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Abstract

Supersymmetric solutions of 6D supergravity (with two translation symmetries) can be written as a hyper-
Kahler base times a 2D fiber. The subset of these solutions which correspond to true bound states of D1-D5—
P charges give microstates of the 3-charge extremal black hole. To understand the characteristics shared by
the bound states we decompose known bound state geometries into base—fiber form. The axial symmetry of
the solutions make the base Gibbons—Hawking. We find the base to be actually ‘pseudo-hyper-Kahler’: The
signature changes from, 0) to (0, 4) across a hypersurface. 2-charge D1-D5 geometries are characterized
by a ‘central curve'sl; the analogue for 3-charge appears to be a hypersurface that for our metrics is an
orbifold of s x $3.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

The black hole information puzz[&] suggests that we lack a key factor in our understanding
of large dense collections of matter. Some computations in string theory suggest that the tradi-
tional picture of a black hole as ‘empty space with a central singularity’ might be incorrect, and
the degrees of freedom accounting for the black hole entropy are distributed throughout the hole.
The simplest object with entropy is the 2-charge extremal system, which can be realized as a
bound state of D1 and D5 branes. In this case it was found that the microstates are not point-
like but have a certain typical ‘size’. Different microstates have different geometries; none has
a horizon or singularity but if we draw a surface bounding the typical state then thetasga
this surface satisfie% ~ S, whereS = Zﬁnm is the microscopic entropy of the 2-charge
system[2,3].
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We can wonder if a similar ‘swelling up’ would happen for the 3-charge extremal D1-D5—

P states. The microscopic entropy of the systerfinigro = 27 ,/n1nsn,. This time the naive
geometry is a black hole whose horizon area satisfigs= % = Smicro [4]. If the microstates
‘swelled up’ to fill this horizon then there would be no information puzzle—the black hole mi-
crostates would just be large ‘fuzzballs’ that radiated like any other ball of matter. No individual
state would have a horizon; the horizon would only be an effective construct arising upon coarse
graining over microstates.

In [5-7]the geometries for some 3-charge microstates were constructed, and it was found that
these geometries were regular, with no horizon. The ‘throat’ of the 3-charge solution, instead of
ending in a horizon, ended in a ‘cap’, just like the 2-charge geometries. But these geometries
were a small subset of all the states of the 3-charge system, and were also not very generic states;
in particular, they carried a significant amount of rotation.

The generic state is not expected to be well-described by a classical geometry. Even in the 2-
charge case, where the geometries were generated by a vibrating string profile, the string profile
could be taken to be classical only when we take a high occupation number for each harmonic, so
that eigenstates can be replaced by coherent states and a classical configuration achieved. But in
the 2-charge case the classical geometries helped deduce the size of the generic microstate, and
we expect to get significant insight from classical geometries in the 3-charge case as well. The
extremal solutions we seek are BPS and thus the geometries preserve supersymmetry. The D1—
D5-P system is obtained by compactifying B string theoryfg; x S x T4. Dimensionally
reducing onT*, we get supersymmetric solutions in 6D. In the classical limit of large charges
we expect translation invariance along the time directiomsd theS?* directiony [2].

In [8] the general class of supersymmetric 6D supergravity geometries (with these translation
symmetries) was described. All such solutions can be written as a 4-dimensional hyper-Kahler
base with a 2-dimension@, y) fiber over this base. In an interesting set of recent papers, such
formulations have been used to construct large families of 3-charge BPS so[@tid2%

But generic solutions constructed this way include regular ones as well as ones with patholo-
gies (horizons, singularities, closed timelike curves). They include true bound states of D1-D5—P
charges as well as superpositions of such bound states. Unlike the situation with D1-D5, we do
not have as yet a way to isolate the solutions that describe the true bound states of D1-D5-P,
which are the ones that describe the microstates of the 3-charge black hole.

To get some insight into the characteristics of bound states, in this paper we return to the
geometries constructed j&,6]. These are known to describe true bound states, since they were
constructed by starting with 2-charge D1-D5 bound states and doing spectral flow to add the
P charge; a further class was obtained by applying S, T dualities to these geometries so that
we again get bound states. We cast these solutions in the fof8j, aflentifying the base and
the fiber. From the result we can immediately make some observations. A hyper-Kahler metric
is usually Euclidean, with signatuxd, 0). We find that the base for our geometries is actually
‘pseudo-hyper-Kahler’: the signature on the outer regio@j®) but inside a certain boundary
it changes ta0, 4).1

The place where the signature changes is given by the intersection of a sfifaben 6D
with the 4D base. In the 2-charge D1-D5 case fhe 0 condition defined the ‘central curve’
of the KK-monopole tube which characterized the geometry: different shapes of this curve gave
different bound states. This motivates us to studyfthe 0 surface in the 3-charge case as well.

1 The full 6D metric, however, retains signatu#e 1) everywhere.
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We find that this surface (at= const) is an orbifold of§® x S by an orbifold groupZ;; the
group acts without fixed points so thfe= 0 surface is smooth. When the P charge vanishes the
53 collapses to zero and we get thi of the 2-charge D1-D5 system.

The geometries of5,6] are regular everywhere except for possible ALE type singularities
arising from fixed points of an orbifold action. In the above base—fiber split the metric of the base
turns out to have certain orbifold singularities, and we investigate how the fiber at these locations
behaves so as to yield the singularities of the full 6D metric. We end with some conjectures on
the role of thef = 0 surface: since different shapes of tfie= 0 curve described all different
bound states of the 2-charge D1-D5 system, it might be that different shapesfotthesurface
in the 3-charge case characterize all different D1-D5—P bound states.

