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Abs t rac t .  We present the internal type theory of a Heyting pretopos with a nat- 
ural numbers object. The resulting theory is based on dependent types and proof- 
terms. We prove that there is a sort of equivalence between such type theories and 
the category of Heyting pretoposes. By using the type theory we also build the free 
Heyting pretopos generated by a category. 

Introduct ion 

An elementary topos can be viewed as a generalized universe of sets to de- 
velop mathematics.  From a logical point of view, topos theory corresponds 
to an intuitionistic higher order logic with typed variables [LS86]. Suitable 
toposes provide models of restricted Zermelo set theory [MM92]. Recently, 
Joyal and Moerdijk built a model of the whole intuitionistic set theory by us- 
ing the notion of small map and by taking a Heyting pretopos with a natural 
numbers object as the categorical universe [JM95]. The main difference w.r.t. 
a topos is that  a Heyting pretopos (H-pretopos, for short) correspond to a 
first order logical framework, precisely to a first order dependent type the- 
ory with quotients, called the H P  typed calculus in [Mai97]. This calculus is 
valid and complete w.r.t, the class of H-pretoposes. It consists of the following 
dependent types: the terminal type, the falsum type, the indexed sum type, 
the extensional equality type, the disjoint sum type with the disjointness ax- 
iom, the natural numbers type, as in the extensional version of Martin-LSf's 
type theory [Mar84], the forall type, i.e. the product type restricted to types 
with at most one proof, and finally a particular quotient type satisfying an 
effectiveness axiom. 

This type theory may be of interest to computer scientists expecially 
for the proposal of effective quotient types based only on proof-irrelevance 
equivalence relations. These particular quotient types are different from the 
extensional quotient types of Nuprl, where effectiveness is not always available 
(it holds certainly for decidable equivalence relations). 

In this paper, we show that  the internal type theory of a given H-pretopos 
is a particular H P  type theory plus specific dependent types and terms. 
To this purpose, we prove that  there is a sort of equivalence between such 
type theories and H-pretoposes. The type theory of a given H-pretopos P 
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is described by a categorical semantics: it combines together the notion of 
model given by display maps [HP89], [See84] with the tools provided by 
contextual categories to interpret substitution correctly [Car86]. We shall 
emphasise context formation. Indeed, the judgement B [F], asserting that  
B is a dependent type under the context /1, is interpreted as a suitable 
sequence of morphisms of 79 to the terminal object. Moreover, the judgement 
b E B[F], asserting that  b is a term of type B under the context F,  is 
interpreted as a section of the last morphism of the sequence representing 
the dependent type B. Since we want to express substitution by means of 
pullback, which is determined up to isomorphisms, we use fibred functors, as 
in [Hof94] to interpret substitution correctly. But in our semantics, a type 
judgement  corresponds to a sequence of fibred functors, which represents the 
type under a context with all its possible substitutions, and a term judgement 
corresponds to a natural  transformation, which also represents the term under 
a context with all its possible substitutions. The specific dependent types of 
79 correspond to sequences of fibred functors obtained by pullback from a 
sequence of morphisms of 79. 

By means of the type theory, we can build the free H-pretopos generated 
by a category: it is sufficient to consider the objects of the category as closed 
types and its morphisms as dependent terms. This is the free construction for 
categories corresponding to dependent typed lambda calculi. For example, 
in the same way, one can build both the free category with finite limits - 
corresponding to the type theory with the terminal type, the extensional 
equality type, the indexed sum type- and the free locally cartesian closed 
category with finite coproducts and a natural numbers object -corresponding 
to Martin-LSf's type theory with extensional equality but  without universes 
and well founded sets [Mar84]. 

The type theory of a H-pretopos constitutes a new tool to analyze, from 
a type theoretical point of view, the notion of small map used in [JM95] to 
provide a model of intuitionistic set theory. Moreover, it seems interesting to 
investigate how much of the type theory of H-pretoposes can be formalized 
within Martin-LSf's type theory. 

The paper is divided as follows: in section 1 we describe the categorical 
preliminaries to interpret the HP dependent typed calculus in a H-pretopos; 
in section 2 we show the HP type theory arising from a given H-pretopos, in 
section 3 we prove a sort of equivalence between the HP type theories and 
the category of H-pretoposes, in section 4 we build the free H-pretopos and 
finally we draw the conclusions. 

1 P r e l i m i n a r i e s  

First of all we recall the categorical definition of Heyting pretopos [JM95]. 
The notion of pretopos was introduced by Grothendieck [MR77]. 
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D e f i n i t i o n  1. A pretopos is a category equipped with finite limits, stable 
finite disjoint coproducts and stable effective quotients of equivalence rela- 
tions. A Heyting pretopos is a pretopos where pullback functors on subobjects 
have right adjoints. 

In the following, by H-pretopos we shall mean a Heyting pretopos also with 
a natural numbers object. Since we intend to describe syntacticMly cate- 
gorical properties, we shall assume that,  with a H-pretopos, a given choice 
of categorical constructors is made, i.e. fixed choices of finite limits, initial 
object, coproducts, quotients of equivalence relations and right adjoints on 
subobjects. 

An essential feature for the interpretation of a dependent typed calculus 
is the local property of a H-pretopos: for every object A of the H-pretopos 
:P, the comma category P / A  is a H-pretopos. Indeed, constructing a type, 
which depends on a context F,  from other types corresponds to a categorical 
property of P/A,  where A is determined by F.  Moreover, since substitution 
corresponds to pullback, the various categorical properties must be stable 
under pullback. By the way, in a H-pretopos also Beck-Chevalley conditions 
for right adjoints are satisfied. 

