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Abstract

Supersymmetric solutions of 6D supergravity (with two translation symmetries) can be written as a
Kähler base times a 2D fiber. The subset of these solutions which correspond to true bound states of
P charges give microstates of the 3-charge extremal black hole. To understand the characteristics s
the bound states we decompose known bound state geometries into base–fiber form. The axial sym
the solutions make the base Gibbons–Hawking. We find the base to be actually ‘pseudo-hyper-Kähl
signature changes from(4,0) to (0,4) across a hypersurface. 2-charge D1–D5 geometries are charact
by a ‘central curve’S1; the analogue for 3-charge appears to be a hypersurface that for our metric
orbifold of S1 × S3.
 2005 Elsevier B.V. All rights reserved.

1. Introduction

The black hole information puzzle[1] suggests that we lack a key factor in our understand
of large dense collections of matter. Some computations in string theory suggest that th
tional picture of a black hole as ‘empty space with a central singularity’ might be incorrec
the degrees of freedom accounting for the black hole entropy are distributed throughout th
The simplest object with entropy is the 2-charge extremal system, which can be realize
bound state of D1 and D5 branes. In this case it was found that the microstates are no
like but have a certain typical ‘size’. Different microstates have different geometries; non
a horizon or singularity but if we draw a surface bounding the typical state then the areaA of
this surface satisfiesA4G

∼ S, whereS = 2
√

2π
√

n1n5 is the microscopic entropy of the 2-char
system[2,3].
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We can wonder if a similar ‘swelling up’ would happen for the 3-charge extremal D1–
P states. The microscopic entropy of the system isSmicro = 2π

√
n1n5np. This time the naive

geometry is a black hole whose horizon area satisfiesSBek ≡ A
4G

= Smicro [4]. If the microstates
‘swelled up’ to fill this horizon then there would be no information puzzle—the black hole
crostates would just be large ‘fuzzballs’ that radiated like any other ball of matter. No indiv
state would have a horizon; the horizon would only be an effective construct arising upon
graining over microstates.

In [5–7] the geometries for some 3-charge microstates were constructed, and it was fou
these geometries were regular, with no horizon. The ‘throat’ of the 3-charge solution, inst
ending in a horizon, ended in a ‘cap’, just like the 2-charge geometries. But these geom
were a small subset of all the states of the 3-charge system, and were also not very gener
in particular, they carried a significant amount of rotation.

The generic state is not expected to be well-described by a classical geometry. Even i
charge case, where the geometries were generated by a vibrating string profile, the string
could be taken to be classical only when we take a high occupation number for each harm
that eigenstates can be replaced by coherent states and a classical configuration achieve
the 2-charge case the classical geometries helped deduce the size of the generic micros
we expect to get significant insight from classical geometries in the 3-charge case as we
extremal solutions we seek are BPS and thus the geometries preserve supersymmetry.
D5–P system is obtained by compactifying IIB string theory toM4,1 × S1 × T 4. Dimensionally
reducing onT 4, we get supersymmetric solutions in 6D. In the classical limit of large cha
we expect translation invariance along the time directionst and theS1 directiony [2].

In [8] the general class of supersymmetric 6D supergravity geometries (with these tran
symmetries) was described. All such solutions can be written as a 4-dimensional hyper-
base with a 2-dimensional(t, y) fiber over this base. In an interesting set of recent papers,
formulations have been used to construct large families of 3-charge BPS solutions[9–12].

But generic solutions constructed this way include regular ones as well as ones with p
gies (horizons, singularities, closed timelike curves). They include true bound states of D1
charges as well as superpositions of such bound states. Unlike the situation with D1–D5
not have as yet a way to isolate the solutions that describe the true bound states of D1
which are the ones that describe the microstates of the 3-charge black hole.

To get some insight into the characteristics of bound states, in this paper we return
geometries constructed in[5,6]. These are known to describe true bound states, since they
constructed by starting with 2-charge D1–D5 bound states and doing spectral flow to a
P charge; a further class was obtained by applying S, T dualities to these geometries
we again get bound states. We cast these solutions in the form of[8], identifying the base an
the fiber. From the result we can immediately make some observations. A hyper-Kähler
is usually Euclidean, with signature(4,0). We find that the base for our geometries is actu
‘pseudo-hyper-Kähler’: the signature on the outer region is(4,0) but inside a certain bounda
it changes to(0,4).1

The place where the signature changes is given by the intersection of a surfacef = 0 in 6D
with the 4D base. In the 2-charge D1–D5 case thef = 0 condition defined the ‘central curv
of the KK-monopole tube which characterized the geometry: different shapes of this curv
different bound states. This motivates us to study thef = 0 surface in the 3-charge case as w

1 The full 6D metric, however, retains signature(5,1) everywhere.
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We find that this surface (att = const) is an orbifold ofS3 × S1 by an orbifold groupZk ; the
group acts without fixed points so thef = 0 surface is smooth. When the P charge vanishes
S3 collapses to zero and we get theS1 of the 2-charge D1–D5 system.

The geometries of[5,6] are regular everywhere except for possible ALE type singular
arising from fixed points of an orbifold action. In the above base–fiber split the metric of the
turns out to have certain orbifold singularities, and we investigate how the fiber at these loc
behaves so as to yield the singularities of the full 6D metric. We end with some conjectu
the role of thef = 0 surface: since different shapes of thef = 0 curve described all differen
bound states of the 2-charge D1–D5 system, it might be that different shapes of thef = 0 surface
in the 3-charge case characterize all different D1–D5–P bound states.

2. Writing the metrics as base × fiber

Consider Type IIB string theory onM5,1 × S1 × T 4. Let the length ofS1 be 2πR and the
volume ofT 4 be V . Wrapn5 D5 branes onS1 × T 4 andn1 D1 branes onS1. In addition, let
there benp units of momentum alongS1. We are interested in the geometries created by the
bound states of these charges.

