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Euler Systems Obtained from Congruences
Between Hilbert Modular Forms.

MATTEO LONGO (*)

ABSTRACT - This paper presents a generalization of the Euler systems considered
in [BD2] to the context of Hilbert modular forms. Arithmetic applications are
given.

1. Introduction.

Euler systems can be used to relate the rank of abelian varieties de-
fined over number fields to the behavior of the associated Hasse-Weil L-
series. Many definitions of Euler systems have been proposed in the past:
see for example [K3] and [Ru]. To fix notations, let A/K be an abelian
variety defined over a number field. Let Z be an ideal in the endomorphism
ring End(A) of A and denote by A[Z] the Z-torsion of A. For a prime ideal q
of K of good reduction for A, define the singular cohomology

HY (Ko, AIT)) = HM (T, ALZDE KD,

where K, is the completion of K at q, I, is the inertia subgroup of the
absolute Galois group Gral(KT /Ky) of K, and Kgm" is the maximal un-
ramified extension of K. Note that, since q is a prime of good reduction for
A, the kernel of the restriction map H*(K,,A[Z]) — H ;ing(Kq,A[I ]) is the
image Im(d,) of the local Kummer map:

Sq 1 AKK,) JTAK,) — H'(K,, A[T)).

For any ideal q, let res, : H(K,A[Z]) — H'(K,,A[Z]) be the restriction
map in cohomology. For our purposes, an Euler system relative to A/K
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and Z will consist, roughly speaking, of a collection of cohomology classes
{r;: ¢ € L}y C H(K,A[T]) indexed by a set L of prime ideals of K of good
reduction for A, satisfying the following 3 conditions:

1) The set L controls the Z-Selmer group Sel;(A/K) of A/K in the
sense that for any non-zero element s € Selz(A/K), there exists ¢ € L such
that res,(s) # 0. The definition of Selmer group is recalled, at least when 7
is a power of a prime ideal, in Section 4.1.

2) If q # ¢ is a prime ideal of K, then res,(x;) € Im(d,).

3) The image of res,(i) in Hsling(KmA[I 1) can be expressed in terms
of the central critical value of the Hasse-Weil L-series L(A/K, s), divided by
a suitable period.

The first example of Euler system is that used by Kolyvagin [K1], [K2]
and Kolyvagin-Logachév [KL1], [KL2] to obtain important results on the
rank of modular abelian varieties. These results, combined with the work
of Gross [Gr] and Gross-Zagier [GZ], extended by [Z1] and [Z2], lead to the
proof of the Birch and Swinnerton-Dyer conjecture for many modular
abelian varieties A defined over totally real number fields ¥ when the
analytic rank of A over F' is at most one. In particular, these results apply
to all elliptic curves defined over Q. These Euler systems are constructed
by applying the Kolyvagin derivative operator to n(P,) € A(K,), where K,
is the ring class field of K of conductor n, positive integer, 7 : Jx — Ais a
parametrization of A by the Jacobian variety of a modular curve or a
Shimura curve X and P, € Jx(K,) is an Heegner point, that is, a point
corresponding via the interpretation of X in terms of moduli space, to an
abelian variety with complex multiplication by K,.

More recently, Bertolini-Darmon [BD2] have used the theory of con-
gruences between modular forms to construct an Euler system which they
use to prove one of the two divisibility properties predicted by the Iwa-
sawa’s Main Conjecture for elliptic curves defined over Q. In this case, the
set L consists of p"”-admissible primes, where p is a rational prime and
n > 1 an integer, whose definition is recalled, in the context of Hilbert
modular forms, in Definition 3.1 below. In the case of elliptic curves defined
over Q, for a fixed rational prime p and a fixed quadratic imaginary ex-
tension K/Q, a prime ¢ of QQ is said to be p"-admissible if: (7) ¢ it is inert in
K; (17) £ does not divide Np, where N is the conductor of £; (¢i2) p does not
divide ¢ — 1; (iv) p" divides £+ 1+ a; or £+ 1 — ay, where a, is the ei-
genvalue of the Hecke operator T, acting on the eigenform associated to £.
The local behavior of x, at ¢ is encoded in a certain p-adic L-function. In
particular, it is possible to prove that if Lx(E,1) # 0, then res,(x,) is not
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trivial and does not belong to the image of the local Kummer map for all but
a finite number of ideals p™.