Given a H-pretopos P we want to describe its internal dependent type 
theory T(P) .  The type theory is based on the HP typed calculus for H- 
pretoposes (see the appendix), augmented with the specific type and term 
judgements of :P. As in [Mai97], the idea is to consider a dependent type as 
a sequence of morphisms of P ,  ending with the terminal object 1, whereas 
the terms are sections of the last morphism of the type to which they belong. 
Thus, we consider the algebraic development of the fibration cod of P:  it is 
the category Pgr(P). 

D e f i n i t i o n  2. The objects of the category P g r ( 7  ~) are finite sequences 
al, a~, ..., an of morphisms of P 

a n  a2 a l  
A ~  ----~ ........ A 2  " - ~  A I  " - ' ~  I 

and a morphism from al, a2, ..., an to bl, b~, ..., bm is a morphism b of P such 
that  bn �9 b = an 

b 
A,~ ~ B~  

\.~" j 
1 ~e A1 ....... -<--- A ~ - I  b~ 

!A 1 a n - 1  

provided m = n and ai = bi for i = 1, ..., n - 1. 

Remark 3. We would like to interpret substitution by means of pullback, 
using the indexed pseudofunctor F : 7 ~~ ~ Cat defined as follows: F 
associates to every A E Ob~P the category P / A  and to every morphism 
f : B -+ A of 7 ~ the pullback pseudofunctor f* : "P/A -+ "P/B. But, in 
general, for an arbitrary choice of pullbacks, F would not be a functor: for 
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instance, even F(id) may not be an identity. Therefore, if substitution were 
interpreted by F then it would not be well defined. The solution is to re- 
place F by an equivalent pseudofunctor S : 79 ~  ~ Cat [Ben85], [Jac91]. 
S is defined as follows. For every object A in 7 9, S(A) - Fib(79/A,79-r), 
where Fib(79/A,79-r) is the class of functors r : 79/A -+ 7) -r, fibred from 
domA to coda (they send cartesian morphisms of domA to cartesian mor- 
phisms of codA). A fibred functor ~ : 79/A --+ 7)-+ associates to every trian- 

gle c t q,(t,a(b)), s a pullback diagram v --~ s . Moreover, for a mor- 

A C ~ B  
t 

phism f :  B -+ A of 79, the functor S( f )  : Fib(79/A,79-r) --+ Fib(79/B,79-r) 
associates to every fibred functor g a fibred functor g[f].  g[f] is defined as 
follows: for every t : C --+ B, ~[f](t) = cr(f .  t). Besides, for every natural 
transformation p, S(f)(p) =_ p[f], where p[f](t) - p ( f . t )  for every t :  C --+ B. 
Note that  the pseudofunctor F : 7) ~  ~ Cat is equivalent to the functor 
S in the appropriate 2-category of pseudofunctors. The functors establishing 
such an equivalence can be described as follows. To define the functor from 
79/A to Fib(79/A, 79-r), first we choose pullbacks, then we associate to every 

object b : B --~ A the fibred functor b, defined as b(t) =_ t* (b) in the pullback 1 
b'(O 

B~ ~ B and extended to morphisms by the universal property of pull- 
t*(b)~ ~b 

D ~ A  t 
back. In order to define a functor from Fib(79/A,79-r) to 79/A, we associate 
to every fibred functor its evaluation on the identity of the object A. 

We use fibred functors to interpret the dependent types with all its possi- 
ble substitutions, as in [Hof94]. Moreover, we use natural transformations to 
represent terms with all its possible substitutions. We call preinterpretation 
an assignment of fibred functors to type judgements and of natural trans- 
formations to term judgements. To this purpose, we consider the category 
Pgf(79), where the judgements of the typed calculus for H-pretoposes are 
preinterpreted. We put I (g)  -- A if g E [79/A, 7)-*]. 

D e f i n i t i o n  4. The objects of the category P g f ( 7 9 )  are finite sequences 
gl, g2, ..., an of fibred functors such that ch(idA1), q2(idA2), ..., q,~(idA,) is 
an object of Pgr(79), where A~ -- I(~r~) for i -- 1, ..., n. The morphisms of 
Pgf(79) from oh,g2,...,crm to vl,v2,. . . ,rn are defined only if m = n and 
cri -- ri for i -- 1, ..., n -  1, and they are natural transformations from the 
functor gn to v,~ such that, i f A ,  -- I(g,~) -- I(vn), then for every b : B --+ A,~ 

1 We call the second projection b*(t), since the notation q(t,b) is reserved for 
projections of functorial choices and not any choice of pullback is functorial. 
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the second member of p(b) is the identity (recall that  p(b) is a morphism of 

P-~), that  is the triangle pl(b) ~ commutes. 

In the following, since the second member of p(b) is always the identity, we 
confuse p(b) with the first member Pl (b). 

Besides, notice that  by naturali ty any component p(b) of a morphism p 
of Pgf(P)  is determined by the properties of pullback from p(idA,,). Indeed, 

if we consider B b > A . ,  we get that p(b) is equal to b*(p(idA,,)), that  

A,~ 
is the unique morphism from ~r, (b) to v, (b), which are obtained respectively 
by the pullbacks of b and c~n (id) and of b and vn (id). 

