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Abs t r ac t .  Completeness is a desirable, although uncommon, property 
of abstract interpretations, formalizing the intuition that, relatively to 
the underlying abstract domains, the abstract semantics is as precise as 
possible. We consider here the most general form of completeness, where 
concrete semantic functions can have different domains and ranges, a 
case particularly relevant in functional programming. In this setting, our 
main contributions are as follows. (i) Under the weak and reasonable 
hypothesis of dealing with continuous semantic functions, a constructive 
characterization of complete abstract interpretations is given. (ii) It turns 
out that completeness is an abstract domain property. By exploiting (i), 
we therefore provide explicit constructive characterizations for the least 
complete extension and the greatest complete restriction of abstract do- 
mains. This considerably extends previous work by the first two authors, 
who recently proved results of mere existence for more restricted forms 
of least complete extension and greatest complete restriction. (iii) Our 
results permit to generalize, from a natural perspective of completeness, 
the notion of quotient of abstract interpretations, a tool introduced by 
Cortesi et al. for comparing the expressive power of abstract interpreta- 
tions. Fairly severe hypotheses are required for Cortesi et al.'s quotients 
to exist. We prove instead that continuity of the semantic functions guar- 
antees the existence of our generalized quotients. 

1 I n t r o d u c t i o n  a n d  M o t i v a t i o n  

Within the classical and widely adopted Cousot and Cousot framework for ap- 
proximating generic semantic definitions [7,8], it is well known tha t  completeness 
for an abs t rac t  interpretat ion is a much richer property than  plain manda tory  
soundness. In fact, roughly speaking, a complete abstract  interpretat ion turns 
out to be as precise as possible, relatively to its underlying abst ract  domains 
where approximate  computat ions are encoded. This simple intuition explains 
why, al though being a rather  uncommon proper ty  in practice, notably in static 
program analysis, completeness is a highly desirable feature for an abstract  in- 
terpretat ion,  especially in abstract  model checking (indeed, some authors ar- 
guably t e rm it "optimality" ). Examples of complete abst ract  interpretations can 
be found, e.g., when comparing algebraic polynomial systems [10] and program 
semantics [9]. 

Lubo~ Pr im et al. (Eds.): MFCS'98, LNCS 1450, pp. 366-377, 1998. 
(~) Springer-Verlag Berlin Heidelberg 1998 



Complete Abstract Interpretations Made Constructive 367 

In recent years, there has been a number of papers dealing with various 
theoretical issues related to completeness in abstract interpretation (cf. [6,12], 
[16,17,18,20]). Among them, Giacobazzi and Ranzato's paper [12] points out 
that completeness for an abstract interpretation only depends on the underlying 
abstract domain, and therefore is an abstract domain property. In view of this 
basic observation, the following problem is then considered: Given an abstract 
interpretation with underlying abstract domain A, do there exist the least exten- 
sion and the greatest restriction of A making the whole abstract interpretation 
complete? Giacobazzi and Ranzato [12] give an affirmative answer, by showing 
that greatest complete restrictions (called complete kernels) always exist, and, 
for continuous concrete semantic operations, least complete extensions exist as 
well. According to [11], these two operators on abstract domains are, resp., in- 
stances of generic abstract domain simplifications and refinements. Following 
the standard notation, let us denote resp. by ~ x , Y  and 7Y, X the abstraction and 
concretization maps for a concrete domain X and an abstract domain Y. In [12], 
given a semantic operation f : C n --~ C, an abstract interpretation I = / A ,  f~/, 
with f~ : A n --* A,  is complete w.r.t. (C, f / w h e n  aC,A o f = f~ o aC~,A~. Thus, 
functions of generic type C --~ D, occurring frequently in denotational semantics 
for functional programming, cannot be handled. Moreover, Giacobazzi and Ran- 
zato's results, in general, only prove the existence of least complete extensions 
and complete kernels, and give a constructive iterative methodology for obtain- 
ing least complete extensions only when the semantic operations are additive. 
However, additivity is a fairly restrictive hypothesis to be widely applicable in 
practice. By contrast, the present work deals with the most general formulation 
of completeness for abstract interpretations - no hypothesis on the type of se- 
mantic functions is assumed - and fully solves the limitations of Giacobazzi and 
Ranzato's approach, in particular on the side of complete domain construction. 