2. Writing the metrics as base x fiber

Consider Type IIB string theory ois 1 x S x T*. Let the length ofS* be 2r R and the
volume of 7% be V. Wrapns D5 branes ors! x 7% andny D1 branes ors®. In addition, let
there bez,, units of momentum alon§!. We are interested in the geometries created by the BPS
bound states of these charges.

Dimensionally reducing off* we get supersymmetric solutions in 6D. In our solutions we
can choose moduli such that the solution can be represented as a solution of minimal supergravity
in 6D (in particular, the dilaton becomes a constant). Further, we expect that in the classical limit
which we consider the solutions will be translationally invariant in the time directiemd the
51 directiony [2].

2.1. General form of the 6D metrics

It was shown ir{8] that the most general supersymmetric solution to minimal supergravity in
6 dimensions with translation symmetry along

u=t+y, v=t—y (2.1)
can be written as

ds? = —H Y(dv + /28) (du + V2w + g(dv + «/Z?)) + Hhypp dx™ dx". (2.2)

Herex™ (m =1, ..., 4) are coordinates in the noncompact spatial directihand F are func-
tions andg andw are 1-forms on this 4-dimensional spabgg,, dx™ dx™ gives a hyper-Kahler
metric on this 4-dimensional space; we call this the ‘base metric’.
To write the field equations satisfied by these variables, define the self-dual 2-form on the base
dw~+ *xdw

+_ -1 F
g_H( . +2dﬂ), (2.3)

where thex operation is defined with respect to the hyper-Kéhler base metric. Then the equations
of motion are equivalent to the following nonlinear system of equation&ffof’, 8 andw:

dp = xdp, (2.4)
dgt =0, (2.5)
dxdH +dpG+ =0, (2.6)

dxdF +(G*)*=0. 2.7)
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2.2. Writing 3-charge solutionsin the general form

In [5,6] certain solutions of IIB supergravity were constructed carrying 3 cha@gesQs,
0,, and 2 angular momenta (parametrizedjyay y»). When theQ; and Qs charges are set
equal Q1 = Os = Q), and the moduli at infinity chosen appropriately, the dilaton vanishes and
the 3-charge solution reduces to a solution of minimal supergravity. The resulting 6D metric is

ds® = _E(dtz —dy?) + &(dt —dy)*+ hf(% +d92)
h hf re+ (r1+y2)n

20,2 2 20
+h<r2+J/1(V1+7/2)77— Salte hzy;;nco )00529de
20,2 2\ i
0 (rf hz?z)”S'n%)sinzquﬁz

+ h(rz +y2(y1 4 y2)n +

0,1+ y2)%n?
e

- i—?(yl co€ 0 dy + y2sirt 0 dg)(dt — dy)

(cof0 dy +sirP6 dg)’

20 +y2n

P (co 6 dy +sir6 dg) dy, (2.8)
with
_ . 0

Op=—v1v2, 77_7Q+2Qp’

f=r?+ 1+ y2n(y1sirto + y2co0),
0

h=1+ =. 2.9
7 (2.9)

These geometries are dual to specific microstates of the D1-D5-P system. Thus the angular
momentay1, y» take specific values; for these values the geon{@tB) has no horizon, no closed
time-like curves and the only singularities are orbifold singularities (which can be understood as
degenerations of smooth geometries). The valueg of, fall into two discrete series. Let

a= % (2.10)

(R is the radius of the circle). The first series is

1
y1 = —an, yzza(n—i—z), n,keZ. (2.11)

The second series corresponds to geometries obtained from the first by S, T dualities which
interchange the D1 and P charges. These geometries have

k 1
_ =a—, ke, eN. 2.12
an5(kn +1) ¥2 ansn " 5 ( )

The metric(2.8) can be written in the forn(2.2), with the following values forH, F, 8, w
andh,,,:

yi=-—

H=h,
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V2B = g(h + y2)n(cos 6 dyr +sirf 0 de),

S
0 0,
V2w = ?KZM— (7/1+V2)n(1—27)>00529d1ﬂ
+ (2)/2 -+ )/2)17(1 - 2%)) Sin29d¢i|, (2.13)
m n __ er 2
Fimn X dx _f<V2+()/1+J/2)2?7 o )

1
+ ?[[r4 +r2(r1+ y2n(2y1 — (1 — y2) cOS 6)

+ (y1+ v2)?yEn?sinf 0] cos 6 dvr?

+ [+ 2+ v2n(2r2 + (y1 — y2) sir? o)

+ (11 + v2)2¥Zn? cog 0] sirf 0 dp?

— 2y1y2(y1 + v2)*n? SirP 0 coS 0 dyr d¢]. (2.14)

2.3. The base metric in Gibbons—-Hawking form

Since the geometry?2.8) satisfies the equations of motion, the base métyjg dx™ dx"
(Eg. (2.14) should turn out to be hyper-Kéhler. In fact this base metric is more special—it has
two commuting isometries corresponding to translations albragd . Then, according to a
theorem of[13], at least one linear combination of the two isometries is tri-holomorphic (i.e.,
commutes with the 3 complex structures of the hyper-Kahler space),anéx™ dx" should be
writable in Gibbons—Hawking form

Bpn dx™ dx" = Hy *(dt + x d§)* + Hpds3. (2.15)
Heret and¢ are linear combinations @f andy, ds? is the flat metric orR3. H; is a function
onR? harmonic in the metrids3 andy d¢ is a 1-form onR? that satisfies

dHp = x3d(x d§) (2.16)