Dimensionally reducing onT 4 we get supersymmetric solutions in 6D. In our solutions
can choose moduli such that the solution can be represented as a solution of minimal supe
in 6D (in particular, the dilaton becomes a constant). Further, we expect that in the classic
which we consider the solutions will be translationally invariant in the time directiont and the
S1 directiony [2].

2.1. General form of the 6D metrics

It was shown in[8] that the most general supersymmetric solution to minimal supergrav
6 dimensions with translation symmetry along

(2.1)u = t + y, v = t − y

can be written as

(2.2)ds2 = −H−1(dv + √
2β

)(
du + √

2ω + F

2

(
dv + √

2β
)) + Hhmn dxm dxn.

Herexm (m = 1, . . . ,4) are coordinates in the noncompact spatial directions.H andF are func-
tions andβ andω are 1-forms on this 4-dimensional space.hmn dxm dxn gives a hyper-Kähle
metric on this 4-dimensional space; we call this the ‘base metric’.

To write the field equations satisfied by these variables, define the self-dual 2-form on th

(2.3)G+ = H−1
(

dω + �dω

2
+ F

2
dβ

)
,

where the� operation is defined with respect to the hyper-Kähler base metric. Then the equ
of motion are equivalent to the following nonlinear system of equations forH , F , β andω:

(2.4)dβ = �dβ,

(2.5)dG+ = 0,

(2.6)d � dH + dβ G+ = 0,

(2.7)d � dF + (
G+)2 = 0.
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2.2. Writing 3-charge solutions in the general form

In [5,6] certain solutions of IIB supergravity were constructed carrying 3 charges,Q1, Q5,
Qp, and 2 angular momenta (parametrized byγ1, γ2). When theQ1 andQ5 charges are se
equal (Q1 = Q5 = Q), and the moduli at infinity chosen appropriately, the dilaton vanishes
the 3-charge solution reduces to a solution of minimal supergravity. The resulting 6D met

ds2 = −1

h

(
dt2 − dy2) + Qp

hf
(dt − dy)2 + hf

(
dr2

r2 + (γ1 + γ2)2η
+ dθ2

)

+ h

(
r2 + γ1(γ1 + γ2)η − Q2(γ 2

1 − γ 2
2 )η cos2 θ

h2f 2

)
cos2 θ dψ2

+ h

(
r2 + γ2(γ1 + γ2)η + Q2(γ 2

1 − γ 2
2 )η sin2 θ

h2f 2

)
sin2 θ dφ2

+ Qp(γ1 + γ2)
2η2

hf

(
cos2 θ dψ + sin2 θ dφ

)2

− 2Q

hf

(
γ1 cos2 θ dψ + γ2 sin2 θ dφ

)
(dt − dy)

(2.8)− 2Q(γ1 + γ2)η

hf

(
cos2 θ dψ + sin2 θ dφ

)
dy,

with

Qp = −γ1γ2, η = Q

Q + 2Qp

,

f = r2 + (γ1 + γ2)η
(
γ1 sin2 θ + γ2 cos2 θ

)
,

(2.9)h = 1+ Q

f
.

These geometries are dual to specific microstates of the D1–D5–P system. Thus the
momentaγ1, γ2 take specific values; for these values the geometry(2.8)has no horizon, no close
time-like curves and the only singularities are orbifold singularities (which can be underst
degenerations of smooth geometries). The values ofγ1, γ2 fall into two discrete series. Let

(2.10)a = Q

R

(R is the radius of they circle). The first series is

(2.11)γ1 = −an, γ2 = a

(
n + 1

k

)
, n, k ∈ Z.

The second series corresponds to geometries obtained from the first by S, T dualities
interchange the D1 and P charges. These geometries have

(2.12)γ1 = −a
k

n5(kn + 1)
, γ2 = a

1

n5n
, n, k ∈ Z, n5 ∈ N.

The metric(2.8) can be written in the form(2.2), with the following values forH , F , β, ω

andhmn:

H = h,
F = −Qp

,

2 f
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√
2β = Q

f
(γ1 + γ2)η

(
cos2 θ dψ + sin2 θ dφ

)
,

√
2ω = Q

f

[(
2γ1 − (γ1 + γ2)η

(
1− 2

Qp

f

))
cos2 θ dψ

(2.13)+
(

2γ2 − (γ1 + γ2)η

(
1− 2

Qp

f

))
sin2 θ dφ

]
,

hmn dxm dxn = f

(
dr2

r2 + (γ1 + γ2)2η
+ dθ2

)

+ 1

f

[[
r4 + r2(γ1 + γ2)η

(
2γ1 − (γ1 − γ2)cos2 θ

)

+ (γ1 + γ2)
2γ 2

1 η2 sin2 θ
]
cos2 θ dψ2

+ [
r4 + r2(γ1 + γ2)η

(
2γ2 + (γ1 − γ2)sin2 θ

)
+ (γ1 + γ2)

2γ 2
2 η2 cos2 θ

]
sin2 θ dφ2

(2.14)− 2γ1γ2(γ1 + γ2)
2η2 sin2 θ cos2 θ dψ dφ

]
.

2.3. The base metric in Gibbons–Hawking form

Since the geometry(2.8) satisfies the equations of motion, the base metrichmn dxm dxn

(Eq. (2.14)) should turn out to be hyper-Kähler. In fact this base metric is more special—
two commuting isometries corresponding to translations alongφ andψ . Then, according to a
theorem of[13], at least one linear combination of the two isometries is tri-holomorphic
commutes with the 3 complex structures of the hyper-Kähler space) andhmn dxm dxn should be
writable in Gibbons–Hawking form

(2.15)hmn dxm dxn = H−1
2 (dτ + χ dφ̃)2 + H2 ds2

3.

Hereτ andφ̃ are linear combinations ofφ andψ , ds2
3 is the flat metric onR3. H2 is a function

on R
3 harmonic in the metricds2

3 andχ dφ̃ is a 1-form onR3 that satisfies

(2.16)dH2 = �3d(χ dφ̃)

(�3 is the Hodge dual with respect to the metricds2
3).

