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“Lost chains” in algebraic models

How the complete classification of subalgebras can lead to new unexpected physics

L. Fortunato1 and W.A. de Graaf2

1 European Centre for Theoretical Studies in Nuclear Physics and Related Areas, Strada delle
Tabarelle 286, I-38123 Villazzano (TN), Italy
2 Dip. Matematica, Università di Trento, via Sommarive 24 ,I-38123 Povo (Trento), Italy

E-mail: fortunat@pd.infn.it

Abstract. The algebraic structure of some of the simplest algebraic models u(2), u(3) and
u(4), widely used in several branches of physics either as toy models or as working instruments,
are reanalyzed under a new perspective that releases the requirement that chains should
terminate or pass through the angular momentum algebra. Unitary algebras are non-semisimple,
therefore we first apply the Levi-Malcev decomposition. Then we use the theory of weighted
Dynkin diagrams to identify conjugacy classes of A1 ∼ su(2) ∼ so(3) subalgebras: a complete
classification of new angular momentum non conserving (AMNC) dynamical symmetries follows
that we substantiate with examples.

1. Introduction

Unitary algebras arising in bosonic models of quantum mechanics play a fundamental role in
several branches of physics such as nuclear, atomic, molecular and particle physics[1, 2, 3, 4, 5].
They are not semisimple, therefore the very first step is to use the well-known Levi-Malcev
decomposition to extract the special unitary subgroup, that instead possesses this property
[6]. To this algebra we apply the theory of weighted Dynkin diagrams [7, 8, 9] to classify the
different conjugacy classes of A1-type subalgebra (that is Cartan’s notation for the isomorphic
algebras sl(2) ∼ su(2) ∼ so(3)) in terms of weighted Dynkin diagrams (WDD). Within any
Lie algebra one can identify sl(2)-triples, that is a set of three elements that formally satisfy
the commutation relations of sl(2). There are infinitely many such triples, but there is only
a finite number of distinct nilpotent orbits. Nilpotent orbits are in one-to-one correspondence
with certain distinguished semisimple orbits through the Jacobson-Morozov theorem, a theorem
of Kostant and another of Mal’cev [7]. These orbits in turn can be labeled by their WDD. This
yields a complete classification of A1-type subalgebras that brings in the possibility of additional
chains that do not conserve the (usual) angular momentum, but rather have some sort of angular
momentum of their own. A somewhat unexpected discovery of spinor operators, occurring in the
tensor analysis of the whole algebra with respect to this new angular momentum, has generated
a useful discussion at the conference, that helped us in understanding it more deeply. All the
algebras we deal with have also been implemented in the GAP4 programming language [10], that
allows symbolic manipulations of algebraic objects with the help of a package [11] that has been
especially designed to provide relevant computational algorithms. We have summarized in Fig.1
the total number of subalgebras and the number of distinct conjugacy classes that are found for
each An with n = 1, · · · , 7.
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Figure 1. Number of classes of subalgebras and of nilpotent orbits, obtained using SLA (in
GAP) from the recent classification of de Graaf [9]. Two examples that are used in algebraic
models of molecular and nuclear physics are highlighted. See also next figure.

The dynamics of several physical system can be described in second quantization as being

based on boson creation and annihilation operators bα, b
†
α that are treated as elementary building

blocks. The index specifies the number and any additional quantum number that can be useful
to classify them. In particular they might carry an intrinsic angular momentum ` that has 2`+1
components. They satisfy bosonic commutation rules of the form:

[bα, b
†
α′ ] = δα,α′ (1)

[bα, bα′ ] = [b†α, b
†
α′ ] = 0 (2)

The unitary algebra u(n) is obtained by taking all the n2 bilinear operators of the form b†αbα′ .
Typical examples and very successful models are, for instance, the Interacting Boson Model

