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3-charge geometries and their CFT duals
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Abstract

We consider two families of D1–D5–P states and find their gravity duals. In each case the g
tries are found to ‘cap off’ smoothly nearr = 0; thus there are no horizons or closed timelike curv
These constructions support the general conjecture that the interior of black holes is nontrivia
way up to the horizon.
 2005 Elsevier B.V. All rights reserved.

PACS:11.25.-w; 11.27.+d

1. Introduction

The traditional picture of a black hole has a horizon, a central singularity, and esse
‘empty space’ in between. This picture leads to contradictions with quantum mecha
Hawking radiation leads to a loss of unitarity[1]. More recently a different picture o
the black hole interior has been suggested, where the information of the state of th
is distributed throughout the interior of the horizon, creating a ‘fuzzball’[2]. While the
general state of a Schwarzschild hole is expected to be very nonclassical inside th
zon, we expect that for extremal holes we can find appropriately selected states th
be represented by classical solutions. In[3] it was found that the generic state of the
charge extremal D1–D5 system could be understood by studying classical soluti
supergravity, and in[4–6] classical solutions were constructed for specific families o
charge extremal D1–D5–P states. The traditional picture of the 3-charge extremal
E-mail address:giusto@ge.infn.it(S. Giusto).
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Fig. 1. (a) Naive geometry of 3-charge D1–D5–P; there is a horizon atr = 0 and a singularity past the horizo
(b) Expected geometries for D1–D5–P; the area at the dashed line will giveA

4G
= 2π

√
n1n5np .

pictured inFig. 1(a). But the 3-charge geometries constructed in[5,6] were of the form
Fig. 1(b); the throat ‘caps off’ without any horizon or singularity. (All 2-charge extre
states have a geometry that caps off likeFig. 1(b); the ‘naive geometry’ in this case has
zero area horizon coinciding with the singularity atr = 0.)

In this paper we pursue this program further, by finding further sets of 3-charg
tremal CFT states and their dual geometries. One can write down a large class of 3-
extremal solutions of classical supergravity, and these will in general have pathologie
a basic tenet of our conjecture is that the geometries that are dual to actual micros
the 3-charge CFT will be regular solutions with no horizons, singularities or closed
like curves. The solutions in[5,6] were smooth, and we will find that the solutions we n
construct will also be free of horizons and closed timelike curves (though most will
an orbifold singularity along certain curves). Thus our solutions will be likeFig. 1(b) rather
than 1(a), and will lend support to the general ‘fuzzball’ picture of the black hole inte1

In more detail, we do the following.

(a) In [11,12]a family of D1–D5 geometries was obtained, by taking extremal limit
the general family of rotating 3-charge solutions constructed in[13]. This family is labelled
by a parameter 0< γ � 1. The geometries have no horizons and the only singularity
orbifold singularity along anS1 in the noncompact directions. The corresponding C
duals can be identified[3,11,12]. The orbifold singularity vanishes for the special ca
γ = 1.
If we perform a spectral flow on the left sector of the CFT then from a 2-charge D1
state we get a 3-charge D1–D5–P state. In[6] we found the geometries for the 3-char
states that are related by spectral flow to the 2-charge state withγ = 1. Here we extend
this computation to find the geometries for 3-charge states starting from 2-charge sta
arbitraryγ . It is straightforward to identify the corresponding CFT duals.

(b) Given a D1–D5–P state we can use dualities to interchange any two of its ch
This leads to a new geometry which must also represent a true state of the 3-charge
since these dualities are exact symmetries of the theory. We construct these geo
1 Additional evidence for this picture comes from a study of the nonzero size of supertubes[7–10].
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obtained byS, T dualities. These geometries turn out to have orbifold singularities a
two nonintersectingS1 curves. These geometries and the ones obtained in (a) all fal
a general class that we identify; they are rotating extremal solutions with parameter
that there are no horizons and no closed timelike curves.

(c) It is not immediately obvious what the CFT states corresponding to the geom
in (b) are. To find information about the state, we study the infall of a quantum dow
‘throat’ of this geometry, and study the travel time�tSUGRA for a complete ‘bounce’. I
was found in[3] that this bounce time exactly equalled the time�tCFT for excitations
to travel around the corresponding ‘effective string’ in the CFT. By computing�tSUGRA
for the geometries we find the length of each component of the effective string, an
identify the CFT state.

(d) We observe that the result found in (c) supports the picture of ‘spacetime bit
rived at in[3]: Under duality the number of components of the effective string remain
same, though the total winding number of the effective string changes. We also o
that the travel time in the geometry and in the CFT are related by a redshift factorη which
relates the time coordinate at infinity to the time coordinate in the AdS region (η becomes
unity if the momentum charge P vanishes).

2. D1–D5–P states from spectral flow of D1–D5 states

2.1. The D1–D5 CFT

We take IIB string theory compactified toM4,1×S1×T 4. Lety be the coordinate alon
S1 with

(2.1)0� y < 2πR.

TheT 4 is described by 4 coordinatesz1, z2, z3, z4, and the noncompact space is span
by t, x1, x2, x3, x4. We wrapn1 D1 branes onS1, and n5 D5 branes onS1 × T 4. Let
N = n1n5. The bound state of these branes is described by a(1 + 1)-dimensional sigma
model, with base space(y, t) and target space a deformation of the orbifold(T 4)N/SN (the
symmetric product ofN copies ofT 4). The CFT hasN = 4 supersymmetry, and a modu
space which preserves this supersymmetry. It is conjectured that in this moduli spa
have an ‘orbifold point’ where the target space is just the orbifold(T 4)N/SN [14].

The rotational symmetry of the noncompact directionsx1, . . . , x4 gives a symmetry
so(4) ≈ su(2)L × su(2)R , which is the R symmetry group of the CFT.

The CFT with target space just one copy ofT 4 is described by 4 real bosonsX1,
X2, X3, X4 (which arise from the 4 directionsz1, z2, z3, z4), 4 real left moving fermions
ψ1,ψ2,ψ3,ψ4 and 4 right moving fermions̄ψ1, ψ̄2, ψ̄3, ψ̄4. The central charge isc = 6.
The complete theory with target space(T 4)N/SN hasN copies of thisc = 6 CFT, with
states that are symmetrized between theN copies. The orbifolding also generates ‘twi
sectors, which are created by twist operatorsσk . A detailed construction of the twist op

erators is given in[15,16], but we summarise here the properties that will be relevant to
us.
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The twist operator of orderk links togetherk copies of thec = 6 CFT so that theXi,ψi

act as free fields living on a circle of lengthkL (L is the length of the spatial circle of th
CFT). Let us first discuss the NS sector. The left fermionsψi carry spin1

2 under thesu(2)L

and the right fermions̄ψi carry spin1
2 under thesu(2)R . The ‘charge’ of a state is give

by the quantum numbers(j, j̄ ) = (j3
L, j3

R). Adding a suitable charge to the twist opera
we get a chiral primary

(2.2)σ−−
k : h = j = k − 1

2
, h̄ = j̄ = k − 1

2
.

We can act on this chiral primary withJ+
−1 to get another chiral primary

(2.3)σ+−
k ≡ J+

−1σ
−−
k : h = j = k + 1

2
, h̄ = j̄ = k − 1

2
.

Similarly we also get

(2.4)σ−+
k ≡ J̄+

−1σ
−−
k : h = j = k − 1

2
, h̄ = j̄ = k + 1

2
,

(2.5)σ++
k ≡ J+

−1J̄
+
−1σ

−−
k : h = j = k + 1

2
, h̄ = j̄ = k + 1

2
.

(We can get additional chiral primaries by applying for exampleψ+
− 1

2
(which increaseh

andj by 1
2, but we will not need such states in this paper).)

2.1.1. A subclass of states
In the NS sector we can start with the NS vacuum

(2.6)|0〉NS: h = j = 0, h̄ = j̄ = 0

and act withσ±±
k to generate chiral primaries. Consider the subclass of states

(2.7)
(
σ−−

k

)N
k |0〉NS: h = j = N

k

(k − 1)

2
, h̄ = j̄ = N

k

(k − 1)

2
.

All copies of the CFT are linked into ‘long circles’ which are all of the same lengthkL,
and the spin orientation (given by the choice(−−) for σ ) is also the same for each circl
We therefore expect that the corresponding states exhibit some symmetry; it will tu
that their gravity duals have axial symmetry around two circlesψ,φ. Similarly we have
the states

(2.8)
(
σ+−

k

)N
k |0〉NS: h = j = N

k

(k + 1)

2
, h̄ = j̄ = N

k

(k − 1)

2
,

(2.9)
(
σ−+

k

)N
k |0〉NS: h = j = N

k

(k − 1)

2
, h̄ = j̄ = N

k

(k + 1)

2
,

(2.10)
(
σ++

k

)N
k |0〉NS: h = j = N

k

(k + 1)

2
, h̄ = j̄ = N

k

(k + 1)

2
.
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2.1.2. Spectral flow
The NS sector states can be mapped to R sector states by ‘spectral flow’[17], under

which the conformal dimensions and charges change as

(2.11)h′ = h − αq + α2 c

24
,

(2.12)q ′ = q − α
c

12
.

Settingα = 1 gives the flow from the NS sector to the R sector, and we can see that
this flow chiral primaries of the NS sector (which haveh = q) map to Ramond groun
states withh = c

24.
The field theory on the D1–D5 branes system is in the R sector. This follows

the fact that the branes are solitons of the gravity theory, and the fermions on the
are induced from fermions on the bulk. The latter are periodic around theS1; choosing
antiperiodic boundary conditions would give a nonvanishing vacuum energy and dis
the flat space solution that we have assumed at infinity.

If we setα = 2 in (2.12) then we return to the NS sector, and settingα = 3 brings us
again to the R sector. More generally, the choice

(2.13)α = 2n + 1, n ∈ Z

brings us to the R sector.

2.1.3. The states we consider
Suppose we start with a chiral primary in the NS sector. Perform a spectral flow(2.13)

on the right movers withα = 1; this brings us to an R ground state for the right mov
Perform a spectral flow withα = 2n + 1 on the left movers. This brings us to the R sec
but not in general to an R ground state. The state thus has a momentum charge

(2.14)np = h − h̄.

Applying this procedure to the state(2.7)we get an R sector state

(2.15)
[(

σ−−
k

)N
k |0〉NS

]
αL=2n+1,αR=1 ≡ ∣∣Ψ −−(k, n)

〉
with

(2.16)

h = N

(
n2 + n

k
+ 1

4

)
, j = −N

2

(
2n + 1

k

)
, h̄ = N

4
, j̄ = − N

2k

and

(2.17)np = h − h̄ = Nn

(
n + 1

k

)
.

2.1.4. Explicit representations of the states
Let us construct explicitly the above CFT states. Consider one copy of thec = 6 CFT,
in the R sector. The fermions have modesψi
m. The 4 real fermions can be grouped into 2

complex fermionsψ+,ψ− which form a representation ofsu(2). (ψ+ hasj = 1
2 andψ−
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hasj = −1
2.) The anti-commutation relations are

(2.18)
{(

ψ+)∗
m
,ψ+

p

} = δm+p,0,
{(

ψ−)∗
m
,ψ−

p

} = δm+p,0.