We can cast(2.14)in the form(2.15)if we choose

(2.17)τ = ψ − φ, φ̃ = ψ + φ.

Then one finds, starting from(2.14),

(2.18)H2 = 4f

(r2 + (γ1 + γ2)2η cos2 θ)(r2 + (γ1 + γ2)2η sin2 θ)
,

(2.19)

χ = γ1

γ1 + γ2

r2 cos2θ + (γ1 + γ2)
2η cos2 θ

r2 + (γ1 + γ2)2η cos2 θ
+ γ2

γ1 + γ2

r2 cos2θ − (γ1 + γ2)
2η sin2 θ

r2 + (γ1 + γ2)2η sin2 θ
,
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ds2
3 = (r2 + (γ1 + γ2)

2η cos2 θ)(r2 + (γ1 + γ2)
2η sin2 θ)

4

(
dr2

r2 + (γ1 + γ2)2η
+ dθ2

)

(2.20)+ r2(r2 + (γ1 + γ2)
2η)

4
sin2 θ cos2 θ dφ̃2.

The metricds2
3 can be brought to the manifestly flat form

(2.21)ds2
3 = dr̃2 + r̃2 dθ̃2 + r̃2 sin2 θ̃ dφ̃2

by the change of coordinates

(2.22)r̃ = r2 + (γ1 + γ2)
2η sin2 θ

4
,

(2.23)r̃ cos2
θ̃

2
= r2

4
cos2 θ.

It is helpful to note several algebraic relations following from this coordinate change. We

(2.24)r̃ sin2 θ̃

2
= r2 + (γ1 + γ2)

2η

4
sin2 θ.

Defining the vector

(2.25)�c ≡ (0,0, c), c ≡
(

γ1 + γ2

2

)2

η,

we get

(2.26)r̃c ≡ |x̃ + �c| = r2 + (γ1 + γ2)
2η cos2 θ

4
.

Then

(r̃ + r̃c − c)(r̃ + r̃c + c)

2r̃
= r̃ + r̃c + c cosθ̃ ,

(2.27)cosθ̃ (r̃ + r̃c) + c = r̃c − r̃

c
(r̃ + r̃c + c cosθ̃ ),

(2.28)f = 4
r̃γ1 + r̃cγ2

γ1 + γ2
, cos2θ = r̃c − r̃

c
.

Using the coordinates̃r andθ̃ the Gibbons–Hawking potentialH2 and the magnetic potenti
χ become

H2 = 1

γ1 + γ2

(
γ2

r̃
+ γ1

r̃c

)
,

(2.29)χ = γ2

γ1 + γ2
cosθ̃ + γ1

γ1 + γ2

r̃ cosθ̃ + c

r̃c
.

In this formH2 is explicitly harmonic.
It was shown in[8] that the 6D metric over a Gibbons–Hawking base can be expressed th

a set of harmonic functionsHi (i = 1, . . . ,6) on ds2
3. In Appendix A we find these harmoni

functionsHi for our geometries.
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3.1. The ‘pseudo-hyper-Kähler’ geometry of the base

The field equations for supersymmetric solutions require the base to be a 4D hyper-
manifold. A conventional hyper-Kähler manifold has signature(4,0); i.e., (++++). We can
get a similar geometry with signature(0,4) by simply reversing the sign of the 4D metric. B
consider Eq.(2.29)for H2. From(2.11), (2.12)we see thatγ1 andγ2 have opposite signs. Th
means thatH2 has opposite signs nearr̃ , r̃c. For |γ2| > |γ1| we find that the change of sig
happens over a 2D surface in the flat spaceds2

3 in (2.15); this surface is topologically aS2 which
surrounds the point�c = (0,0, c).2 For |γ1| > |γ2| the S2 surrounds the origin(0,0,0). From
(2.15) we see that the base metrichmn dxm dxn has signature(4,0) if we look at the region
outside thisS2 and signature(0,4) inside. Since this is not the nature of a traditional hyp
Kähler manifold we call the base ‘pseudo-hyper-Kähler’.

From the form(2.28)of f we see that

(3.1)H2 = f

4r̃ r̃c
,

so thatH2 changes sign whenf passes through zero. Looking at the complete metric(2.2)and
recalling that

(3.2)H = h = 1+ Q

f
,

we see that the 6D metric does not change signature;H changes sign at the same place that
base metric changes sign.3 This is of course expected since the 6D geometry has signature(5,1)

everywhere.
The conditionf = 0 will generically give a 5D surface in 6D. The place where the base m

changes sign is the intersection of the surfacef = 0 with the base. In the following we will ofte
describe thef = 0 surface by giving the 4D section obtained by restrictingf = 0 to constantt .

In the 2-charge D1–D5 geometries the surfacef = 0 degenerates to a closed curveS1. This
curve can be regarded as the center of a ‘KK-monopole tube’ (i.e., a KK monopole×S1) [14],
and different shapes of theS1 give the set of different 2-charge geometries[2]. It thus appears
interesting to investigate thef = 0 surface in more detail for the 3-charge case, which we
below.

3.2. Topology of the surface f = 0

We have

(3.3)f = r2 + (γ1 + γ2)η
(
γ1 sin2 θ + γ2 cos2 θ

)
.

For generic values ofγ1 andγ2, the equationf = 0 defines a hypersurface with no boundary.
are interested in the possible significance of this surface in terms of quantities in the dua
so we take the limitR � √

Q which gives a large AdS type region and hence allows us to ex

2 This is easy to see from the electrostatic analogy where we have chargesγ2, γ1 placed at̃r , r̃c .
3 It was shown in[5,6] thatQ + f > 0 everywhere.
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the dual of the CFT in the near horizon limitr � √
Q [15].4 We see that in this limit

(3.4)Qp � Q, η → 1.

3.2.1. The geometries (2.11)
Consider first the family(2.11). In this near horizon limit of(2.8) the change of variables

ρ = k
r

a
, t̂ = 1

k

t

R
, ŷ = 1

k

y

R
,

ψ̂ = ψ − γ1

a

t

R
− γ2

a

y

R
= ψ + n

t

R
−

(
n + 1

k

)
y

R
,

(3.5)φ̂ = ψ − γ2

a

t

R
− γ1

a

y

R
= φ −

(
n + 1

k

)
t

R
+ n

y

R
,

gives the metric

(3.6)
ds2

n.h.

