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Abstract. We extend Martin-Löf’s constructive set theory with effec-
tive quotient sets and the rule of uniqueness of propositional equality
proofs. We prove that in the presence of at least two universes U0 and U1

the principle of excluded middle holds for small sets. The key point is
the combination of uniqueness of propositional equality proofs with the
effectiveness condition that allows us to recover information on the equiv-
alence relation from the equality on the quotient set.

1 Introduction

Within the framework of Martin-Löf’s Intuitionistic Type
Theory [Mar84,NPS90], in order to generate some formal topologies [Sam87], the
quotient sets are also desirable [NV97]. But some care is necessary in extending
Martin-Löf’s set theory with quotient sets if we want to keep constructivity.

Here, we consider the extension of intensional Martin-Löf’s set
theory (MLTT) with quotient sets as formulated in [Hof95] and we want to
explore the possibility to make quotients effective. Intuitively, effectiveness for
quotient sets means that if two elements of a set are in the same “equivalence
class” as represented by an element of the quotient set, then the two elements
satisfy the equivalence relation. A property with this name can be found in cat-
egory theory as referred to an equivalence relation (see e.g. [MR77]). The usual
constructions of quotients in classical set theory, in categorical universes like
toposes and in the setoids made out of type theory enjoy this property.

In this paper we give an answer to the question of extending MLTT with
effective quotients, if we also add the rule of uniqueness of equality proofs [Hof95].
Indeed, even if the rule of uniqueness of equality proofs is not provable in the
intensional version of Martin-Löf’s set theory as proved by M. Hofmann and T.
Streicher [HS95], however it is definable by pattern-matching [Coq92], which is
a very useful tool for implementations of type theory.

To formulate effectiveness we need to pass to the extension of Martin-Löf’s
type theory, here called iTT, augmented with the true judge-
ment A true (see [Mar84,Val95]). According to the paradigm in [Val95], the
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rules of iTT about true judgements, called admissible, are exactly those ob-
tained from MLTT such that we can prove at the level of the metalanguage the
following preservation property: the judgement “A true” is derivable in iTT iff
there is a proof-term “a” such that “a ∈ A” is derivable in MLTT.
We call iTTQ the extension with true judgements corresponding to MLTTQ,
that isMLTT augmented with intensional quotients and the uniqueness of equal-
ity proofs. Now, in iTTQ we express the effectiveness condition in terms of true
judgements as follows

a ∈ A b ∈ A Id(A/R, [a], [b]) true
R(a, b) true

and we call iTTEQ the extension of iTTQ with this condition. We add effective-
ness as a condition on true judgements, because we are not able to think of a
constructive type theory with only the four kinds of judgements

A set A = B a ∈ A a = b ∈ A
that extends MLTTQ and whose extension with true judgements makes the
effectiveness condition admissible. Indeed, in order to admit the effectiveness
condition in the corresponding extension with true judgements, this claimed
type theory should allow to derive the following rule

eff
a ∈ A b ∈ A p ∈ Id(A/R, [a], [b])

?(a, b, p) ∈ R(a, b)
for some proof-term ?(a, b, p).

MLTT �� preservative �� iTT

MLTT Q �� preservative �� iTT Q

MLTT Q+ eff(?) �� preservative �� iTT EQ+ eff(?)

Actually, we will show here that we can not have such a theory where eff can
be derived, since even in the extension iTTEQ the principle of excluded middle
holds for small sets. Indeed, in the presence of quotient sets with the effective-
ness condition, the rule of uniqueness of propositional equality proofs and at
least two universes U0 and U1, to which the codes of quotient sets are added,
we can reproduce for small sets the proof of Diaconescu [Dia75] made within
topos theory that the axiom of choice implies the principle of excluded middle.
Therefore, to be clearer, if a constructed type theory including MLTTQ + eff
existed, then its preservative extension with true judgements would admit the
effectiveness condition. Hence, as shown here, we would be able to prove the
principle of excluded middle for small sets at the level of true judgements and as
a consequence of the preservation property in the pure type theory itself against
its claimed constructivity.
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In the framework of set theory the proof reproduced here shows the incom-
patibility, from the intuitionistic point of view, between the extensionality axiom
and the axiom of choice. In the framework of topos theory it makes use of ex-
tensional powersets. Here, we will see that to reproduce extensionality in the
context of intensional type theory, where the axiom of choice holds because of
the presence of a strong existential quantifier, it is sufficient to have general ef-
fective quotients to be used on the first two universes and the rule of uniqueness
of equality proofs at the propositional level. In fact, in the proof we mimic pow-
ersets by quotienting the first two universes under the relation of equiprovability.
Then, we need the effectiveness condition to decode the extensional equality re-
lated to the quotients on the universes into the equiprovability relation. Finally,
the rule of uniqueness of equality proofs seems crucial to identify the values of
the choice function applied to two suitable extensionally equal subsets.