(x3 is the Hodge dual with respect to the metiir%).
We can casf2.14)in the form(2.15)if we choose

=Y -9, d=v+9. (2.17)
Then one finds, starting froif2.14)
af
Hy = - )
(r2 + (y1+ ¥2)?1 €02 0) (r2 + (y1 + y2)2n SINF )
! r?cos? + (1 +y2)ncos6  y2  r?cos® — (y1+y2)*nsin’e
vi+y2 2+ (y1+y2)?ncodo vty r2+ (y1+y2)2nsito

(2.18)

(2.19)



208 S Giusto, SD. Mathur / Nuclear Physics B 729 (2005) 203-220

g2 PP 1t v)*ncog0)(r? + (1 + y2)*n sin’6) ( dr? 2)
2_

+db
4 r2 4+ (y1+y2)%n

r2(r2 + (y1+ v2)%n)
+ 4

The metricds§ can be brought to the manifestly flat form

Sinf 6 cos 6 d 2. (2.20)

ds5 = di® + 2 d6® + P sir? 0 d? (2.21)
by the change of coordinates

r2 4 (y1+ y2)?n sirfo

F= , 2.22

F : (2:22)

i 2
Fcod — = —cosh. 2.23
2T (2.23)
Itis helpful to note several algebraic relations following from this coordinate change. We have
L0 r? 2y
Feip S TGty G (2.24)
2 4

Defining the vector

¢=(0,0,0¢), CE<V1J2”’2> , (2.25)
we get

2 2
cos 6

Foelisd =t O’”;’z) neese (2.26)
Then

"+ re _C)Er+rc+c) =F+F. +ccosd,

2r
COSHF +7) + ¢ = L (7 4 7o + c cosh), (2.27)
Foa ATy ey e T (2.28)
Y1+ y2 c

Using the coordinatesandd the Gibbons—Hawking potential> and the magnetic potential
x become

1 2
Hy = (4#),
yi+y2\ r re

V2 ~ y1  Fcosd +c
X = — .
yity2 yity2 Te
In this form H> is explicitly harmonic.
It was shown irj8] that the 6D metric over a Gibbons—Hawking base can be expressed through
a set of harmonic function&/; (i =1,...,6) on ds§. In Appendix Awe find these harmonic
functionsH; for our geometries.

(2.29)
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3. Thesurface f =0
3.1. The‘pseudo-hyper-Kéhler’ geometry of the base

The field equations for supersymmetric solutions require the base to be a 4D hyper-Kahler
manifold. A conventional hyper-Kahler manifold has signat@e0); i.e., (++++). We can
get a similar geometry with signatu(®, 4) by simply reversing the sign of the 4D metric. But
consider Eq(2.29)for H,. From(2.11), (2.12we see thajs andy» have opposite signs. This
means thatH, has opposite signs near7.. For |y2| > |y1| we find that the change of sign
happens over a 2D surface in the flat sp@.cjein (2.15) this surface is topologically 82 which
surrounds the poin = (0,0, ¢).2 For |y1] > |y»| the $2 surrounds the origir0, 0, 0). From
(2.15) we see that the base metig,, dx™ dx" has signatur&4, O) if we look at the region
outside thiss? and signaturg0, 4) inside. Since this is not the nature of a traditional hyper-
Kahler manifold we call the base ‘pseudo-hyper-Kahler’.

From the form(2.28)of f we see that

f
Hy=——,
27 Wi,
so thatH, changes sign wheyi passes through zero. Looking at the complete mé#i2) and
recalling that

(3.1)

H=h=1+%, (3.2)

we see that the 6D metric does not change signafdirehanges sign at the same place that the
base metric changes si§his is of course expected since the 6D geometry has signdLie
everywhere.

The conditionf = 0 will generically give a 5D surface in 6D. The place where the base metric
changes sign is the intersection of the surfice 0 with the base. In the following we will often
describe thef = 0 surface by giving the 4D section obtained by restrictfig O to constant.

In the 2-charge D1-D5 geometries the surfgice 0 degenerates to a closed cusse This
curve can be regarded as the center of a ‘KK-monopole tube’ (i.e., a KK monegidie[14],
and different shapes of th¢' give the set of different 2-charge geometiik It thus appears
interesting to investigate thg = 0 surface in more detail for the 3-charge case, which we do
below.

3.2. Topology of the surface f =0

We have

f=r?+ 1+ yan(yisif o + y2coS6). (3.3)

For generic values gf; andy», the equatiory = 0 defines a hypersurface with no boundary. We
are interested in the possible significance of this surface in terms of quantities in the dual CFT,
so we take the limiR > /0O which gives a large AdS type region and hence allows us to extract

2 Thisis easy to see from the electrostatic analogy where we have chargasplaced at, 7.
3 It was shown in5,6] that O + f > O everywhere.
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the dual of the CFT in the near horizon limits /0 [15]. We see that in this limit
Qp L0, n—1 (34)

3.2.1. Thegeometries(2.11)
Consider first the family2.11) In this near horizon limit of2.8) the change of variables

r ~ 11t . 1y

=k_s [:——’ =T
=R kR "TKkR
~ Yot y2y t 1\y
VEV SR T ARV TR (n+k>R’
2 Y2t  y1y 1\t y

_y_rt_ny —¢— “)— 40, 35
=V R WR <n+k>R+nR (3:5)

gives the metric
dsr%.h._ 2 2 dp® 2 522 2 12 4 Sirko dé2
7_—(;) +1)di% + 21T ° d$? + d6® + coS 0 dy? + sirf 0 dg2, (3.6)
0

which is locally but not globally equivaIeAnt 8dSs x $3. Indeed, the change of variabl¢g5s)
induces the following identifications oh y and¢:

WAEY 11
(R,l/f,¢>> (R,w,qS)—i—an(k, k,O), meZ, (3.7
and fork > 1 the spacé€3.6)is aZ; orbifold of AdSz x s3.
Consider now the hypersurfage= 0 in this space. The topology of the surface is different in
the two cases: (i} > 0, which givesy; > 0, y1 < 0, (ii) n < 0, which givesy> < 0 andy1 > 0.
(i) The casen > 0. Solving the equatiorf = 0 for r in terms off, one sees that in the, 6)
plane the surface is simply an interval

0el,-0=10,7/2, (3.8)
where
) 1/2 n + 1\ 12
6 = tan‘1<—2) :tan‘l(ﬁ) (3.9)
V1 kn

corresponds te = 0. Over this interval one has the three orthogonal directigns andé. The
length of the circlep never vanishes over the inter@.8) and thus it just gives an overaft
factor. The cyclej shrinks at one end of the interval £ 0) and+v shrinks at the other end
(6 = 7/2), so that they form, together with the interval itself, a sph&té The identifications
(3.7) act on this sphere without fixed points since thand+ circles do not shrink at the same
time. Thus the resulting orbifold space is the (smooth) Lens s§a¢&;. We conclude that in
the case: > 0 the hypersurfacg = 0 is topologicallys® x (53/Zy).

4 We are interested only in the topology of this surface, and we do not expect this topology to be altered by continuous
changes of the metric; in particular, if we change the asymptotically AdS geometry to an asymptotically flat geometry
then there will be deformations of this surface but not a change of topology.

S This follows by comparison with the metrits? = 492 + co$ 6 dy2 + sir? 6 d¢? which givess3 for 0 <6 < %,
0< v <27,0< ¢ < 2r. We easily check that the surface is smooth at the ends of the in{8r8aby inspection of the
defining equatiory = 0.
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(i) The casen < 0. The interval in ther, 0) plane is
0el,.0=10,0]. (3.10)

This time they circle remains of nonzero size everywhere and provideSlaactor. Atd =0

it is the ¢ circle that shrinks, and &= 6 the y circle shrinks. We thus get* x $3, with the §1
spanned by and theS3 made up byy, ¢ and the interval, -o. This surface is to be divided by

the orbifold action(3.7) which this time acts on both th&! and thes3. Noting that thej circle

does not shrink anywhere we see that the orbifold action has no fixed points, and the resulting
hypersurface is a smooth orbifold? x $3) /7.

3.2.2. The geometries (2.12)

A similar analysis can be done for thfe= 0 surface for the family of geometries with, y»
given by(2.12) In the near horizon limit these geometries reduce again tédSe x $° form
(3.6) after the coordinate transformation

R | LA S S jo— L Y

=nsn(kn -, = —, = =,

P8 a nsnkn + DR nsntkn+ 1) R

n k t 1y N 1 ¢ k y
=) —p — 4= Y 3.11

V=v+ ns(kn +1) R  nsn R 9= nsn R + ns(kn + 1) R ( )

We see from(3.11)that these coordinates are subject to the identifications

o~ Voo 1 1 k
(R v ¢) (R’ v ¢> + 2ﬂm<n5n(kn +1) nsn’ nskn + 1))’ mez. (3.12)

We thus get &,,.,kn+1) Orbifold group; letw be the generator of this group. We examine the
cases: > 0 andn < O separately.

(i) The casen > 0. The intersection of the surfage= 0 with the (r, 0) plane is again the
interval 1,0 defined in(3.8). As in the previous case, the mrcl@sandw fibered overl,,-q
form an $3 and ¢ gives a finite sizeS'. However, the orbifold OroUf g (knt+1) NOW acts sSi-
multaneously on th&? and thesS?, according ta(3.12) and thef = 0 surface is an orbifold
(83 x 81/ Zpen(kn+1) With orbifold action given by(3.12)

This orbifold action again has no fixed points. To see this, consider first the place where the
y circle shrinks to zero. To get a fixed point we would need to get a trivial action on the two
nonshrinking circles/?, #. This means that we must take an element of the orbifold gesiyp
WhereT and m are both integers. A little thought then shows tﬁa’m must be
integral as well, so that we get only the trivial element of the orbifold group. A S|m|Iar analysis
shows that there is no fixed point when tecircle shrinks. Thus there is no fixed point of the
orbifold group and the surfacg = 0 is smooth.

(i) The casen < 0. As in the previous case, thé = 0 surface is an orbifold $3 x
Sl)/Z,,S,,(kn+1), but this time thes® is made up by the circle$ and ¢ fibered over the inter-
val I, of Eq. (3.10)and thesS? is generated by. The orbifold action is given by3.12) An
analysis similar to the one for case (i) shows that there are no fixed points of the orbifold action
and the surfacg = 0 is smooth.

4. Regularity of the 3-charge solution

It was found in[5,6] that the metriq2.8) is regular everywhere apart from possible orbifold
singularities. We wish to examine this singularity structure from the point of view of the base—
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fiber decompositio2.2) of the metric; this might help us to understand how to find more general
bound states using a formalism lig&.

4.1. The geometries (2.11)

We first look at the geometries with, y» given by(2.11) We know from[6] that these are
completely smooth spaces fbr= 1 while for k > 1 they have an orbifold singularity along an
S1. (Transverse to th&! this is an ALE type singularity which arise from the collisionkoKK
monopoleg14].)