for nuclei and the Vibron model for molecules, both of which have been investigated in great
detail, mainly by F.Iachello and collaborators. A common feature of the majority of these models
is that, once one has identified the relevant physical ingredients, that can be associated with
boson creation and annihilation operators, one has a (larger) unitary algebra. Then one searches
for all chains of subalgebras that end with the so(3) angular momentum algebra, to ensure that
the states, that are labeled by a suitable number of eigenvalues of Casimir operators of the chain,
conserve angular momentum. This is certainly a very natural way to proceed, but the algebra
is, mathematically speaking, richer than that. This richness can be appreciated in Fig. 2,
where the A3 and A5 algebras (red points) and their subalgebras are plotted in a circular graph.
The green points are A1 subalgebras pertaining to different conjugacy classes. The number of
chains of subalgebras that do not pass through the angular momentum algebra is much higher:
although their existence has been known since the early days of algebraic models, they have
not been much investigated in the past in connection with physical problems. The graph that
corresponds to the IBM, albeit of huge importance in physics, is quite complicated, therefore
we will restrict our discussion to some low rank cases, among which A3 that corresponds to the
vibron model. Our aim is to try and understand if and how the additional chains can be put in
correspondence with the basic operators that define the algebra. In addition we will investigate
their tensorial properties and suggest applications.
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Figure 2. Circular graphs corresponding to the inclusions of subalgebras in A3 (9 vertices,
11 edges) and A5 (37 vertices, 79 edges) symbolized with red points. Green points are A1

subalgebras. Black, yellow and blue in the left part indicate A1A1, A2 and B2 subalgebras
respectively. Labels in the left part correspond to the ones in Fig. 5.

2. u(2)
The two dimensional harmonic oscillator problem arises in simple models of quantum mechanics
[4, 12] and it is connected to the u(2) Lie algebra. Two species of scalar bosons, called s and t
can be invoked, that obey standard bosonic commutation rules of the form [s, s†] = [t, t†] = 1
and [s, t] = [s, t†] = [s†, t] = [s†, t†] = 0. The Lie algebra u(2) is built with bilinear operators
made up of these operators and it amounts to four elements:

g : g1 = s†s, g2 = s†t, g3 = t†s, g4 = t†t . (3)

g is not semisimple. Thanks to the Levi-Malcev decomposition it may be rewritten as the direct
sum of a 1-dimensional subalgebra, the radical or maximal solvable ideal, and a 3-dimensional
semisimple Levi subalgebra, as follows u(2) ' r ≡ u(1) ⊕ s ≡ su(2), with r = 〈g1 + g4〉
and s = 〈g2, g3, g1 − g4〉. Notice that s has a basis consisting of elements of the form given in
Eq. (1.20) of Ref. [4], as the standard generators of su(2) angular momentum algebra, namely

Ĵx = (s†s − t†t)/2, Ĵy = (t†s + s†t)/2, Ĵz = i(t†s − s†t)/2. Clearly the basis element of the

radical is the total number of bosons operator, N̂ = s†s + t†t, that is known to commute with
all the operators, thereby forming the center of the Lie algebra. Although in the present case
it is almost trivial, the semisimple part is amenable to treatment with the theory of weighted
Dynkin diagrams [7, 8]. It corresponds to A1 in Cartan notation and admits only one nilpotent
orbit, labeled by the weighted Dynkin diagram [2] (notice that WDD’s are indicated in square
brackets, not to be confused with references). Therefore there exists only one conjugacy class.

Two dynamical symmetries are present (see for example Ref. [2, 4, 12]), namely:

I) u(2) ⊃ u(1)
| |

[N ] nt

II) u(2) ⊃ su(2) ⊃ so(2)
| | |

[N ] j µ
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u(2) ≡
u(1)
︸︷︷︸

r

⊕ su(2)
︸ ︷︷ ︸

s

1

u(1)

3

su(2)

1

so(2)g1 + g4

g1 − g4, g2, g3

g1 + g4

{ g1 − g4
g2, g3

g1 − g4

Figure 3. Classification of the u(2) subalgebras. Semisimple algebras are indicated in yellow.
Elements, according to the definitions in the text, are indicated below each frame and the order
(dimension) is given as a small number in the upper-right corner.

Each one of them provides a basis that can be chosen for diagonalization. These two chains have
a fundamental difference: one goes through the radical, the other through the semisimple Levi
subalgebra. The eigenvalues of two invariants are needed to label the basis states and while they
are fixed in the first chain | [N ]nt〉, there is more freedom in the second as they can be chosen
either as | [N ]j〉 or | jµ〉. The second form exhibits in a natural way the splitting of eigenstates
with different third component of angular momentum and it has prevailed in the specialized
literature. The two subalgebras u(1) and so(2) are isomorphic, but when one is dealing with a
complete classification of all subalgebras, some care must be taken. Although it is clear that the
linear map that changes the sign of g4 and leaves the rest unchanged, is actually swapping u(1)
and so(2), it does not send the whole reduction scheme of Fig. (3) into itself. It can be easily
proven that there is no Lie algebra homomorphism g → g mapping u(1) into so(2).