Thesu(2) currents are

J+
m = (

ψ−)∗
m−p

ψ+
p , J−

m = (
ψ+)∗

m−p
ψ−

p ,

(2.19)J 3
m = 1

2

[(
ψ−)∗

m−p
ψ−

p − (
ψ+)∗

m−p
ψ+

p

]
.

In the full theory withn1n5 copies of thec = 6 CFT the currents are the sum of the curre
in the individual copies

(2.20)J a,total
n = (

J a
n

)
1 + · · · + (

J a
n

)
n1n5

.

First consider the state|Ψ −−(k,0)〉 ((2.15)for n = 0). This gives a D1–D5 state wit
momentum charge zero

[(
σ−−

k

)N
k |0〉NS

]
αL=1,αR=1: h = N

4
, j = − N

2k
,

(2.21)h̄ = N

4
, j̄ = − N

2k
, np = 0.

Each set ofk copies of thec = 6 CFT which are joined together byσ−−
k behave like one

copy of thec = 6 CFT but on a circle of lengthkL.

Note.We will call each such set of linked copies acomponent string.

Thus in the presence of a twist operator of orderk we can apply fractional modes o
currents

(2.22)J a
− m

k
, J̄ a

− m
k
.

Since we are in the R sector the fermions have fractional modesψ±
− m

k
. Apart from this

fractionation the situation is identical to the one studied in[6] where we had no twis
(k = 1) and we applied currents to find the states arising after spectral flow. In the p
case the lowest dimension current operator that we can apply to lower charge isJ−

− 2
k

to

(2.21); this is equivalent to applying(ψ−)∗− 1
k

ψ−
− 1

k

. The next operator we can apply isJ−
− 4

k

,

and so on. The orbifold CFT requires that the total momentum on each component st
an integer—we will discuss this issue (and possible exceptions) in more detail in Sec6.
Thus we can apply

(2.23)J−
− 2(k−1)

k

· · ·J−
− 4

k

J−
− 2

k

which adds dimension and charge
(2.24)�h = k − 1, �j = −(k − 1)
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or we can apply

(2.25)J−
−2J

−
− 2(k−1)

k

· · ·J−
− 4

k

J−
− 2

k

which adds dimension and charge

(2.26)�h = k + 1, �j = −k.

To get states with a high symmetry we apply the same set of current operators to allN
k

twist operators in the state. Applying(2.23)we get a state

(2.27)
(∏[

J−
− 2(k−1)

k

· · ·J−
− 4

k

J−
− 2

k

])∣∣Ψ −−(k,0)
〉

where the product runs over theN
k

connected components of the CFT created by the tw
This state has dimensions and charges

h = N

4
+ N

k
(k − 1), j = − N

2k
− N

k
(k − 1),

(2.28)h̄ = N

4
, j̄ = − N

2k

and

(2.29)np = N

k
(k − 1).

Applying (2.25)instead to each of the component strings we get the state

(2.30)
(∏[

J−
−2J

−
− 2(k−1)

k

· · ·J−
− 4

k

J−
− 2

k

])∣∣Ψ −−(k,0)
〉

with dimensions and charges

(2.31)h = N

4
+ N

k
(k + 1), j = − N

2k
− N, h̄ = N

4
, j̄ = − N

2k
,

(2.32)np = N

k
(k + 1).

We now observe that the state(2.30)has the correct dimensions and charges to be
member of the spectral flow family(2.15)with n = 1. Similarly, the state(2.27) can be

identified with the state obtained by spectral flow, withn = 1, from the state(σ+−
k )

N
k |0〉NS

in Eq.(2.8).
We can apply further sets of currents to get states with spectral flow byn > 1 units

(2.33)
(∏[

J−
−2n · · ·J−

− 2
k

])∣∣Ψ −−(k,0)
〉
.

These states have

(2.34)h = N

4
+ N

k
n(nk + 1), j = − N

2k
− nN, h̄ = N

4
, j̄ = − N

2k
,

(2.35)np = N

k
n(nk + 1).
We can similarly get those withn < 0; latter are obtained by applying modes ofJ+ instead
of J−.
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2.2. Gravity duals

2.2.1. Duals of 2-charge states
In [13] a set of D1–D5–P solutions was given. The solutions had axial symmetry

two circlesψ,φ, and angular momentaJψ,Jφ . In [11,12]an extremal limit was obtaine
for solutions withP = 0, getting the geometries

ds2 = −1

h

(
dt2 − dy2) + hf

(
dr2

r2 + a2 γ 2
+ dθ2

)

+ h

(
r2 + a2 γ 2 Q1Q5 cos2 θ

h2f 2

)
cos2 θ dψ2

+ h

(
r2 + a2γ 2 − a2γ 2Q1Q5 sin2 θ

h2f 2

)
sin2 θ dφ2

(2.36)− 2aγ
√

Q1Q5

hf

(
cos2 θ dy dψ + sin2 θ dt dφ

) +
√

H1

H5

4∑
i=1

dx2
i ,

where

a =
√

Q1Q5

R
, f = r2 + a2γ 2 cos2 θ,

(2.37)H1 = 1+ Q1

f
, H5 = 1+ Q5

f
, h = √

H1H5.

These metrics have angular momenta

(2.38)Jψ = −j̄ + j = 0, Jφ = −j̄ − j = γ n1n5

with n1 andn5 the numbers of D1 and D5 branes.j, j̄ are the angular momenta in theL,R

factors of theso(4) ≈ su(2)L × su(2)R describing the angular directions. For

(2.39)γ = 1

k
, k = 1,2 . . .

we obtain geometries that are the duals of the states|Ψ −−(k,0)〉 (Eq.(2.21)) [3,11,12].

2.2.2. Duals of 3-charge states obtained by spectral flow of 2-charge states
We would now like to find the duals of the 3-charge states obtained by spectral fl

the above 2-charge states. We again start from the 3-charge nonextremal solutions a
an extremal limit, keeping the charges and angular momenta at the values given by th
state. For the case where all twists were trivial (k = 1 for all twist operators) this procedu
was carried out in[6]. The starting nonextremal solution was derived in[6] by starting
with the neutral rotating hole in 4+ 1 dimensions, and applying a sequence of boosts
dualities. This solution is reproduced inAppendix A. Taking the limit forP �= 0 needs
some care, but the procedure was described in detail in[6] and needs no changes for t
more general case here.
We fix the values of the angular momenta and the momentum chargenp to the values we
desire, and then take the extremal limit. For general values of these parameters, we obtain
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the solution given inAppendix A. These solutions have pathologies in general; for exam
they can have closed timelike curves. But we must select only those that corresp
microstates of the 3-charge system, and these we expect to be free of pathologies.

We set the charges and momentum to equal those of the states(2.33)

(2.40)Jψ = −nn1n5, Jφ = (n + γ )n1n5, np = n(n + γ )n1n5.

The metric is written naturally in terms of the dimensionful quantities

γ̃1 = 4G(5)

π
√

Q1Q5
Jψ, γ̃2 = 4G(5)

π
√

Q1Q5
Jφ,

(2.41)Qp = 4G(5)

πR
np, Q1 = (2π)4gα′3

V
n1, Q5 = gα′n5,

whereG(5) is the 5D Newton’s constant

(2.42)G(5) = G(10)

V (2πR)
= 4π5g2α′4

V R
,

V is the volume ofT 4, R the radius of theS1 andg the string coupling. We find

(2.43)γ̃1 =
√

Q1Q5

R

Jψ

n1n5
≡

√
Q1Q5

R
γ1, γ̃2 =

√
Q1Q5

R

Jφ

n1n5
≡

√
Q1Q5

R
γ2

and thus, for the duals of the states(2.33),

(2.44)γ̃1 = −
√

Q1Q5

R
n, γ̃2 =

√
Q1Q5

R
(n + γ ), Qp = Q1Q5

R2
n(n + γ ).

We observe that

(2.45)Qp = −γ̃1γ̃2.

We will see that it is this relation that selects, from the class of all axisymmetric solu
the geometries that are free of pathologies.2 Using(2.45)to simplify the extremal solution
we get

ds2 = −1

h

(
dt2 − dy2) + Qp

hf
(dt − dy)2 + hf

(
dr2

r2 + (γ̃1 + γ̃2)2η
+ dθ2

)

+ h

(
r2 + γ̃1(γ̃1 + γ̃2)η − Q1Q5(γ̃

2
1 − γ̃ 2

2 )η cos2 θ

h2f 2

)
cos2 θ dψ2

+ h

(
r2 + γ̃2(γ̃1 + γ̃2)η + Q1Q5(γ̃

2
1 − γ̃ 2

2 )η sin2 θ

h2f 2

)
sin2 θ dφ2

+ Qp(γ̃1 + γ̃2)
2η2

hf

(
cos2 θdψ + sin2 θ dφ

)2

2 We certainly have states of the system withQp �= 0 and small or vanishing angular momenta, but as see

the 2-charge case[3] such states will break axial symmetry, and thus not be in the class that we are considering
at present.
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− 2
√

Q1Q5

hf

(
γ̃1 cos2 θ dψ + γ̃2 sin2 θ dφ

)
(dt − dy)

(2.46)− 2
√

Q1Q5(γ̃1 + γ̃2)η

hf

(
cos2 θ dψ + sin2 θ dφ

)
dy +

√
H1

H5

4∑
i=1

dx2
i ,

C2 = −
√

Q1Q5 cos2 θ

H1f
(γ̃2 dt + γ̃1 dy) ∧ dψ

−
√

Q1Q5 sin2 θ

H1f
(γ̃1 dt + γ̃2 dy) ∧ dφ

+ (γ̃1 + γ̃2)ηQp√
Q1Q5H1f

(Q1 dt + Q5 dy) ∧ (
cos2 θ dψ + sin2 θ dφ

)

(2.47)− Q1

H1f
dt ∧ dy − Q5 cos2 θ

H1f

(
r2 + γ̃2(γ̃1 + γ̃2)η + Q1

)
dψ ∧ dφ,

(2.48)e2Φ = H1

H5
,

where

η = Q1Q5

Q1Q5 + Q1Qp + Q5Qp

,

f = r2 + (γ̃1 + γ̃2)η
(
γ̃1 sin2 θ + γ̃2 cos2 θ

)
,

(2.49)H1 = 1+ Q1

f
, H5 = 1+ Q5

f
, h = √

H1H5.

3. Obtaining new solutions byS, T dualities

As mentioned in the introduction, we are interested in making geometries that ar
to actual bound states of the D1–D5–P system, and not just formal solutions of supe
ity carrying D1, D5, P charges. In the previous section we started with known states
CFT and found their gravity duals by looking for solutions with the same symmetrie
quantum numbers. In this section we make D1–D5–P solutions by a different metho
start with a D1–D5–P geometry that we have already constructed and performS, T dual-
ities to permute the charges. Since these dualities are exact symmetries of the the
know that the resulting geometry represents a true microstate. But it will not be im
ately obvious what the dual CFT state is. We will identify the CFT state later, by anal
the properties of the supergravity solution, and find that the change of CFT state
theseS, T dualities provides insight into the AdS/CFT duality map.