Finally, for every A E ObP, we define the fibred functor iA : ~P/A --~ 

P-* which associates to every triangle c t * B the following pullback 

diagram c t_~ B 

C - - - - - ~ B  
t 

2 T h e  t y p e  t h e o r y  o f  7 ~ 

The type theory T(P) of a H-pretopos P ,  with a fixed choice of its cate- 
gorical structure, is a particular HP calculus plus type judgements and term 
judgements that  are specific to P .  It is formulated in the style of Martin-L6f's 
type theory with four kinds of judgements [NPS90]. There are the type judge- 
ments and the judgements about equality between types, which are given by 
formation rules, the term judgements given by introduction and elimination 
rules, and the judgements about equality between terms of the same type 
given by conversion rules. Since the types are allowed to depend on vari- 
ables of other types, the contexts are telescopic [dB91]. We assume all the 
inference rules about the formation of contexts, declarations of typed vari- 
ables, about reflexivity, symmetry  and transitivity of the equality between 
types and terms and finally, the substitution rules for all the four kinds of 
judgements [NPS90]. The dependent types are introduced under a context. 
A type judgement arises from a object of Pgf(P),  which represents a depen- 
dent type with all its possible substitutions�9 More precisely, a type judgement  
corresponds to the evaluation of a finite sequence of fibred functors on the 
identity. Indeed, for a sequence of fibred functors a l ,  a2, ..., an, ~ of Pgf(7)), 
we define 

/~--1(~1, ..., Xn)[Xl ~ 0~11, ---, ~Cn ~ o~nl(xl ,  ..., Xn--1)] 
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as the type judgement corresponding to 

B - " ~  A,~ ~ ........ A1 ""-~ 1 

by thinking of the fibers of the morphism ~(id). This notation turns out to 
be very clear when we look at the category of paths built on any syntactic 
H-pretopos. The equality between types corresponds to the equality between 
objects of Pgf('p), which implies the equality between objects of Pgr('P). 
For short, we use the abbreviation F,~ ~ Zl �9 0 / 1 1 ,  . . . ,  ~gr~ �9 o l n l ( x l ,  . . . ,  Xn- -1)  

in the contexts. On the other hand, a term judgement arises from a morphism 
of Pgf('P), which is a natural transformation representing a term with all 
its possible substitutions. The evaluation of a natural t ransformation on the 
identical substitution is a term judgement.  Indeed, for a suitable morphism 
b of Pgf('p) from al, ~1,..., ~,,, iA~ to a l ,  a2, ..., an, ~, the term judgement  

b �9 Z - l ( x l ,  ..., x , ) [ rn]  

b(id) 
corresponds to a section of ~(id) A~ ~ B by choosing the 

x.~ z" 
1 ~ A1 ....... ~ -  A n  [3(id) 

!A1 Ocu 

identity as the terminal object in "P/An. 
The equality between terms corresponds to the equality between mor- 

phisms of Pgf('p). The contexts are generated from the following formation 
rules: 

F cont A type IF] (x �9 A !~ F)  
1C) (~ cont 2C) F,x �9 A cont 

In the following, to make formulas more readable in type judgements, we will 
write ~[Fn] instead of/~-1 [F~]. In the diagrams we will often write cri instead 
of a~(idA~) for fibred functors and b instead of b(id) for natural  transforma- 
tions. 

The rules for substitution of variables in a type and in a term and for 
weakening of a variable w.r.t type and term judgements are the usual ones. 
We only show how they work in these particular cases: 

"Y fl b 
C > B > An. . .  An > B 

sT 7[Fn,y �9 ~] b �9 fl[F,,] i s  id~'A,~'tr 

7[b(id)] [F,~] A. x c~[b(id>)] A .... 

where we put 7[b(id)](id) =_ 7(b(id)) 

cET[Fn ,yE~]  b E ~[_F,~] 
st is 

c[b(id)] E 7[b(id)][F,,] 

c b 

A ,, .~ B i A ,~ 

r 
A, ,  >, A , ~ x C  
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where we put c[b(id)](id) - c(b(id)) 

wT fl[F.] 6[Fn] 
fl[r., y �9 ~] 

is 
B �9 A. . . .  D 

where we put fl[5(id)](id) - fl(5(id)) 

wt b �9 fl[Fn] ([Pn] is 
b �9 Z[r. ,  w �9 ~] 

b 
A. �9 B E --~ a,... 

b[r 
E > ExB 

where we put b[((id)](id) - (~(id))*(b(id)), that is the unique morphism of 
"P/E from iA.(~(id)) to fl(((id)), obtained from b(id) by the properties of 
pullback. 

The rule expressing the assumption of variable is the following: 

fl [r~] 
vat is 

z e f l [ rn ,x  �9 fl] 

B A Ar,... 
iX 

B > B x B  

........ A .  "~-- B 

where z(id) =_ AB =_ (idB, idB>. 
Now, we show the formation rules for types and then the introduction, 

elimination and conversion rules for their terms. 
The proper types and terms o f T ( P )  are described as follows. Proper 

type judgements arise from objects of Pgr(P)  and proper term judgements 
arise from morphisms of Pgr('P). For every object of Pgr(P)  a l ,  a2, . . . ,  a , ,  t 
we consider the sequence obtained by making the pullback of al along the 
identity, then by making the pullback of a2 along the second projection Pl of 
the previous pullback, and so on, that is we obtain the following sequence of 
pullbacks: 

t'(p~) 
B m  -----> B 

p'(t)~ p,, ~t 
AE~ ~ An 

* a 

AE2 ~-~ A~ 

AI ~ Ax 

1 > 1  
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where pi is the second projection of the pullback of ai and Pi-1 ,  for i = 
1 . . . .  , n. Finally, we consider the associate sequence of fibred functors 

where AI = al,  hence we introduce a new dependent type t -x  and finally we 
state that  

t - l [ x l  E A1, x,~ E an 1] is B~ t ~ . ]  . ~D._~] A1 
" " '  A 2 7 n  �9 .............. A ~ 7 1  �9 1 

where the Z subscript is used for the interpretation of the series of judgements 
of proper types introduced by an object of P g r ( P ) .  

Moreover, given a sequence of fibred functors a l ,  a2, ..., am, fl of P g f ( ' P ) ,  

for every morphism c of Pgr(7 ) )  A .  c �9 B we introduce a new 

1 + " -  A1  ........ A,~ 

term c and we state that  

~(ia) 
A,, ~ B 

c _4, , . . . ,  o o1 is 

A., 

where -d( id) -- c. 