Let us explain more in detail the general approach pursued in this paper. 
Firstly, given any concrete domain C, we denote by Lc the so-called lattice of  
abstract interpretations of C [7,8]. Let f : C --~ D be any concrete semantic 
function occurring in some complex semantic specification, and assume that an 
abstract semantics is given by f~ : A -~ B, where A E /:c and B E Co. The 
concept of soundness is standard and well-known:/A, B, f~/ is  a sound abstract 
interpretation - or f~ is a correct approximation of f relatively to A and B - 
when O~D, B o f ~ f~ o O~c, A (E  denotes pointwise ordering). On the other hand, 
(A, B, f~/ is complete when equality holds, i.e. aD,B o f = f~ o aC,A. Since 
OLD, B 0 f [-- f~ 00LC, A ~:~ O~D, B o f o 7A,C [- f~, the canonical best correct 
approximation fba.B : A ~ B of f relatively to the abstract domains A and B is 

bA B def defined by f . = a~ ,B  o f o ~A,C. In this scenario, the following observation 
still holds: Given A and B, there exists f~ such that (A, B, f~) is complete iff 
( A , B ,  fba,s  I is complete. This means that, even in this general context, com- 
pleteness is an abstract domain property, and gives rise to the question whether 
abstract domains can be minimally refined and/or simplified so that complete- 
ness is achieved. Let us give a simple example concerning Mycroft's strictness 
analysis for functional programs [3,15]. Consider the following function F of type 
Nat x Nat --~ Bool: 
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F((x ,  y)) de f i f  (X : 3 and y = 3) then true else • 

Following Burn et al. [3], from F one gets in the most natural way its denotational 
"collecting" semantics f : P(N• • N• ) ~ P(Bool•  where P is the Hoare pow- 
erdomain operator and _1_ denotes undefinedness (i.e., both nontermination and 
error). Let S = {0 < 1} be the basic strictness domain, abstracting both P(Ns  
and P(Bool•  and such that  S • S abstracts P(N• x N• Concretization and 
abstraction maps are the usual ones, e.g. V((0, 0)) = {(_k, _L)} and V((0, 1)) = 
{(A_,x) I x e N• Then, the best correct approximation fb : S • S -~ S of 
f is as follows: fb = {(0,0) ~-~ O, (0,1) ~-~ O, (I,0) ~ O, (1,1) H 1}. 
Clearly, fb is not complete: For instance, (~(f({(_l_, • (4, 5)})) = a({_k}) = 0, 
whilst fb(a({(_k, _L), (4, 5)})) = fb((1, 1)) = 1. These phenomena of incomplete- 
ness in strictness analysis are analyzed in depth in [17,18], which, however, do 
not investigate the issue of achieving completeness by minimally modifying the 
abstract domains. Moreover, because the range and domain of f are different, 
the method of [12] is not applicable here. Instead, the methodology proposed 
here allows to constructively derive the least extension g(S • S) of S • S which 
induces a complete abstract interpretation. It should be clear that  by adding 
a point to S • S which is able to represent the information that  the first and 
second components are surely not simultaneously equal to 3 E N• one gets 
a domain inducing a complete abstract interpretation. Indeed, our methodol- 
ogy allows to constructively derive that  g(S • S) = (S • S) U {(r ~)}, where 
V((5, 5))  = (N• • N• ) \ { (3, 3) }. In this way, one gets a best correct approxima- 
tion fb .  : 8 ( S  • S) --~ S such that  fb . ( ( r  5))  = 0, and therefore completeness 
has been achieved. 

