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The atomic nucleus is an ideal laboratory not only for physicists, but especially
for mathematicians. Indeed, nowadays a wide variety of theories based on quantum
mechanics as well as semi-classical approaches have been applied to nuclear structure
and reactions and innumerable experiments have been performed to test them.
The most striking feature of the nucleus is that it continues to challenge physicists of all sorts.

of the nucleus in terms of its surface that, under the
influence of a restoring force, is allowed to perform
quadrupole (or, more generally, multipole) oscillations
around an equilibrium ellipsoidal shape that can be
spherical or deformed. Each shape is uniquely defined
by five variables: two, β and γ, that encode the extent of
quadrupole deformation and the asymmetry in the
intrinsic frame of reference and three Euler angles,
that govern the orientation in space of the intrinsic
ellipsoid with respect to a laboratory frame. e first
parameter, β, may be thought of as the radius in a sui-
table two-dimensional polar frame of reference, while
the second, γ, is an angle that may range from 0 to 2π.
Each point in this two-dimensional plane is uniquely
associated with a given ellipsoidal shape in the intrinsic
frame of reference. e three Euler angles that specify
this orientation do not give further information on the
intrinsic shape and therefore one can then confine this
two-dimensional plane to a 60° wedge, because all the
other wedges may be obtained by simply re-labelling
the axes of the intrinsic frame (see Fig.1). e Bohr
Hamiltonian, which is written in the intrinsic frame
of reference as a partial differential equation in those
five variables, is the quantized Hamiltonian for the

his is because it displays an everyday richer phe-
nomenology that underlies abstract
mathematical concepts, such as group theory

and Lie algebras, which are used to describe “hidden”
symmetries. ose symmetries, contrariwise to more
commonly used ones, such as translational invariance,
parity, time-reversal, or even geometric symmetries, are
not properties of the object itself, but rather are contai-
ned in their quantum mechanical Hamiltonian. We will
dwell, in the following,on the Bohr Hamiltonian and the
newly discovered symmetries that are associated with it.

droplets and quadrupoles
Since the beginning of nuclear physics the phenomeno-
logy of the atomic nucleus has been profitably described
in terms of a droplet of a quantum liquid. is semi-
empirical model,due to von Weizsäcker [1], incorporates
a number of terms that comes from different physical
considerations into a mass-formula. is approach was
of a static nature, but the idea of a liquid was the starting
point of a more elaborate quantum description that takes
in the dynamics of surface oscillations of the drop.
e celebrated model of Bohr and Mottelson [2], that
dates back to the fiies, describes certain properties
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richer our exploration of the nucleus. Just to mention a
few interesting phenomena: the super- and hyper-
deformation, which might occur at high spin and
temperature, and their relation to fission reaction and
clustering, wobbling motion, search for triaxiality and
super-deformed triaxial shapes, band termination, pro-
late-oblate shape coexistence, octupolar and exotic
shapes (See, for instance, [1,14,15,16]). Each of these
topics (a few of which are well-covered in Ref.[16])
would require a separate article, but this is beyond the
scope of the present paper.

Interacting Boson Model
ese three classes of potential surfaces with different
minima have been related to the group structures, U(5),
SU(3) and SO(6) for spherical, axially deformed and γ-
unstable shapes respectively. is has been possible
especially aer the inception of the Interacting Boson
Model [1,5], a very successful algebraic approach pro-
posed by A.Arima and F.Iachello in the mid-seventies,
that parallels the collective description. In the IBM the
nucleons in an even-even isotope are divided into an
inert core and an even number of valence particles.
ese particles are then considered as coupled into two
kinds of bosons (an effect essentially due to the combi-
nation of pairing and quadrupole-quadrupole
interactions) that may carry either a total angular
momentum 0 or 2 ,and are respectively called the s- and
d-bosons. e bilinear operator that may be formed
with the s- and d-boson creation and annihilation ope-
rators close into the U(6) algebra, whose three possible

quadrupole oscillations of an ellipsoidal surface.
It contains three kinetic terms (in β, in γ and rotational)
as well as a potential term,V(β,γ). is last term, which
is a function of β and γ, is particularly relevant to the
present discussion, because it represents the potential
associated with some sort of restoring force on the
nuclear surface, that may be thought of as the response
of the surface to an external stimulus. In principle this
potential is not known and the original solution of Bohr
and Mottelson used a γ-independent harmonic oscilla-
tor in β centered around the origin with the idea of
describing the oscillations of a spherical surface [2].