Finally, we add all the types and terms of the H P  typed calculus (see the 
appendix for the inference rules). This calculus is valid and complete with 
respect to the class of H-pretoposes and is described as follows 2. Given a H- 
pretopos the terminal type corresponds to the terminal object, the extensional 
equality types to the equalizers, the indexed sum types to pullbacks, the 
falsum type to the initial object, the disjoint sum types with the axiom of 
disjointness to disjoint coproducts, the natural numbers type to the natural 
numbers object and all these types are already presented in the extensional 
version of Martin-LSf's type theory [Mar84]. The key point in finding the 
typed calculus of H-pretoposes is to have noticed that  a monomorphism turns 
out to be the interpretation of a type with at most one proof, also called proof- 
irrelevant in the literature, but here called rnono type. Therefore, the novelty 
of this calculus lies in the presence of the forall type, that  is the product  
type restricted to mono types, and also in the presence of the quotient types 
based only on mono equivalence relations such that  the effectiveness holds. 
Here, we describe in details the forall type, the quotient type and the natural  
numbers type and we refer to [Mai97] and [nof94] for details on the other 
types. Note that  we define the fibred functors only on objects of the various 
slice categories "P/A,  since on morphisms they turn out to be defined by 

2 Our definition of internal language of a category follows [LS86], for instance, and 
it is different from that in [Tay97]. 
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the universal property of pullback. Moreover, they turn out to be fibred by 
stability or Beck-Chevalley conditions of the categorical property involved. 

The Forall type corresponds to the right adjoint of pullback functor on 
subobjects: 

V) 7(y)[Fn, y �9 fl] d �9 Eq(% w, Z)[Fn, y �9 fl, w �9 7(Y), z �9 7(Y)] 
v,~-r(y) [rn] 

C> "Y > B ~> A n . . .  
is 

V ~ c - V ~  A n . . .  

where V~7 : "P/An --+ 7 )-* is the functor defined in the following manner: 
for every t : D --~ An, we put V/~7(t) = Vfl(t)7(q(t,t3(id))). Note that  7(id) 
turns out to be a monomorphism, because the interpretation of z ff 7[/',,, y E 
fl, w E 7(Y),Z E 7(Y)] and w E 7[s  E /~,w E 7(Y),Z E 7(Y)], which are 
isomorphic with the same isomorphism respectively to the first and second 
projections of the product 7(id) x 7(id), are equal by hypothesis and by the 
validity of the extensional elimination rule for the equality type. 

C 

I-Y) c E 7(y)[Fn, Y �9 fl] B > c 
~7c  ~ V--~e~ 7(-y~s ] is (~U.e) 

An �9 VyepC 

> B A,~ V~C E-V) bEfl[G~] f E V y ~ V ( y ) [ F n , y E f l ]  is A. b f> 

Ap(f ,  b) E 7(b)[Fn] An Ap(Lb) > An x C 

with (Ay.c)(id) =_ r and Ap(f ,  b)(id) =_ b(id)* ( r  (f(id))), where 

r  Sub(B)(fl(id)* (idA.), 7(id)) -~ Sub(An)(idA.,  V~(id)(7(id))) 

is the bijection of the adjunction/~(id)* -4 V~, by putting/~(id)* (t) - q( t ,  # ( i d ) )  
for every t : B -+ An, that is we are considering the choice of pullback given 
by the split fibration. The conversion rules, that are the usual fl and 7/conver- 
sion rules as in the extensional version of Martin-L6f's type theory [Mar84], 
are also valid. 

The Quotient type corresponds to the effective quotients of equivalence 
relations (in the premisses we omit to add the generic context / 'n) :  

p(x,y) type [z E a , y  E a], d E Eq(p,z ,w)[x  e a , y  E a , z  E p, w E p], 

c3 c p(=, z)[= c 4, y c 4, ~ e 4, w c p(~, y), ~' c p(y, z)] 
Q) ~/p [rd 

corresponds to 
R > p(id) a(id).rl ~ A x A  > A n . . .  

A/eq(~ ~ . . .  
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where 7rl - a(c~(id)), 7r2 = q(c~(id), a(id)) and Q(a)(id) is defined as follows. 
In the case of the forall type, we have already noticed tha t  a mono type cor- 
responds to a monomorphism.  Here, we can prove that  p(id) turns out to be 
also an equivalence relation in 7~/An. Therefore, there exists the coequalizer 
c: A -+ A / R  of Zrl. p(id) and r 2 - ? ( i d ) .  Moreover, as a(id) . Qrt . p(id)) = 
a( id) .  (~r2. p(id)), we get Q(a(id)) such that  the following triangle d iagram 
commutes  

rex .p(id) 
R - - ~  A c > A/R 

7r~.p(id) ~ ~Q(a( id) )  
a(id) "x-k 

AT, 

Therefore we define Q(c~) : P / A n  -~ "P-~ in the following manner:  for every 
t :  D --+ An we put  Q(a)(t) - Q(c~(t) ), where Q(a(t)  ) is the unique morphism 
such that  a ( t )  = Q(a( t ) ) .  c(t) and c(t) is the coequalizer of the equivalence 
relation p(t). The introduction rule for the quotient type is the next one: 

a E a [F,,] is 
I-Q) [a] �9 a l p  [Fn] 

~(ia) 
A,~ > A 

c.(~(ia)) 
A,~ > A/R 

and the following equality rule is valid 

a �9 o~[Fn] b �9 a[-T'n] d �9 p(a, b)[-T'n] 
eq) [a] ---- [b] �9 alp [Fn] 

By using the indexed sum type, the elimination and conversion rules of the 
quotient type for dependent types (see the appendix) are equivalent to the 
following weaker elimination and conversion rules of the quotient type for 
types not depending on a or a/p,  which are also derivable in T(7 )) 