Let us illustrate the main contributions of the paper. In Section 3, the con- 
cept of completeness is formalized by resorting to the Cousot and Cousot closure 
operator approach to abstract interpretation [5,8]. This allows us to be indepen- 
dent from specific representations of abstract domain's objects. It is shown that  
completeness is an abstract domain property, which gives rise to a mathemati- 
cally compact equation between closures, studied in later sections. Moreover, we 
observe that  if an abstract interpretation f~ : A ~ B is complete, and therefore 
f ~  = fbA ,B ,  then for all the abstract domains A t more concrete than A and B ~ 
more abstract than B, it turns out that  fbA',B' : A ~ ~ B t is still complete. This 
implies that  it is not meaningful to search for the complete kernel of A and the 
least complete extension of B, because, e.g., if the complete kernel of A would 
exist then A itself would already be complete. Instead, one should try to solve 
the converse problems. Under the working hypothesis of dealing with continuous 
semantic functions, a key constructive characterization of the domains inducing 
complete abstract interpretations is given in Section 4. More precisely, given a 
continuous semantic function f : C --* D, we show that  fbA.B : A ~ B is com- 
plete iff A is more concrete than a certain domain Rf  (B) depending on B iff 
B is more abstract than a certain domain Lf (A)  depending on A. Thus, the 
mappings L f  : L:c ~ ~ D  and Rf  : ~ D  -+ ~ C  form an adjunct• By exploiting 
these results, we are able to characterize: (1) the least complete extension of A 
relative to B as the least domain which contains both A and Rf(B) ,  and (2) the 
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complete kernel of B relative to A as the greatest domain contained in both B 
and Lf(A).  As a further consequence, we subsume the more restrictive notions 
of least complete extension and greatest complete restriction studied in [12] and 
the corresponding results of existence as well as the constructive characterization 
given for additive semantic functions. In Section 5, we investigate the relationship 
between completeness and the concept of quotient of an abstract interpretation, 
recently introduced by Cortesi et al. [4] for comparing the precision of abstract 
interpretations in computing a given property. Informally, the quotient of a com- 
plex abstract domain A w.r.t, a property P of A (i.e., a further abstraction of A) 
represents which part of A contributes in computing the property P. We show 
that,  in general, Cortesi et al.'s quotients do not always exist: In particular, the 
basic assumption of continuity of the semantic functions does not ensure their 
existence. However, we observe that  quotients, when they exist, turn out to be 
certain least complete extensions, which naturally formalize the intuition behind 
the notion of quotient. Thus, a simple and natural generalization of the notion of 
quotient is proposed, which retains the advantage of being always well-defined, 
under the hypothesis of continuity of the semantic functions. 

2 P r e l i m i n a r i e s  

Basic Notation. If S is any set, P a poset, and f ,  g : S --* P then we write f ~ g 
if for all z E S, f (x)  <p g(x). If S _c P then max(S) de f {8 E S ] Vt C S. 8 
t :=~ s = t}. Given two posets C and D, C m >D, C c ~D, and C - - ~ D  denote, 
resp., the set of all monotone, continuous (i.e. preserving lub's of chains), and 
(completely) additive (i.e. preserving all lub's, empty set included) functions 
from C to D. w denotes the first infinite ordinal. For a complete lattice C, given 
f : C -~ C, for any i E N, the i-th power f i  : C -+ C of f is inductively defined, 
for any x e C, as x if i = 0, and as f ( f i - l ( x ) )  if i is a successor. 

The Lattice of Abstract Interpretations. In standard Cousot and Cousot's ab- 
stract interpretation theory, abstract domains can be equivalently specified ei- 
ther by Galois connections, i.e. adjunctions, or by closure operators (see [5,8]). 
In the first case, the concrete domain C and the abstract domain A are related 
by an adjunction (a, C, A, ~). It is generally assumed that  (a, C, A, ~) is a Galois 
insertion (GI), i.e. a is onto or, equivalently, ~/is 1-1. In the second case instead, 
an abstract domain is specified as an (upper) closure operator (shortly uco or 
closure) on the concrete domain C, i.e., a monotone, idempotent and extensive 
operator on C. These two approaches are equivalent, modulo isomorphic repre- 
sentations of domain's objects. In the following, (uco(C), C) denotes the poset 
of all uco's on C. Let us recall that each p E uco(C) is uniquely determined 
by the set of its fixpoints, which is its image, i.e. p(C) = {x c C I p(x) = x}, 
and that  p r- ~ iff ~(C) c_ p(C). Also, when (C, _<, V, A,-1-, d_) is a complete 
lattice, (uco(C), E, U, M, )~x.-V, Ax.x) is a complete lattice, and X c_ C is the set 
of fixPoints of a uco iff X is meet-closed, i.e. X -- A4(X) def {AY ] Y C_ X} 
(where A0 ---- T C X). Moreover, given p E ueo(C), (p(C), <) is a complete meet 
subsemilattice of C. Hence, for a concrete domain C which is a complete lattice, 
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we will identify uco(C) with the lattice s  of abstract interpretations of C, i.e. 
the complete lattice of all possible abstract domains of C. Often, we will find 
convenient to identify closures with their sets of fixpoints. This does not give rise 
to ambiguity, since one can distinguish their use as functions or sets according 
to the context. The ordering on uco(C) corresponds precisely to the standard 
order used in abstract interpretation to compare abstract domains with regard 
to their precision: Ai is more precise than A2 (i.e., A1 is more concrete than 
A2 or A2 is more abstract than A1) iff Ai _ A2 in uco(C). Lub and glb of 
uco(C) have therefore the following reading as operators on abstract domains. 
Let {Ai}~eI C uco(C): (i) UielA~ is the most concrete among the domains which 
are abstractions of all the Ai's, i.e. it is their least (w.r.t. E_) common abstrac- 
tion; (ii) R~eIA~ is the most abstract among the domains (abstracting C) which 
are more concrete than every A~; this domain is known as reduced product of 
all the Ai's. 