Of course, an analogous proof can be reproduced in the extensional version
of Martin-Löf’s set theory with the quotient sets as given in Nuprl [Con86] and
only with the addition of the effectiveness condition.

We know that the effectiveness condition is surely derivable for decidable
equivalence relations. But in general effectiveness is problematic, because it re-
stores information that has been forgotten in the introduction rule for the equal-
ity of equivalence classes. This is confirmed by the proof given here.

The interest in the effectiveness condition arises from the mathematical prac-
tice of quotient sets. In order to keep effectiveness for quotient sets in the presence
of uniqueness of equality proofs, an alternative strategy could be to let quotient
sets based only on a proof-irrelevant equivalence relation, as it is in the type
theory of Heyting pretoposes [Mai97].

2 The Idea of the Proof: Axiom of Choice versus
Extensionality

We describe the idea behind the proof that in the extension of Martin-Löf set
theory with effective quotient sets and the uniqueness of equality proofs the ax-
iom of choice yields classical logic on small sets. We think that this proof can go
through any other possible extension with analogous extensional constructors.
The idea of the proof originally due to Diaconescu [Dia75] can be clearly un-
derstood in the framework of an intuitionistic set theory with basic axioms, as
the empty axiom, the pair axiom and the comprehension axiom, also only for
restricted formulas as in CZF [Acz78] (see e.g. [GM78,Bel97]). In this framework
we can see how the axiom of choice is incompatible with the extensionality axiom
from the constructive point of view, as we show in the following.
Let us consider a set A and the following subsets of the set {0, 1}, where 0 ≡ ∅
and 1 ≡ {∅}:

V0 ≡ {x ∈ {0, 1} : x = 0 ∨ ∃y y ∈ A} V1 ≡ {x ∈ {0, 1} : x = 1 ∨ ∃y y ∈ A}
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Now, if we apply the axiom of choice to the system of sets {V0, V1} we get that
the following proposition is true:

∀z ∈ {V0, V1} ∃y ∈ {0, 1} y ∈ z −→

∃f ∈ {V0, V1} → {0, 1} ∀z ∈ {V0, V1} f(z) ∈ z
Then we know that the premise of this implication is true by substituting y
with 0 in the case of V0 and with 1 in the case of V1. Therefore we derive by
modus ponens

∃f ∈ {V0, V1} → {0, 1} ∀z ∈ {V0, V1} f(z) ∈ z

Then, applying the elimination of the existential quantifier, we can derive

(f(V0) = 0 ∨ ∃y y ∈ A) ∧ (f(V1) = 1 ∨ ∃y y ∈ A)

from which by distributivity we get

(f(V0) = 0 ∧ f(V1) = 1) ∨ ∃y y ∈ A

Now we are going to prove by ∨-elimination from the above proposition the
principle of excluded middle for A. So, at first we assume f(V0) = 0 ∧ f(V1) = 1.
Then note that if we also assume ∃y y ∈ A, from this by extensionality we get
that V0 = V1, which combined with our first assumption yields 0 = 1, which is
falsum and lets us conclude ¬∃y y ∈ A and also ∃y y ∈ A ∨ ¬∃y y ∈ A. Since
by assuming the second disjunct ∃y y ∈ A we also get ∃y y ∈ A ∨ ¬∃y y ∈ A,
by ∨-elimination applied on (f(V0) = 0 ∧ f(V1) = 1) ∨ ∃y y ∈ A the principle
of excluded middle for any set A

∃y y ∈ A ∨ ¬∃y y ∈ A

is now derived. We can adapt the outline of this proof to the extension of Martin-
Löf’s set theory with effective quotient sets and the uniqueness of equality proofs,
as we will show in the next sections. The uniqueness of equality proof seems cru-
cial to reproduce the proof together with the extensionality captured by effective
quotient sets.