E:Q) m ( z ) � 9 1 4 9  m ( x ) = m ( y ) � 9 1 4 9 1 4 9 1 4 9  

CI:Q) a E a  

Q.(m, z) E ~ [z �9 a/p] 

m(x) �9 # [x E a] m(x) = m(y) E #  [x E a, y �9 a ,d  �9 p(x,y)] 
Qs(m, [a]) = rn(a) E # 

where M 
E~-Q 

t(z) E # [z E A/R] 
C2.-Q) Q.( ( . ) t ( [ . ] ) ,  z) = t(z) E , [~ E a/p] 

~(id) 
#(id)> AN and A > A, . In the weaker elimination rule 

Q,(m,  z) E # [Fn, z E alp] is AIR (id,u)> A/R• 

where u is the morphism in P l A n  such that  u -  c = q(a(id), #( id)) .  m(id), 
which exists because by hypothesis m( id) . ( r l  . p( id) ) = m( id) . ( r2 . p( id) ), and 
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c is the coequalizer of ~r~ �9 p(id) and ~r2. p(id). Moreover, since by hypothesis 
#( id) . ( q( a( id), p( id) ) . m( id) ) = a( id) we also have that  by uniqueness #( id) . 
u = Q(a(id)). The C1, and C2s conversion rules are valid. Besides, the axiom 
of Effectiveness also holds: 

~(id) b(id) 
a E a  bEc~ [ a ] = [ b ] E a / p  is A~ >A A~ >A 

(id,t) f (a ,  b) p(a, b) , R 

where (id, t) is defined as follows. Since by hypothesis c.  a(id) = c .  b(id) 
and since the quotient is effective in "P/An, then there exists a morphism 
t :  An --+ R such that  (1ft. p(id)),  t = a(id) and (~r2. p(id)),  t = b(id). 

The Natural  Numbers  type corresponds to the natural  numbers object: 

,~(id) 
nat) N I l  is ~'~ ) 1 

where ~" : 7)/1 -+ 7)-* is the functor defined in the following manner: for 

every !D : D --+ 1 we put 2~'(!D) -- (!D)*(!Jr and Af is a natural  numbers 
object of 3 ~ 

Now, we show the introduction rules. 

{id,O'!An) 
Ii-nat) 0 E N[Fn] is A~ > A,x~" 

where o : 1 --+ Af is the zero map in the H-pretopos P.  From now on, we call 
- a n d  - q ( ! A o ,  N ( i d ) ) .  

I2-nat) s(n) E N[Fn,n E N] is ( id,~.~'2) 
A. xX > A. xAfxJV" 

where s : 2r -+ A/ is the successor map in the H-pretopos P ,  ~ =- ida(s) 
and (id, ~ �9 ~r2) is the unique morphism towards the pullback of }A.• and 
~( !1) .  By using the indexed sum type, the elimination and conversion rules 
of the natural  numbers type for dependent types, as in the extensional version 
of Martin-Lbf's type theory [NPS90], are equivalent to the following weaker 
elimination and conversion rules of the natural numbers type for types not 
depending on Af, which are also derivable in T ( P )  

a E L l(y) E L [y E L] 
E,-nat)  Rec, (a,l, n) E L [n e N] 

Cl-nat)  
a E L l(y) E L  [y E L] 

Recs(a,l,O) = a E L 

a E L l(y) E L  [y E L] 
C2-nat) RecB(a,l,s(n)) = l(RecB(a,l,n)) E L In E N] 
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a E L l(y) E L  [y E L] f(n)  E L  [n E N] 
C3-nat) f(O) = a E L f(s(n)) = l(f(n)) E L 

Rec, (a, l, n) = f(n)  E L In e N] 

In the weaker elimination rule E,-nat 

Rec,(a,l ,n) is A,•  (id,~), (A'~• • 

where r is the unique morphism that makes the diagram below commute, by 
the property of natural numbers object in P/An with ~r i - q(~(id), ~(id)) 

An (id'~ x Jv ) An x .Af 

L , L  

The conversion rules for the natural numbers type are also valid. 

3 T h e  r e l a t i o n  b e t w e e n  t h e  t y p e  t h e o r i e s  a n d  t h e  

H - p r e t o p o s e s  

There is a sort of equivalence between the type theories described in the 
previous section and the category of H-pretoposes. So we can state that the 
type theory T(P)  is the internal language of the H-pretopos P.  First of all, 
we define the following categories: 

1. Lang whose objects are the type theories of H-pretoposes and whose 
morphisms are translations: they send types to types so as to preserve the 
type and term constructors, closed terms to closed terms and variables to 
variables; we call Lang* the category whose objects are those of Lang, but 
whose morphisms are translations preserving type and term constructors 
up to isomorphisms; 

2. HPretopo whose objects are H-pretoposes with a fixed choice of H- 
pretopos structure and whose morphisms are strict logical functors, that 
is functors preserving the H-pretopos structure w.r.t, the fixed choices; 
we call HPretop the category whose objects are those of HPretopo, but 
whose morphisms are functors preserving the H-pretopos structure up to 
isomorphisms. 

Now, we define a functor from H-pretoposes to type theories 

T : HPretopo ) Lang 

that associates to every H-pretopos 7 ) the internal type theory T(P)  described 
in the previous section. The functor T associates to every morphism F : P --+ 
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7) of HPretopo the translation T(F) : T(7 a) --+ T(D) defined as follows. 
Given a fibred functor a : P / A  -+ P-~, corresponding to a type judgement ,  
and a natural  t ransformation c, corresponding to a te rm judgement ,  we define 
T(F)(~) and T(F)(c) by induction on the signature of T(~P). Indeed, if ~ -- 

for any b : B --~ A of P ,  then we put F (q )  = F(b), since the chosen pullbacks 
of 7 ) are sent into the chosen pullbacks of l)  by F.  If  cr is obtained by an 
inference rule, then we simply define F((r) such that  F(cr)(id) = F(~r(id)), 
in order to make T(F) be a translation. For example,  we put  F (Z~(7 ) )  - 
,UF(Z) (F(7)) .  This definition of T(F) is good, since the functor F preserves 
the H-pretopos structure w.r.t, the fixed choices used in the internal type 
theories of P and O. 