3. u(3)
The algebra u(3) is built upon bilinear combinations of three boson operators. These can be
chosen either i) as three scalar bosons, that might be physically interpreted as appropriate
combinations of the three Cartesian coordinates and momenta in a three dimensional harmonic
oscillator, or ii) as the three components of a vector boson or finally iii) as a scalar boson plus
two, so-called, circular bosons [3, 13]. Each construction has practical applications, especially
to the study of molecular spectra. We study here the construction ii) made up in terms of a p
(` = 1) boson, because it is necessary for the construction of the Vibron model [2, 4, 5]. The

operators p†µ and p̃µ with µ = −1, 0, 1 transform as the ` = 1 representation of the rotation group.
The nine bilinear operators built from tensor couplings close into the u(3) Lie algebra. One can
apply the same arguments as in the preceding section, namely the Levi-Malcev decomposition
and the classification of A1 subalgebras in terms of weighted Dynkin diagrams, to show that the
lattice of subalgebras of u(3) takes the form displayed in Fig. (4). The elements of the algebra
can be written as:

g1 = [p† × p̃]
(0)
0 g2 = [p† × p̃]

(1)
−1 g3 = [p† × p̃]

(1)
0 g4 = [p† × p̃]

(1)
1

g5 = [p† × p̃]
(2)
−2 g6 = [p† × p̃]

(2)
−1 g7 = [p† × p̃]

(2)
0 g8 = [p† × p̃]

(2)
1 g9 = [p† × p̃]

(2)
2

(4)

where one can identify a scalar N̂ =
√
3g1, a vector L̂κ =

√
2[p† × p̃]

(1)
κ (3 components) and

a quadrupole tensor Q̂κ = [p† × p̃]
(2)
κ (rank 2, 5 components) to be further discussed below

[3]. The Levi-Malcev decomposition is clear from the division into white and yellow blocks in
Fig. (4) and the scalar operator g1 is actually always responsible for the radical part of the
classification. From Figs. (3) and (4) one can see that the whole scheme can be divided in
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Figure 4. Classification of the u(3) subalgebras. Semisimple algebras are indicated in yellow.
Elements, according to the definitions in the text, are indicated below each frame and the order
(dimension) is given as a small number above the upper-right corner. Weighted Dynkin diagrams
are indicated in the lower-right corner: in the case of non-semisimple algebras they are referred
only to the semisimple part. A total of 6 chains can be identified.

two parallel sheets, a semisimple sheet, containing all the semisimple Lie algebras, and a non-
semisimple sheet, containing an exact copy of the structure of the lower one, where each algebra
is multiplied by the radical. Of course u(n) corresponds to su(n) and so on, each corresponding
pair is also connected by an inclusion relation from top to bottom with the exception of one
dimensional subalgebras. The semisimple part starts at su(3), called A2 in Cartan’s notation,
that has two different types of A1 subalgebras labeled by different weighted Dynkin diagrams,
[1, 1] and [2, 2] respectively. Each of them is an entire conjugacy class of triplets of operators
with the same WDD of which we choose just one representative (usually the simplest available
or the one that has already been incorporated into an established model). The second one is
the usual algebra of angular momentum, whose components are the components of the rank 1

tensor in Eq. (4). Indeed the three operators L̂κ =
√
2[p† × p̃]

(1)
κ satisfy the angular momentum

algebra. This algebra and all the chains passing through it have been described by Iachello and
the physical reasoning underlying this rightful choice is that the quantum mechanical description
of our system and the basis states associated to the chain must conserve angular momentum.

It turns out, however, and this fact was unknown or mostly unnoticed till now, that the
A1 algebra labeled by [1, 1] is made up of three objects that are not components of a vector,
but that, nevertheless, have commutation relations that formally identify them as an angular
momentum algebra

[Ŵ+, Ŵ−] = 2W0 [Ŵ0, Ŵ±] = ±Ŵ± (5)

where the operators are defined as {Ŵ− = g5,W0 = g3/
√
2,W+ = g9}. In usual terminology

they are the Q̂±2 components of the quadrupole tensor and the L̂0 component of the angular
momentum. Historically only two other theoretical works have introduced something of this
sort: Chen and Arima [14] discuss the origin of cylindrical bosons within the Interacting Boson
Model, where they introduce the ∆ spin that is built upon the highest and lowest components of
the quadrupole tensor plus the zero component of the angular momentum, the difference being
that their operators are made up of s and d bosons, while ours are made up of p bosons 1;
Elliott discusses, in the fundamental Ref. [15], a similar algebraic structure in the context of