The construction of [BD2] can be generalized to the context of Hilbert
modular forms of parallel weight 2 with rational eigenvalues under the
action of the Hecke algebra. This generalization, performed for p-ad-
missible primes, is used by the author in [L2] to prove the Birch and
Swinnerton-Dyer conjecture for modular elliptic curves £ with every-
where good reduction, analytic rank zero, without complex multiplication
and defined over a totally real number field F’ of even degree over Q. It is
worth to point out that this case can not be treated by Kolyvagin’s method
because £ does not appear as the quotient of the Jacobian variety of a
Shimura curve: see [L2, Introduction] for a compete discussion. Observe
moreover that the argument in [L.2] uses only p-admissible primes because
this is enough to bound the Selmer group Sel, (£ /K) and obtain a result on
the rank of £'(K), where K/F' is a totally imaginary quadratic extension of a
totally real number field 7.

The propose of this paper is to provide the construction of Euler sys-
tems associated to Hilbert modular newforms ¢ when L is the set of ©"-
admissible primes and p is a prime ideal in the ring generated by the ei-
genvalues of the Hecke algebra acting on ¢. There are two main applica-
tions of this construction:

1) Generalize the argument in [BD2] to the context of the Iwasawa’s
Main Conjecture for Hilbert modular forms: see [L3].

2) Use the Euler system relative to p-admissible primes (that is,
n = 1) to extend the result of [L2] to the context of abelian varieties of GLs-
type: see Section 4.

We now fix the notations and assumptions which will be used
throughout the paper. Let F'/Q be totally real of degree d = [F' : Q] and n
an integral ideal of the ring of integers O of F'. Let ¢ € Sa(11) be a Hilbert
modular newform for the I'g(n)-level structure, trivial central character
and parallel weight 2 which is an eigenform for the Hecke algebra T
generated over 7/ by the Hecke operators T, and the spherical operators
Sy for primes q{ n and the Hecke operators U, for primes q | n. See [Z1,
Section 3] for precise definitions.

Let K/F be a totally imaginary quadratic extension. If the absolute
diseriminant dg /¢, of K over Q is prime to n, there is a factorization

n=nn",

where nt (respectively, 1) is divisible only by primes which are split
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(respectively, inert) in the extension K /F'. The extension K/F' is required
to satisfy the following:

AsSUMPTION 1.1 [on K]. The absolute discriminant D o of K/Q is
prime to n. Moreover, the ideal n~ appearing in the above factorization
of n is square-free and the number of primes dividing it has the same
parity as d.

Assumption 1.1 has an important consequence: the sign of the funec-
tional equation of the Hasse-Weil L-series Lg(A,s) of A/K is +1. This is
equivalent to say that the order of vanishing of Lx(A,s) at the central
critical point s = 1 is even. Hence, this condition is compatible with the non
vanishing of the special value Lg(¢,1) of the Hasse-Weil L-series.

For any Hecke operator T € T, denote by 04(T) the eigenvalue of T
acting on ¢. Let Ky = Q(04(T), T € T) be the finite extension of O gen-
erated by the eigenvalues of the action of the Hecke algebra 1, on ¢.
Denote by O its ring of integers. For a prime ideal p of Oy, denote by K ,
and Og , the completions of K; and Oy at p and by Iy , the residue field of
Oy, at p. For any prime o C Oy, denote by

psy : Gal(F/F) — GLy(Ks.,)

the p-adic representation associated to ¢ by [Cal, [Wibmd [Ta]. Since the
image of p , is compact, it is possible to choose a Gal(F'/F)-stable lattice

Tg~0O4,x0s,C Ky, xKg,
such that py , is equivalent to the representation
Pop Gal(F/F) — Aut(Ty) ~ GL2(Op,)
of Gal(F'/F) on T}s. Let
Pop GalF/F) — GLa(F, )

be the reduction of p, , modulo p. Note that p; , depends on the choice of the
Galois-stable lattice T'. Its semisimplification p3’, (i.e. the unique semi-
simple representation with the same Jordan-Holder factors as p; ,) does
not depend on the choice of 7's. If p,, , is irreducible, then it coincides with its
semisimplification ﬁ;fp. Say that py , is residually irreducible if py , is ir-
reducible.