Moreover, we define a functor from type theories to H-pretoposes 

P : Lang ~ HPretopo 

that  associates to every type theory T the category P ( T ) ,  whose objects 
are closed types A, B, C, ... and whose morphisms are the expressions (x)b(x) 
corresponding to b(x) E B[x E A], where the type B does not depend on A. 
We can prove tha t  P(T) is a H-pretopos by fixing a choice of its structure 3 
(see [Mai97]). The functor P associates to every morphism of Lang L : T -+ 
T ~ the functor P(L) : P(T) --+ P ( T  ~) defined as follows: For every closed 
type A, we put P(L)(A) =_ L(A), which is well defined since a translat ion 
sends closed types to closed types. For every morphism b(x) E B[x E A] of 
P(7-) we put 

P(L)(b(x) E B[x E A]) - L(b(x)) E L(B)[x E L(A)] 

Since L is a translation, then P(L) is a functor preserving the H-pretopos 
structure. In order to describe the relation between type theories and H- 
pretoposes, we have to consider a type theory T as a category. We think of T 
as the category whose objects are the same as Pgr(P(T)),  but whose mor-  
phisms are sequences of morphisms by which we built a series of commuta t ive  
squares. More precisely, the objects of T are the dependent types under a 
context B(xl ,  ..., x~)[xl E At, ..., xn 6 An]. The morphisms of T exist only 

! 
from B[xl E At,  ..., xn E An] to S'[x~ E At, . . . ,  x,, E A~] and they are 4 

I ! b' E B (al,...,a~)[xl E A1, . . . ,x ,  E A n , y E  B(xl , . . . ,x , )]  

I I I such that  al E A~[xl E A1] and a i E Ai(al,...,a~_l)[xl 6 A1,. . . ,xi E A~] 
for i = 1, ..., n. The composit ion is the substitution and the identity is 
y E B(xl, . . . ,xn)[xl E A1,.. . ,xn E An,y 6 B]. Therefore, we can consider 
equivalences of type theories. In the following we mean with ID the identity 
functor. 

3 For the choices of finite limits and right acljoints see [See84], for coproducts use 
disjoint sum types and for quotients use quotient types with indexed sum types. 

4 One could also consider the usual morphisms of contexts. 
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P r o p o s i t i o n  5. Let T : HPretopo --+ Lang and P : Lang --+ HPretopo be 
the functors defined above. There are two natural transformations: ~7 from 
ID to T �9 P, thought as functors from Lang to Lang*, and c from P �9 T 
to ID,  thought as functors from HPretopo to HPretop,  such that for every 
type theory 7- and for every H-pretopos 7), ~T : 7" --~ T ( P ( T ) )  and ep : 
P(T(7)) ) -+ 7 ) are equivalences. 

Proof. In order to obtain the natural  t ransformation ~, for every type theory 
T we define 

~7- : 7- -+ T ( P ( T ) )  

as follows. For any closed type ~T(A[ ]) -- A(id) : A z  -+ 1. For dependent 
type judgements,  ~T(C(x,y)[x  E A, y E B(x)]) is the type judgement  of 
T(P(7-)) corresponding to the sequence 

q~(id) q~(id) 2(id) 
Z=e[3C(z) E >Z=EaB(x)~ ) AE 1 

where /3  - Z~eAB(x  ) and qi -- ~'11[Pi-I] for i = 2, 3. This is the dependent 
type judgement  arising from the following sequence 

>A > 1 

in the internal type theory T ( P ( T ) ) ,  as it is described in the previous section. 
For te rm judgements,  yT-(e E C(x,  y)[x E A, y 6 B(x)]) is 

1 ( 

�9 (~,e>[p~](id) . c" " 
~xEAB~:)E :* z.,zEExEAB(~ ) i~)~ 

^ A~ -( ~eaB(~)~ 
a(id) q~(ia) 

where ~ = c[x/~rl(z), y/Tr2(z)][z G ~ e A B ( X ) ] .  This is the t e rm judgement  
arising from <z, ~) in the internal type theory T ( P ( T ) ) ,  as it is described in 
the previous section. We can obviously imagine how YT" is defined in the case 
of having a generic context of n types. We can see that  y is a natural  trans- 
formation,  since translations preserve indexed sum types and projections. YT 
is a translation up to isomorphisms and it is an equivalence of categories 
since the functor is faithfull, full and essentially surjective. Indeed, we can 
define a natural  t ransformation ~-1 such that ,  given a type theory 7-, the 
component  qTrl : T ( P ( T ) )  -+ T is defined as follows. Given a type judgement  

~(id) ~(id) 
S ~ A --->1 of T ( P ( T ) )  we define 

~Yr 1 (o~(id), 13(id)) =_ ~(id) -1 (x)[x G A] 
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where /3( id ) - l (x )  - EzeBEq(A,  fl(id)(z), x), that  is the fibers offl(id). Given 
c( i~)  

the te rm judgement  A ~ B ,~d f~. of T (P(T) ) ,  provided tha t  c(id) is c(x) E 

1 ~ - -  A a ( id )  
.(ia) 

B[x E A], ~/Yr 1 associates to it the term judgement  of T 

(c(x), eq) E ZzeBEq(A,~( id)(z) ,  x)[x E A] 

We can see that  77-1 is a natural  t ransformation,  since translations preserve 
indexed sum types, projections and equality types. We can prove that ,  for 
every type theory T,  777" and ~Yr 1 give rise to an equivalence of categories 
(also see [SeeS4]). 

