € y(x1 V (x1 < 22)), and evidently 7 neither
grounds {z} nor {x1} and {x2} are equivalent wrt n. Indeed, x; V (21 < x3) is se-
mantically equivalent to z9 — x1, and thus it represents the substitutions such that
{z2} covers {z1}. Therefore, correctly, n € y(z1 V (x1 < x2)). On the other hand,
P(Prop,,) can be more precise with the element [z1, 21 < z2],, whose concretization
is just v*([z1, 21 < 22],) = v(z1) Ur(z1 < 22).

From u defined on Prop, we obtain the abstract unification u* on P(Prop,,),
as described in Section 4.

u* : P(Prop,,) x Subst, — P(Prop,,))
w([f1, -0, fily, 6) = [a(elf1, - falys 0]y

By Proposition 4.1, u* is monotone.
Furthermore, letting P(PROP,,) = (P(Prop,,), u*) be the powerset abstract inter-
pretation the following holds.

Proposition 5.8 P(PROP,,) abstracts LP,,, and is better than PROP,,.

Proof. By Theorem 4.4, Proposition 5.4, and Lemma 5.1. =

The definition of u* is simplified and made more natural by the result below.
Proposition 5.9 For [f1,..., fx]y € P(Prop,) and § € Subst,,

u*([flv'--vfk]vﬂ(s) = [fl /\a(é)v"'afk /\a((s)]’Y'

We now state this useful result.

Lemma 5.10 v*(u*([f1, ..., fi]y,9)) Cy(ula(y*([f1,-- -, frly)),9)) iff there exists
o € y(a(d)) such that c € y(f1 V...V fr) and o € v(f1) U... U~v(fk).

On each new element of P(Prop,,) (namely, on P(Prop,)\{[f],: f € Prop,}),
the unification u* provides a result strictly better than that obtainable by the
corresponding computation of u in Prop,. In fact, if o € v(f1 V...V fi) and
o &y(fi)U...Uv(fr), viz. [f1,..., fx]y is a new element of P(Prop,,), then, by the

above lemma, v*(u*([f1,..., fkly,0)) C v(a(la(y*([f1,---, fx]y)),0)). Notice that
this observation does not mean that if [f1,..., fx], is a new element of P(Prop,,)

then y*(u*([f1, .-, fily,0)) € v(u(a(y*([f1;- -+, frl4)),6)) for any (mgu) 4. The
following example shows that there are some § € Subst,, for which this is not true.

Example 5.11 Let [x1,21 < x2], be the new element of P(Prop,,) of the Exam-
ple 5.6, and let 6 = {x1/9(b,x2),z3/a}.

Then, a(d) = (1 < z2) Az3 and a(d) E x1 < 2 =21 V (21 < 22).

The concretizations of the unifications in PROP,, and P(PROP,) are as follows:

y(u(a(y*([z1, 21 = 22]5)),0)) = y(u(z1 V(21 < 22),0))
= v(z1V(z1 < z2))Ny(a(d)) (v preserves glb’s)
= 7(a(d)),

v (u*([z1, 71 < 22]4,0)) = y(z1 Aa(d)) Uy((z1 < 22) A a(6))
= 7(z1 Aa(d)) Uy(a(d))
= 7y(a(9)).

Therefore, u*(fa1, @1 > x2),,8) = [u(a(y* (1,21 < @2],)), 9],
We then show the following key result.

Theorem 5.12 If the alphabet F contains at least a function symbol of arity > 2,
then, for alln > 3, P(PROP,,) is strictly better than PROP,,.

Proof. By Theorem 5.7, there are new elements of P(Prop,,). Thus, by Lemma 5.10,
the observation following it, and Lemma 2.7, u* is strictly better than u. Hence,
cf. Definition 2.6, we obtain the thesis by Proposition 5.8 and Theorem 5.7. m

Finally, the example below shows a case in which the analysis using P(PROP,,)
is more precise than that using PROP,,.

Example 5.13 Let us consider the following program fragment.

b(g(m a),u,v): —...
p(V, W, g(W, W) : —...

Furthermore, let G =: — 1 p(X,Y,Z) 1,... be a query (} and I are the entry and the
exit point of the first literal of G).

We consider {X,Y,Z,U,V,W} C V,, (thus n > 6), and we assume to be in the first
step of a SLD-derivation, namely {€} is the set of calling substitutions for G at the
program point t. As usual, union of sets of substitutions is approrimated by lub,
and projection onto a set of variables by existential quantification (for more details
see [CFW94]).

The unification of G with the head of the two clauses for p gives the mgu’s 61 =
{X/g(U,a),Y/U,Z/V} and 62 = {X/V,Y/W,Z/g(W,W)}.

The unification on PROP,, yields the values (recall that a(e) = T) u(a(e),d1) =
XA U A(Z<V) andu(ale),ds) =X V)A(Y < W) A(Z—W). Thus,
if we project the two formulae onto the variables of G, and then take their lub, we
obtain at the program point I the abstract value (X < Y) V (Y < Z).