Q
= −(

ρ2 + 1
)
dt̂2 + dρ2

ρ2 + 1
+ ρ2 dŷ2 + dθ2 + cos2 θ dψ̂2 + sin2 θ dφ̂2,

which is locally but not globally equivalent toAdS3 × S3. Indeed, the change of variables(3.5)
induces the following identifications on̂y, ψ̂ andφ̂:

(3.7)

(
ŷ

R
, ψ̂, φ̂

)
∼

(
ŷ

R
, ψ̂, φ̂

)
+ 2πm

(
1

k
,−1

k
,0

)
, m ∈ Z,

and fork > 1 the space(3.6) is aZk orbifold of AdS3 × S3.
Consider now the hypersurfacef = 0 in this space. The topology of the surface is differen

the two cases: (i)n > 0, which givesγ2 > 0, γ1 < 0, (ii) n < 0, which givesγ2 < 0 andγ1 > 0.
(i) The casen > 0. Solving the equationf = 0 for r in terms ofθ , one sees that in the(r, θ)

plane the surface is simply an interval

(3.8)θ ∈ In>0 = [θ̄ , π/2],
where

(3.9)θ̄ = tan−1
(

−γ2

γ1

)1/2

= tan−1
(

kn + 1

kn

)1/2

corresponds tor = 0. Over this interval one has the three orthogonal directionsŷ, ψ̂ andφ̂. The
length of the circleφ̂ never vanishes over the interval(3.8) and thus it just gives an overallS1

factor. The cycleŷ shrinks at one end of the interval (r = 0) andψ̂ shrinks at the other en
(θ = π/2), so that they form, together with the interval itself, a sphereS3.5 The identifications
(3.7)act on this sphere without fixed points since theŷ andψ̂ circles do not shrink at the sam
time. Thus the resulting orbifold space is the (smooth) Lens spaceS3/Zk . We conclude that in
the casen > 0 the hypersurfacef = 0 is topologicallyS1 × (S3/Zk).

4 We are interested only in the topology of this surface, and we do not expect this topology to be altered by con
changes of the metric; in particular, if we change the asymptotically AdS geometry to an asymptotically flat ge
then there will be deformations of this surface but not a change of topology.

5 This follows by comparison with the metricds2 = dθ2 + cos2 θ dψ2 + sin2 θ dφ2 which givesS3 for 0 < θ < π
2 ,

0 < ψ < 2π , 0< φ < 2π . We easily check that the surface is smooth at the ends of the interval(3.8)by inspection of the
defining equationf = 0.
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(ii) The casen < 0. The interval in the(r, θ) plane is

(3.10)θ ∈ In<0 = [0, θ̄ ].
This time theψ̂ circle remains of nonzero size everywhere and provides anS1 factor. At θ = 0
it is the φ̂ circle that shrinks, and atθ = θ̄ the ŷ circle shrinks. We thus getS1 × S3, with theS1

spanned bŷψ and theS3 made up bŷy, φ̂ and the intervalIn<0. This surface is to be divided b
the orbifold action(3.7)which this time acts on both theS1 and theS3. Noting that theψ̂ circle
does not shrink anywhere we see that the orbifold action has no fixed points, and the re
hypersurface is a smooth orbifold(S1 × S3)/Zk .

3.2.2. The geometries (2.12)
A similar analysis can be done for thef = 0 surface for the family of geometries withγ1, γ2

given by(2.12). In the near horizon limit these geometries reduce again to theAdS3 × S3 form
(3.6)after the coordinate transformation

ρ = n5n(kn + 1)
r

a
, t̂ = 1

n5n(kn + 1)

t

R
, ŷ = 1

n5n(kn + 1)

y

R
,

(3.11)ψ̂ = ψ + k

n5(kn + 1)

t

R
− 1

n5n

y

R
, φ̂ = φ − 1

n5n

t

R
+ k

n5(kn + 1)

y

R
.

We see from(3.11)that these coordinates are subject to the identifications

(3.12)

(
ŷ

R
, ψ̂, φ̂

)
∼

(
ŷ

R
, ψ̂, φ̂

)
+ 2πm

(
1

n5n(kn + 1)
,− 1

n5n
,

k

n5(kn + 1)

)
, m ∈ Z.

We thus get aZn5n(kn+1) orbifold group; letω be the generator of this group. We examine
casesn > 0 andn < 0 separately.

(i) The casen > 0. The intersection of the surfacef = 0 with the (r, θ) plane is again the
interval In>0 defined in(3.8). As in the previous case, the circlesŷ and ψ̂ fibered overIn>0
form anS3 and φ̂ gives a finite sizeS1. However, the orbifold groupZn5n(kn+1) now acts si-
multaneously on theS3 and theS1, according to(3.12), and thef = 0 surface is an orbifold
(S3 × S1)/Zn5n(kn+1) with orbifold action given by(3.12).

This orbifold action again has no fixed points. To see this, consider first the place whe
ŷ circle shrinks to zero. To get a fixed point we would need to get a trivial action on the
nonshrinking circlesψ̂ , φ̂. This means that we must take an element of the orbifold groupωs ,
where s

n5n
and ks

n5(kn+1)
are both integers. A little thought then shows that s

n5n(kn+1)
must be

integral as well, so that we get only the trivial element of the orbifold group. A similar ana
shows that there is no fixed point when theψ̂ circle shrinks. Thus there is no fixed point of t
orbifold group and the surfacef = 0 is smooth.

(ii) The casen < 0. As in the previous case, thef = 0 surface is an orbifold(S3 ×
S1)/Zn5n(kn+1), but this time theS3 is made up by the circleŝy and φ̂ fibered over the inter
val In<0 of Eq. (3.10)and theS1 is generated bŷψ . The orbifold action is given by(3.12). An
analysis similar to the one for case (i) shows that there are no fixed points of the orbifold
and the surfacef = 0 is smooth.