Moreover, we define a natural  t ransformation e such that  for every H- 
pretopos T" the component  

e p :  P(T(T'))--~T" 

~(ia) 
is defined as follows, e~, associates to every object A--> 1 of P(T(T')) the 

object A and it associates to the morphism A b(id)_~ AXB the morphism 

1 .~.- A ' 
a(id) 

q(!A, j3(id)).b(id) : A --+ B. We can easily prove that  eT, is a functor preserving 
the H-pretopos structure up to isomorphisms 5. We have tha t  e~, gives rise to a 
natural  t ransformation,  since the functors preserve the H-pretopos structure 
w.r.t, the fixed choices. Moreover, eT, is an equivalence of categories, since it 
is faithfull by uniqueness of morphisms towards pullbacks, full because every 
section of a fibred functor has got a name in the language, and essentially 
surjective. Indeed, we can define a natural  t ransformation e -1 such tha t  for 
every H-pretopos P the component  e~ 1 : P  --4 P(T(T')) is defined as follows. 

For every object A ofT ' ,  e~l(A) is the closed type corresponding to A~z " ~  1 . 

For every morphism b : A --+ B of T', e~l(b) is the te rm corresponding 

(id,b')(id) 
to A.,~ ~, AExB.~ where b ~ = ~'B 1 �9 b'TrA and where 7rB and 71" 3 are 

1 ~ A,V ,~) 
A(id) 

the second projections of the pullbacks of !A and !B along the identity. We 
conclude that for every H-pretopos T', cp and (~l give rise to an equivalence 
of categories. 

5 This is due to the choices of split fibration: see, for instance, the terminal object. 
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4 T h e  f r e e  H - p r e t o p o s  

The main  idea is to generate a H-pretopos from a given category C by con- 
sidering its objects as closed types and its morphisms as terms with a free 
variable. We can prove the universal property by the construction of the 
category of paths,  which represents the dependent types in a categorical way. 

Given a category C, we consider the dependent type theory T(C) generated 
by the inference rules as follows: 

1. For every object A of ObC we introduce a new type A and we state the 
closed type judgement  A [ ]. 
Given A �9 ObC and B �9 ObC we state A = B [ ], if they are the same 
object in ObC. 

2. For every morphism b : A --~ B in C, we introduce a new te rm b(x) and 
we state b(z) �9 B [x �9 A], where A and B are closed types. 
Given b: A--+ S and d :  A - +  B in C, we state b(z) = d(x) �9 S Ix �9 A], 
provided tha t  b and d are the same morphism in C. 
Given b : A -~ B and a : D --+ A in C, we state about  composit ion 
b(x)[x := a(y)] = (b . a)(y) �9 B [y �9 D]. 

3. There are all the inference rules of the typed calculus for H-pretoposes 
as in the appendix. 

Therefore T(C) is a type theory of H-pretoposes. 
Now, we can prove: 

P r o p o s i t i o n  6. Let P : Lang ~ HPretopo be the functor described in sec- 
tion 3. The category P(T(C) ) is the free H-pretopos generated by the category 
C. 

Proof. We know that  P(T(C))  is a H-pretopos from the definition of P .  Given 
a functor G : C --+ 7), f rom the category C to the H-pretopos P ,  we claim 
that  there exists a unique functor G : P(T(C))  --+ 7 ) in HPretopo such tha t  

the d iagram c I ~ P(T(C)) commutes,  where I : C -+ P(T(C))  is the 

following functor: for every object A E ObC we put I (A)  - A [ ] and for 
every morphism b : A -+ B we put I(b) = b(z) E B[x E A]. 

In order to define ~ on P(T(C)), we define an interpretation i f :  T(C) --~ 
Pgr(7)), by passing to Pgf(7)) ,  with the warning tha t  we have to normalize 
the evMuation. This is done by adding the value of every fibred functor cr E 
Fib(7)~1,7)-~) on the empty, by induction on the signature, such that  a type 
judgement  will be interpreted by a sequence of Pgr(7)) like 

~1 (0), a2(idA1), ..., an(idA._1) 

The interpretation is the same as for the internal type theory, except for closed 
types and terms, which are interpreted in fibred functors evaluated on 0. The 
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reason is that we want to put G(A[ ]) = domJ(A[ ]) and G(b E B[z E A]) - 
q(J(A[ ]), ,7(B[ ])). J (b  E_ B[z E A]), but if we adopt for ,7 the semantics 
defined in section 2, then G would commute with G u 2 to isomorph~sms. So, 
for every object A of Ob'P, we extend the functor A by adding A(0) ~!A 
and for every object B, q(!B,-A(0)) is the second projection of the pullback 
of !B and .4(0). For example, for the natural numbers J ( g [  ]) - J~(0) =!,r 
instead of being interpreted as !l•162 like in the semantics defined in section 

;'(0) 
2. Moreover, LT(0 �9 g [ ] )  is 1 *Jr where,(0) -= oand  o : 1 ~ N  

is the zero map in P. Finally, given a proper type arising from an object 
A �9 ObC, we put J (A[  ]) - G(A)(O) and given a proper term arising from a 
morphism b : A --+ B of C, we put J (b  �9 B[x �9 A]) - (ida(A), G(b)) section 

of G(B)(G(A)(O)) : G(A) • G(B~ -+ G(A). By definition G preserves the 
H-pretopos structure and we get G. I = G. Moreover, G is obviously unique 
for fixed choices of the H-pretopos structure, which are required to interpret 
the type theory T(C) into Pgr('P). 

The free structure gives rise to a monad. It would be interesting to inves- 
tigate if the category HPretopo is monadic on Cat and Graph. Or at least, if 
we prove that HPretopo is essentially algebraic, as for the categorical models 
of ITT in[Obt89], we would get a representation theorem of HPretopo into 
a category of presheaves [AR94]. 