3 Extension of iTT with Quotient Sets

In order to investigate the possibility of an extension with effective quotient
sets, firstly we extend the intensional version of Martin-Löf’s Intuitionistic Type
Theory [NPS90], here calledMLTT, with quotient sets and the rule of uniqueness
of proofs for the intensional propositional equality as in [Hof95] (page 111) and we
call this extension MLTTQ. Then we consider its preservative extension iTTQ

with true judgements. Lastly we extend iTTQ with the effectiveness condition
and we call this extension iTTEQ. As said in the introduction the meaning of a
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true judgement is the following: A true holds if and only if there exists a proof-
element a such that a ∈ A holds (for an account of this see [Mar84,Val95]). This
is meaningful, since we identify propositions and sets. We call iTT the extension
ofMLTT with true judgements. The rules of iTT ( iTTQ) about true judgements
are precisely those admissible by the rules of MLTT (MLTTQ) according to the
explained semantics, to which we add the following introduction rule

(True Introduction)
a ∈ A
A true

such that iTT (iTTQ) turns out to be a preservative extension
of MLTT (MLTTQ) in the sense stated in [Val95] and recalled in the intro-
duction. For instance, among the admissible rules of iTT, we recall the case of
the set of intensional propositional equality Id. The propositional equality is the
internalization of the definitional equality between elements of a set at the level of
propositions, considering two objects definitionally equal if they evaluate to the
same normal form. Actually, there are two kinds of propositional equality char-
acterizing intensional and extensional type theories: Id, which is intensional (see
the rules below), and Eq, which is extensional (see [NPS90] and the section 5).
Intensional propositional equality is entailed by definitional equality, that is two
objects are propositionally equal if they are definitionally equal, but the other
way around does not hold. On the contrary, extensional propositional equality
is equivalent to definitional equality. The main difference is that in the presence
of intensional propositional equality, definitional equality and type checking are
decidable, but this is no longer true in the presence of extensional propositional
equality.

The formation, introduction, elimination and conversion rules for the set Id
are the following
Intensional equality set

A set a ∈ A b ∈ A
Id(A, a, b) set

I-Id
a ∈ A

id(a) ∈ Id(A, a, a)
E- Id

d ∈ Id(A, a, b) c(x) ∈ C(x, x, id(x))) [x : A]
idpeel(d, c) ∈ C(a, b, d)

C-Id
a ∈ A c(x) ∈ C(x, x, id(x)) [x : A]

idpeel(id(a), c) = c(a) ∈ C(a, a, id(a))
In particular, the admissible rules corresponding to the elimination rule are the
following:

d ∈ Id(A, a, b)

[x : A]
|

C(x, x, id(x)) true
C(a, b, d) true

Id(A, a, b) true

[x : A]
|

C(x, x) true
C(a, b) true
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Now, we extend iTT with quotient sets as formulated in [Hof95]1:
Intensional Quotient set

R(x, y) set [x ∈ A, y ∈ A]
c1 ∈ R(x, x)[x ∈ A], c2 ∈ R(y, x)[x ∈ A, y ∈ A, z ∈ R(x, y)]
c3 ∈ R(x, z)[x ∈ A, y ∈ A, z ∈ A,w ∈ R(x, y), w′ ∈ R(y, z)]

A/R set

I-int.quotient
a ∈ A A/R set

[a] ∈ A/R
eq-int.quotient

a ∈ A b ∈ A d ∈ R(a, b)
Qax(d) ∈ Id(A/R, [a], [b])

E-int.quotient

s ∈ A/R l(x) ∈ L([x])[x ∈ A]
h ∈ Id(L([y]), sub(Qax(d), l(x)), l(y)) [x ∈ A, y ∈ A, d ∈ R(x, y)]

Q(l, h, s) ∈ L(s)
where the term sub(c, d) ≡ idpeel(c, (x)λy.y)(d) for c ∈ Id(A, a, b) and d ∈ L(a)
(see also [NPS90] page 64) expresses substitution with equal elements;
C-int.quotient

a ∈ A l(x) ∈ L([x])[x ∈ A]
h ∈ Id(L([y]), sub(Qax(d), l(x)), l(y)) [x ∈ A, y ∈ A, d ∈ R(x, y)]

Q(l, h, [a]) = l(a) ∈ L([a])
We also want to make quotients effective and we require:
Effectiveness condition

a ∈ A b ∈ A Id(A/R, [a], [b]) true
R(a, b) true

Effectiveness expresses the fact that, as usual, every equivalence relation on a
set A is the kernel of the function which maps an element ofA into its equivalence
class.