4. Regularity of the 3-charge solution

It was found in[5,6] that the metric(2.8) is regular everywhere apart from possible orbifo
singularities. We wish to examine this singularity structure from the point of view of the b
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fiber decomposition(2.2)of the metric; this might help us to understand how to find more gen
bound states using a formalism like[8].

4.1. The geometries (2.11)

We first look at the geometries withγ1, γ2 given by(2.11). We know from[6] that these are
completely smooth spaces fork = 1 while for k > 1 they have an orbifold singularity along a
S1. (Transverse to theS1 this is an ALE type singularity which arise from the collision ofk KK
monopoles[14].)

Let us first start by looking at the base metric. As can be seen from the form of the Gib
Hawking potentialH2 in (2.29), potential singularities of the base can occur at: (i)r̃ = 0 (i.e.,
r = 0 andθ = 0); (ii) r̃c = 0 (i.e.,r = 0 andθ = π/2); (iii) γ2r̃c + γ1r̃ = 0 (i.e.,f = 0). We will
examine cases (i) and (ii) here and return to (iii) in Section4.3below.

4.1.1. The r̃ → 0 limit
We find that the base space metric has in general an orbifold singularity atr̃ = 0. This is seen

as follows. Around the point̃r = 0 define the new coordinatesr ′, θ ′, ψ ′ andφ′ as follows6:

r ′2 = 4
γ2

γ1 + γ2
r̃ = 4(kn + 1)r̃, θ ′ = θ̃

2
,

(4.1)ψ ′ = γ1 + γ2

γ2
ψ = 1

kn + 1
ψ, φ′ = −γ1

γ2
ψ + φ = kn

kn + 1
ψ + φ.

In these coordinates the base metric is

(4.2)hmn dxm dxn ≈ dr ′2 + r ′2 dθ ′2 + r ′2 cos2 θ ′ dψ ′2 + r ′2 sin2 θ ′ dφ′2,

which is the form of the metric for flatR4. However, the new angular coordinatesψ ′ andφ′ are
subject to the identifications

(4.3)(ψ ′, φ′) ∼ (ψ ′, φ′) + 2πn1

(
1

kn + 1
,1− 1

kn + 1

)
+ 2πn2(0,1), n1, n2 ∈ Z,

so that the base metric aroundr̃ = 0 is equivalent to an orbifoldR4/Zkn+1, where the group
Zkn+1 acts on both theψ ′ andφ′ cycles according to the identifications(4.3). Since at̃r = 0 both
these cycles shrink to a point,r̃ = 0 is a fixed point for the orbifold action and the space ha
ALE type singularity.

In the total 6D space, however, there is no singularity atr̃ = 0. To see this, consider th
behavior ofH , F , β andω aroundr̃ = 0:

H ≈ 1+ Q

γ2(γ1 + γ2)η
,

F

2
≈ γ1

(γ1 + γ2)η
,

(4.4)
√

2β ≈ −√
2ω ≈ Q

γ2
dψ ≡ √

2βψ dψ.

6 For definiteness we are assuming here thatn > 0 and thusγ2 > 0 andγ1 < 0. In the casen < 0 the appropriate

definition of r ′2 has a negative sign compared to the definition in(4.1) and the base space has signature(0,4) around
r̃ = 0.
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The 6D metric thus has the form

ds2 ≈
(

1+ k2Q

a2η(kn + 1)

)−1[(−dt2 + dy′2) + kn

η
(dt − dy′)2

]

(4.5)

+
(

1+ k2Q

a2η(kn + 1)

)[
dr ′2 + r ′2 dθ ′2 + r ′2 cos2 θ ′ dψ ′2 + r ′2 sin2 θ ′ dφ′2],

where we have defined

(4.6)
y′

R
= y

R
−

√
2βψ

R
ψ = y

R
− k

kn + 1
ψ.

Note that in these variables thet, y′ subspace is orthogonal to the other four coordinate direct
These variables are subject to the identifications

(4.7)

(
ψ ′, φ′, y′

R

)
∼

(
ψ ′, φ′, y′

R

)
+ 2πn1

(
1

kn + 1
,1− 1

kn + 1
,− k

kn + 1

)
.

The y′ circle does not shrink to a point atr̃ = 0. Sincek andkn + 1 cannot share a commo
factor, we see that there will be a nonzero shift in they′ direction when we move from on
orbifold image of(ψ ′, φ′) to another. ThusZkn+1 does not have fixed points on the total spa
We conclude that the 6-dimensional metric(2.8) is regular around̃r = 0.

4.1.2. The r̃c → 0 limit
We similarly find an orbifold singularity in the base space metric atr̃c = 0, but in this case we

will also encounter an orbifold singularity in the total 6D space ifk > 1. This latter singularity is
just the orbifold singularity found for the total space in[6].

This analysis around̃rc = 0 is connected to the analysis aroundr̃ = 0 by exchangingγ1 with
γ2, ψ with φ, θ with π/2 − θ . At the point r̃c = 0 the base metric is reduced to locally fl
form—but in this case with signature(0,4)—by the change of coordinates

r ′′2 = −4
γ1

γ1 + γ2
r̃c = 4knr̃, θ ′′ = θ̃c

2
,

(4.8)ψ ′′ = ψ − γ2

γ1
φ = ψ + kn + 1

kn
φ, φ′′ = γ1 + γ2

γ1
φ = − 1

kn
φ,

whereθ̃c is the polar coordinate around the pointr̃c = 0:

(4.9)cosθ̃c = r̃ cosθ̃ + c

r̃c
.

The periodic identifications on theψ ′′ andφ′′ coordinates

(4.10)(ψ ′′, φ′′) ∼ (ψ ′′, φ′′) + 2πn1(1,0) + 2πn2

(
1+ 1

kn
,− 1

kn

)
, n1, n2 ∈ Z,

give the orbifold groupZkn. The group action has a fixed point atr̃c = 0 and the base space h
an ALE singularity at this point.