3 C o m p l e t e n e s s  by  C losu res  

Let f : C ~ D be any monotone semantic function, where C and D are com- 
plete lattices playing the rSle of concrete semantic domains. Let an abstract 
interpretation (A, B, f~/ of (C, D, f )  be specified by the GIs (aC,A, C, A, 7A,C) 
and (C~D,B,D,B, TB,D), and by an abstract function f~ : A m ~B. It is known 

[8] that  f~ is a correct approximation of f~, i.e. aO,S o f E f~ o aC,A, if and 
only if aD,S o f o VA,C E f~. Thus, fbA,s ~ f  aD,S o f o 7A,C : A ~ B is called 
the canonical best correct approximation of f relatively to the abstract domains 
A and B. (A, B, f~} is called complete when O~D,B 0 f • f~ o O~c, A. In this case, 
f~ = f~ o aC,A o ~/A,C = (~D,B o f o "~A,C = fbA,B, i.e. f~ indeed is the best cor- 
rect approximation fbA,B. This means that, given two abstract domains A and B, 
there exists f~ such that  (A, B, f~ / i s  complete iff (A, B, fbA,B I is complete. Since 
fbA,B only depends on A and B, we get that  completeness is an abstract domain 
property. Thus, given A and B, we refer to completeness of A and B in order to 
refer to completeness of the whole abstract interpretation (A, B,  fbA,s I" By using 
closure operators, if p = "YA,COOLC,A C uco(C) and ~? = ~B,D ~ E uco(D) are 
the uco's associated, resp., with A and B, one can extend an analogous result 
in [12] by showing that  A and B are complete iff ~ o f = ~ o f o p. This justifies 
the following general definition of completeness, 

Def in i t i on  1. Let C and D be complete lattices, f : C m ~ D, p E uco(C), and 
E uco(D). Then, the pair (p, 7) is complete for f if ~ o f = ~ o f o p. Also, if 

F c C m ~ D then (p, 71 is complete for F whenever Vf E F. 77 o f = ~? o f o p. [] 

First, let us notice that,  equivalently, one can define (p, 71 complete for f 
when f o p  E ~o f .  Further, it is worth remarking that  our definition encompasses 
the case where f : C ~ C and one is interested in two different abstractions of 
input and output, i.e. p, ~1 E uco(C) with p r 7. Whenever f : C -~ C and p = ~?, 
the above definition of completeness boils down to the equation p o f = p o f o p 
considered in [7,12]. Also, it would not be too difficult (although notationally 
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heavy) to develop the whole theory by considering semantic functions of type 
C n ~ Dm. 

For any given set of functions F _C C ~ D, we will use the following helpful 
notation: F(C,D,F)  def {(p, 7} C uco(C) • uco(D) I •f e F. 7 o  f = 7 o  f o 
p}. Whenever F = {f}, we simply write F(C, D, f). The following result lists 
some interesting properties of completeness, where points (i)-(iii) generalize an 
analogous result given in [12]. 