Note that effectiveness is expressed only as a condition in terms of true
judgements, since we are not able to exhibit type-theoretical rules that make
this effectiveness condition admissible, like for the rules of iTTQ on true judge-
ments, where by a type-theoretical rule we mean a rule expressed using judge-
ments only of the following four kinds: A set A = B a ∈ A a = b ∈ A.
Indeed, in iTTEQ we will prove a non-constructive principle, that is the prin-
ciple of excluded middle on small sets, which lets us conclude that there are
1 But we restrict the formation rule to quotient sets based on equivalence relations. In

A/R we should record the proof terms c1, c2, c3 and then the corresponding equality
rule should say that varying c1, c2, c3, the set A/R is the same.
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no type-theoretical rules that make the effectiveness condition on quotient sets
admissible and that in the same time follow the Heyting constructive semantics
of connectives.

Finally, we add the rule of uniqueness of propositional equality proofs:
Id-Uni I

a ∈ A p ∈ Id(A, a, a)
iduni(a, p) ∈ Id(Id(A, a, a), p, id(a))

The corresponding conversion rule is the following:
Id-Uni conv

a ∈ A
iduni(a, id(a)) = id(id(a)) ∈ Id(Id(A, a, a), id(a), id(a))

By using Id-Uni and the elimination rule of the propositional equality on the
proposition

Πw∈Id(A,x,y)Id(Id(A, x, y), w, z) [x ∈ A, y ∈ A, z ∈ Id(A, x, y)]

Streicher proved that (see [Hof95] page 81) the set

Id(Id(A, x, y), w, z) [x ∈ A, y ∈ A, z ∈ Id(A, x, y), w ∈ Id(A, x, y)]

is inhabited by the proof-term

idpeel(z, (x)λw′ ∈ Id(A, x, x).iduni(x,w′))(w)

Hence, the uniqueness of proofs of propositional equality set, called UIP, holds.

Remark 1. As we said in the introduction, the uniqueness of proofs of the propo-
sitional equality set is definable by pattern-matching [Coq92], but it is not deriv-
able in the intensional version of Martin-Löf’s set theory, as showed by M. Hof-
mann and T. Streicher (see [HS95]), who built a model where UIP is not valid.

Finally, we consider the first universe U0, whose elements are called small
sets [NPS90], and the second universe U1, whose elements are called large sets
and where U0 is also coded (see [Mar84] and [Dyb97], but note that we do not give
a new code to terms of the first universe into the second one to make formulas
more readable in the following). We have also to add the following introduction
rules for the codes of the quotient sets into the universes for i = 0, 1
UQ-I

a ∈ Ui r(x, y) ∈ Ui [x ∈ Ti(a), y ∈ Ti(a)]
c1 ∈ Ti(r(x, x)) [x ∈ Ti(a)], c2 ∈ Ti(r(y, x)) [x ∈ Ti(a), y ∈ Ti(a), z ∈ Ti(r(x, y))]
c3 ∈ Ti(r(x, z)) [x ∈ Ti(a), y ∈ Ti(a), z ∈ Ti(a), w ∈ Ti(r(x, y)), w′ ∈ Ti(r(y, z))]

a/̂r ∈ Ui

with the corresponding conversion rules

Ti(a/̂r) = Ti(a)/(x, y)Ti(r(x, y))
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This extension of iTT , called iTTEQ, is consistent because there is an interpre-
tation of iTTEQ into classical set theory (ZFC) with two strongly inaccessible
cardinals. Indeed, we interpret the quotient sets in classical quotient sets and
the first two universes respectively in the set of small sets and in the set of large
sets, proved to be actual sets by the presence of the two strongly inaccessible
cardinals.

4 Small Sets Are Classical

We are going to prove that for small sets in iTTEQ the principle of excluded
middle holds, i.e. for any element a of the first universe U0, the judgement
T0(a) ∨ ¬T0(a) true holds. This is a consequence of a particular application of
the axiom of choice (AC). In topos theory the fact that AC implies the princi-
ple of excluded middle was first proved by Diaconescu [Dia75]. The same result
is obtained in [MV99] within an extension of iTT with a powerset constructor
by adapting the logical proof of [Bel88] about Diaconescu’s theorem. Also Hof-
mann in [Hof95] claimed that the same result can be obtained in the Calculus of
Constructions by adding proof-irrelevance at the level of propositions, equiprov-
ability as equality between propositions and extensionality as equality between
dependent propositions.