Let us first start by looking at the base metric. As can be seen from the form of the Gibbons—
Hawking potentialH> in (2.29), potential singularities of the base can occur atF @ O (i.e.,
r =0 andd = 0); (ii) 7 =0 (i.e.,r =0 andb = /2); (iii) y2r. + y17 =0 (i.e., f = 0). We will
examine cases (i) and (ii) here and return to (iii) in Sectid@dbelow.

4.1.1. The7 — Olimit
We find that the base space metric has in general an orbifold singulafity @t This is seen
as follows. Around the poirit = 0 define the new coordinate§ 6’, v’ and¢’ as follows:

]

F2=4—"2 F_aGkn+1)F, 0 ==,

yi+y2 2

, Vit 1 / % kn
= = N = - - . 4-1
L LA i s L (4.1)
In these coordinates the base metric is

hyn dx™ dx" ~ dr'? + /2 d0'? + r'?coS0' dy'? + ' sir? 0’ dg'?, (4.2)

which is the form of the metric for fldk*. However, the new angular coordinaigsand¢’ are
subject to the identifications

1 1 1
kn+1 kn+1

W)~ W, )+ 27Tn1( ) +27n2(0,1), ni,n2€Z, (4.3)
so that the base metric aroufic= 0 is equivalent to an orbifoléR?/Z,.1, where the group
Zn+1 acts on both the/” and¢’ cycles according to the identificatio 3). Since af = 0 both
these cycles shrink to a poirt= 0 is a fixed point for the orbifold action and the space has an
ALE type singularity.

In the total 6D space, however, there is no singularity at 0. To see this, consider the
behavior ofH, F, 8 andw aroundr = 0:

H~1+ L’ E ~ L,
y2(y1+y2)n 2 (yi+yam
V2B~ — 2w~ ygdw =28y dy. (4.4)
2

6 For definiteness we are assuming here that 0 and thusy» > 0 andy; < 0. In the case: < O the appropriate

definition of '2 has a negative sign compared to the definitiodii) and the base space has signati@et) around
7=0.
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The 6D metric thus has the form

k2Q -1 kn
ds® ~ 1+—) |:—dt2+d/2+—dt—d/2]
s < a?n(kn + 1) ( Y ) n( )

k2 .
+ <1+ ke )[dr/2 +7'2d0'% + 1'% coS 0’ dy'? + r'?sint 6’ dg'?),

a?n(kn + 1)
(4.5)
where we have defined
Yy V2 ﬂw Yy k
R R 1/’_R kn+1w' (4.6)

Note that in these variables they’ subspace is orthogonal to the other four coordinate directions.
These variables are subject to the identifications

!/ !/
VAR VAR 1 1 k
N P, = 2 ,1- ,— . 4.7
<w ¢ R) (‘” ¢ R>+ ””1(kn+1 kn +1 kn—i—l) “.7)
The y’ circle does not shrink to a point at= 0. Sincek andkn + 1 cannot share a common
factor, we see that there will be a nonzero shift in fialirection when we move from one

orbifold image of(y/’, ¢") to another. ThuZ,, 1 does not have fixed points on the total space.
We conclude that the 6-dimensional me{{2c8)is regular around = 0.

4.1.2. The#, — 0limit

We similarly find an orbifold singularity in the base space metri€ at 0, but in this case we
will also encounter an orbifold singularity in the total 6D spadei# 1. This latter singularity is
just the orbifold singularity found for the total spacd ).

This analysis aroung. = 0 is connected to the analysis aroung 0 by exchangings with
y2, ¥ with ¢, 6 with 7/2 — 6. At the point7. = 0 the base metric is reduced to locally flat
form—-but in this case with signatur@, 4)—by the change of coordinates

P2= 4V g _gr, o=
Yi+y2 2
kn+1 Y1+ 2 1
v =y - —¢ v+ T ?, P'="—"¢=—"—9¢, (4.8)
n Y1 kn

whered, is the polar coordinate around the poipt= 0:

. Fcosd
COS@C = r_‘i—i_c (49)

re

The periodic identifications on thg” and¢” coordinates

1 1
(W//’ ¢//) - (w//7 ¢/’) + 27n1(1,0) + 27m2<1+ k—, —k—>, ni,no €7, (4.10)
n n
give the orbifold groufy,. The group action has a fixed point/at= 0 and the base space has
an ALE singularity at this point.
Let us now look at the total 6D space. Aroufid= 0 we have

F
H%l—i—L F . V2

i+ vy’ 2 (nityn’
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V28~ — 2w~ ygdq') =284do, (4.11)
1

and thus the metric of the total spacé is

k -1 kn+1
dsz%< 2Q - ) [(dtz—dy"z)wLi(dt—dy”)z]
n

asnn

k .
+ (azfn _ 1) [dr”z—i—r”de”z—i—}’”2C0529//d¢”2+r//23|n29”d¢//2], (4_12)

where

oy \/—,3¢¢
R R o

Thus, the 6-dimensional space defined by the mé#rit2)is the quotient of a smooth space by
theZy, group that identifies the points

(w” i ) (w” i >+27Tn2<1+ R 1) (4.14)
kn kn n

Let w be the generator of this orbifold group. The elemehtcts trivially ony”. The fixed point
group is thusZ,, and we have an orbifold singularity in the 6D space of ofdiérk > 1.

y + 10 (4.13)
n

4.2. The geometries (2.12)

We can do a similar analysis for the geometries withy, given by(2.12) We will again find
that there are orbifold singularities in the base metric at bettd andr. = 0 (in fact, the orbifold
groups are the same as those for the geomdRié4d)). But the full 6D metric also has orbifold
singularities at each of these locations, while the glaskl)had an orbifold singularities only at
7. = 0. These singularities of the full 6D metric are of course just the same ones found directly
in [6], but here we are interested in seeing how they arise from thesbdiber decomposition
of the metric.