A similar computation on P(PROP,,) leads to the value [X < Y,Y < Z], at {.
Therefore, the result of the analysis on P(PROP,,) is strictly better than the one on

PROP,,. In fact, v*([X < Y,Y = Z],) Cy((X < Y) V(Y < Z)). For instance, it is
possible to verify, likewise to Example 5.6, that o = {Y/g(X,Z),...} is a substitution
in (X <= Y)V (Y Z)) but not in y(X = Y)Uy(Y < Z) =7 (X< Y,Y < Z],).

6 Conclusion

This paper proposes a general and complete study of the powerset operator on
abstract interpretations. This operator produces a new full abstract interpretation,
that is both a new abstract domain and new operations. Conditions that guarantee
that the new abstract interpretation is safe are given, as well as a condition that
guarantee that the new abstract domain is strictly better than the original one.
Moreover, the general theory is applied to the abstract interpretation PROP for
the analysis of logic programs, whose domain Prop consists of classes (wrt semantic
equivalence) of certain propositional formulae. We obtain a strict improvement by
lifting from PROP to its powerset P(PROP). In some way, this is a surprising
result. In fact it would seem that Prop is already able to express the disjunction
of the properties by means of the logical connective of disjunction V, whereas the
facts contradict this insight.

We plan to carry on a similar complete study of the cartesian product of abstract
interpretations. The motivation of such a study is that many abstract domains
proposed in literature consist of several cooperating components (see e.g. [CDY91,
MH91]). We think that a general study of the cartesian product will shed some
light on the functioning of such interpretations.

Acknowledgements

We are grateful to Roberto Giacobazzi for his valuable suggestions. Thanks also to
the anonymous referees for their comments.

References

[BGL93] R. Barbuti, R. Giacobazzi, and G. Levi. A general framework for
semantics-based bottom-up abstract interpretation of logic programs.
ACM Transactions on Programming Languages and Systems, 15(1):133—
181, 1993.

[Bir67] G. Birkhoff. Lattice Theory. AMS Colloquium Publications, third edi-
tion, 1967.

[CCTT] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In ACM POPL 77, pages 238252, 1977.

[CCT9)] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In ACM POPL ’79, pages 269-282, 1979.

[CC92] P. Cousot and R. Cousot. Abstract interpretation and application to
logic programs. Journal of Logic Programming, 13(2,3):103-179, 1992.

[CDGI93] M. Codish, S.K. Debray, and R. Giacobazzi. Compositional analysis of
modular logic programs. In ACM POPL ’93, pages 451-464, 1993.

[CDY91]

[CFW91]

[CFW92]

[CFW93]

[CFW94]

[Cor92)

[FR94]

[GHK+80]

[LMMSS]

[MHO1]

[MS89)]

[MSJ94]

[MSS86]

M. Codish, D. Dams, and E. Yardeni. Derivation and safety of an
abstract unification algorithm for groundness and aliasing analysis. In
ICLP 91, pages 79-96, 1991.

A. Cortesi, G. Filé, and W. Winsborough. Prop revisited: propositional
formulas as abstract domain for groundness analysis. In IEEE LICS 91,
pages 322-327, 1991.

A. Cortesi, G. Filé, and W. Winsborough. Comparison of abstract in-
terpretations. In ICALP °92, LNCS Vol. 623, pages 521-532, 1992.

A. Cortesi, G. Filé, and W. Winsborough. Internal note. Dip. di Mat.
Pura ed Appl., Universita di Padova, 1993.

A. Cortesi, G. Filé, and W. Winsborough. Optimal groundness analysis
using propositional logic. Draft Version, 1994.

A. Cortesi. Domini Astratti per I’Analisi Statica di Programmi Logici.
PhD thesis, Universita di Padova, 1992. In Italian.

G. Filé and F. Ranzato. The powerset operator on abstract interpre-
tations. Technical Report, Dip. di Mat. Pura ed Appl., Universita di
Padova, 1994.

G. Gierz, K.H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S.
Scott. A Compendium of Continuous Lattices. Springer-Verlag, 1980.

J.L. Lassez, M.J. Maher, and K. Marriott. Unification revisited. In
J. Minker, editor, Foundations of Deductive Databases and Logic Pro-
gramming, pages 587—625. Morgan Kaufmann, 1988.

K. Muthukumar and M. Hermenegildo. Combined determination of
sharing and freeness of program variables through abstract interpreta-
tion. In ICLP ’91, pages 49-63, 1991.

K. Marriott and H. Sgndergaard. Notes for a tutorial on abstract inter-
pretation of logic programs. In NACLP 89, 1989.

K. Marriott, H. Sgndergaard, and N.D. Jones. Denotational abstract
interpretation of logic programs. ACM Transactions on Programming
Languages and Systems, 1994. To appear.

A. Melton, D. A. Schmidt, and G. E. Strecker. Galois connections and
computer science applications. In Proc. of the Workshop on Category
Theory and Computer Programming, LNCS Vol. 240, pages 299-312,
1986.