The metric(2.46) is invariant under the interchange ofQ1,Q5, so the only nontrivia
duality is the one which interchanges the momentum charge with, say, the D1 charg( P )

S

( P )
Ty,Tz1

( F1 )
S

(D1)

(3.1)D1

D5
−→ F1

NS5
−→ P

NS5
−→ P

D5
.
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S. Giusto et al. / Nuclear Physics B 710 (2005) 425–463 435

The metric which results from this chain of dualities, and the corresponding dilaton a

ds2 = −1

h̃

(
dt2 − dy2) + Q1

h̃f
(dt − dy)2 + h̃f

(
dr2

r2 + (γ̃1 + γ̃2)2η
+ dθ2

)

+ h̃

(
r2 + γ̃1(γ̃1 + γ̃2)η − QpQ5(γ̃

2
1 − γ̃ 2

2 )η cos2 θ

h̃2f 2

)
cos2 θ dψ2

+ h̃

(
r2 + γ̃2(γ̃1 + γ̃2)η + QpQ5(γ̃

2
1 − γ̃ 2

2 )η sin2 θ

h̃2f 2

)
sin2 θ dφ2

+ Qp(γ̃1 + γ̃2)
2η2

h̃f

(
cos2 θ dψ + sin2 θ dφ

)2

− 2
√

Q1Q5

h̃f

(
γ̃1 cos2 θ dψ + γ̃2 sin2 θ dφ

)
(dt − dy)

− 2Qp(γ̃1 + γ̃2)η

h̃f

√
Q5

Q1

(
cos2 θ dψ + sin2 θ dφ

)
dy +

√
Hp

H5

4∑
i=1

dx2
i ,

C2 = −
√

Q1Q5 cos2 θ

Hpf
(γ̃2 dt + γ̃1 dy) ∧ dψ −

√
Q1Q5 sin2 θ

Hpf
(γ̃1 dt + γ̃2 dy) ∧ dφ

+ (γ̃1 + γ̃2)η

Hpf

√
Q1

Q5
(Qp dt + Q5 dy) ∧ (

cos2 θ dψ + sin2 θ dφ
)

− Qp

Hpf
dt ∧ dy − Q5 cos2 θ

Hpf

(
r2 + γ̃2(γ̃1 + γ̃2)η + Qp

)
dψ ∧ dφ,

(3.2)e2Φ = Hp

H5
,

where

(3.3)Hp = 1+ Qp

f
, h̃ = √

HpH5.

The solution above is again of the general form(2.46)but with different parameters3

Q′
1 = Qp, Q′

5 = Q5, Q′
p = Q1,

(3.4)γ̃ ′
1 =

√
Q1

Qp

γ̃1, γ̃ ′
2 =

√
Q1

Qp

γ̃2.

3 The quantitiesQi have units of (length)2, so we have to be careful about the meaning of(3.4). If we start

with the F–NS5–P system and doTy to get P–NS5–F then we get
Q′

1
l′2s

= Qp

l2s
,

Q′
p

l′2s
= Q1

l2s
, etc., wherels is the

string length. Starting with D1–D5–P and applyingSTyTz1S to get P–D5–D1 we get
Q′

1
l′2
d

= Qp

l2
d

,
Q′

p

l′2
d

= Q1
l2
d

1

whereld = g 2 ls is the D-string length. Since the classical geometry is unchanged by an overall rescaling, we can
write (3.4).
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4. Conical defect angles

The geometries(2.46)possess, generically, an orbifold singularity along a circle in
noncompact space directions, just like the subset of 2-charge metrics(2.36). Let us recall
the physics of these singularities, and then study the ‘conical defect’ angle (crea
the AdS part of the geometry by the orbifolding) for the metrics constructed in the a
sections.

4.1. The physics of conical defects

Let us recall the reason why we get conical defects in 2-charge geometries. In[3] a
method was developed to compute the gravity duals forall states of the 2-charge syste
(not just the subclass giving the geometries(2.36)). By S, T dualities we map the D1
D5 system to the FP system, which has a fundamental string (F) wrapped onS1 carrying
momentum (P) alongS1. The bound state of the FP system has the strands of the F
all joined up into one ‘multiwound’ string, and all the momentum is carried as trave
waves on the string. Metrics for the vibrating string were constructed, and dualized
to get D1–D5 geometries. The general geometry was thus parametrized by the vi
profile �F(v) of the F string.

The detailed map between D1–D5 states and D1–D5 geometries is found in th
lowing way. The vibration on the F string is written in terms of harmonics. If we h
a quantum of thekth harmonic on the string then we get a twist operatorσk acting on
the NS vacuum in the D1–D5 CFT. The polarization of the vibration is given by a
dex i = 1, . . . ,4 labeling the four noncompact directions. Theso(4) symmetry group of
the angular directions is≈ su(2)L × su(2)R , and writing the vector indexi in terms of
the representation(1

2, 1
2) of su(2)L × su(2)R we get the choice of superscripts of the tw

operatorσ±,±
k . The collection of all twist operators (arising from all quanta of vibrat

on the F string) give an NS state, which is spectral flowed to get an R sector state
D1–D5 CFT. The geometry for this state is known, since it is obtained byS, T dualities
from the geometry created by the vibrating F string.

The strands of the F string wrap they direction, but under the vibration they carry th
separate out from each other, and spread out over a simple closed curve in the tra
spacex1, . . . , x4. It appears at first that there would be a singularity in the FP and
D5 geometries at this curve, but it was found in[3] that all waves reflect trivially off this
singularity. The reason for this was explained in[18] where it was found that for the D1–D
geometries the singularity was just acoordinatesingularity similar to that at the origin of
KK monopole; we have a ‘KK monopole tube’ (KK monopole×S1) centered at the abov
curve. As long as this curve does not self-intersect (it generically does not self-int
since it is just anS1 in R

4) the 2-charge D1–D5 geometry is completely smooth, with
horizon or singularity.

The generic solution has no particular symmetry. If we look at solutions that have
symmetry then there are very few possibilities. We must let the F string swing in a un
helix in the covering space of they circle; let this helix havek turns. The vibrations ar

−− N
now all in thekth harmonic, so the D1–D5 CFT state is created by(σk ) k (the choice
(−−) says that we let the F string swing in thex1–x2 plane; changing this plane changes
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the superscripts). The KK monopole tube now ‘runs over itself’k times, so all points on
theS1 exhibit the geometry ofk KK monopoles coming together. But it is known that th
generates an ALE singularity, which has a conical defect angle of 2π(1− 1

k
).

4.2. Singularity structure of 3-charge metrics

We thus see that a conical defect is a ‘harmless singularity’—it arises only if we
nongeneric states by letting theS1 run over itself, and in the full quantum theory one c
imagine that quantum fluctuations separate the intersecting strands and smooth
singularity. It is important though that the conical defect angle be of the form 2π(1 − 1

k
);

if we find an irrational angle for instance then we would not be able to understand ho
given geometry sits in a family of geometries that are generically smooth. We woul
to understand more precisely the nature of these defects. In particular we would al
to know the values of the parametersγ1 andγ2 for which such defects might arise. Th
arguments we use below are similar to the ones given in[6], where more details can b
found.

Around r = 0 the 6-dimensional part of the 3-charge metric(2.46)have the following
form:

ds2 ≈ hf

(γ̃1 + γ̃2)2η

(
dr2 + r2dỹ2

R2

)
+ hf

(
dθ2 + g̃ψψ cos2 θ dψ̃2 + g̃φφ sin2 θ dφ̃2 + 2g̃ψφ cos2 θ sin2 θ dψ̃ dφ̃

)
(4.1)+ gtt dt2 + 2g̃tψ cos2 θ dt dψ̃ + 2g̃tφ sin2 θ dt dφ̃,

where

(4.2)γ = |γ1 + γ2|,
(4.3)ỹ = γy, ψ̃ = ψ − γ2

y

R
, φ̃ = φ − γ1

y

R
,

(4.4)f ≈ (γ̃1 + γ̃2)η
(
γ̃1 sin2 θ + γ̃2 cos2 θ

)
andg̃ψψ , g̃φφ , g̃ψφ , gtt , g̃tψ , g̃tφ are differentiable functions ofθ with

(4.5)g̃ψψ(π/2) = 1, g̃φφ(0) = 1.

The above form of the metric shows that atr = 0 the ỹ cycle shrinks. It is important to
know if, for some particular value ofθ , some other cycle shrinks at the same time. T
can be understood by looking at the determinant of the metric restricted to thet , ψ̃ andφ̃

coordinates

(4.6)detg|t,ψ̃,φ̃ = − (Q1Q5)
2

R2

η2γ 2

hf
sin2 θ cos2 θ.

This determinant only vanishes atθ = 0,π/2: At θ = 0 theφ̃ coordinate decouples from̃ψ
andt and the coefficient ofdφ̃2 vanishes, i.e., thẽφ cycle shrinks at this point. Atθ = π/2
the same happens for thẽψ cycle. No other combination of thẽφ andψ̃ cycles vanishes a

any other value ofθ .

To proceed further, we need to look at the actual values ofγ , γ1 andγ2.
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4.2.1. Geometries obtained by spectral flow: orbifold singularities
Let us consider first the case of the 3-charge metrics obtained by spectral flow fro

2-charge metrics in(2.36). For them

(4.7)γ1 = −n, γ2 =
(

n + 1

k

)
, γ = 1

k
, k ∈ N, n ∈ Z.

In this case the coordinatesỹ, ψ̃ andφ̃ are

(4.8)ỹ = y

k
, ψ̃ = ψ −

(
n + 1

k

)
y

R
, φ̃ = φ + n

y

R
.

If ỹ/R, ψ̃ andφ̃ were periodic coordinates with period 2π , i.e., if

(4.9)

(
ỹ

R
, ψ̃, φ̃

)
∼

(
ỹ

R
, ψ̃, φ̃

)
+ 2π(l1, l2, l3)

with l1, l2, l3 integers, then the metric(4.1) would be smooth as can be seen from
coefficients ofdy, dψ̃ anddφ̃ in Eqs.(4.1)–(4.5). However, it follows from the definition
(4.8) and from the periodicity of the asymptotic coordinatesy/R, ψ , φ, that ỹ/R, ψ̃ and
φ̃ are subject to the further identifications:

(4.10)

(
ỹ

R
, ψ̃, φ̃

)
∼

(
ỹ

R
, ψ̃, φ̃

)
+ 2πl

(
1

k
,−1

k
,0

)
with l = 0, . . . , k − 1. The identifications above generate a group isomorphic toZk and
the space characterized by the metric(4.1) is topologically equivalent to an orbifold(R3 ×
S3)/Zk . The orbifold actionZk has fixed points where both thẽy andψ̃ cycles shrink to
zero size, which happens atr = 0 andθ = π/2. Thus the spectral flow metrics withk > 1
haveZk orbifold singularities of the same kind as the original 2-charge metrics(2.36).