Consider first the locatioh= 0. We insert the values of, y» given in(2.12)into the expres-
sions(4.1), (4.4) and find the following form of the 6D metric ne&e= 0:

ds®~ <1+ w) [(—dt2 +dy’2) + k—n(dt — dy’)2:|
n

a’n
2 2
k 1
N <1+ neng( Z+ )Q)[dr’2+r’2d9’2+r’zco§9’dw/2+r’zsin29’d¢>’2].
asn
(4.15)
The variables here are now defined as
12 ~ / é
=4(kn + D)7, 0 =5
1 kn y oy
V=or1h Y=k R-R "V (4.16)

7 Note thata’;% 1= Miz[kQ + na?(2kn + 1)1, which is positive since we are working with> 0. The signature
of the total space is thus everywhee 1).
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and are thus subject to the identifications

<1ﬁ/ ¢’ y_/> ~ <1ﬂ/ ¢’ y—/> + 27mn ( ! 1- 1 —n n) (4.17)
PR PR N+ 1™ kny1 ) ‘
If we look at just the coordinateg’, ¢’ which lie in the base metric, then since both these circles
shrink to zero af = 0, we find an orbifold singularit¥,+1. This is the same singularity that we
found for the base when looking at the fam{B.11)® Sincey’ shifts by an integer multiple of
27 under this orbifold action, the full 6D space also has an orbifold singuldgity; at7 = 0.

Let us now examine the singularities7at= 0. From(4.8), (4.11) we find that the metrics
(2.12)behave as

2 2 -1
kn+1 kn+1
ds? ~ (n—n5( nt D70 1) |:(dt2 —dy"?) + T - dy”)z}
n

a?kn
2 2
kn+1
L (st D70
aZkn
x [dr'"?+1"2d0"% +r"?cos 0" dy"? + r"?sinf 0" dg"?), (4.18)
where
6,
"2 ~ ” c
= 4knr, 0" =—,
r nr 2
kn+1 1 y' 'y nskn+1)
//= ) N:__ ) - = = - @. 419
Vvo=y+ n ¢ ¢ kn¢ R R+ A ¢ ( )
These coordinates are subject to the identifications
"o y” "oon y// 1 1 nstkn+1)
N P, — 2 1+— ——— —). 4.20
(vr0n %)~ (w0 3 ) 2mma(1 11 250 (4.20)

The base metric has an orbifold singulatity, since they”, ¢” circles shrink af. = 0. They”
coordinate shifts under the orbifold action however, andytheircle does not shrink here. Let
o be the generator of the orbifold acti¢h.20) If ns, kK share no common factor then points of
the full 6D metric are left invariant by*, and we find an orbifold singularitg,. (There is, of
course, no singularity it = 1.) If n5 andk share a common factat theny” is left invariant

undera)ﬁ, and we have an orbifold singularigy,,,, .
4.3. The f — 0 limit

We have observed that the Gibbons—Hawking base space is such that at the intersection with
the hypersurfacef = 0 the Gibbons—Hawking potentidf, vanishes and the base metric has
a severe singularity: its signature changes fr@h0) to (0, 4). From the analysis if5,6] we
know that the 6D metri¢2.8) has no singularity aiff = 0, so singularities of the base must
cancel contributions from the fiber in some way to make the total space smooth. We study the
cancellation of the leading order terms in some detail, since we expect that there will be an

8 The definitionsy’, ¢’ in (4.1) involve theratios of the y;, and these ratios are the same for the famile$1) and
(2.12) thus the singularities of the base will turn out to be the same in the two cases.
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analogue of the surfacg = 0 for more general 3-charge geometries, and the fiber and base
should to be such that the singularities cancel.
Note thatH, F and g have simple poles af =0, w has a double pole proportional @,,
while H; vanishes linearly:
H — 2’ E — _&’
f 2 f
V2p = L+ yam(co30ay + it dg),

V2w — 2Qf§ﬂ (1 + y2)n(cofo dy +sirf0dg),

V2

Hy — — .
° 472y,

(4.21)

We observe that in this limit the 1-formsandw are parallel, being proportional to éasdy +
sinf6 d¢. The part of the base metric which diverges is also parallel to this form, a fact which
can be seen as follows. AG— 0,

- 45
T, Oty (4.22)
Fe 4! 47 (y1+v2)yan
and thus
_ dd +cosdd 2F _
coLdy +sirt0de = o+ LA d (dt + x d¢), (4.23)
2 (y1+y2)yan

and we note that the pad + x d$)? of the base metric is the one with the divergent coefficient.
We rewrite(4.21)as

V2B — —%(dr + x d$) = v2Bo(dT + x dP),
Voo — ‘435‘5” (dT + x d§) = 2wo(dT + x dp). (4.24)

We can now substitute the above expressions (8t8) and collect the coefficients of the
leading divergence ag — 0. We get

dsgp — [—Hlﬁﬁo<f2wo + gﬁﬁo> + HHzl] (dt + x d)>. (4.25)

While each term in the above expression diverges-&sf2, we find using the above limiting
forms of the coefficient functions that the coefficient ¢f # cancels. Note that this cancellation
occurs for generic values @f andys,.