1 I’d like to thank P.van Isacker for bringing Ref.[14] to my attention.
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the collective motion in the nuclear shell model.
Now the crucial point is that once we have an angular momentum algebra, say Ĵ , (to be

replaced either by L̂ or by Ŵ ) we can define spherical tensors with respect to that algebra by
means of the two formulas [4]:

[Jz , T
k
q ] = q T k

q [J±, T
k
q ] =

√

(k ± q + 1)(k ∓ q) T k
q±1 . (6)

We will use the name of J-tensors to refer to tensors with respect to a particular J-set. The whole
u(3) algebra is made up by an L-scalar, an L-vector and and L-tensor of rank 2, as outlined above
after Eq. (4), with respect to the L-set. In this L-set, both p† and p̃ transform as L-vectors. The
analysis of the elements of u(3) with respect to the W-set reveals instead that, together with the

obvious W-vector given by Ŵ itself, we have two W-scalars and two W-spinors: this might come
as a surprise since we are not expecting spin 1/2 objects to arise in a purely bosonic model. The

proof is obtained through the following steps: g1 and g7 commute with all components of Ŵ :
they are therefore scalars; the objects sp1 = {g6, g4} and sp2 = {−g8,−g2} , with components

in the {−,+} order, have the following commutation relation with Ŵ0:

[Ŵ0, sp
±
i ] = ±1

2
sp±i (7)

with i = 1, 2 and therefore they are the −1/2 and +1/2 components of a spinor. Finally the

commutator with Ŵ+ and Ŵ− terminate after two steps:

[Ŵ+, sp
−
i ] = sp+i [Ŵ+, sp

+
i ] = 0 (8)

[Ŵ−, sp
+
i ] = sp−i [Ŵ−, sp

−
i ] = 0

with i = 1, 2. The coefficients are compatible with k = 1/2 in Eq. (6), therefore we have
found two spin−1/2 spinors. We propose the name of Chen-Arima spinors for spinors arising in
bosonic models, because, to our knowledge, these authors have found the first case. Notice that
one can always form other scalars from tensor coupling of Chen-Arima spinors obtaining:

[sp1 × sp1]
(W=0)
0 = −[sp2 × sp2]

(W=0)
0 = −

√
3

2
g7 (9)

that is a W-scalar consistent with the observation made above.
It is interesting to note that the vectors p† and p̃ don’t satisfy anymore good tensorial

properties with respect to the W-set (in other words they do not transform as vectors).

Their role is replaced by other two objects V = {
√
2p†−1p

†
−1, 2p

†
−1p

†
1,
√
2p†1p

†
1} and U =

{
√
2p̃−1p̃−1, 2p̃−1p̃1,

√
2p̃1p̃1} (with components ordered as −1, 0, 1) that are found to be good

W-vectors by following the same argument outlined above. Their action creates or annihilates
two bosons at the same time and this is consistent with the definitions of the components of
the W-spin that are based on the highest and lowest (µ = ±2) components of the quadrupole
tensor.

4. u(4)
This is the case of the Vibron model [2, 3, 4, 5], that is built upon s and p bosons. Together
with the nine generators in Eq. (4) one needs another seven generators containing s to close the
algebra, namely:

g10 = [s† × p̃]
(1)
−1 g11 = [s† × p̃]

(1)
0 g12 = [s† × p̃]

(1)
1

g13 = [p† × s̃]
(1)
−1 g14 = [p† × s̃]

(1)
0 g15 = [p† × s̃]

(1)
1 g16 = [s† × s̃]

(0)
0

(10)
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5A2
8A1A1

7A1A1

3A1
[020]

1A1
[101]

4A1
[222]

2A1
[202]

Figure 5. Classification of Lie subalgebras of A3. Subalgebras carry an arbitrary upper
left index. Three-dimensional subalgebras of type A1 represent entire conjugacy classes. The
corresponding WDD is given in square brackets. In theory all inclusions are possible, but in
practice, in our particular realization, the dotted one is not possible simultaneously with all the
others, although the direct inclusion 6B2 ⊃ 3A1 is still valid.

The radical of the u(4) algebra is given by the total number of boson operator, N̂ =
√
3g1+ g16.