Here, we show that we can recover this proof in a predicative setting with
effective quotient sets instead of an impredicative one like a topos. The key
point is to simulate the powerset, by quotienting the first two universes under
the relation of equiprovability among their elements.
Also in iTTEQ, the so called intuitionistic axiom of choice

((∀x ∈ A)(∃y ∈ B) C(x, y))→ ((∃f ∈ A→ B)(∀x ∈ A) C(x, f(x))) true

is proved by disjoint union sets, exactly as in [Mar84], concluding by true intro-
duction.

We are going to use the axiom of choice on the quotients made out of the
first two universes under the equivalence relation of equiprovability, i.e.

T0(x)↔ T0(y) set [x ∈ U0, y ∈ U0] T1(x)↔ T1(y) set [x ∈ U1, y ∈ U1]

Let us put the following abbreviations for i = 0, 1

Ωi ≡ Ui/ (x, y)Ti(x)↔ Ti(y)

Since there is a code for U0 in U1, i.e. Û0 ∈ U1, then there is inside U1 the
code Ω̂0 for Ωo such that

T1(Ω̂0) = Ω0

The reason to use the two universes is due to the possibility of deriving

Îd(Ω̂o, z, [�̂]) ∈ U1 [z ∈ Ω0]



172 Maria Emilia Maietti

where � is the singleton set (see [NPS90]). We use the abbreviation a =A b for
Id(A, a, b), when it is not coded in a universe.
Moreover, if A is a set, we will often write A to mean the judgement A true.

We also recall (see [NPS90]) that, in the presence of U0, we can derive

¬(true =Bool false)

Now, we go on to show the claimed proof of the principle of excluded middle on
small sets. As in [MV99], one of the key points is to internalize the truth of sets
within the quotients on the universes, simulating the powersets. This is expressed
by the following lemma, which is provable by the introduction equality rule on
the quotient set in terms of true judgements and by the effectiveness condition.

Lemma 1. For i = 1, 2 and any set a ∈ Ui, [a] =Ωi [�̂] iff Ti(a) true.

Proof. From [a] =Ωi [�̂] true by effectiveness of quotient sets we get
Ti(a) ↔ Ti(�̂) true, but Ti(�̂) = � so Ti(a) true. On the other hand,
from Ti(a) true, we get Ti(a) ↔ Ti(�̂) and by the true version of the equality
rule on the quotient set we conclude [a] =Ωi [�̂].

Now, we consider the following abbreviations: for z ∈ Ω0

E(z) ≡ Id(Ω0, z, [�̂])
Hence, we prove:

Proposition 1. In iTTEQ the following proposition

(∀z∈Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [̂�])
(∃x∈Bool) (x =Bool true → E(π1(π1(z)))) ∧ (x =Bool false → E(π2(π1(z))))

is true.

Proof. Suppose z ∈ Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]. Then π1(z) ∈
Ω0 × Ω0 and π2(z) is a proof of [ ̂E(π1(π1(z)))∨̂ ̂E(π2(π1(z)))] =Ω1 [�̂]. Thus,
by lemma 1 and by the conversion rules for U1, E(π1(π1(z))) ∨ E(π2(π1(z))).
The result can now be proved by ∨-elimination, by putting for example x = true
in the case E(π1(π1(z))) true.

Thus, we can use the intuitionistic axiom of choice to obtain:

Proposition 2. In iTTEQ the following proposition

(∃f ∈ Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]→ Bool)
(∀z ∈ Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂])
(f(z) =Bool true → E(π1(π1(z)))) ∧ (f(z) =Bool false → E(π2(π1(z))))

is true.
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Suppose, now, that a ∈ U0 is the code of a small set; then

〈〈[a], [�̂]〉,Qax(〈λy.%, λy′.inr(id([�̂]))〉)〉

is an element of the set

Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

where % ∈ � is the only element of the singleton set. In fact, 〈[a], [�̂]〉 ∈ Ω0 ×Ω0

and
〈λy.%, λy′.inr(id([�̂]))〉 ∈ Id(Ω0, [a], [�̂]) ∨ Id(Ω0, [�̂], [�̂])↔ �

from which, since

Id(Ω0, [a], [�̂]) ∨ Id(Ω0, [�̂], [�̂])↔ � = T1(Ê([a])∨̂ ̂
E([�̂]))↔ T1(�̂)

by the equality rule on the quotient set we get

Qax(〈λy.%, λy′.inr(id([�̂]))〉) ∈ [Ê([a])∨̂ ̂
E([�̂])] =Ω1 [�̂]