Let o be a prime ideal of Oy of residue characteristic p. The modular
form ¢ is said to be ordinary at a prime ideal p | p of Op if there exists a
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root ay, of the Hecke polynomial at p which is a unit in the completion Oy,
of Oy at .

Say that ¢ is p-isolated if there are no non trivial congruences between
¢ and other forms of the same level and weight. By the finiteness of the
space of modular forms of given level and weight, ¢ is p-isolated for all p
except, possibly, a finite number of them.

To state the main result of this paper and better explain the above
conditions on ¢ to be ordinary al all q | p and residually irreducible at p,
assume that there exists an abelian variety A defined over F' of GLg-type
such that:

1) The arithmetic conductor of A is n.

2) End(4) ~ Og.

3) The representation of Gal(F/F) on the p-adic Tate module of A is
equivalent to p; ,, where o is a prime ideal of O,.

This type of abelian variety is considered in Section 4. The abelian
variety A has good reduction outside n. The residual irreducibility of p, ,
for infinitely many ¢ stated in Assumption 1.2 can be translated into the
irreducibility of the Galois representation p4 , of Gal(F /F) on the p-torsion
Alp] of A. If A has ordinary reduction at the prime ideal p | p, then the
associated modular form ¢ is also ordinary at p. Denote as above by

dq : A(Ky) /9" AK) — H' (K, Alp" )

the local Kummer map, where q is a prime ideal of Ok.

Let q be a prime ideal of residue characteristic g. Then, by a theorem of
Mattuck, A(K,) ~ Zglm(A)[K“:Qq] x H, where H is a finite group. Hence,
Im(d,4) = 0 for all prime ideals p and all n, except possibly a finite number
of them, i.e. those p dividing ¢ and the order of H.

AsSSUMPTION 1.2 [on pl. Suppose that the prime ideal o of residue
characteristic p > 5 satisfies the following conditions:

D pg, is residually irreducible.

2) ¢is ordinary at all prime ideals p | p.

3) ¢ is p-isolated.

4) Im(d,) = 0 for all prime ideals q | n but g1 p.

REMARK 1.3. Conditions 3 and 4 in Assumption 1.2 are verified for all
prime ideals p except possibly a finite number of them. Conditions 1 and 2
are more delicate. In the case of elliptic curves without complex multi-
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plication, the existence of infinitely many prime ideals p verifying 1 and 2 is
ensured by [Se]. Similar results hold for more general modular abelian
varieties. In any case, in the following it will be convenient to assume the
existence of infinitely many prime ideals g verifying Assumption 1.2. This
is done, for example, in the next Corollary 1.7 on the rank of A(K).

Define a prime ideal ¢ C Op to be p"-admissible (see Definition 3.1) if:

1) ¢ does non divide np;

2) ¢isinert in K/F;

3)  does non divide [¢* — 1;

4) " divides || + 1 — e04(T), where & = £ 1.

By [BD2, Theorem 3.2], the set of p"-admissible primes controls the
Selmer group Sel..(A/K) in the above sense: for any s € Sel.(A/K),
s # 0, there exists a p"-admissible prime ¢ such that res,(s) # 0.

To state the main result, denote by Lx(¢) the algebraic part of the
special value Lg(A,1) = Lg(¢,1) of the Hasse-Weil L-series Lg(A,s) =
= Lk (¢, s). This is an element of O whose definition is given in Definition
3.6, such that:

Lx(¢) # 0 if and only if Lg(¢,1) # 0.

Then the main result of this paper can be expressed as follows:

THEOREM 1.4. Suppose that Assumption 1.1 on K is verified. Let o be a
prime ideal verifying Assumption 1.2. Then for any ©"-admissible prime ¢
there exists a class x, € H'(K, Alp"]) with the following properties:

1) For primes q # {, resq(x¢) € Im(dy).
2) The image of res/(c;) in Hy, (Ki, Alp"]) >~ Og/p" is equal to
L ($)mod p"), up to multiplication by invertible elements in Oy/p".