Solutions with Gibbons—Hawking base can be written in terms of harmonic funatipos
ds32, [8] (the H; for our bound states are givenAppendix A). If we try to make new geometries
by superposing the harmonic functions found for bound states then we do not in general get a
cancellation of this Af? singularity. Thus, we cannot easily make new bound state geometries
by exploiting the linearity of the space of harmonic functions.
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5. Discussion

It is interesting that supersymmetric solutions in 6D (with translation symmetry alorg
can be written as a hyper-Kéhler base timés a) fiber. Further, the equations of motion allow
the coefficient functions in this decomposition to be expressed in terms of a set of harmonic
functions[8,9].

Large classes of classical 3-charge extremal solutions may be written down using such for-
malisms[9—11], but to address the questions relevant to black holes we need to find the solutions
that correspond to actubbund states of the D1, D5, P charges. A generic choice of harmonic
functions would not give a bound state; we can already see this from the 2-charge D1-D5 case
where we can superpose harmonic functions to make nonbound states from bound states. In
particular (as noted iMppendix A superposing harmonic functions to create new 3-charge
geometries gives solutions that have pathologies and are not likely to be bound states.

To gain some insight into the nature of the bound state geometries we have in this paper
expressed the geometries [6f6] in the ‘basex fiber form. These geometries are known to
represent bound states since they were obtained by applying exact symmetries (spectral flow
and S, T dualities) to 2-charge bound state geometries. (These 2-charge geometries in turn were
known to be bound states because they were generated by S, T dualities applied to a single
fundamental string carrying vibratiofig].)

From this analysis we observed that the base is not hyper-Kéahler but ‘pseudo-hyperkahler’;
the signature changes fro@, 0) to (0, 4) across a hypersurface in the base. This hypersurface
is the intersection of the base with the surfgce 0 defined in the full 6D space. In the 2-charge
case the surfacg = 0 (when restricted to= const) degenerates to a simple closed csAyand
different shapes of this curve map out the different microsfafe# is thus interesting to investi-
gate thef = 0 surface in the 3-charge case as well. We found that in the 3-charge cg&e-the
surface (again restricted te= const) wass x $2 divided by an orbifold group. This group acted
without fixed points, so th¢' = 0 surface was smooth. Roughly speaking, $hés the sames!
as in the 2-charge case, and #iecollapses to a point when the momentum charge vanishes. It
is possible that different shapes of tfie= 0 surface give the different 3-charge microstates, just
as different shapes of the= 0 curve in the 2-charge case described the microstates.

It is interesting to compute the area of tlfe= 0 hypersurface (at fixed). For the family
(2.11)we find

vk 1-1
A =47T2(271'R)%+1\/ 01050,

(we have replaced? by Q105 to achieve a form more symmetric between the charges). Divid-
ing by the 6D Newton constant we get

A 01050, (5.1)

G© G® ’

whereG® = G©® /(27 R) is the 5D Newton constant obtained upon reduction alpnghe
above relation is reminiscent of the entropy relation for the black hole in 5D, though we do not
have any horizon in the geometry. It will be interesting to see if a surface analoggus fowith
such an area exists for generic 3-charge microstates, and to relate this surface to the supertube
description of bound stat¢$6—20]

To gain further insight into the base fiber form, we analyzed the singularities occurring
in the base metric. The base is in our case a Gibbons—Hawking geometry, with the harmonic
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function having two centers. The full 6D geometry is known to have orbifold singularities except

in special cases. In the basgefiber decomposition we find that there are orbifold singularities in

the base at the two centers of the harmonic function. We saw explicitly how putting together the
base with the fiber generates the appropriate orbifold singularities for the full 6D metric. If one
could understand the general singularity structure of the base and the regularity conditions needed
on the full 6D metric then one might be able to extract the D1-D5-P bound state geometries out
of the general family of supersymmetric solutions.
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Appendix A. Harmonic functionsfor the 3-charge metric

In [8] an interesting observation was made: when the base metric is of Gibbons—Hawking
type, as turns out to be the case for our 3-charge mgr), one can rewrite the quantitiés,
F, B, w appearing irf(2.13)as some combinations of harmonic functions onl#&t Conversely,
any choice of these harmonic functions generates a solution that will satisfy the equations of
motion (2.4)—(2.7)

In this appendix, we will derive the harmonic functions corresponding to the 3-charge metric

(2.13)
Let us introduce a convenient basis of 1-forms
o=dt+xdp,  da' ={dF,db,d¢) (A.1)

in terms of which thex operation reads (only the components which are used in the following
computation are written down)

*(dif o) = —Hor?sind df d g, *(d o) = Hysind di de,

x(dFdp) = Hy'sint6dbo,  x(dfdg)=—Hyr 2sintddro. (A.2)
Let us expand the 1-form$ andw and the self-dual 2-forrg T in this basis:
B = Poo + Bi dd’, w = woo + w; da’, (A.3)
k
‘ € o
Gt=Cida' o — %CkHz da' da’ (A.4)

where we used self-duality ¢f*.
As shown in[8], the equation of motio(2.4) implies

Bo=H,'Hs,  3d(B:dd')=—dHs (A.5)
with Hs harmonic oriR3. For the 3-charge metri@.8)we have

V2B = Q(r1+y2)ncosd _ Q e F
2 f 2 17 + yore

(A.6)

9 The 3-dimensional indices j, k are raised and lowered with the 3-dimensional flat meisidefined in(2.21), and
€355 = /83 =72sind.
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from which we find

0 1 1
2H3=—— (= -2 ). A7
V2Hs 2(V1+Vz)<f Fc> A1)