Analogously,
〈〈[�̂], [a]〉,Qax(〈λy.%, λy′.inl(id([�̂]))〉)〉

is an element of the set

Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

Let us put for w ∈ Ω0

q1(w) ≡ 〈〈w, [�̂]〉,Qax(〈λy.%, λy′.inr(id([�̂]))〉)〉

and
q2(w) ≡ 〈〈[�̂], w〉,Qax(〈λy.%, λy′.inl(id([�̂]))〉)〉

Now, let f be the choice function obtained by ∃-elimination rule on the judge-
ment in the proposition 2; then f(q1([a])) =Bool true → E([a]). But

(f(q1([a])) =Bool true) ∨ (f(q1([a])) =Bool false)

since the set Bool is decidable (for a proof see [NPS90], page 177), and hence,
by ∨-elimination, lemma 1 and a little intuitionistic logic, one gets that

(1) T0(a) ∨ (f(q1([a])) =Bool false)

and in an analogous way

(2) T0(a) ∨ (f(q2([a])) =Bool true)

Thus, by using distributivity on the conjunction of (1) and (2), one finally obtains
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Proposition 3. For any small set a ∈ U0 in iTTEQ the following proposition

(∃f ∈ Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]→ Bool)
T0(a) ∨ (f(q1([a])) =Bool false) ∧ f(q2([a])) =Bool true)

is true.

Now, we proceed by ∃-elimination assuming for some proof-term f

T0(a) ∨ (f(q1([a])) =Bool false) ∧ f(q2([a])) =Bool true)

on which we are going to apply ∨-elimination to prove the principle of excluded
middle for T0(a).
But, first of all, note that if we assume T0(a) true then [a] =Ω0 [�̂] true by
lemma 1 and hence

q1([a]) =Σ(Ω0×Ω0,...) q1([�̂])
by the elimination rule of the intensional propositional equality with respect to
the proposition

q1(x) =Σ(Ω0×Ω0,...) q1(y) [x ∈ Ω0, y ∈ Ω0]

Thus, f(q1([a])) =Bool f(q1([�̂])) and in a similar way from the same assumption
we can also prove

f(q2([a])) =Bool f(q2([�̂]))
Hence, since by the uniqueness of propositional equality proofs UIP we get a
proof-term of

π2(q1([�̂])) =
[

̂
E([b�])∨̂ ̂

E([b�])]=Ω1 [b�]
π2(q2([�̂]))

as π1(q1([�̂])) = 〈[�̂], [�̂]〉 = π1(q2([�̂])), we conclude by the elimination rule of
the propositional equality that

q1([�̂])〉 =Σ(Ω0×Ω0,...) q2([�̂])

and therefore by transitivity

f(q1([a])) =Bool f(q2([a]))

Then if we also assume

(f(q1([a])) =Bool false) ∧ (f(q2([a])) =Bool true) true

we conclude true =Bool false true. But we know that we can derive an element of
¬(true =Bool false). Hence, under the assumption

(f(q1([a])) =Bool false) ∧ (f(q2([a])) =Bool true),
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the judgement ¬T0(a) true holds. So, from proposition 3, by ∃-elimination and
by ∨-elimination applying ∨-introduction when the first disjunct is assumed and
using the above argument when the latter disjunct is assumed, we can conclude
(T0(a) ∨ ¬T0(a)) true and

Πa∈U0 T0(a) ∨ ¬T0(a) true

To sum up the key points to reproduce the proof of the principle of excluded
middle on small sets are the following:

– we use the axiom of choice, by quantifying on

Σw∈Ω0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

instead of Σw∈Ω0×Ω0 E(π1(w))∨ E(π2(w)) in order to forget the proof-term
of the disjunction and hence we need the second universe to encode

E(z) ≡ Id(Ω̂o, z, [�̂]) [z ∈ Ω0]

and to express at the propositional level when it is true;
– we exhibit a proof-term q1 by means of the equality rule on the quotient set
such that for a ∈ U0

q1([a]) ∈ ΣΩ0×Ω0 [ ̂E(π1(w))∨̂ ̂E(π2(w))] =Ω1 [�̂]

in order to prove under the assumption [a] =Ω0 [�̂] true

q1([a]) =Σw∈Ω0×Ω0 ... q1([�̂]) true and q2([a]) =Σw∈Ω0×Ω0 ... q2([�̂]) true

– we use the uniqueness of propositional equality proofs in order to prove

q1([�̂]) =Σw∈Ω0×Ω0 ... q2([�̂])