Let us now look at the total 6D space. Aroundr̃c = 0 we have

H ≈ 1+ Q
,

F ≈ γ2
,

γ1(γ1 + γ2)η 2 (γ1 + γ2)η
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(4.11)
√

2β ≈ −√
2ω ≈ Q

γ1
dφ ≡ √

2βφ dφ,

and thus the metric of the total space is7

ds2 ≈
(

kQ

a2ηn
− 1

)−1[(
dt2 − dy′′2) + kn + 1

η
(dt − dy′′)2

]

(4.12)+
(

kQ

a2ηn
− 1

)[
dr ′′2 + r ′′2 dθ ′′2 + r ′′2 cos2 θ ′′ dψ ′′2 + r ′′2 sin2 θ ′′ dφ′′2],

where

(4.13)
y′′

R
= y

R
−

√
2βφ

R
φ = y

R
+ 1

n
φ.

Thus, the 6-dimensional space defined by the metric(4.12)is the quotient of a smooth space
theZkn group that identifies the points

(4.14)

(
ψ ′′, φ′′, y′′

R

)
∼

(
ψ ′′, φ′′, y′′

R

)
+ 2πn2

(
1+ 1

kn
,− 1

kn
,

1

n

)
.

Let ω be the generator of this orbifold group. The elementωn acts trivially ony′′. The fixed point
group is thusZk , and we have an orbifold singularity in the 6D space of orderk if k > 1.

4.2. The geometries (2.12)

We can do a similar analysis for the geometries withγ1, γ2 given by(2.12). We will again find
that there are orbifold singularities in the base metric at bothr̃ = 0 andr̃c = 0 (in fact, the orbifold
groups are the same as those for the geometries(2.11)). But the full 6D metric also has orbifol
singularities at each of these locations, while the class(2.11)had an orbifold singularities only a
r̃c = 0. These singularities of the full 6D metric are of course just the same ones found d
in [6], but here we are interested in seeing how they arise from the base× fiber decomposition
of the metric.

Consider first the locatioñr = 0. We insert the values ofγ1, γ2 given in(2.12)into the expres
sions(4.1), (4.4), and find the following form of the 6D metric nearr̃ = 0:

ds2 ≈
(

1+ n2n2
5(kn + 1)Q

a2η

)−1[(−dt2 + dy′2) + kn

η
(dt − dy′)2

]

(4.15)

+
(

1+ n2n2
5(kn + 1)Q

a2η

)[
dr ′2 + r ′2 dθ ′2 + r ′2 cos2 θ ′ dψ ′2 + r ′2 sin2 θ ′ dφ′2].

The variables here are now defined as

r ′2 = 4(kn + 1)r̃, θ ′ = θ̃

2
,

(4.16)ψ ′ = 1

kn + 1
ψ, φ′ = kn

kn + 1
ψ + φ,

y′

R
= y

R
− n5nψ,

7 Note that kQ

a2ηn
− 1 = 1

na2 [kQ + na2(2kn + 1)], which is positive since we are working withn > 0. The signature

of the total space is thus everywhere(5,1).
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and are thus subject to the identifications

(4.17)

(
ψ ′, φ′, y′

R

)
∼

(
ψ ′, φ′, y′

R

)
+ 2πn1

(
1

kn + 1
,1− 1

kn + 1
,−n5n

)
.

If we look at just the coordinatesψ ′, φ′ which lie in the base metric, then since both these cir
shrink to zero at̃r = 0, we find an orbifold singularityZkn+1. This is the same singularity that w
found for the base when looking at the family(2.11).8 Sincey′ shifts by an integer multiple o
2π under this orbifold action, the full 6D space also has an orbifold singularityZkn+1 at r̃ = 0.

Let us now examine the singularities atr̃c = 0. From(4.8), (4.11), we find that the metric
(2.12)behave as

ds2 ≈
(

nn2
5(kn + 1)2Q

a2kη
− 1

)−1[(
dt2 − dy′′2) + kn + 1

η
(dt − dy′′)2

]

+
(

nn2
5(kn + 1)2Q

a2kη
− 1

)

(4.18)× [
dr ′′2 + r ′′2 dθ ′′2 + r ′′2 cos2 θ ′′ dψ ′′2 + r ′′2 sin2 θ ′′ dφ′′2],

where

r ′′2 = 4knr̃, θ ′′ = θ̃c

2
,

(4.19)ψ ′′ = ψ + kn + 1

kn
φ, φ′′ = − 1

kn
φ,

y′′

R
= y

R
+ n5(kn + 1)

k
φ.

These coordinates are subject to the identifications

(4.20)

(
ψ ′′, φ′′, y′′

R

)
∼

(
ψ ′′, φ′′, y′′

R

)
+ 2πn2

(
1+ 1

kn
,− 1

kn
,
n5(kn + 1)

k

)
.

The base metric has an orbifold singularityZkn since theψ ′′, φ′′ circles shrink at̃rc = 0. They′′
coordinate shifts under the orbifold action however, and they′′ circle does not shrink here. Le
ω be the generator of the orbifold action(4.20). If n5, k share no common factor then points
the full 6D metric are left invariant byωk , and we find an orbifold singularityZn. (There is, of
course, no singularity ifn = 1.) If n5 andk share a common factorm theny′′ is left invariant

underω
k
m , and we have an orbifold singularityZnm.

4.3. The f → 0 limit

We have observed that the Gibbons–Hawking base space is such that at the intersect
the hypersurfacef = 0 the Gibbons–Hawking potentialH2 vanishes and the base metric h
a severe singularity: its signature changes from(4,0) to (0,4). From the analysis in[5,6] we
know that the 6D metric(2.8) has no singularity atf = 0, so singularities of the base mu
cancel contributions from the fiber in some way to make the total space smooth. We stu
cancellation of the leading order terms in some detail, since we expect that there will

8 The definitionsψ ′, φ′ in (4.1) involve theratios of theγi , and these ratios are the same for the families(2.11) and
(2.12); thus the singularities of the base will turn out to be the same in the two cases.
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analogue of the surfacef = 0 for more general 3-charge geometries, and the fiber and
should to be such that the singularities cancel.

