

Supporting Information

© Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2011

Insights into the Acid-Base Properties of Pt^{IV}-Diazidodiam(m)inedihyroxido Complexes from Multinuclear NMR Spectroscopy

Luca Ronconi, [a] Ana M. Pizarro, [b] Ruth J. McQuitty, [b] and Peter J. Sadler*[b]

chem_201002792_sm_miscellaneous_information.pdf

Table S1. pH-induced ^{14}N chemical shift changes for complex 1 as determined by 1D $^{14}N\{^{1}H\}$ NMR.

Assignment	Δδ (pH 1 to pH 5)	Δδ (pH 5 to pH 10)
w, Pt ^{IV} –NNN	0.55	0.11
x , Pt^{IV} – NNN	6.32	0.28
y, Pt ^{IV} –NNN	n.d. ^a	n.d. ^a
z , Pt^{IV} – NH_3	2.15 (2.23 ^b)	0.06 (0.10 ^b)

^a Accurate determination of the peak shift for y was not possible due to the broadness of the signal. ^b Chemical shift change of the coordinated ammine as determined by $^{15}N\{^{1}H\}$ NMR.

Table S2. pH-induced ^{14}N chemical shift changes for complex 2 as determined by 1D $^{14}N\{^{1}H\}$ NMR.

Assignment	Δδ (pH 1 to pH 5)	Δδ (pH 5 to pH 9)
w, Pt ^{IV} –NNN	1.00	0.05
x , Pt^{IV} – NNN	5.33	0.22
y, Pt ^{IV} –NNN	n.d. ^a	n.d. ^a
z , Pt^{IV} – NH_3	0.93 (1.12 ^b)	0.07 (0.11 ^b)

^a Accurate determination of the peak shift for y was not possible due to the broadness of the signal. ^b Chemical shift change of the coordinated ammine as determined by $^{15}N\{^{1}H\}$ NMR.

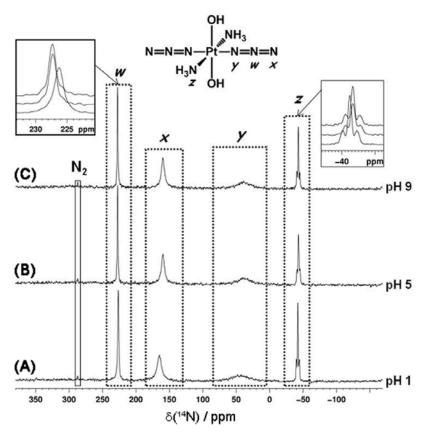


Figure S1. 1D ¹⁴N{¹H} NMR spectra of complex **2** in D₂O in the dark at 298 K at (A) pH 1, (B) pH 5, and (C) pH 9. Assignments (internal reference N₂ at 287 ppm): coordinated azido ligand as labeled in structure ($w = Pt^{IV} - NNN$, $x = Pt^{IV} - NNN$, $y = Pt^{IV} - NNN$); ammine ligand ($z = Pt^{IV} - NH_3$). Inserts of signals w and z show their dependence on the pH.

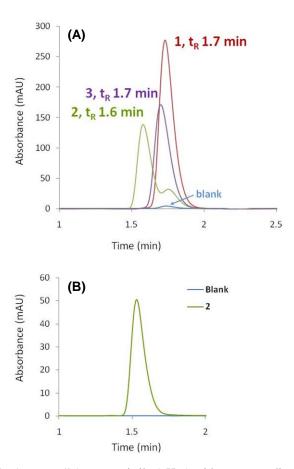


Figure S2. HPLC chromatogram in 5% water/95% acetonitrile (pH 6) with corresponding retention times at $\lambda = 254$ nm of (A) compounds 1-3 and blank for comparison, (B) compound 2 (< 5 min after the sample was dissolved) and blank for comparison.