In conclusion, if we had type-theoretical rules that make all the rules of iTTEQ

admissible such that we can prove that C true holds in iTTEQ if and only if
there exists a proof element for the proposition C, then we would have a proof
element for the proposition Πa∈U0T0(a) ∨ ¬T0(a), which is expected to fail for
small sets, according to an intuitionistic explanation of connectives.

5 Extensional Quotient Sets in Extensional Set Theory

The proof that effectiveness of quotient sets yields classical logic for small sets
can also be done within the extensional version of Martin-Löf’s Intuitionistic
Type Theory with true judgements, called eTT , extended with the rules for
quotient sets, as in Nuprl [Con86], to which we add the effectiveness condition
and the introduction and conversion rules of the codes for quotient sets into the
first two universes.
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About the rules of true judgements, we only recall the case of the set of the
extensional propositional equality Eq (see [NPS90]). The formation, introduc-
tion, elimination and conversion rules are the following:
Extensional Equality set

Eq)
C set c ∈ C d ∈ C

Eq(C, c, d) set
I-Eq)

c ∈ C
eqC(c) ∈ Eq(C, c, c)

E-Eq)
p ∈ Eq(C, c, d)
c = d ∈ C C-Eq)

p ∈ Eq(C, c, d)
p = eqC(c) ∈ Eq(C, c, d)

In particular the elimination rule yields the admissibility of the following rule
on true judgements:

Eq(A, a, b) true
a = b ∈ A

We extend eTT with the rules of extensional quotient sets:
Quotient set

R(x, y) set [x ∈ A, y ∈ A]
c1 ∈ R(x, x)[x ∈ A], c2 ∈ R(y, x)[x ∈ A, y ∈ A, z ∈ R(x, y)]
c3 ∈ R(x, z)[x ∈ A, y ∈ A, z ∈ A,w ∈ R(x, y), w′ ∈ R(y, z)]

A/R set

I-quotient
a ∈ A A/R set

[a] ∈ A/R
eq-quotient

a ∈ A b ∈ A d ∈ R(a, b)
[a] = [b] ∈ A/R

E-quotient

s ∈ A/R l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]
Q(l, s) ∈ L(s)

C-quotient

a ∈ A l(x) ∈ L([x]) [x ∈ A] l(x) = l(y) ∈ L([x]) [x ∈ A, y ∈ A, d ∈ R(x, y)]
Q(l, [a]) = l(a) ∈ L([a])

Then we make extensional quotients effective through the following condition in
terms of true judgements:
Effectiveness condition

a ∈ A b ∈ A [a] = [b] ∈ A/R
R(a, b) true

We also add the codes of quotient sets in the introduction rules of the first two
universes and their corresponding conversion rules, as in section 3. Note that,



About Effective Quotients in Constructive Type Theory 177

like for the intensional propositional equality set, the introduction of equality on
quotient sets yields the admissibility of the following rule:

a ∈ A b ∈ A R(a, b) true
[a] = [b] ∈ A/R

This extension of eTT , called eTTEQ, is consistent, because there exists an inter-
pretation in classical set theory (ZFC) with two strongly inaccessible cardinals.
In the presence of the extensional propositional equality set, the rules for inten-
sional quotient sets become equivalent to those of extensional quotient sets and
the same holds with respect to the effectiveness condition. So, we can reproduce
in eTTEQ the proof of the previous section to derive

Πa∈U0T0(a) ∨ ¬T0(a)) true

which is expected to fail for small sets.
Note that this proof can not be recovered in the extensional version of set

theory with effective quotient sets restricted to mono equivalence relations, that
is equivalence relations inhabited by at most one proof. This kind of quotients is
operating in the extensional type theory of Heyting pretoposes [Mai97] and also
of toposes [Mai98], where even effectiveness can be type-theoretically expressed.

I would like to thank Silvio Valentini, Peter Aczel and Giovanni Sambin for
helpful discussions that stimulated the investigation on this topic, Peter Dybier
for his comments on a preliminary version of this paper and lastly the referees
for their valuable suggestions.
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