Ellipsoids
Since that successful solution a number of important
analytical, approximated and numerical solutions of
this Hamiltonian has been found (they are collected in
Ref. [3]) and their applications to nuclear spectroscopy
at low-energy have been very rewarding.
In particular three classes of solutions have been tradi-
tionally discussed which correspond to different shapes:
the sphere, the prolate and oblate axially deformed ellip-
soid, and the so-called γ-unstable [4]. Each of these
classes comes from a potential surface with a particular
position of the minima in the β-γ plane as illustrated in
Fig. 2: i) when the absolute minimum is at zero the sur-
face is spherical, ii) when it is a point with β≠0 along the
γ=0 (or γ=π/3) axis the surface is a prolate (or oblate)
axial ellipsoid and iii) when the locus of minima is a
sort of circular valley one speaks of a γ-unstable shape
[4]. In addition when the minimum is a point within
the wedge, the surface is a triaxial ellipsoid. During the
second half of the last century until the present time,
each given shape has been the subject of many investi-
gations which from one side have pushed the technical
ability of nuclear spectroscopists (high-efficiency multi-
detector arrays have made it possible to look for fine
structures in spectra) and from the other have made
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� fIg. 2: On the fundamental wedge, the spherical limit
correspond to the β=0 point, axially deformed prolate
and oblate limits correspond to a point with non-null β
and γ=0 and π/3 respectively. The γ-unstable limit
corresponds to the locus of points with non-null β and
0<γ<π/3. Isolated minima in all other points (not shown)
represent triaxial shapes.
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able to generate either a spherical minimum, or a defor-
med γ-unstable one, depending on the values of the
parameters a and b (see Fig. 3). Of course this potential
allows one to span the whole range of intermediate
cases, including the critical point. In this case one
speaks of a U(5)-SO(6) quantum phase transition or a
spherical to γ-unstable transition (which is a second-
order phase transition in Ehrenfest’s classification [6,7]).
e critical point, that from the theory of phase transi-
tions is defined as the value of the control parameter for
which a given order parameter (or one of its deriva-
tives) manifests a discontinuity, is obtained in the case
of a pure β4 potential. is potential is not soluble ana-
lytically, but numerical solutions have been found [8].
Before the numerical solution Iachello (in a series of
papers that cover this and other cases) has realized that
the pure quartic potential may be approximated with an
infinite square well in β, that yields an exactly solvable
problem [9]. e analytic solution that he has found in
this way was named E(5), because the eigenfunctions,
that are essentially spherical Bessel functions, form a
basis for the Euclidean group
in five dimensions. Another
reason to do so is that E(5) is
indeed a spectrum genera-
ting algebra (In other words
the Hamiltonian is a polyno-
mial in the generators of a
Lie algebra and this implies
an easy calculation of the
matrix elements and there-
fore an easy diagonalization.)
for the Bohr Hamiltonian with the infinite square well
potential: where the potential is null, the whole equa-
tion reduces to just π2, the five-dimensional vector
momentum squared, or, in other words, the generator of
translations and rotations in five dimensions, that is the
Euclidean group.

subgroup chain match the U(5), SU(3) and SO(6) solu-
tion of the Bohr Hamiltonian. e fact that the L=2 has
a privileged role in this model explains why the qua-
drupole degree of freedom emerges naturally from the
abstract algebra. On the other hand the necessity of
including L=0 monopole bosons focuses attention on
the short-range pairing interaction.
A rationale for the valence bosons ansatz is the simpli-
city of the model: in fact the IBM allows for treatment
of heavy nuclei, where sometimes the more natural
shell-model approach would need a much larger set of
basis states. Although the IBM is a phenomenological
model, the connection with microscopic aspects is
ensured by the N-dependence across a given shell.
With the clear-cut algebraic formulation of the IBM,
people have investigated its relations to the collective
model and have transposed the group labels to the col-
lective description using them as benchmarks for
nuclear structure. Although a precise mapping from
one model to the other is far from being trivial [17], it is
clear that the collective model and the interacting
boson model describe the same phenomenology with
a geometrical and with an algebraic approach respecti-
vely. Roughly speaking the Bohr-Mottelson collective
description can be recovered by taking the large N
(boson number) limit of the IBM.

Shape-phase transitions
As has been said, a number of exact solutions of dis-
tinctive importance may be given, but alongside the
three traditional ones, there are a few which have come
to the fore recently because of the novelties they imply
(see [3] and [13]). In fact, aer one associates a certain
phase to each of the shapes described above, the pro-
blem of studying the so-called shape-phase transitions
between the various classes of solutions of the Bohr-
Mottelson model comes forward. For example a
γ-independent potential of the type V(β)=a β2 + b β4 is

� fIg. 3: The
potential
V(β)=aβ2+bβ4
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e E(5) solution is not just a nice mathematical solu-
tion of the Bohr Hamiltonian at the critical point of the
shape-phase transition between spherical and defor-
med γ-unstable regimes, but serves as a paradigm for
nuclear structure, because it is parameter free (except
for an overall energy scale) and gives precise formulas
for energy eigenvalues, wave functions, electromagnetic
transition rates and selection rules that may be tested
against spectroscopic data.
Although, with respect to the collective solution, a cor-
rection for the finite number of particles is due (and
may be easily done within the IBM), various nuclei have
been identified as candidates for this critical point sym-
metry, as it is now dubbed, notably 134Ba [10] and other
isotopes [11]. In Fig. 4 the E(5) spectrum is shown on
the le, while the spectrum obtained in the Interacting