4.2.2. Metrics obtained afterSTyTz1S duality: orbifold singularities
Let us now turn to the case of the metrics obtained from the spectral flow metri

S, T dualities. Since these dualities interchangen1 andnp and do not change the angul
momentaJψ andJφ , we find, using(2.43), (2.44)

γ ′
1 = R′√

Q′
1Q

′
5

γ̃ ′
1 = Jψ

npn5
= − k

n5(kn + 1)
,

(4.11)γ ′
2 = R′√

Q′
1Q

′
5

γ̃ ′
2 = Jφ

npn5
= 1

n5n
.

We thus see that the parameterγ ′ after duality

(4.12)γ ′ = γ ′
1 + γ ′

2 = 1

n5n(kn + 1)

is again of the form(4.7)with the integerk replaced by the integer
(4.13)k′ = n5n(kn + 1).
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In this case, then, thẽy, ψ̃ andφ̃ coordinates can be written as

(4.14)ỹ = y

k′ , ψ̃ = ψ − 1

n5n

y

R
, φ̃ = φ + k

n5(kn + 1)

y

R

and the space(4.1) is topologically equivalent to(R3 × S3)/Zk′ , where now theZk′ group
acts as

(4.15)

(
ỹ

R
, ψ̃, φ̃

)
∼

(
ỹ

R
, ψ̃, φ̃

)
+ 2πl

(
1

k′ ,−
1

n5n
,

k

n5(kn + 1)

)

with l = 0, . . . , k′ − 1. Denote byω the generator of thisZk′ group. We notice that, in
contrast with the orbifold action(4.10), ω acts nontrivially on all the three cyclesỹ, ψ̃ and
φ̃. However, the group elementωn5n only acts by a−2π rotation on the cyclẽψ . Thus at
r = 0 andθ = 0, where the other two cycles̃y andφ̃ shrink,ωn5n has a fixed point and th
6-dimensional space(4.1)has an orbifold singularity. The order of this orbifold singular
is k′/(n5n) = kn + 1. Similarly, if k andn5 have no common factors, the group elem
ωn5(kn+1) acts trivially onφ̃ and has a fixed point wheñy andψ̃ shrink, which happen
at r = 0 andθ = π/2. Thus atr = 0 andθ = π/2 there is an orbifold singularity of orde
k′/(n5(kn+1)) = n. If n5 andk have a common factorm, i.e.,n5 = mñ5 andk = mk̃, then
ωñ5(kn+1) has a fixed point atr = 0 andθ = π/2 and the order of the orbifold singulari
increases tok′/(ñ5(kn + 1)) = mn.

In conclusion, the metrics obtained from the spectral flow metrics byS andT dualities
have orbifold singularities at both(r = 0, θ = 0), and at(r = 0, θ = π/2). The order of the
orbifold singularity iskn + 1 at(r = 0, θ = 0) andmn at (r = 0, θ = π/2), wherem is the
highest common factor shared byn5 andk.

Note: In the classical limit of the D1–D5 system we taken1, n5 → ∞, though BPS
states exist of course for alln1, n5. If we start with a largen5 then the orbifold shifts
involving 1

n5
in (4.15) are very close together, and cannot be seen in the classical

n5 → ∞. But since microstates exist for alln1, n5 the geometries studied in this secti
can be considered forn5 of order unity, and then they give well-defined classical met
with the orbifold group(4.15).

4.2.3. Absence of horizons and closed timelike curves
If we write down a generic 3-charge solution with rotation, we find closed time

curves (see for example[19]). But we expect that geometries that actually arise as
als to 3-charge states will be free of pathologies. In[6] computations were developed
show that the geometries constructed there had no horizons and no closed timelike
A similar result holds for the geometries found in this paper; the computations are gi
Appendix B.

5. Wave equation for a scalar

In [3,20] the wave equation for a massless minimally coupled scalar was studied

2-charge geometry. Such a scalar arises for instance from fluctuations of the metric onT 4,
for example the componenthz1z2. It was found that the wavepacket spent a time�tSUGRA
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traveling down and back up the ‘throat’ of the supergravity solution. The time�tSUGRA
exactly equalled the time taken for excitations to travel around the ‘effective string’ i
dual CFT. We now compute�tSUGRA for the 3-charge solutions we have found, and t
use the result to find the dual state in the CFT.

The wave equation for a massless minimally coupled scalar in the 6D geometry i4

(5.1)�Φ ≡ 1√−g
∂µ

(√−ggµν∂νΦ
) = 0.

We givegµν,detg in Appendix C. Writing

(5.2)Φ(t, y, r, θ,ψ,φ) = exp

(
−iω

t

R
+ iλ

y

R
+ im1ψ + im2φ

)
Φ̃(r, θ)

we get a wave equation that is separable inr, θ [21]. We write

(5.3)Φ̃(r, θ) = H(r)Θ(θ).

We introduce the dimensionless radial coordinate

(5.4)x = r2 R2

Q1Q5

and the following convenient quantities

δ = √
η|γ1 + γ2| = √

ηγ, σ 2 =
[(

ω2 − λ2)Q1Q5

R4

]−1

,

ν =
(

1+ Λ − (
ω2 − λ2)Q1 + Q5

R2
− (ω − λ)2Qp

R2

)1/2

,

ξ = √
η

(
ω

η
− λ

Qp(Q1 + Q5)

Q1Q5
− m1γ1 − m2γ2

)
,

(5.5)ζ = √
η(λ + m1γ2 + m2γ1).

Then the radial and angular part of the wave equation become

(5.6)4
d

dx

(
x
(
x + δ2) d

dx

)
H +

[
σ−2x + 1− ν2 + ξ2

x + δ2
− ζ 2

x

]
H = 0,

1

sin2θ

d

dθ

(
sin 2θ

d

dθ

)
Θ + ΛΘ

(5.7)+
[
− m2

1

cos2 θ
− m2

2

sin2 θ
+ γ̃1 + γ̃2

σ 2
η
(
γ̃1 sin2 θ + γ̃2 cos2 θ

)]
Θ = 0.

Reality of the metric implies that the wave equation is real; thus the complex conjug
a solution gives another solution. We can thus take

(5.8)ξ � 0.

The solutions withξ < 0 are obtained by complex conjugation.
4 The 6D string metric is obtained by ignoring theT 4, and the 6D Einstein metric turns out to be the same as
the 6D string metric.
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5.1. Solving the wave equation

The radial wave equation can be solved in the two regions

outer region: x � 1,

(5.9)inner region: x � σ 2.

If one chooses the frequency of the scattering wave to be very low

(5.10)σ 2 � 1

the inner and outer regions have a wide overlap, where the two limiting solutions c
matched. Due to this large overlapping region, we expect that a reliable solution c
found, in the low frequency limit(5.10), without the need to introduce a further region
to make any further assumption on the parameters. In particular the quantity

(5.11)
(
ω2 − λ2)Q1 + Q5

R2
+ (ω − λ)2Qp

R2

is notassumed to be small. For largeω it can be seen from(5.5)thatν becomes imaginary
this corresponds to energies where the quantum travels over the potential barrier
‘neck’ region instead of tunneling through it. Since the CFT is known to describe th
energy dynamics of the system, we will restrict ourselves to realν; we can choose the sig
of ν to be positive.

Note also that in the low frequency limit(5.10) the angular part of the wave equati
(5.7) reduces to the angular equation in flat space and thus the eigenvalueΛ is

(5.12)Λ = l(l + 2).

The technique of matching solutions across the two regions is well known, and d
of the computation are given inAppendix D. Here we outline the main steps and resu
The solution in the outer region is a linear combination of Bessel’s functions

(5.13)Hout = 1√
x

[
C1Jν

(
σ−1√x

) + C2J−ν

(
σ−1√x

)]
.

The coefficientsC1 andC2 are fixed by demanding continuity with the inner solution. T
latter is uniquely determined by the requirement of regularity atx = 0 and is given in terms
of the hypergeometric function

(5.14)Hin = xα
(
x + δ2)β

F

(
p,q;1+ 2α;− x

δ2

)
with

α = |ζ |
2δ

=
√

η

2δ
|λ + m1γ̃2 + m2γ̃1|,

β = ξ

2δ
=

√
η

2δ

(
ω

η
− λ

Qp(Q1 + Q5)

Q1Q5
− m1γ̃1 − m2γ̃2

)
,

(5.15)p = 1

2
+ α + β + ν

2
, q = 1

2
+ α + β − ν

2
.
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As a result of the matching we get

(5.16)
C2

C1
= �(−ν + 1)�(−ν)

�(ν + 1)�(ν)

�(1
2 + α + β + ν

2)�(1
2 + α − β + ν

2)

�(1
2 + α + β − ν

2)�(1
2 + α − β − ν

2)

(
δ2

4σ 2

)ν

.

Note that sinceδ2 < 1� σ 2 we haveC2 � C1.

5.2. Time of travel and absorption probability

For very largex we get from(5.13)

Hout =
√

2σ

π

1

x3/4

[
ei(σ−1√x− π

4 )
(
C1e

−i πν
2 + C2e

i πν
2

)
(5.17)+ e−i(σ−1√x− π

4 )
(
C1e

i πν
2 + C2e

−i πν
2

)](
1+ O

(
x− 1

2
))

.

The ratio between the outgoing and the ingoing wave amplitude is (ignoring the co
phase shift caused the by factors−π

4 )

R = C1e
−i πν

2 + C2e
i πν

2

C1e
i πν

2 + C2e
−i πν

2

(5.18)= e−iπν + (
1− e−2iπν

)(C2

C1
+ O

(
C2

C1

)2)
.

In [22] a procedure was given to compute the travel time in the throat fromR; we
summarize the method here. The quantum coming in from infinity tunnels throug
‘neck’ region with some probabilityp � 1 and enters the ‘throat’. Here it travels free
down to the ‘cap’ and bounces back up. We again have the same probabilityp that it
emerges to infinity, while with probability 1− p it turns back for another trip in the throa
We thus get emergent waves at times separated by a fixed interval�tSUGRA.

To findp and�tSUGRA we note thatR can be written in the form

(5.19)R = a + b

∞∑
n=1

e2πin ω
R

�t ,

wherea andb are some real functions ofω. Let us send in from infinity a wave packet

(5.20)
∫

dkr f (kr )e
−i kr

R
r−i ω

R
t ,

wherekr/R is the radial wave numberkr = √
ω2 − λ2. After scattering from the geometr

the wavepacket will be∫ [ kr ω kr ω ]

(5.21)dkr f (kr ) e−i

R
r−i

R
t +Rei

R
r−i

R
t .
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From the form(5.19)of R we see that the wave packet will have peaks at

(5.22)krr = ω(t − 2πn�t), n = 0,1, . . . .

Then � 1 peaks represent waves that have travelledn times down the throat and back, a
we identify�t = �tSUGRA. From(5.19)we also see that the probability to enter the thr
and reemerge is

(5.23)P = p2 = |b|2.

Note. In order to be able to distinguish between successive peaks of the wavepack
separation between the peaks (seen at infinity) should be larger than the width
wavepackets. This implies

(5.24)�t �
(

�kr

R

)−1

∼ R

kr

.

Our approximate solution(5.16)is only valid in the low frequency limitkr � R2/
√

Q1Q5,
so we should have�t � √

Q1Q5/R. We will find that�t ∼ R/δ so the requirement(5.24)
is

(5.25)
R2

δ
� √

Q1Q5.