P r o p o s i t i o n  1. 
(i) (AX.X,7),(p, AX.TD) e F(C,D,F).  
(ii) Vd �9 D. F(C, D,)~x.d) = uco(C) • uco(D). 
(iii) If (p, 7) �9 F(C, D, f) and (7, #} �9 F(D, E, g) then (p, #} �9 F(C, E, g o f). 
(iv) If  (p, 7} �9 F(C, D, F), 5 E p and Z ~- 7, then (5, •} �9 F(C, D, F). 

Given F C_ C n, ~D and 7 �9 uco(D), let us now introduce the following 
operators transforming abstract domains of C (as usual, we follow the standard 
conventions 90 = Tueo(c) and U0 = .l-ueo(C)). 

_ ] ( :~(p)  de f [-] { ~  �9 uco(C) I P ~ (fl, (cfl, 7) �9 F(C, D, F)}; 

-- ~ ( ~ 0 )  de_f II {eft �9 uco(C) I ~ [- P, (~,7) �9 F ( C , D , F ) } .  

Also, given p �9 uco(C), analogous operators /C p and $~ of type uco(D) 
uco(D) are introduced. Thus, e.g., $~(p) is the least common abstraction of all 
the domains r more concrete than p and such that  (~, 7) is complete for F.  As 
a consequence of Proposition 1 (iv), one can draw the following two important 
remarks: (i) If (/(:~(P),7) �9 F(C,D,F) then /(:~(p) = p; (ii) If (P,g~(7)} �9 
F(C, D, F) then g~(7) = 7. This means that  it does not make sense to search 
for the greatest restriction pg of p �9 uco(C) such that  (pg, 7} is complete, and, 
dually, the least extension 7 t of 7 �9 uco(D) such that  (p, 77 t) is complete, because 
either they coincide with their arguments or they do not exist. That  is why we 
introduce just the following notions. 

Def in i t i on  2. If (p,/C~(7)) �9 F(C,D,F) then /(:~(7) is called the complete 
kernel of 7 relative to p. Dually, if (g~(p), 7) �9 F(C, D, F)  then g~(p) is called 
the least complete extension of p relative to 7. [] 

As far as complete kernels are concerned, it is an easy task to show that  they 
always exist, although no explicit characterization can be given. 

P r o p o s i t i o n  2. Let F C C m ~ D, p �9 uco(C) and 7 �9 uco(D). There exists 
the complete kernel of 7 relative to p. 

Let us now consider the case where C = D and p = 7. It is important to 
remark that  if (gP(p), p} e F(C, C, F), then gP(p) is the most abstract among 
the domains ~ ___ p such that  pof  = pofo~.  Thus, we stress that  p thought of as 
output  abstraction is considered fixed. We will see in Section 5 how this concept 
can be usefully exploited. Moreover, let us recall that  in Giacobazzi and Ran- 
zato's approach [12], the least complete extension of p, when it exists, is instead 
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defined as the most abstract among the domains ~ E p such that  ~ o f  = ~ o f o ~ .  
Hence, by defining EF(p) de~ W {~ E uco(C) I ~ [- P, (~, ~) E F(C, C, F)}, this 
latter least complete extension exists whenever (EF(p), EF(p)) E / ' (C,  C, F).  
Therefore, in this case, p considered as output abstraction is not fixed. Thus, we 
remark that  this latter concept of least complete extension is different from that  
introduced in Definition 2. In the next section, we will study both these inter- 
esting notions. In order to distinguish them, when (EF(p), EF(p)) E F(C, C, F), 
we will call EF(p) the absolute least complete extension of p. Moreover, analo- 
gous dual considerations hold for complete kernels: We will call them absolute 
complete kernels. 

4 Construct ive  Characterization of  Completeness  

The following key result characterizes complete abstract interpretations in a 
"constructive" way: In fact, it shows that  a completeness equation V o f = V o f o p 
holds iff p contains a certain set of points depending on V, and, in a dual fashion, 
iff V is contained in a certain set of points which depends on p. The proof makes 
use of a variant of the axiom of choice, known as Hausdorff's Maximal Principle 
[2, pag. 192]. We will exploit largely the following compact notation: For any 
f : C - - + D a n d y E D ,  Hy f d - e f { x E C I  f ( x )<y} .  