Note thatH , F andβ have simple poles atf = 0, ω has a double pole proportional toQp,
while H2 vanishes linearly:

H → Q

f
,

F

2
= −Qp

f
,

√
2β = Q

f
(γ1 + γ2)η

(
cos2 θ dψ + sin2 θ dφ

)
,

√
2ω → 2QQp

f 2
(γ1 + γ2)η

(
cos2 θ dψ + sin2 θ dφ

)
,

(4.21)H2 → − γ2

4r̃2γ1
f.

We observe that in this limit the 1-formsβ andω are parallel, being proportional to cos2 θ dψ +
sin2 θ dφ. The part of the base metric which diverges is also parallel to this form, a fact w
can be seen as follows. Asf → 0,

(4.22)
r̃

r̃c
→ −γ2

γ1
, χ → − (γ1 + γ2)γ2η

4r̃
, cos2θ → − 4r̃

(γ1 + γ2)γ2η
,

and thus

(4.23)cos2 θ dψ + sin2 θ dφ = dφ̃ + cos2θ dτ

2
→ − 2r̃

(γ1 + γ2)γ2η
(dτ + χ dφ̃),

and we note that the part(dτ +χ dφ̃)2 of the base metric is the one with the divergent coeffici
We rewrite(4.21)as

√
2β → −2Qr̃

γ2f
(dτ + χ dφ̃) ≡ √

2β0(dτ + χ dφ̃),

(4.24)
√

2ω → −4QQpr̃

γ2f 2
(dτ + χ dφ̃) ≡ √

2ω0(dτ + χ dφ̃).

We can now substitute the above expressions into(2.2) and collect the coefficients of th
leading divergence asf → 0. We get

(4.25)ds2
6D →

[
−H−1

√
2β0

(√
2ω0 + F

2

√
2β0

)
+ HH−1

2

]
(dτ + χ dφ̃)2.

While each term in the above expression diverges as∼1/f 2, we find using the above limitin
forms of the coefficient functions that the coefficient of 1/f 2 cancels. Note that this cancellatio
occurs for generic values ofγ1 andγ2.

Solutions with Gibbons–Hawking base can be written in terms of harmonic functionsHi on
ds2

3 [8] (theHi for our bound states are given inAppendix A). If we try to make new geometrie
by superposing the harmonic functions found for bound states then we do not in genera
cancellation of this 1/f 2 singularity. Thus, we cannot easily make new bound state geom
by exploiting the linearity of the space of harmonic functions.
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5. Discussion

It is interesting that supersymmetric solutions in 6D (with translation symmetry alongt, y)
can be written as a hyper-Kähler base times a(t, y) fiber. Further, the equations of motion allo
the coefficient functions in this decomposition to be expressed in terms of a set of har
functions[8,9].

Large classes of classical 3-charge extremal solutions may be written down using su
malisms[9–11], but to address the questions relevant to black holes we need to find the so
that correspond to actualbound states of the D1, D5, P charges. A generic choice of harm
functions would not give a bound state; we can already see this from the 2-charge D1–D
where we can superpose harmonic functions to make nonbound states from bound st
particular (as noted inAppendix A) superposing harmonic functions to create new 3-ch
geometries gives solutions that have pathologies and are not likely to be bound states.

To gain some insight into the nature of the bound state geometries we have in this
expressed the geometries of[5,6] in the ‘base× fiber’ form. These geometries are known
represent bound states since they were obtained by applying exact symmetries (spect
and S, T dualities) to 2-charge bound state geometries. (These 2-charge geometries in tu
known to be bound states because they were generated by S, T dualities applied to
fundamental string carrying vibrations[2].)

From this analysis we observed that the base is not hyper-Kähler but ‘pseudo-hyperk
the signature changes from(4,0) to (0,4) across a hypersurface in the base. This hypersur
is the intersection of the base with the surfacef = 0 defined in the full 6D space. In the 2-char
case the surfacef = 0 (when restricted tot = const) degenerates to a simple closed curveS1, and
different shapes of this curve map out the different microstates[2]. It is thus interesting to invest
gate thef = 0 surface in the 3-charge case as well. We found that in the 3-charge case thef = 0
surface (again restricted tot = const) wasS1×S3 divided by an orbifold group. This group acte
without fixed points, so thef = 0 surface was smooth. Roughly speaking, theS1 is the sameS1

as in the 2-charge case, and theS3 collapses to a point when the momentum charge vanish
is possible that different shapes of thef = 0 surface give the different 3-charge microstates,
as different shapes of thef = 0 curve in the 2-charge case described the microstates.

It is interesting to compute the area of thef = 0 hypersurface (at fixedt ). For the family
(2.11)we find

A = 4π2(2πR)

√
kn + 1− 1

2kn + 1

√
Q1Q5Qp

(we have replacedQ2 by Q1Q5 to achieve a form more symmetric between the charges). D
ing by the 6D Newton constant we get

(5.1)
A

G(6)
∼

√
Q1Q5Qp

G(5)
,

whereG(5) = G(6)/(2πR) is the 5D Newton constant obtained upon reduction alongy. The
above relation is reminiscent of the entropy relation for the black hole in 5D, though we d
have any horizon in the geometry. It will be interesting to see if a surface analogous tof = 0 with
such an area exists for generic 3-charge microstates, and to relate this surface to the s
description of bound states[16–20].