The above condition can be satisfied either by takingR large orδ small.

We now list the results found inAppendix E.

5.2.1. Energy threshold for absorption
If the wave frequencyω is low enough so that

(5.26)β < α + ν + 1

2

then the wave is reflected back at the neck region and the absorption probability van
We can interpret this threshold in the following way. If the energy of the quantu

low enough then we cannot fit a complete wavelength in the ‘throat’. In the limit of l
R the throat is a large asymptotically AdS region. The spectrum of a scalar in su
asymptotically AdS geometry was computed in[23]. Adapting those results to the notati
of our paper, we find that the energy levels are given by solutions to the equation

(5.27)β = α + l + 2

2
+ k, k = 0,1,2, . . . .

If we take the limitR → ∞ then we get a large AdS region, and we can compare q
tities to those computed in asymptotically AdS space. Taking this limit we see tha

frequencies(5.26)which are not absorbed are those which lie below theAdS3 excitation
spectrum.
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5.2.2. Travel time in the geometry
If ω is high enough so that

(5.28)β > α + ν + 1

2
then the reflection amplitude computed in(E.6) has a form similar to(5.19)with the sum
over phase factors

(5.29)
∞∑

n=1

e2πin(β−α− 1+ν
2 ) ≡

∞∑
n=1

e2πin ω
R

�t .

The factorβ −α depends linearly onω; the parameterν, on the other hand has a nonline
dependence onω that will distort the wave packet. Note however that

(5.30)β − α − 1+ ν

2
= ξ − |ζ | − δ(1+ ν)

2δ
=

(
β − α − l + 2

2

)(
1+ O(δε)

)
,

where

(5.31)ε ≡ (l + 1) −
√

(l + 1)2 − (
ω2 − λ2

)Q1 + Q5

R2
− (ω − λ)2

Qp

R2
.

We take all theQi to be of the same order. We see from(5.25)that travel time makes goo
sense only ifδ Qi

R2 � 1. Thus eitherδ � 1 or Qi

R2 � 1 (or both). In either case we find th
δε � 1. We then find

(5.32)β − α − 1+ ν

2
≈ β − α − l + 2

2
= ω

2
√

ηδ
+ (ω independent terms).

In this limit the wave packet is not distorted and it travels up and down the throat i
time

(5.33)�t = πR√
ηδ

= πR

ηγ
.

5.2.3. Absorption probability
The probability for the wave to be absorbed and reemitted in the throat is found to

P =
(

4π2

�2(ν)�2(ν + 1)

)2(
δ

2σ

)4ν

(5.34)×
(

�(1
2 + α + β + ν

2)�(1
2 + β − α + ν

2)

r�(1
2 + α + β − ν

2)�(1
2 + β − α − ν

2)

)2

.

The probability for just absorption or just emission isp = √
P .

5.2.4. The factorη as a redshift
In [3] the travel time was computed for 2-charge D1–D5 geometries, and was fou

be
(5.35)�tSUGRA= πR

γ
.
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This is seen to differ by a factorη from the 3-charge(5.33). We offer a simple physica
explanation for this factor.

Consider first the D1–D5 system. In the dual CFT the absorption of the quant
described by the creation of a set of left and a set of right moving excitations, w
travel at the speed of light around the ‘component string’ in a time�tCFT = �tSUGRA.
Now suppose we have a P charge as well. This corresponds to the presence of left
on the component strings. But the left and right excitations in the CFT travel aroun
component without interacting with each other, so one may think that one again ge
same�t as in the 2-charge case and thus the value of the P charge does not enter�t .

But this cannot be right, since the D1, D5, P charges can all be permuted by d
Indeed the factorη makes�t in (5.33)invariant under such permutations. To underst
the role ofη consider the limit of the metric(2.46)for smallr and small conical defectδ

(5.36)r � √
Qi (i = 1,5), δ � R2

√
Q1Q5

.

In this case we have a large AdS type region which would possess a CFT dual desc
In this limit f � Qi and thus one can replaceHi by Qi/f , obtaining an asymptoticall
AdS3 × S3 geometry. As is clear from our computation above, the time of travel is d
nated by the time spent by the wave in this part of the geometry. Let us look at the fo
the metric(2.46)in the ‘near horizon’ limit(5.36). We get

ds2
n.h.√

Q1Q5
= −(

ρ2 + γ 2)(η dt̃)2 + dρ2

ρ2 + γ 2
+ ρ2 dỹ2 + dθ2

(5.37)+ cos2 θ dψ̃2 + sin2 θ dφ̃2,

where we have made the following coordinate redefinitions

ρ2 = r2

η

R2

Q1Q5
, t̃ = t

R
, ỹ = 1

R

[
y − η

Qp(Q1 + Q5)

Q1Q5
t

]
,

ψ̃ = ψ − η

[
γ1 − γ2

Qp(Q1 + Q5)

Q1Q5

]
t

R
− γ2

y

R
,

(5.38)φ̃ = φ − η

[
γ2 − γ1

Qp(Q1 + Q5)

Q1Q5

]
t

R
− γ1

y

R
.

As anticipated, the near horizon metricds2
n.h. is locally AdS3 × S3 with curvature radius

(Q1Q5)
1/4, but the time is rescaled byη with respect to the timet at asymptotically flat

infinity. Thus the time computed in the CFT will be a factor ofη times the time betwee
wavepackets measured at infinity. If we take a limitR → ∞ keeping other paramete
fixed thenQp → 0, η → 1 and we can directly compare the CFT time to the gravity ti
We will take such a largeR limit in the more detailed analysis of the CFT state below.

6. Finding the CFT duals
We started with CFT states(2.15)and found their gravity duals(2.46). We then made
new solutions by applyingSTyTz1S duality to(2.46)and obtained the solutions(3.2). What
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are the CFT states dual to the geometries(3.2)? We use two closely related tools to ident
the CFT duals: the time of travel�tSUGRA down the throat of the supergravity solution, a
the threshold of absorption into this throat. Longer travel times map to longer compo
of the ‘effective string’ in the CFT, and lower absorption thresholds also reflect lo
effective strings.

6.1. Time of travel

In [3] it was found that for the 2-charge D1–D5 geometries(2.36)a quantum falling
into the throat emerges after a time

(6.1)�tSUGRA= πR

γ

or its integer multiples. In the dual CFT the corresponding state is(2.21), where twist
operators have joined together

(6.2)k = 1

γ

copies of the CFT together to create ‘effective strings’ of length 2πRk = 2πR
γ

. In the grav-
ity picture a quantum can fall down the throat of the geometry; in the dual CFT descr
the energy of the quantum gets converted to a set of left and a set of right moving
tions on the ‘effective string’[24,25]. These vibrations travel at the speed of light and m
halfway around the effective string, so that the energy can leave the effective string
time

(6.3)�tCFT = 1

2
2πRk = πRk

in exact agreement with(6.1). (If the vibrations fail to collide and leave the string, th
they encounter each other again after a time(6.3), etc., this corresponds to the success
waves emerging at separations�tSUGRA in the gravity picture.)

Note that the number of effective strings created by the twists is

(6.4)m = n1n5

k
= N

k
.

Recall that each connected piece of the effective string is termed a ‘component strin

6.1.1. The number of component stringsm′ for the 3-charge states(3.2)
The 3-charge geometries(2.46)had D5, D1, P charges(n5, n1, np). The orbifold CFT

hadN = n1n5, the winding number of each component string wask, and thus the numbe
of component strings was
(6.5)m = N

k
= n1n5

k
.
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By the dualitySTyTz1S we obtained the geometries(3.2)which had charges5

(6.6)n′
5 = n5, n′

1 = np, n′
p = n1.

The orbifold CFT now has

(6.7)N ′ = n′
1n

′
5 = n5np.

The travel time for such geometries is derived in(5.33). Take the limitR′ → ∞; this gives
a large AdS region which will be the dual of the CFT. We getQ′

p → 0, η′ → 1 and the
travel time is

(6.8)�tSUGRA= πR′

γ ′ = πR′n5n(nk + 1)

where we used(4.12). Thus we expect the winding number of each component string

(6.9)k′ = k
np

n1
= n5n(nk + 1).

The number of components of the effective string are then

(6.10)m′ = N ′

k′ = n5np

k

n1

np

= n1n5

k
.

We thus see that whileN,k change toN ′, k′, the number of components of the effect
string remains unchanged

(6.11)m′ = m.

To interpret this fact we recall the physical significance ofm found in [3]. When we put
a particle in the throat of the gravity solution then we excite left and right movers on
component string in the dual CFT. Putting another particle in the throat excites an
component string, and so on. Let each particle have the longest possible wavelength
can still fit in the throat of the geometry. When we have enough particles in the thro
that we use up all them component strings in the CFT then we find that we have eno
energy in the supergravity solution to give a backreaction of order unity in the geom
the geometry distorts and we can no longer study the particles as independent exci
We now see that underS, T dualities this critical number of particles for the geome
stays unchanged.

5 S, T dualities certainly map a state of the 3-charge system to another state of the system, but afte
we may not be in a range of parameters where the state is well described by theconformalfield theory. The

conformal limit is the low energy limit, and is attained for small
√

Q1Q5γ

R
. If we start with a large circle radiu

R then after dualities we get smallR′. But since we are dealing with BPS states we can follow the state a

increaseR′ and get back to a CFT domain. It is this latter CFT state that we will mean when we look at the states
afterSTyTz1S duality.
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6.1.2. Level of excitation of the component strings
The CFT state for the geometries(2.46)hadnp units of momentum distributed equal

overm component strings; thus each component had

(6.12)T = np

m

units of momentum. It will be helpful to write this in terms of the basic units of momen
on the component string. Since the string has winding numberk the excitations come in
units of 1

k
. Thus the number of these basic units of momentum on each component

is

(6.13)T̂ = kT = npk

m
= np

m

N

m
= n1n5np

m2
.

For the state afterSTyTz1S duality we haven′
p = n1 units of momentum, distributed ove

m′ = m component strings, and

(6.14)T ′ = n1

m
, T̂ ′ = k′T = n1

m
k
np

n1
= n1n5np

m2

so we see that

(6.15)T̂ ′ = T̂ = n1n5np

m2
.

ThusT̂ is a duality invariant; the charges permute under dualities and we have seenm

stays unchanged. We note that the number of possible states on each component s
pends on the number̂T : we have to just excite free bosons and fermions on the compo
string so that the total level (as measured in units of the basic excitation on the com
string) isT̂ . Thus we see that underSTyTz1S duality the number of allowed states on t
component strings remains unchanged.

6.1.3. The state afterSTyTz1S duality
The angular momentum of the state does not change under theSTyTz1S duality (theT

dualities are all along compact directions, while angular momentum reflects the prop
of the state in the noncompact directions). For the entire state we have from(2.16)

(6.16)j = −n1n5

2

(
2n + 1

k

)
, j̄ = −n1n5

2k
.

Both before and after theSTyTz1S duality we havem component strings, so the angu
momentum on each component string is

(6.17)ĵ = −1

2
− nk, ˆ̄j = −1

2
.