5 S o m e  o t h e r  f r e e  s t r u c t u r e s :  t h e  L e ~  a n d  I T T  
c a t e g o r i e s  

A similar correspondence to that one between type theories and H-pretoposes 
can be established for the category Lez and ITT. The category Lez, whose 
objects are the categories with finite limits and whose morphisms are func- 
tors strictly preserving finite limits, provides a valid and complete semantics 
for the typed calculus with terminal type, extensional equality types and 
indexed sum types. In the same way, the ITT  category, whose objects are 
the locally cartesian closed categories with finite coproducts and a natural 
numbers object and whose morphisms are functors strictly preserving the 
ITT structure, provides a valid and complete semantics for the fragment 
of Martin-Lbf's type theory with extensional equality and without universes 
and well-orders [Mar84]. These validity and completeness theorems can be 
proved in a similar way to that for H-pretoposes. We can easily notice that 
these dependent typed calculi allow us to build the free structure for Lez and 
ITT  over Cat, in the same way we proved for the category HPretopo. The 
free structures give a presentation of two monads, whose algebras correspond 
respectively to Lex and ITT, since Lex and ITT are monadic over Graph 
[Bur81] and admit an equational presentation. 
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6 Appendix: the HP typed calculus 

Terminal type 

Tr) T type 

False type 

I-Tr) * E T C-Tr) 
t E T  

t = * E T  

Fs) •  E-Fs) a E 2  Atype  
ro(a) E A 

C(x) type [zEB] I-Z) bEB cEC(b) 
2=esc(~) type <b, c> e Z~eBC(~) 

Indexed  Sum type  

Z) 

F~Z) d E Z=eBC(x) m(x,y) E M((x,y>) [xEB,  yEC(x)]  
s(d, m) E M(d) 

C-/Y) bEB cEC(b) m(x,y) EM(<x,y>) [xEB, y@C(z)] 
s(<b, c>, m) = m(b, c) @ M(<b, c>) 

Equality type 

Ctype  c E C  
Eq) Eq(C, c, d) type 

E-Eq) p E Eq(C, e, d) 
c = d E C  

Disjoint Sum type  

d e C  c = d E C  
I-Eq) 

eqc E Eq(C, c, d) 

C-Eq) 
p E Eq(C, c, d) 

p = eqc E Eq(C, c, d) 

~) Ctype  Dtype  I1-@) c E C  I2-~) d E D  
C @ D type e~(c) E C @ D e2(d) E C @ 19 

w E C @ D  at(x)  E A(Q(x))[x E C] aD(y) E A(e2(y))[y E D] E-~) 
D(w, ac, aD) E A(w) 

e E C at(x)  E A(e1(x))[x E C] aD(y) E A(e2(y))[y E D] cl-e) 
D(cl (c), ac, aD ) = ac(c) E A(el (C) ) 

C2-@) d E D ac(x) E A(r E C] aD(y) E A(c2(y))[y E D] 
D(e2(d), ac, aD) = aD(d) E A(c2(d)) 

Disjointness 
cEC dED eI(e)--E2(d)ECq~D 

re(c, d) E • 
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Forall type  

V) C(=) type[= �9 B] d �9 Eq(C(x),y,z)[= �9 B , y  �9 C(=),z �9 C(x)] 
V=EBC(x) type 

c � 9 1 4 9  B] d � 9  S q ( C ( x ) , y , z ) [ x � 9 1 4 9 1 4 9  
I-V) 

)~=B.c �9 VxEBC(=) 

Zc-v) b � 9  

E-V) b � 9  f �9  
Ap(f, b) E C(b) 

c �9  B] dE Eq(C(x) ,y ,z)[xE B, y E C ( x ) , z � 9  
A p ( ~ : . c ,  b) = c(b) �9 C(b) 

.C-V) f �9 V~eBC(=) 
)~x B.Ap(f, x) : f �9 VxEBC(x) 

Quot ient  type 

Q) 

R(x, y) type [z E A, y E A), d E Eq( R(x, y), z, w)[x E A, y E A, z e R(x, y), w E R(x, y)] 
c~ e R(=, =)[~ e A], c2 e R(U, =)[= e A, U �9 A, z �9 R(~, U)] 
ca �9 R(x, z)[x �9 A, y �9 A, z E A, w �9 R(z,  y), w' �9 R(y, z)] 

A/ R ~ype 

E-q) 

a E A  a E A  b � 9  dER(a ,b )  
I-Q) [el �9 A / R  eq-Q) [a] = [b] E A / R  

s e A/R l(x) �9 L([x])[x E A] l(x) = l(y) E L([x])[x �9 A,y e A, dE R(x,y)] 
Q(z,,) e L(,) 

C-Q) a E A l(x) e L([x])[x �9 A] l(x) = l(y) E L([x])[z �9 A, y �9 A, d �9 R(x, y)] 
Q(I, [a]) = l(a) e L([a]) 

Effect iveness  
a E A  

Natura l  Numbers  type 

nat) N type 

n � 9  
E-nat) 

b � 9  [ a ] = [ b ] � 9  
f(a, b) �9 R(a, b) 

h E N  
Ii-nat) 0 E N I2-nat) s(n) E N 

a E L(O) l(x,y) E L(s(x))[x E N ,y  E L(x)] 
Rec(a, l, n) E L(n) 

a E L(O) l(x,y) E L(s(x))[x E N, y E L(x)] 
Cl-nat) 

Rec(a, l, O) = a E L(O) 

n E W  eEL(O) l(x,y) E L(s(x))[xE g ,  y E  n(x)] 
C~-nat) Rec(a, l, s(n)) -" l(n, Rec(a, l, n)) E L(s(n)) 
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