To gain further insight into the base× fiber form, we analyzed the singularities occurri
in the base metric. The base is in our case a Gibbons–Hawking geometry, with the ha
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function having two centers. The full 6D geometry is known to have orbifold singularities e
in special cases. In the base× fiber decomposition we find that there are orbifold singularitie
the base at the two centers of the harmonic function. We saw explicitly how putting togeth
base with the fiber generates the appropriate orbifold singularities for the full 6D metric.
could understand the general singularity structure of the base and the regularity conditions
on the full 6D metric then one might be able to extract the D1–D5–P bound state geometr
of the general family of supersymmetric solutions.
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Appendix A. Harmonic functions for the 3-charge metric

In [8] an interesting observation was made: when the base metric is of Gibbons–Ha
type, as turns out to be the case for our 3-charge metric(2.8), one can rewrite the quantitiesH ,
F , β, ω appearing in(2.13)as some combinations of harmonic functions on flatR

3. Conversely,
any choice of these harmonic functions generates a solution that will satisfy the equat
motion(2.4)–(2.7).

In this appendix, we will derive the harmonic functions corresponding to the 3-charge m
(2.13).

Let us introduce a convenient basis of 1-forms

(A.1)σ ≡ dτ + χ dφ̃, dα̃i ≡ {dr̃, dθ̃ , dφ̃}
in terms of which the� operation reads (only the components which are used in the follo
computation are written down)

�(dr̃ σ ) = −H2r̃
2 sinθ̃ dθ̃ dφ̃, �(dθ̃ σ ) = H2 sinθ̃ dr̃ dφ̃,

(A.2)�(dr̃ dφ̃) = H−1
2 sin−1 θ̃ dθ̃ σ, �(dθ̃ dφ̃) = −H−1

2 r−2 sin−1 θ̃ dr̃ σ.

Let us expand the 1-formsβ andω and the self-dual 2-formG+ in this basis9:

(A.3)β = β0σ + βi dα̃i, ω = ω0σ + ωi dα̃i,

(A.4)G+ = Ci dα̃i σ − εk
ij

2
CkH2 dα̃i dα̃j ,

where we used self-duality ofG+.
As shown in[8], the equation of motion(2.4) implies

(A.5)β0 = H−1
2 H3, �3d

(
βi dα̃i

) = −dH3

with H3 harmonic onR3. For the 3-charge metric(2.8)we have

(A.6)
√

2β0 = Q(γ1 + γ2)η

2

cos2θ

f
= Q

2

r̃c − r̃

γ1r̃ + γ2r̃c
,

9 The 3-dimensional indicesi, j , k are raised and lowered with the 3-dimensional flat metricg3 defined in(2.21), and

ε ˜ ˜ = √
g3 = r̃2 sinθ̃ .
r̃θφ
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i-
from which we find

(A.7)
√

2H3 = Q

2(γ1 + γ2)

(
1

r̃
− 1

r̃c

)
.

The closure ofG+, Eq.(2.5), implies

(A.8)Ci = ∂i

(
H−1

2 H4
)
,

with H4 harmonic onR3. The value ofG+ for the metric(2.8)can be computed from the defin
tion (2.3)and from(2.13). The result forCi , derived with the help of MATHEMATICA , is

√
2Cr̃ = (γ1 + γ2)

3γ1γ2η

16

4r̃ cosθ̃ + (γ1 + γ2)
2η

r̃c(γ1r̃ + γ2r̃c)2
,

√
2Cθ̃ = (γ1 + γ2)

3γ1γ2η

4

r̃2 sinθ̃

r̃c(γ1r̃ + γ2r̃c)2
,

(A.9)
√

2Cφ̃ = 0.

From this we see that

(A.10)
√

2Ci = ∂i

[
γ1 + γ2

2

γ1r̃ − γ2r̃c

γ1r̃ + γ2r̃c

]
,

and thus

(A.11)
√

2H4 = 1

2

(
γ1

r̃c
− γ2

r̃

)
+ const· H2.

The value of the constant in the equation above can be chosen in such a way thatH4 vanishes in
the two charge limit (γ1γ2 = 0):

(A.12)const= γ2 − γ1

2
.

With this choice we get

(A.13)
√

2H4 = γ1γ2

γ1 + γ2

(
1

r̃c
− 1

r̃

)
.

The remaining equations of motion(2.6) and (2.7)imply

(A.14)H = H1 + H−1
2 H3H4,

(A.15)F = −H5 − H−1
2 H 2

4 ,

where againH1 andH5 are harmonic onR3. The values for the our 3-charge metrics are

(A.16)H = 1+ Q

4

γ1 + γ2

γ1r̃ + γ2r̃c
�⇒ H1 = 1+ Q

4(γ1 + γ2)

(
γ1

r̃
+ γ2

r̃c

)
,

(A.17)
F

2
= γ1γ2

4

γ1 + γ2

γ1r̃ + γ2r̃c
�⇒ H5 = − γ1γ2

2(γ1 + γ2)

(
γ1

r̃
+ γ2

r̃c

)
.

Finally, from the definition(2.3)of G+ we find that

ω0 = H6 + H−2
2 H3H

2
4 + H−1

2 H1H4 + 1
H−1

2 H3H5,

2
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(A.18)

�3d
(
ωi dα̃i

) = H2 dω0 − ω0 dH2 − 2(H1H2 + H3H4) d

[
H4

H2

]
− (

H 2
4 + H2H5

)
d

[
H3

H2

]
,

whereH6 is yet another harmonic function. The metric(2.8)has

(A.19)
√

2ω0 = Q

8

γ 2
1 − γ 2

2 + 4(r̃c−r̃)
η

− 4(r̃c − r̃)
(
1+ γ1γ2(γ1+γ2)

2(γ1r̃+γ2r̃c)

)
γ1r̃ + γ2r̃c

,

and thus

(A.20)
√

2H6 = Q

8(γ1 + γ2)

(
γ 2

1

r̃
− γ 2

2

r̃c

)
.

We thus explicitly identify the six harmonic functionsHi (i = 1, . . . ,6) that describe 3-thre
charge solutions(2.8). Any choice of harmonic functions gives a solution to the equation
motion (2.4)–(2.7), but generic solutions constructed this way will not be true bound stat
the 3-charge system. In particular, if we superpose the harmonic functionsHi corresponding to
different values of the parametersγ1, γ2 to generate new geometries then we find pathologie
thef = 0 surface for instance, which we would not expect for an actual 3-charge bound s
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