REMARK 1.5. As observed above, the condition Lg(A,1) # 0 in Theo-
rem 1.4 is consistent with Assumption 1.1 because, as a consequence of this
assumption, the sign of the functional equation of the Hasse-Weil L-
function is + 1. Suppose that Lxg(A,1) # 0. Then Lx(¢) # 0. Let o be a
prime ideal of Oy satisfying Assumption 1.2 and such that o { Lx(¢). Then
the image of res,(x;) in H ;mg(Kg,A[go]) is not trivial, hence do not belong to
the image of the local Kummer map J,. For each of these primes g, it is
possible to prove that Sel,(4/K) = 0. This result follows by applying
standard techniques involving the Euler system relative to A/K and g,
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which exists by Theorem 1.4, the non-vanishing of res,(ic;) in the singular
cohomology and the non-degeneracy of the local Tate pairing. For a proof
and more details, see Theorem 4.4 in the text.

REMARK 1.6. An other way to state Theorem 1.4 is the following:
Suppose that Assumption 1.1 is verified. Then for all prime ideals g
verifying Assumption 1.2 and for any » there exists an Euler system re-
lative to A/K and p".

Theorem 1.4 corresponds in the text to Theorem 4.3. This result can be
obtained combining Theorem 3.10 with the discussion in Section 4 on
abelian varieties. It is worth to point out that Theorem 3.10 is stated in a
purely theoretical Galois representation setting. In other words, the Euler
system may be attached to a modular form ¢ without any reference to
abelian varieties.

The following arithmetic application of Theorem 1.4 to the Birch and
Swinnerton-Dyer conjecture is explained in Section 4.2:

COROLLARY 1.7. Suppose that Assumptions 1.1 is verified and that
there are infinitely many prime ideals o verifying Assumption 1.2. If the
special value Li(A,1) of the Hasse-Weil L-series Li(A, s) of A over K is
non-zero, then the rank of A(K) is zero.

Corollary 1.7 correspond in the text to Corollary 4.6. The proof of this
result is based on the possibility of choosing (among infinitely many) one
prime ideal p verifying Assumption 1.2 and such that p{ Lx($). In this
case, as observer in Remark 1.5, the p-Selmer group Sel,,(A/K) is trivial
and the result on the rank of A(K) follows from the injectivity of the global
Kummer map

o : AK)/pAK) — H'(K, Alp)).

The existence of infinitely many such primes p is ensured by the existence
of infinitely many prime ideals verifying Assumption 1.2 and the non
vanishing of Lx(A, 1), which implies the non vanishing of Lx(¢).

REMARK 1.8. Since to prove Corollary 1.7 only the Euler system re-
lative to the chosen prime g is involved, the hypothesis in Corollary 1.7
regarding Assumption 1.2 can be slightly relaxed by requiring the ex-
istence of at least one prime ideal p not dividing Lx(¢) and verifying As-
sumption 1.2. For details, see Corollary 4.5.
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2. Shimura curves.

2.1 — Bastic definitions.

Let B be a quaternion algebra defined over F' which is split at exactly
one of the archimedean places, say u. Denote by ¢~ its discriminant, that is,
the product of the finite places q where the completion B, = B®p Fy of B
at g is a non-commutative field. For any Z-algebra E, denote by
E := E ®y ] Z, the profinite completion of £, where q ranges over the set

q ~
of prime ideals of Z. For any open subgroup ¢/ C B* which is compact
modulo F*, denote by X;; the model over F' of the Shimura curve whose
complex points are given by

X, (C) =U\B* x H*)/B*,

where H* = C — R. The curve X, is connected but not geometrically
connected; denote by J;; the connected component subgroup of Pic(X;,)
over F'. Finally, let X;; — Spec(Or) be the integral model of X;, and denote
by Ju — Spec(Op) the Néron model of J;,. For more details on these
definitions, see [Z1, Section 1].

For any ideal ¢ C Op prime to ¢, choose an Eichler order R(c*) C B
of level ¢t and denote Xfxﬁ(m simply by X+ . Note that X+ .- does not
depend on the choice of R.+. Adopt the same convention for the Jacobian
variety, its Néron model and the integral model of X+ -.