The semisimple sheet consists (see Fig.5) of the seven chains that originate from A3 and end
up in one of the four possible A1, the conjugacy classes of which are labeled by the WDD:
[101], [202], [020] and [222]. In the Vibron model only two such chains, the ones passing through
the standard angular momentum subalgebra [202], have been studied so far.

The standard well-known chains of the Vibron model are the most external paths of Fig. 5
connecting A3 and A1[202] or, for the sake of clarity:

su(4) ∼ A3







su(3) ∼ 5A2

so(4) ∼ 8A1A1






so(3) ∼ 2A1 (11)

that correspond to the nonrigid and rigid rotovibrator limits of the Vibron model. In the
complete classification four classes of A1 subalgebras are present and one has therefore four
different “angular momenta” that can be used as J-sets to define spherical tensors. In Table 4
the usual tensor analysis of the algebra of the Vibron model with respect to the 2A1 algebra
with WDD [202] is given for reference. The W-angular momentum described above for u(3)
forms instead the 1A1 algebra with WDD [101]. With respect to this W-set, the whole algebra

su(4) amounts to the W-vector Ŵ , to four W-scalars and four W-spinors (cfr. Table 2). The
scalars built with tensor couplings of ŝp3 with itself and ŝp4 with itself are identically zero,
therefore one can define two new W-spinors ŝp′3 = {−g2 − g10 − g13, g8 − g12 + g15} and ŝp′4 =
{g6 + g10 − g13, g4 + g12 + g15} as linear combinations. Their couplings give good W-scalars and
they are also needed as elements of B2.

We summarize in Table 2 the tensor analysis of A3 with respect to 1A1[101] and we give
in Tables 3 and 4 the tensor analysis of the whole algebra based on 3A1[020] and 4A1[222]
respectively. A3 is made up of 5 vectors with respect in the former case (among which the
defining vector Y ), while it is made up of a vector (the defining vector T (1)), a quadrupole and
an octupole tensor in the latter case.

One can write AMNC hamiltonians with the dynamical symmetry based for example on the
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Table 1. Definitions and tensorial character of the operators forming the semisimple A3 algebra
with respect to the (standard) set forming the 2A1 algebra with [202] WDD. The third column
features alternative definitions for algebra elements that correspond to the second column with
the following ordering µ = −k, .., 0, .., k, where k is the rank.

operator defrank alt.def. components

n̂′ [s† × s̃]00 −
√

1
3 [p

† × p̃]00 g1 1

L̂µ/
√
2 [p† × p̃]1µ g2, g3, g4 3

Q̂µ [p† × p̃]2µ g5, · · · , g9 5

D̂µ i[p† × s̃+ s† × p̃]1µ g10, g11, g12 3

D̂′
µ [p† × s̃− s† × p̃]1µ g13, g14, g15 3

Table 2. Definitions and tensorial character of the operators forming the A3 algebra with
respect to the non-standard set forming the 1A1 algebra with [101] WDD (that can be obtained
from the vector in the first line).

operator definition components
ŝ1, · · · , ŝ4 g1, g7, g11, g14 1 (each)

Ŵµ −g5/
√
2, g3/

√
2, g9/

√
2 3

ŝp1, · · · , ŝp4 {g2, g8}, {g6, g4}, {g10, g12}, {g13, g15} 2 (each)

Table 3. Definitions and tensorial character of the operators forming the A3 algebra with
respect to the non-standard set forming the 3A1 algebra with [020] WDD (that can be obtained
from the vector in the first line).

operator definition components

Ŷµ i(g2 + g6)/
√
2 + g10, (g1 +

√
2g3 +

√

2/3g7 + 2ig11)/2, i
√
2g4 + g12 + g15 3

B̂µ 2
√
2g9,

√
2i(g4 − g8)− 2g12, 2i

√
2g11 3

M̂µ −g1 −
√

2/3g7 + i(g14 − g11), ig6 + (g13 − g10)/
√
2, g5 3

R̂µ −i(g4 + g8)/
√
2 + g12,−g3/2−

√

3/8g7 − ig11, i(g2 + g6)/
√
2 3

Ŝµ −i(g4/g8)/
√
2 + g15,−g1/

√
2− g3/2 +

√

1/12g7 − ig11,−g10 3

chain A3 ⊃ B2 ⊃ 7A1A1 ⊃ 1A1 or

su(4) ∼ so(6) ⊃ so(5) ⊃ so(4) ⊃ so(3)
| | | |
N t u w

(12)