Theorem 1. Let F C C c ) D, p E uco(C) and ~1 E uco(D). Then, 

(P, V) E F(C, D, F) r V C {y E D [ UfE F max(Hfy) g p} r UfeF, yeomax(Hfy) C 
p. 

Moreover, {y E n I U feE max(H~) C_ p} E uco(n). 

It is then useful to observe that,  for any arbitrary set of points S and any 
uco p, the following equivalence holds: S C p r p _ A4(S). Thus, as the above 
theorem suggests, given any set of continuous functions F C_ C c ) D, we define 
two mappings i F :  uco(C) --* uco(D) and RE: uco(D) -~ uco(C) as follows: 

= de f  f LF(p) def {y E D IUf~Fmax(H~) C p}; RF(V) = A4(UfeF, yevmax(HJy)). 

In this way, Theorem 1 can be restated as follows: 

(P, V) e F(C, D, F) r LF(p) F- V r p E_ RF(~I). 

In particular, (LF, uco(C), uco(D), RE) is an adjunction. Consequently, for any 
p E uco(C) and ~/ E uco(D), one gets the following characterizations for the 
operators/C~ and E~: 

-/CP(/~) = M{# E uco(D) [/~, LF(p) E #} = fl U LF(p); 

- E (5) = e uco(C) I E a, R E ( q ) }  = 5 n RF(V). 
Hence, since LF(p) E /3 U LF(p) and 5 M RE(q) ~ RE(q), by Theorem 1, we 
obtain that  (p, fl U LF(p)), (5 M RE(q), V) E _F(C, D, F) ,  and therefore, according 
to Definition 2, we can draw the following consequences: 
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- The complete kernel of 7 rel. to p is the least common abstraction of 7 and 
LF(p); 

- The least complete extension of p rel. to 7 is the reduced product of p and 
RF(7). 
For any p �9 uco(C) and 7 �9 uco(D), it is helpful to define two dual mappings 
, ~  : uco(D) ~ uco(C) and G~: uco(C) ~ uco(D) as follows: 

~-p (#) def = p R RF(#); ~ ( ~ )  dem-~f ?7 II LF(~). 

Summing up, we have shown the following result, which explicitly states what 
one must add to p in order to get its least complete extension relative to 7 and, 
dually, what one must subtract from 7 in order to get its complete kernel relative 
to p. 

T h e o r e m  2. Let F C C c ) D, p �9 uco(C) and 77 �9 uco(D). 

- ~ ( 7 )  = jt/t(p U (UfcF, yr 
is the least complete extension of p rel. to 7; 

- G ~ ( P ) = T N { y E D  I UleFmax(Hfy)C--P} 
is the complete kernel of 7 rel. to p. 

Example 1. Consider the example sketched in Section 1. Let p E uco(P(N• • 
N• be the uco associated to the input abstract domain S • S, and 7 E 
uco(P(Bool• be the uco associated to the output abstract domain S. There- 
fore, p = {{(_1_,• • N•177 x {_I_},N• x N• and 7 = {{_l_},Bool• 
The semantic function f is obviously continuous and hence, by Theorem 2, the 
least complete extension of p for f relative to 7 does exist, and it is given by the 
reduced product Y'~(7) = P n Rf(r/). Thus, for y E 7, let us compute max(H~). 
We have that: 

- max(H~oot• = {Ny • N• 

- max(H(• = max({Z �9 P(N• x Nm) [ f (Z)  C_ {3_}}) 
= max({Z �9 P(Nm x Nm) [ (3,3) r Z} = {(N• x N •  {(3,3)}}. 

Hence, 5~'~(7) = M ( p U  {(N• x N• \ {(3,3)}}) = pU {(N• x N• \ {(3,3)}}. 
Thus, as announced in Section 1, and as one naturally expects, this shows that  
the least complete extension of S • S can be obtained by adding a point (#, #)  
with concrete meaning (N• x N• \ {(3, 3)}, i.e. denoting that  first and second 
components are surely not simultaneously equal to the value 3. It should be 
clear that  this refined input abstract domain induces now a complete abstract 
interpretation. [] 

Let us now turn to absolute complete kernels and absolute least complete 
extensions, as formally introduced at the end of Section 3. What  follows gen- 
eralizes the results in [12, Section 6], where the hypothesis consisted of dealing 
with additive semantic functions. Assume that  C = D, i.e. F C_ C---~C, and let 
p �9 uco(C). By Theorem 1, for any ~v �9 uco(C), we have that: 
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- qo ~ hr,(q0) ~=~ q0 ~ p and (q0, q0) E F(C, C, F); 

- ~ ( ~ )  C q0 r pEq0  and (q0, q0) E F ( C , C , F ) .  