Both before and after the duality we have the same ‘level’ of excitationT̂ on each compo
nent string. The state before the duality was given by(2.33)—the charge(j, j̄ ) was attained

by the lowest energy possible by having all fermion spins aligned and all fermions in the
lowest levels allowed by the Pauli exclusion principle. We see that the only way to make
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the state afterSTyTz1S duality is to make a construction similar to(2.33)

(6.18)
(∏[

J−
−2nJ

−
−2n k′−1

k′
· · ·J−

− 2
k′

])∣∣Ψ −−(k′,0)
〉
.

The component strings now have windingk′ each instead ofk, but the rest of the construc
tion is the same.

6.2. Absorption threshold

In Section5 it was found that an incoming wave was absorbed only if

(6.19)β − α >
ν + 1

2
.

Take the CFT limitR → ∞ which givesQp → 0, η → 1. The angular momentum com
ponentsm1,m2 imply for the twosu(2) factors the eigenvalues

(6.20)m = m1 − m2

2
, m̄ = −m1 + m2

2
.

The condition(6.19) then gives a pair of conditions from the two possible signs of
absolute value inα

ω − 2

(
m

j

N
+ m̄

j̄

N

) − λ + 2

(
m

j

N
− m̄

j̄

N

)
> γ (l + 2),

(6.21)ω − 2

(
m

j

N
+ m̄

j̄

N

)
+ λ − 2

(
m

j

N
− m̄

j̄

N

)
> γ (l + 2).

Here(j, j̄ ) are the angular momenta of the geometry into which the quantum is fallin

(6.22)
j

N
= −

(
n + γ

2

)
,

j̄

N
= −γ

2
.

Note thatω±λ
2 are the increments ofL0, L̄0 caused by the incoming quantum, so we c

write (6.21)as

(6.23)�h > γ +
(

l

2
− m

)
γ − 2mn,

(6.24)�h̄ > γ +
(

l

2
− m̄

)
γ.

6.2.1. Absorption of quanta in the CFT description
In [24–26] the CFT description of absorption was studied. We have supposed th

quantum being absorbed is a scalar arising from the componenthij of the metric on the
T 4. The quantum has angular momentuml, which means that it is in the representat
( l

2, l
2) of su(2)L × su(2)R . In the CFT state this quantum creates an excitation that ha
(6.25)∂X,ψ · · ·ψ, ∂̄X, ψ̄ · · · ψ̄,
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where theX variables carry the indicesi, j (we must symmetrize over the two permu
tions) and there arel fermions on each of the left and right sectors. The fermions are i
Ramond sector, and thus both fermionic and bosonic excitations come in multiples
basic harmonic on the component strings

(6.26)�h = �h̄ = 1

k
= γ.

The (J 3, J̄ 3) quantum numbers insu(2)L × su(2)R are(m, m̄). There are two species o
left moving fermions withm = 1

2 and two withm = −1
2; similarly for the right movers

We will simply write ψ±, ψ̄± without distinguishing the two species since the differe
is irrelevant for the discussion below. Thus on the left sector we must havel

2 +m fermions
ψ+ and l

2 − m fermionsψ−. On the right sector we havel2 + m̄ fermionsψ̄+ and l
2 − m̄

fermionsψ̄−.

6.2.2. Identifying the excitations
Recall the structure of the CFT state(2.33)into which we are absorbing the quantu

On each component string we have fermion zero modes. For the left movers we sta
choosing the state which is killed by theψ−

0 , and then applied operatorsJ− which resulted
in the application of modesψ−

− 1
k

· · ·ψ−−n (for both species ofψ−). For the right movers we

also have the vacuum killed by thēψ−
0 , but applied no other excitations.

Consider first the right movers. The excitation∂̄X needs a minimum�h̄ of 1
k

= γ ; this
is the first term on the RHS of(6.24). Now consider the fermions. Suppose thatm̄ = l

2.
Then we havel operatorsψ̄+ acting on the state of the CFT. But we can choose eac
these operators to be a zero modeψ̄+

0 which changes the vacuum on a component st
to one that is killed byψ̄+

0 . The fermions then do not contribute to�h̄ and we find exac
agreement with(6.24). Note that we could find at most two such zero modes on any g
component string, so we will have to apply theψ̄+

0 in general to many different compone
strings.6

Now suppose that̄m = l
2 − 1. We havel − 1 operatorsψ̄+ and oneψ̄−. Theψ̄+ again

give no contribution to�h̄, but the lowest allowed mode for̄ψ− is ψ̄−
− 1

k

and we again

get agreement with(6.24). Proceeding this way, we find agreement for allm̄ for the right
movers.

Now consider the left movers, and letm = l
2. We have to applyl operatorsψ+. The

lowest excitation results if we use the operatorsψ+ to annihilate l modesψ−−n, which
gives a total�h = 1

k
− nl (including the boson∂X) which agrees with(6.23). Next con-

siderm = l
2 − 1. Now we havel − 1 operatorsψ+ which again annihilate modesψ−−n and

one operatorψ− which creates the lowest allowed modeψ−
−(n+ 1

k
)
, again in exact agree

6 We can read off the value ofγ = 1
k

from the classical geometry, for example by the conical defect angl

the metrics(2.46). But n1, n5 are infinite in the classical limit, and som = n1n5
k

is also infinite in this limit. Thus

the absorption thresholds computed from the classical geometry have an essentially infinite number of component
strings, and we will not ‘run out of component strings’ for any value ofl that we choose.
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ment with(6.23). (The operatorψ− cannot just fill in one of the empty levels created
annihilation of modesψ−−n since the overall operator describing the absorption is take
be normal ordered.)

We thus see that the absorption threshold seen in the wave equation analysis
understood in detail in terms of the occupied levels on the effective strings. This com
tion supports the conjecture that the state after duality has the form(6.18)analogous to the
states before theSTyTz1S duality; the absorption computation applies equally to both
of geometries.

6.3. A puzzle about the orbifold theory

Consider the CFT state(6.18)dual to the geometries obtained afterSTyTz1S duality.
The momentumT ′ per component string (given in(6.14)) is fractional in general, not an
integer. Interestingly, when this momentum is measured in units of the basic excita1

k

on the component string then we get anintegerT̂ ′. (If T̂ ′ were nonintegral, we would hav
a severe contradiction, since we could not carry the excitation on the component str

But here we face a puzzle, since in the orbifold CFT the quantityT ′ is alsorequired to
be integral. The reason for this is as follows. We have to orbifold by the symmetric g
SN ′ which permutes theN ′ copies of thec = 6 CFT. In a given state of the CFT we c
label the copies by how they make up the different component strings, and even
each component string the copies can be ordered by the sequence in which they lin
make the ‘long cycle’. But one part of the symmetry group still survives: we can cycli
permute the copies inside a component string

(6.27)c1 → c2 → ·· · → ck → c1.

This symmetry forces the momenta on the component string to be integral.
Faced with this problem, we first review the steps that led us to our solutions

fundamental string (F) is an elementary excitation of the theory onM4,1 × S1 × T 4, so
the 2-charge FP solutions we started with certainly correspond to BPS states of t
string theory. SinceS, T dualities are exact symmetries of the theory the 2-charge D1
states are also states of the theory. Spectral flow was just a coordinate change, an
3-charge solutions that were obtained by spectral flow must also be valid. Finally, the
symmetrySTyTz1S was used to get the solutions which we are now discussing, s
conclude that they must be allowed states of the string theory.

Even though one may accept the gravity solutions one may question the identifi
of the CFT state. We have made each component string have the same winding n
k′, but if we allowed the winding numbers to be different then we could have carrie
momentumn′

p = n1 on the component strings in such a way that each component s
had an integral numberT ′ of units of momentum. But let us recall the evidence we have
the component strings should all be equal: (a) We have learn from the explicit constr
of 2-charge systems that states with axial symmetry have all component strings ide
if the component strings are different then all symmetries are broken in general. (b
return time from the throat gave a precise value that could be put in correspondence w

length of the component strings; if component strings had different lengths then we would
get distortion of the wavepacket since different parts would be returned after different



ure of
ted by
y other

ravity
ough

rbifold

rings.
ber

tities

FT

,
g

se

entral
k at
then we
states
-
metries
lies
’; there

se 2-
452 S. Giusto et al. / Nuclear Physics B 710 (2005) 425–463

times. (c) The threshold of absorption worked out exactly—if we change the struct
the filled levels on the component strings then the allowed levels that could be exci
the incoming quantum would change. For all these reasons it seems hard to have an
construction of the CFT state.

It may be that we need changes in our understanding of the CFT dual to the g
theory. It is not completely clear where the orbifold point sits in the moduli space, th
there are some leading candidates[27,28]. It is also not clear if the orbifold(T 4)N/SN does
describe some point in the moduli space, or if we need to consider other related o
theories like the iterated orbifolds[29].

Before concluding we note a point about the winding number of the component st
The geometries(2.46)had an integralk, since this number can be traced back to the num
of turns of the helix of the F string in the starting FP solution that led to(2.46). For the
geometries obtained afterSTyTz1S duality we still found in Eq.(6.9) that the winding
number of each component stringk′ was integral. This was important, since ifk′ turned out
fractional we could make no sense of the CFT state. But if we assume that the quanT

do not need to be integral and only theT̂ need to be integral in general, then afterSTyTz1S

duality we would get fractionalk′ in general. What then are the rules for the allowed C
states?

For the D1–D5 CFT we can havem component strings with equal winding if

(6.28)
n1n5

m
∈ Z.

Given thatm was found to be a duality invariant, and thatn1, n5, np permute under duality
we conjecture that the state can havem equal length component strings if all the followin
conditions are true

(6.29)
n1n5

m
∈ Z,

n5np

m
∈ Z,

npn1

m
∈ Z, T̂ = n1n5np

m2
∈ Z,

where we have included the requirement thatT̂ be integral. We hope to return to the
issues elsewhere.

7. Discussion

Our basic conjecture states that the black hole interior is not ‘empty space with a c
singularity’ but a ‘fuzzball’ of horizon size. If we consider extremal holes, and loo
states where in the dual CFT we have many component strings in the same state,
can have a good description of the geometry in classical supergravity. All 2-charge
could be approached through such classical geometries, and in[5,6] some classes of 3
charge extremal states were considered and their dual geometries identified; the geo
were smoothly capped as inFig. 1(b). In the present paper we have looked at two fami
of states and their dual geometries. The geometries were again found to be ‘capped
were no horizons or closed timelike curves.

The first family arose from spectral flow of a subfamily of 2-charge states. The

charge states generically had an orbifold singularity along a curve; this was understood
as a ‘trivial’ singularity in the sense that it arose from the coincidence of two or more



olu-

tates
s that

ion is
r had
ble
olu-

e CFT

f the
shold
old of
metry,
found
ntum
rbifold
ations

lds

o the
flow
oordi-
ld
s

iffer-

hat

t-
ry,

FT

the so-
ift’
one

y help
S. Giusto et al. / Nuclear Physics B 710 (2005) 425–463 453

‘KK monopoles tubes’ and was thus arose only as a limit in a family of regular s
tions. Since spectral flow is given by a coordinate transformation inAdS3 × S3 [11,12]
it is not surprising that a similar orbifold singularity arose also for the 3-charge s
obtained by spectral flow of the 2-charge states. What was interesting to note wa
the conical defect angle did not get corrected when the asymptotically AdS solut
modified to become an asymptotically flat solution. If the conical defect paramete
changed away from the form1

k
to say an irrational value then we would not be a

to understand the orbifold singularity in any simple way as a limit of nonsingular s
tions.