The closure off+, Eq.(2.5), implies
Ci = 0;(Hy *Ha), (A.8)

with Hz harmonic oriR3. The value ofG* for the metric(2.8) can be computed from the defini-
tion (2.3)and from(2.13) The result forC;, derived with the help of MTHEMATICA, is

3 47 cosh 2
26 = (Y1 + v2)°y1yan 4r + 1+ y2)n

16 Fe(Y1F + yore)?
(r1+v2)%yen  72sind
V2c; = s,
4 re(yar + yare)
v2c; =o. (A.9)
From this we see that
NS :8i[1/1+y2 Vl’:_VZici|’ (A.10)
2 i+ yor.
and thus
1
V2H; = <~— - @> + const Ho. (A.11)
re r

The value of the constant in the equation above can be chosen in such a wHy taatishes in
the two charge limit¢1y> = 0):

const= 2 ; "n (A.12)
With this choice we get
1 1
\/§H4 __ny (7 . :). (A.13)
vitya\re r
The remaining equations of moti@¢®.6) and (2.7)mply
H = Hi+ H, *H3Ha, (A.14)
F=—Hs— Hy*HZ, (A.15)
where agairH; and Hs are harmonic ofR3. The values for the our 3-charge metrics are
Ho142 Mt H1=1+L(§+?), (A.16)
4 yif + yore Ayi+ya\r 7
F
gl L g e (R, 2) (a17)
2 4 yir + yore 20n+y2d\ 7 7

Finally, from the definition(2.3) of G+ we find that

- _ 1
wo = He + Hy 2H3H + Hy *HiHa + >H ' HsHs,
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, H. H,
*3d (w; d&') = Hadwo — wod Ho — 2(H1H> + H3Ha) d[Fﬂ — (HZ + HoHs) d[—3],

H>
(A.18)
where Hg is yet another harmonic function. The metf&8) has
2,24 A=) _px & y1v2(y1+y2)
N o vty ~4(rc Nr)(l"‘ 2()/17—&-)/2}7())’ (A19)
8 Yir + yare
and thus
2 2
J3H :L(@_K_Z)_ A.20
T8\ (A.20)

We thus explicitly identify the six harmonic functio (i =1, ..., 6) that describe 3-three
charge solutiong2.8). Any choice of harmonic functions gives a solution to the equations of
motion (2.4)—(2.7) but generic solutions constructed this way will not be true bound states of
the 3-charge system. In particular, if we superpose the harmonic fundfioogrresponding to
different values of the parameters, v, to generate new geometries then we find pathologies at
the f = 0 surface for instance, which we would not expect for an actual 3-charge bound state.

References

[1] S.W. Hawking, Commun. Math. Phys. 43 (1975) 199.
[2] O. Lunin, S.D. Mathur, Nucl. Phys. B 623 (2002) 342, hep-th/0109154.
[3] O. Lunin, S.D. Mathur, Phys. Rev. Lett. 88 (2002) 211303, hep-th/0202072.
[4] A. Strominger, C. Vafa, Phys. Lett. B 379 (1996) 99, hep-th/9601029.
[5] S. Giusto, S.D. Mathur, A. Saxena, hep-th/0405017.
[6] S. Giusto, S.D. Mathur, A. Saxena, hep-th/0406103.
[7] O. Lunin, hep-th/0404006.
[8] J.B. Gutowski, D. Martelli, H.S. Reall, Class. Quantum Grav. 20 (2003) 5049, hep-th/0306235.
[9] I. Bena, N.P. Warner, hep-th/0408106.
[10] H. Elvang, R. Emparan, D. Mateos, H.S. Reall, hep-th/0407065;
H. Elvang, R. Emparan, D. Mateos, H.S. Reall, hep-th/0408120.
[11] J.P. Gauntlett, J.B. Gutowski, hep-th/0408122.
[12] I. Bena, P. Kraus, hep-th/0408186.
[13] G.W. Gibbons, P.J. Ruback, Commun. Math. Phys. 115 (1988) 267.
[14] O. Lunin, J. Maldacena, L. Maoz, hep-th/0212210.
[15] O. Lunin, S.D. Mathur, A. Saxena, Nucl. Phys. B 655 (2003) 185, hep-th/0211292.
[16] D. Mateos, P.K. Townsend, Phys. Rev. Lett. 87 (2001) 011602, hep-th/0103030;
R. Emparan, D. Mateos, P.K. Townsend, JHEP 0107 (2001) 011, hep-th/0106012.
[17] I. Bena, P. Kraus, hep-th/0402144.
[18] I. Bena, hep-th/0404073.
[19] B.C. Palmer, D. Marolf, hep-th/0403025.
[20] D. Bak, Y. Hyakutake, N. Ohta, Nucl. Phys. B 696 (2004) 251, hep-th/0404104;
D. Bak, Y. Hyakutake, S. Kim, N. Ohta, hep-th/0407253.



	Geometry of D1-D5-P bound states
	Introduction
	Writing the metrics as base x fiber
	General form of the 6D metrics
	Writing 3-charge solutions in the general form
	The base metric in Gibbons-Hawking form

	The surface f=0
	The `pseudo-hyper-Kähler' geometry of the base
	Topology of the surface f=0
	The geometries (2.11)
	The geometries (2.12)


	Regularity of the 3-charge solution
	The geometries (2.11)
	The r->0 limit
	The rc->0 limit

	The geometries (2.12)
	The f->0 limit

	Discussion
	Acknowledgements
	Harmonic functions for the 3-charge metric
	References