Therefore, for the operator EF introduced at the end of Section 3, we obtain 
that  EF(p) = I ~{~ e uco(C) I ~ ~- ~'~(~)}. Then, since ~ P :  uco(C) --* uco(C) 
is clearly monotone for any p, and hence admits the greatest fixpoint, we get 
EF(p) = g f p ( ~ ) .  Moreover, by Theorem 2, (gfp(:~), gfp(~)> e F(C, C, F). 
This means that  the absolute least complete extension of p exists, and it is 
gfp(~'~). Dual considerations hold for complete kernels. Thus, we get the follow- 
ing constructive characterization for absolute completeness. 

T h e o r e m  3. Let F C C ~ rC and p E uco(C). Then, gfp(:~P) and lfp(g~) are, 
resp., the absolute least complete extension and absolute complete kernel of p. 

5 G e n e r a l i z e d  Q u o t i e n t s  o f  A b s t r a c t  I n t e r p r e t a t i o n s  

The concept of quotient of an abstract interpretation has been recently intro- 
duced by Cortesi et al. [4] in order to formalize the least amount of information 
of a complex abstract domain A that  is useful for computing some property 
that  A is able to represent. Cortesi et al. [4] show how to exploit this notion 
for comparing the precision of two abstract interpretations in computing a given 
common property. Notably, they compare the well-known Jacobs and Langen 
Sharing [13] and Marriott  and Scndergaard Pos [14] Prolog abstract interpre- 
tations, by demonstrating that  Pos is strictly more precise than Sharing for 
computing variable groundness information. Further, Bagnara et al. [1] show, 
also experimentally, that  in order to compute pair-sharing information, the use 
of the quotient of Sharing w.r.t, the pair-sharing Scndergaard domain [19] leads 
to remarkable gains of efficiency, when compared with the full domain Sharing. 

Let us recall from [4] the definition of quotient. Let A be any complete 
lattice, f : A  " > A  be a monotone semantic function on A, and p E uco(A) 
be an abstraction of A. Here, (A, f} models any abstract interpretation of some 
reference semantic definition, while p plays the r61e of the property (i.e. the 
abstraction of A) one is interested in. The equivalence relation rp c A • A is 
defined as follows: 1 

(a l , a2 )  e iS V i e  p(y (al)) = 

Roughly speaking, (el, a2) E rp when A views al and a2 as "equivalent" w.r.t. 
the computation of the property p. Thus, according to this intuition, the quotient 
Qo(A) of A w.r.t, p is defined (cf. [4, Definition 3.5]) as the subset of A of the 
lub's of all equivalence classes of rp: That  is, if [a] denotes a generic equivalence 
class for to, then Qp(A) def {Vial I a E A}, and the ordering is that  inherited from 
A. Cortesi et al. [4, Theorem 3.6] show that if the equivalence rp is additive, i.e. 
Vi E I. (a~, bi) c rp ~ /V~eia~, V~elb~) E rp, then Qp(A) is well-defined, namely 

1 This definition considers the case of the first limit ordinal w for practical purposes - 
a generalization to any (possibly transfinite) ordinal would be straightforward. 
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it is in turn an abstraction of A, i.e. the set of fixpoints of a uco on A, and p is 
art abstraction of Qp(A). 

Cortesi et al.'s results can be sharpened as follows. Firstly, it is useful to 
recall (see [8, Section 6.3]) that,  in general, given an equivalence relation R on a 
complete lattice L, R is additive iff ),x. VL [X]a C uco(L). Thus, the hypothesis 
that  the equivalence relation rp is additive is indeed equivalent to the fact that  
An. V [a] e uco(A),  i.e. that  the quotient Qp(A) is well-defined. In this case, that  
Qp(A) _ p (i.e. [4, Theorem 3.6 (ii)]) is an immediate consequence: In fact, if 
a = p(a) and b e [a] then a = p(a) -- p ( f~  = p(f~ = p(b), and hence 
b < a, i.e. V[a] = a. 