The second family we considered was found by applyingS, T dualities to the first
family of geometries so that the D1 and P charges got interchanged. We identified th
states dual to this second family of geometries by computing the time of travel�tSUGRA

for a quantum to fall down the throat and bounce back out. The winding number o
‘component strings’ in the CFT, computed by this method, gave a minimum thre
energy for excitations of the CFT state. This minimum energy agreed with the thresh
energy below which the incident quantum was unable to enter the throat of the geo
thus confirming the identification of the CFT state. We noted that the CFT states
this way had a fractional momentum on each ‘component string’ (the total mome
was of course an integer). This suggested that we need to go beyond the simple o
CFT to understand all 3-charge bound states; we may need to understand deform
away from the orbifold point[30] or perhaps we may have to consider iterated orbifo
[29].

The conical defect in the 2-charge D1–D5 geometries could be directly linked t
winding numberk of each component string. For the metrics obtained by spectral
from 2-charge geometries we have a similar relation since spectral flow is just a c
nate transformation on the geometry[11,12]. The conical defect is caused by an orbifo
singularity of orderk along theS1 given by(r = 0, θ = π/2) and the component string
in the dual CFT state have winding numberk. For the geometries obtained afterS, T

dualities the situation is more complex—we have orbifold singularities along two d
entS1 curves, with orderkn + 1 at (r = 0, θ = 0) and ordermn at (r = 0, θ = π/2) (m
is the highest common factor shared byn5, k). There is a suggestive pattern though t
we observe. It was argued in[30] that the D1–D5 CFT with charges(n1, n5) could be
mapped to the theory with charges(n1n5,1), and that the orbifold point occurs at this la
ter value of the charges. If we setn5 = 1 to enable a comparison to the orbifold theo
then we observe that the product of the orders of the two orbifold groups is(kn + 1)n

which in this case equalsk′, the winding number of the effective string in the dual C
state.

We have noted that the travel time is symmetric between the three charges of
lution, but the factorη enforcing this symmetry is responsible for providing a ‘redsh
which relates the time at infinity to the time in the AdS region. The AdS region is the
that is dual to the CFT description, so understanding such effects in more detail ma

us to identify the deformations in the CFT that correspond to deforming AdS space to flat
space at infinity.
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Appendix A. Non-extremal rotating 3-charge metrics and their extremal limits

The metric for general rotating 3-charge solutions was given in[13], and the metric, 2
form field and dilaton were given in[6] by generating the solution by a different techniq
We have

ds2 = −
(

1− M cosh2 δp

f

)
dt2

√
H1H5

+
(

1+ M sinh2 δp

f

)
dy2

√
H1H5

− M sinh 2δp

f
√

H1H5
dt dy + f

√
H1H5

(
r2 dr2

(r2 + a2
1)(r2 + a2

2) − Mr2
+ dθ2

)

+
[(

r2 + a2
1

)√
H1H5 + (a2

2 − a2
1)K1K5 cos2 θ√
H1H5

]
cos2 θ dψ2

+
[(

r2 + a2
2

)√
H1H5 + (a2

1 − a2
2)K1K5 sin2 θ√
H1H5

]
sin2 θ dφ2

+ M

f
√

H1H5

(
a1 cos2 θ dψ + a2 sin2 θ dφ

)2

+ 2M cos2 θ

f
√

H1H5

[
(a1 coshδ1 coshδ5 coshδp − a2 sinhδ1 sinhδ5 sinhδp) dt

+ (a2 sinhδ1 sinhδ5 coshδp − a1 coshδ1 coshδ5 sinhδp) dy dψ
]

+ 2M sin2 θ

f
√

H1H5

[
(a2 coshδ1 coshδ5 coshδp − a1 sinhδ1 sinhδ5 sinhδp) dt

+ (a1 sinhδ1 sinhδ5 coshδp − a2 coshδ1 coshδ5 sinhδp) dy
]
dφ

+ +
√

H1

H5

4∑
i=1

dx2
i ,

C2 = M cos2 θ

f H1

[
(a2 coshδ1 sinhδ5 coshδp − a1 sinhδ1 coshδ5 sinhδp) dt

+ (a1 sinhδ1 coshδ5 coshδp − a2 coshδ1 sinhδ5 sinhδp) dy
] ∧ dψ

+ M sin2 θ

f H1

[
(a1 coshδ1 sinhδ5 coshδp − a2 sinhδ1 coshδ5 sinhδp) dt

+ (a2 sinhδ1 coshδ5 coshδp − a1 coshδ1 sinhδ5 sinhδp) dy
] ∧ dφ
− M sinh2δ1

2f H1
dt ∧ dy
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− M sinh2δ5

2f H1

(
r2 + a2

2 + M sinh2 δ1
)
cos2 θ dψ ∧ dφ,

(A.1)e2Φ = H1

H5
.

Here

f = r2 + a2
1 sin2 θ + a2

2 cos2 θ,

(A.2)Hi ≡ 1+ Ki = 1+ M sinh2 δi

f
, i = 1,5.

In terms of the parameters appearing in the metric, the D1, D5 and momentum c
and the two angular momenta are

(A.3)Q1 = M

2
sinh2δ1, Q5 = M

2
sinh2δp, Qp = M

2
sinh 2δp,

Jψ = −M(a1 coshδ1 coshδ5 coshδp − a2 sinhδ1 sinhδ5 sinhδp)
π

4G(5)

= γ̃1
π

√
Q1Q5

4G(5)
,

Jφ = −M(a2 coshδ1 coshδ5 coshδp − a1 sinhδ1 sinhδ5 sinhδp)
π

4G(5)

(A.4)= γ̃2
π

√
Q1Q5

4G(5)

with G(5) the 5D Newton’s constant. The extremal limit is the limit in whichM → 0 while
Q1, Q5, Qp, γ̃1, γ̃2 are kept finite. We will give the extremal metric for generic values
the charges and of the angular momenta satisfying

(A.5)(γ̃1 − γ̃2)
2 − 4Qp � 0.

In this case we find it convenient to parametrizeQp as

(A.6)Qp =
(

γ̃1 − γ̃2

2

)2

−
(

γ̃1 + γ̃2

2µ

)2

, µ > 0.

The extremal metric, Ramond field and dilaton are

ds2 = −1

h

(
dt2 − dy2) + Qp

hf
(dt − dy)2 + hf

(
dr2

r2 + µ−1(γ̃1 + γ̃2)2η
+ dθ2

)

+ h

(
r2 + (γ̃1 + γ̃2)η

(1+ µ)γ̃1 + (1− µ)γ̃2

2µ

− (γ̃ 2
1 − γ̃ 2

2 )ηQ1Q5 cos2 θ

h2f 2

)
cos2 θ dψ2

+ h

(
r2 + (γ̃1 + γ̃2)η

(1− µ)γ̃1 + (1+ µ)γ̃2

2µ)

+ (γ̃ 2

1 − γ̃ 2
2 )ηQ1Q5 sin2 θ

h2f 2
sin2 θ dφ2
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+ Qp(γ̃1 + γ̃2)
2η2

hf

(
cos2 θ dψ + sin2 θ dφ

)2

− 2
√

Q1Q5

hf

[
γ̃1 cos2 θ dψ + γ̃2 sin2 θ dφ

]
(dt − dy)

(A.7)− 2(γ̃1 + γ̃2)η
√

Q1Q5

hf

[
cos2 θ dψ + sin2 θ dφ

]
dy +

√
H1

H5

4∑
i=1

dx2
i ,

C2 = −
√

Q1Q5 cos2 θ

H1f
(γ̃2 dt + γ̃1 dy) ∧ dψ

−
√

Q1Q5 sin2 θ

H1f
(γ̃1 dt + γ̃2 dy) ∧ dφ

+ (γ̃1 + γ̃2)ηQp√
Q1Q5H1f

(Q1 dt + Q5 dy) ∧ (
cos2 θ dψ + sin2 θ dφ

)
− Q1

H1f
dt ∧ dy

(A.8)

− Q5 cos2 θ

H1f

(
r2 + (γ̃1 + γ̃2)η

(1− µ)γ̃1 + (1+ µ)γ̃2

2µ
+ Q1

)
dψ ∧ dφ,

(A.9)e2Φ = H1

H5
,

f = r2 + (γ̃1 + γ̃2)η

[
(1+ µ)γ̃1 + (1− µ)γ̃2

2µ
sin2 θ

+ (1− µ)γ̃1 + (1+ µ)γ̃2

2µ
cos2 θ

]
,

(A.10)H1 = 1+ Q1

f
, H5 = 1+ Q5

f
, h = √

H1H5.

The metric(A.7) with µ �= 1 can be obtained from the metric(2.46), which corresponds t
the caseµ = 1, via a boost in the y direction:

(A.11)t → t coshδ + y sinhδ, y → y coshδ + t sinhδ

with

(A.12)e2δ = µ − 1

η
+ 1.

Appendix B. Singularities, closed timelike curves and horizons

The determinant of the metric(A.7)

(B.1)
√−g = hf sinθ cosθr
only vanishes atr = 0 andθ = 0,π/2. Note thatθ = 0,π/2 are the points where spherical
coordinates degenerate, so singularities of(A.7) can only occur atr = 0. In a neighborhood
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of r = 0 y can be decoupled from all the other coordinates by the coordinate change

t̃ = t − cty,

ψ̃ = ψ − cψy,

(B.2)φ̃ = φ − cφy

with

ct = − (µ − 1)[µ2(γ̃1 − γ̃2)
2 − (γ̃1 + γ̃2)

2 + 2µ2√Q1Q5]
(µ − 1)[γ̃1(1+ µ) + γ̃2(1− µ)][γ̃1(1− µ) + γ̃2(1+ µ)] + 2µ2(1+ µ)

√
Q1Q5

,

cψ = 2
µ2[γ̃1(1− µ) + γ̃2(1+ µ)]

(µ − 1)[γ̃1(1+ µ) + γ̃2(1− µ)][γ̃1(1− µ) + γ̃2(1+ µ)] + 2µ2(1+ µ)
√

Q1Q5
,

cφ = 2
µ2[γ̃1(1+ µ) + γ̃2(1− µ)]

(µ − 1)[γ̃1(1+ µ) + γ̃2(1− µ)][γ̃1(1− µ) + γ̃2(1+ µ)] + 2µ2(1+ µ)
√

Q1Q5
.

In the new coordinates, the part of the metric that involvesy andr is

(B.3)ds2
r−y = hf

(γ̃1 + γ̃2)2η

(
dr2 + c2

yr
2 dy2) + O

(
r4)

with

(B.4)

cy = 4(γ̃1 + γ̃2)µ
2

(µ − 1)[γ̃1(1+ µ) + γ̃2(1− µ)][γ̃1(1− µ) + γ̃2(1+ µ)] + 2µ2(1+ µ)
√

Q1Q5
.