where the labels in the last row are connected with the eigenvalues of the quadratic Casimir
operators. The resulting energy formula for symmetric representations E = αN(N +4)+βt(t+
3) + γu(u + 2) + δw(w + 1) with t = 0, · · · , N , u = 0, · · · , t and w = 0, · · · , u, most probably
is not a good choice for diatomic molecular spectra, but one can anyway use the basis states
| N, t, u,w〉, that is actually a Gelfand-Tsetlin pattern for orthogonal algebras, to diagonalize
hamiltonians based on the full spectrum generating algebra, with the proviso that, while N is
the total boson number as in the Vibron model, the labels v, u and w do not conserve angular
momentum, but rather conserve w. Following the established path, one would have not used
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Table 4. Definitions and tensorial character of the operators forming the A3 algebra with
respect to the non-standard set forming the 4A1 algebra with [222] WDD (that can be obtained
from the vector in the first line).

oper. definition comp.

T̂
(1)
µ (g2 − 7g4 − 7g6 − g8 + 3g13)/2,−3

2g1 −
√
2g3 − 2g5, g2 + g10 + g12 3

T̂
(2)
µ −6

√
2(2g3 +

√
2g5 −

√
2g9 + g14),−3(g2 + g4 + g6 − g8 + g13), 5

√

3/2g1 −
√
3g3 −

√
6g5 + g7, (g6 − g2)/2 + g10 + g12, (g5 +

√
2g11)/4

T̂
(3)
µ

−72√
30
(g13 − g15),

−12√
10
(2g2 +

√
2g5 −

√
2g9 − g14),

−6
5
√
2
(3g2 − g4 − g6 − 3g8 − g13), 7

(−
√
6g1 + 2(

√
3g3 +

√
6g5 + 5g7))/10, (g2 + 5g6 − 4g10 − 4g12)/(10

√
2),

(g5/
√
2− g11)/

√
40,−g10/

√
120

this basis for the Vibron model, due to the difficulty in giving a precise physical meaning to
the labels. One advantage is the ease of writing the branching rules due to the absence of
missing labels. Several other AMNC dynamical symmetries, one for every possible path in Fig.
5 can be invoked with the same spirit: some of them would provide at least new and simpler
diagonalization schemes and possibly applications to quantum many-body systems.

5. Conclusions

We have shown that the use of i) Levi-Malcev decomposition and ii) theory of weighted Dynkin
diagrams allow a thorough classification of algebraic models arising in bosonic models of quantum
mechanics providing i) a way of separating out semisimple from non-semisimple subalgebras and
ii) a neat classification of all possible conjugacy classes of three dimensional subalgebras (A1)
respectively. Well-known algebraic models, either used as conventional or pedagogical toy models
or actually applied to real systems, usually adopt subalgebra chains that end up in the standard
angular momentum algebra. We have shown that one can “fill the gaps”, i.e. write basis elements
for the whole reduction scheme. In particular the elements of any additional A1, having different
WDD, can be used to define new angular momenta operators, with respect to which one can
redefine tensors and give to the whole algebra elements a different tensorial character. With
respect to one of these new angular momenta, it is found that other operators behave like spin-
1/2 objects, a fact that was most surprising at first. This was hinted at by the old works of
Elliott [15] and Chen-Arima [14] and our paper provides a more complete collocation for their
findings. In particular Chen and Arima have found spinors arising within the Interacting Boson
Model of the nucleus that is completely bosonic (built upon s and d bosons). We argue that they
have found the A1[11011] subalgebra of su(6), the analogous of our A1[101] subalgebra of su(4).
Another aspect worth mentioning again is that, although hamiltonian displaying dynamical
symmetries based on AMNC chains might be unphysical, the basis states associated to them
might provide an alternative (maybe easier) basis for diagonalization of complex hamiltonians.

Let us repeat once again that there is nothing wrong with the way algebraic models have
been formulated: the chains that pass through the angular momentum algebra are certainly the
most natural and the most useful. Since the mathematical structure is nevertheless larger, we
simply wanted to understand if and how the other chains can be interpreted in terms of the basic
operators that define the model, if this has some physical significance and if those alternative
chains can be used either to model realistic hamiltonians (and this seems very improbable) or to
furnish alternative diagonalization schemes (and this is clearly possible). We believe that there
might be other insightful discoveries or advantages awaiting in the still little explored angular
momentum non conserving chains of algebraic models.
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