En passant, we observe that  the additivity of f is an obvious sufficient con- 
dition guaranteeing that  the quotient exists. Actually, the quotients presented 
in [1,4] exist just because the involved semantic functions are additive. 

L e m m a  1. I f  f : A ~ ~ A and p E uco(A) then ~p(A)  C uco(A).  

It turns out that  the quotient abstract domain satisfies the following remark- 
able property of "minimality": When a quotient Qp(A) exists, if r = An. V In] c 
uco(A) is the uco associated to Qp(A), then r is the most abstract solution in 
uco(A) of the system of equations {p o f~ = p o f~ o r I i e w}. 

L e r n m a  2. Let p c uco(A) such that Qp(A) e uco(A). Then, Vi c w. p o f~ = 
p o f~ o Qp(A),  and for any r E uco(A),  V i e  w. p o f~ = p o f i  o r implies 

E_ Qp(A). 

Since the system of equations {p o f i  = p ofr o r I i C w} is clearly equivalent 
to the system {r r- p} U {p o f i  = p o f i  o r I i > 0}, the above lemma says 
that ,  when a quotient Qp(A) exists (i.e. Qp(A) �9 uco(A)),  it is characterized as 
follows: 

Qp(A) = u{r  �9 uco(A)  I r E_ p, Vi > O. p o = p o f '  o r  

Of course, in the terminology of this paper, this means that  when it exists, Qp(A) 
is the least complete extension of p for the set of functions {f~}r relative to p 
itself. However, it may well happen that,  for some A, f and p, such least complete 
extension exists, whilst the quotient Qp(A) does not exist, as the following simple 
example shows. 

Example 2. Let A be the lattice depicted in the figure. Also, let f : A -~ A be de- 
fined as f = {a ~-* a, b ~-* a, c ~-* e, d ~-+ e, e ~-+ e}, and let p �9 uco(A) such that  

p(A) = {a, b, e}. Trivially, f is monotone (and there- 
fore continuous) but not additive. Moreover, f is 

a idempotent, and therefore, for any i >_ 1, f i  = f .  
e ~  It turns out that,  for any i >_ 1, p c  f i  ___ f .  As 

b a consequence, rp is not an additive equivalence re- 
c d lation. In fact, for any i > 0, p(f~(c)) = p(f~(d)): 

If i = 0 then, p(c) = p(d) = b; if i > 1 then, 
p( f i (c) )  = f (c )  = e = f (d )  = p( f i (d)) .  But, 
p( f ( c V d) ) = p( f ( b ) ) = f ( b ) = a. Hence, this means 
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that  the quotient Qp(A) does not exist. Instead, as each f~ is monotone, by Theo- 
rem 2, the least complete extension of p for (fi}~>0 relative to p does exist. More- 
over, this is given by the following reduced product: p ~ (U~>0, yepraax(Hfy ~ )). It 
is then a routine task to check that  this is the domain A itself, i.e. the identity 
uco Ax.x. [] 

Then, Lemma 2 and Example 2 hint to generalize the notion of quotient as 
the least complete extension of p for (f~)i>0 relative to p, whenever this exists. 

D e f i n i t i o n  3. Given a complete lattice A, f : A-V-,A,  and p E uco(A), the 
generalized quotient of A w.r.t, p is well-defined when there exists the least 
complete extension qSp(A) of p for (fi)~>0 relative to p; in such a case, the 
generalized quotient is defined to be ~p(A). [] 

It is here worth noting that  the above definition naturally extends the intu- 
itive meaning of the concept of quotient: In fact, the abstract domain ~p(A) is 
the most abstract domain which is more concrete than the property p and which 
is as good as A for propagating the information through the semantic function 
f .  In other words, r encodes exactly the least amount of information of A 
that  is useful for computing the property p. Thus, this exactly formalizes the 
clear intuition behind the concept of quotient. As an immediate consequence of 
Theorem 2, we are then able to give the following theorem ensuring that,  when 
the semantic function f is continuous, generalized quotients always exist. 

T h e o r e m  4. I f  f : A c ) A then, for any p E uco(A), the generalized quotient 
q~p(A) exists. 
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