Boson Approximation considering N=5 bosons is shown
in the centre. On the right we have the comparison with
the measured spectrum of 134Ba. e symmetry,
although slightly broken, can be recognized not only
from the relative energy of the various states, but also
from the calculation of quadrupole electromagnetic tran-
sitions between them, indicated with arrows and other
measurable properties such as isomer shis, transfer
intensities and so on (see Ref. [10] for a more complete
description of the quantum numbers and notation).
e follow up of the E(5) work has been a similar analysis
[12], in which an approximate solution for the critical point
between the spherical and axially deformed shapes has been
proposed and put in correspondence with some under-
lying symmetry of an unspecified nature,named X(5).
In this case the potential in β is again an infinite square
well,but in order to obtain a minimum around γ=0° a har-
monic oscillator is used for the potential in the γ variable.
Although a thorough description of this solution would
lead us astray from the intended goal of this paper, it
must be said that it has been very fruitful in terms of
comparison with experiments and the identification of
candidates has been quite successful, because spherical
nuclei are abundant along closed shells, while axially
deformed ones are abundant at mid-shell. Because of
the many isotopes that sit in the intermediate region
(see Fig. 5), encountering a transitional nucleus there
becomes a very likely event.

Signature
e easiest experimental signature for each type of
behaviour is the ratio of the energy of the first Jπ=4+
states over the energy of the first 2+ state. is is not
alone sufficient to ensure that an isotope belongs to a par-
ticular class or phase, but is a first pointer to classifying
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� fIg. 5: Ratio of energy of the first 4+ state over the energy of the first 2+ for
a portion of the nuclear chart. In abscissa and ordinate we have the neutron
and proton number respectively. The various limits and critical points are
encoded in the colour bar. Regions where there might be candidate nuclei for
the critical point behaviour are indicated with sky-blue and violet for E(5) and
X(5) respectively. (Courtesy of P.van Isacker, adapted).

� fIg. 4: Comparison of energy level schemes of E(5) and IBM with experimental spectrum of 134Ba. Arrows indi-
cate electric quadrupole transition rates, or B(E2) values, in W.u. (see Ref. [10] for details, courtesy of R.Casten).
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the spectra and the nature of the nuclear shape. is
ratio is plotted in Fig. 5 for a large portion of the nuclear
chart as a function of the number of neutrons and pro-
tons (in abscissa and ordinate respectively). e ratio for
the U(5) case is 2 since the spectrum is harmonic, and
examples are found along the lines of magic numbers
(closed shells). e ratio for the E(5) case is ~2.09 and
corresponds to the sky-blue colour, while for X(5) is
around 2.9 and corresponds to violet. e SO(6) limit
has a ratio of 2.5, while the pure rotational phases have
a ratio of 10/3 ≈3,33 which is found at the very centre
of a shell for both protons and neutrons. Other more
refined quantities, such as electromagnetic transition
rates, isotope and isomer shis and even pair-transfer
intensities may be used to pin down the critical point
and the onset of shape phase transitions.
e nuclear phases coming from the quadrupole degree
of freedom (either in the collective Bohr-Mottelson des-
cription, or in the algebraic IBM) have been pictured in
a phase diagram,called the Casten triangle, that has been
subsequently enlarged to the extended Casten triangle
(see Fig. 6). At the three vertices there are the spherical
phase, characterized by U(5), and axially deformed
phases. ese last two share the same algebra, SU(3), but
describe either the prolate (rugby ball) shape or the
oblate (mandarin orange) shape. e γ-unstable phase
sits on the side between those two, while the X(5) and
E(5) critical points are intermediate between the various
phases. Although most nuclei cannot be exactly put in
correspondence with the special points of the triangle, it
is oen possible to use those points as benchmarks.
Since the year 2000, these studies have spurred a large
number of experiments dealing with a precise gamma-
ray nuclear spectroscopy that have been performed or are
currently being carried out in major laboratories in Europe
and in the rest of the world and they have also promoted
a great deal of theoretical interest aimed at better unders-
tanding the shape-phase transitions and their underlying
symmetries (see e.g. [12]). e main conclusion, that can
be drawn from the interplay between the theory of Lie
algebras and the exact solutions of simple models of
nuclear structure, is twofold: from one side, in a bottom to
top fashion, it furnishes a very precise way to classify and
give a proper name to the extraordinary variety of obser-
vations that have been carried out, but more importantly,
in a top to bottom perspective, new mathematical solu-
tions that are inherent to these algebraic models might fuel
new waves of experimental campaigns and give us a better
understanding of the atomic nucleus.
e overall picture of the quadrupole nuclear collective
behaviour, that emerges from the works summarized
in the present article, is fairly complete and strongly

supported by experimental evidence and gives us a
detailed understanding of the nuclear shape and the
fascinating mathematics underlying it.
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