From the expressions above we see that, unlessµ = 1, the transformation(B.3) involves a
shift of t by the periodic coordinatey. At r = 0 they circle shrinks. Thus, as explained
[6], metrics withµ �= 1 have closed timelike curves.

The geometries(2.46)dual to CFT states haveµ = 1. (The conditionµ = 1 is seen to
give, using(A.6), the relationQp = γ̃1γ̃2.) For these metrics one can show that there
no closed timelike curves by looking at the determinantg̃ of the metric restricted to th
three periodic coordinatesy, ψ andφ:

(B.5)

g̃ = r2 sin2 θ cos2 θ√
(Q1 + f )(Q5 + f )

[(
r2 + (γ̃1 + γ̃2)

2η
)
(f + Q1 + Q5 + Qp) + Q1Q5

η

]
.

Using an argument given in[6], it is enough to show that the determinant above ne
vanishes to prove that the metric is free of closed timelike curves. By explicit inspe
we know that the zeros of̃g at r = 0 or θ = 0,π/2 do not signal the presence of clos
timelike curves. So we need to show thatg̃ has no other zeros. This follows from the fa
that f + Qi > 0 for i = 1,5,p. In order to prove this last statement, consider first
geometries obtained by spectral flow, which have

(B.6)γ̃1 = −an, γ̃2 = a(n + γ ), Qp = a2n(n + γ ).

Sincen ∈ Z andγ < 1 we haveQp � 0 and thus
(B.7)η ≡ Q1Q5

Q1Q5 + (Q1 + Q5)Qp

� Q1

Qp
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and

(B.8)η � 1.

Let us look atf + Q1 and distinguish the two casesn > 0 andn < 0. (It will be very
important here thatn is an integer and that 0< γ < 1.) If n > 0

(B.9)f + Q1 � Q1 − a2nηγ � Q1

(
1− a2nγ

Qp

)
= Q1

(
1− γ

n + γ

)
> 0.

If n < 0 (and thusn + γ < 0)

(B.10)

f + Q1 � Q1 + a2(n + γ )ηγ � Q1

(
1+ a2(n + γ )γ

Qp

)
= Q1

(
1+ γ

n

)
> 0.

In both cases we used(B.7). The symmetry of the metric under interchange ofQ1 andQ5
then also impliesf + Q5 > 0. Look now atf + Qp. If n > 0

(B.11)f + Qp � Qp − a2nηγ = a2n
(
n + (1− η)γ

)
> 0

as 1− η > 0. If n < 0 (and thusn + γ < 0)

(B.12)f + Qp � Qp + a2(n + γ )ηγ = a2(n + γ )(n + ηγ ) > 0

asn + ηγ � n + γ < 0. In order to prove that the same results hold for the metrics aftS,
T dualities it is enough to notice thatf is duality invariant, since the transformation ofγ̃1
andγ̃2 (3.4)cancel that ofη:

(B.13)η′ = QpQ5

Q1Q5 + (Q1 + Q5)Qp

= Qp

Q1
η.

One can also verify that the metrics(2.46)do not have any horizon. For this purpo
we again refer to an argument given in[6]: there is no horizon if one can find a timelik
vector in the forward light cone which has a nonzero positive component along the
direction. In turn, the existence of such a vector follows from the fact that the determ
of the metric restricted to thet, y,ψ,φ coordinates

(B.14)ĝ = −r2(r2 + η(γ̃1 + γ̃2)
2)sin2 θ cos2 θ

is always negative (apart from the pointsr = 0 andθ = 0,π/2, where we know there is n
horizon by direct analysis7).

The form of the metric aroundr = 0 given in(B.3) shows that the metrics(A.7) gener-
ically have orbifold singularities. IfR is the radius of they circle, the conical defec
parameter is given by

(B.15)γ = |cy |R.

7 The naive geometry with no rotation[31] has γ̃1 + γ̃2 = 0, and this case has a horizon atr = 0; for the

geometries we constructed as duals of actual microstatesγ̃1 + γ̃2 �= 0 and the analysis aroundr = 0 done in
Section4.2shows that there is no horizon atr = 0.
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Appendix C. Inverse metric

The determinant of the extremal metric(2.46)is

(C.1)
√−g = hf sinθ cosθr.

The inverse of the metric(2.46)is

gtt = − 1

hf

(
f + Q1 + Q5 + Qp + Q1Q5 + Q1Qp + Q5Qp

r2 + (γ̃1 + γ̃2)2η

)
,

gyy = 1

hf

(
f + Q1 + Q5 − Qp + Q1Q5η

r2
− Q2

pη

r2 + (γ̃1 + γ̃2)2η

(Q1 + Q5)
2

Q1Q5

)
,

gty = −Qp

hf

(
1+ Q1 + Q5

r2 + (γ̃1 + γ̃2)2η

)
,

gψψ = 1

hf

(
1

cos2 θ
+ γ̃ 2

2 η

r2
− γ̃ 2

1 η

r2 + (γ̃1 + γ̃2)2η

)
,

gφφ = 1

hf

(
1

sin2 θ
+ γ̃ 2

1 η

r2
− γ̃ 2

2 η

r2 + (γ̃1 + γ̃2)2η

)
,

gψφ = −Qpη

hf

(
1

r2
− 1

r2 + (γ̃1 + γ̃2)2η

)
,

gtψ = −
√

Q1Q5

hf

γ̃1

r2 + (γ̃1 + γ̃2)2η
,

gtφ = −
√

Q1Q5

hf

γ̃2

r2 + (γ̃1 + γ̃2)2η
,

gyψ =
√

Q1Q5γ̃2η

hf

(
1

r2
+ γ̃ 2

1

r2 + (γ̃1 + γ̃2)2η

Q1 + Q5

Q1Q5

)
,

gyφ =
√

Q1Q5γ̃1η

hf

(
1

r2
+ γ̃ 2

2

r2 + (γ̃1 + γ̃2)2η

Q1 + Q5

Q1Q5

)
,

(C.2)grr = r2 + (γ̃1 + γ̃2)
2η

hf
, gθθ = 1

hf
, gxixj =

√
H5

H1
δij .

Appendix D. Solution of the wave equation

D.1. Matching region

In the matching region 1� x � σ 2 the wave equation becomes

(D.1)4
d

dx

(
x2 d

dx

)
Hmatch+

(
1− ν2)Hmatch= 0.

A basis of independent solutions is
(D.2)H
(1)
match= x

ν−1
2 , H

(2)
match= x− ν+1

2 .
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D.2. Outer region

In the outer regionx � 1 the radial equation is

(D.3)4
d

dx

(
x2dHout

dx

)
+ [

σ−2x + 1− ν2]Hout = 0

with solution

(D.4)Hout = 1√
x

[
C1Jν

(
σ−1√x

) + C2J−ν

(
σ−1√x

)]
.

In the matching region this gives

(D.5)Hout = C1
1√
x

(
σ−2x

4

) ν
r2 1

�(ν + 1)
+ C2

1√
x

(
σ−2x

4

)− ν
2 1

�(−ν + 1)
.

D.3. Inner region

In the inner region,σ−2x � 1, the wave equation simplifies to

(D.6)4
d

dx

(
x
(
x + δ2) d

dx

)
Hin +

[
1− ν2 + ξ2

x + δ2
− ζ 2

x

]
Hin = 0.

By defining

(D.7)Hin = xα
(
x + δ2)β

F

with

(D.8)α = |ζ |
2δ

, β = ξ

2δ

the equation above reduces to an hypergeometric equation forF . Of the two independen
solutions, only one is regular atx = 0:

(D.9)Hin = xα
(
x + δ2)β

F

(
p,q;1+ 2α;− x

δ2

)
,

where

(D.10)p = 1

2
+ α + β + ν

2
, q = 1

2
+ α + β − ν

2
.

To get the largex behavior we write

F

(
p,q;1+ 2α,− x

δ2

)

= �(1+ 2α)�(−ν)

�(q)�(1
2 + α − β − ν

2)

(
x

δ2

)−p

F

(
p,p − 2α;ν + 1;−δ2

x

)

�(1+ 2α)�(ν)
(

x
)−q (

δ2)

(D.11)+

�(p)�(1
2 + α − β + ν

2) δ2
F q,q − 2α;−ν + 1;−

x
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and note that

(D.12)F(p,q;ν; z) =
∞∑

n=0

�(p + n)�(q + n)

�(p)�(q)

�(ν)

�(ν + n)

zn

n! .

One thus gets (dropping an overall constant)

Hin = 1√
x

[
�(ν)

�(p)�(1
2 + α − β + ν

2)

(
x

δ2

) ν
2 (

1+ O
(
δ2x−1))

(D.13)+ �(−ν)

�(q)�(1
2 + α − β − ν

2)

(
x

δ2

)− ν
2 (

1+ O
(
δ2x−1))].

D.4. Matching the solutions

Matching the coefficients ofx(−1±ν)/2 betweenHout andHin we find the ratioC2/C1
given in(5.16).

Appendix E. Computation of travel time and absorption probability

In order to write the reflection amplitudeR given in (5.16)–(5.18)as in (5.19) it is
important to know the sign of the arguments

(E.1)α ± β + ν + 1

2

of the gamma functions appearing in(5.16). As we choseβ � 0, α + β + ν+1
2 is always

positive and thus we are left with only two possibilities.

Case 1

(E.2)α − β + ν + 1

2
> 0.

In this case one can use the series expansion

(E.3)
�(z + a)

�(z + b)
= za−b

∞∑
k=0

(−1)k(b − a)kB(k, a − b + 1, a)z−k

k!
((a)k is the Pochhammer symbol andB(k, a, b) the Bernoulli polynomial) which is valid
for z + a > 0, to show thatR has no oscillating factor like exp(2πinω/R�t), and thus
there is no absorption.

Case 2

(E.4)α − β + ν + 1

2
< 0.

One can rewrite the ratio of gamma functions in(5.16)with negative arguments as

1 ν
�(2 + α − β + 2)

�(1
2 + α − β − ν

2)
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= �(1
2 + β − α + ν

2)

�(1
2 + β − α − ν

2)

sin(π(α − β + 1−ν
2 ))

sin(π(α − β + 1+ν
2 ))

(E.5)= �(1
2 + β − α + ν

2)

�(1
2 + β − α − ν

2)

[
e−iπν + (

e−iπν − eiπν
) ∞∑

n=1

e2πin(β−α− 1+ν
2 )

]

so thatR is brought into the form(5.19)

R = e−iπν + 4π2

�2(ν)�2(ν + 1)

e−iπν

e2πiν − 1

(
δ

2σ

)2ν

× �(1
2 + α + β + ν

2)�(1
2 + β − α + ν

2)

�(1
2 + α + β − ν

2)�(1
2 + β − α − ν

2)

− 4π2e−iπν

�2(ν)�2(ν + 1)

(
δ

2σ

)2ν �(1
2 + α + β + ν

2)�(1
2 + β − α + ν

2)

�(1
2 + α + β − ν

2)�(1
2 + β − α − ν

2)

(E.6)×
∞∑

n=1

e2πin(β−α− 1+ν
2 ).

From the equation above we can read off the probability of absorption/emission(5.34)
and the time of travel(5.33).
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