2.2 — Admissible curves.

This paragraph collects the basic facts on admissible curves in the sense
of [JL]. Let R be a discrete valuation ring with fraction field K and residue
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field I perfect of characteristic p > 0. Let Xx be smooth proper geome-
trically connected curve over K and suppose that X is a nodal model of Xk
over R. More precisely, X is a proper flat R-scheme whose generic fiber is
X, the only singularities of the special fiber Xy are ordinary double points
and the multiplicities of the irreducible components of Xy are one. Fol-
lowing [JL], such a curve X is called admissible. Let G be the dual graph
associated to Xr: the set of vertices V is the set of irreducible components
of Xy := Xy ®p I¥, the set of edges £(G) is the set of singular points of Xp
and two edges e, ¢’ meet at the vertex v if and only if the corresponding
components intersect at v. Here [' denotes an algebraic closure of I'. De-
note by 7 an uniformizer of R and let e € £ be a singular point; then locally
for the étale topology e is given by an equation as uv = 7™® for some po-
sitive integer 7(e). Define a pairing

(,) : ZIEVx Z[E1 = 7.

extending by Z-linearity the following rule: for any pair (e, ¢') € &2, set
(e,€') =n(e)dee,

where J,, is the Kronecker symbol. This pairing induces an embed-
ding jo : Z[E] — Z[£]Y, where the superscript V denotes the Z-dual.
Let Jx be the jacobian variety of Xx and let J be the Néron model of
Jk over R. Denote by Jy its special fiber and by J? the connected
component of Jr containing the origin. Finally denote by & the group
of connected components J /J%, by T the maximal torus of J; and by
X =Hom(T, G,,) its character group. Fix an orientation s,¢ of &, that
is a pair of maps s,t: £ — V such that for any edge e, s(e) and t(e) are
the vertices joined by e. The character group fits into the following
exact sequence:

1) 0— X — 7[61 2 72°v] = 0,

where 0, is the map defined by 0.(e) := t(e) — s(e) for any edge e. The
previous exact sequence gives rise by restriction the so called monodromy
pairing

() XxX—>Z.

Denote by j: X — X" the embedding induced by this pairing. By [Gt,
Theorems 11.5 and 12.5] there is an exact sequence:

) 0-X X oo,
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There exists a natural non-trivial map
(3) w:7°V] — &

defined as follows. Taking Z-duals of the exact sequence:

0 X -5 761 2 7V = 7. — 0

yields:
0— 7 — 71 -5 7161 -5 XV =0,

where the group rings are identified with their Z-duals and 5" is defined by

0*(w) := > eisvisoddand 0*(v) := — > eiswiseven. Definejtobe the
t(e)=v te)=v
map induced on Z[€] by the pairing (, ); then there is a commutative dia-

gram:

avi
1o.
71 2 ZLE
(Y
0o — x L x¥ XN o 0

Choose an element x € 7°[V] and choose y such that 0,(y) = x; then define
o(x) := (ry 01" 0 o) ().

It is immediate that w is well-defined and non-trivial. For more details on
this map, see [BD2, Corollary 5.12] or [BD1, Section 1 of Appendix].

Let Div(X) be the group of divisors of Xx = X(K) with 7 coefficients
and Div’(X) be the subgroup of Div(X) consisting of divisors which have
degree zero on each connected component of X. Denote by
r: X(K) — EUV the reduction map defined by sending a point P to the
connected component containing its image in Xy if P does not reduces to a
singular point and to the image of P in Xr otherwise. Fix a divisor
D = Y npP e Div’(X) such that (D) € Z°[V]. Denote by 9, the speciali-
zation map 0, : J(K) — @. The basic relation between wy, 9y and 7 is the
following equality in @&:

(4) 9([D)) = w(ry(D)),

where [D] denotes the image of D in J(K). This result follows from Edix-
hoven’s description [BD1, Section 2 of Appendix] of the map 9.
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2.3 = The C’erednik-DMnfeld Theorem.

Let [ | ¢ be a prime ideal and denote by Xy the fiber of Xy over
Spec(Or ). Define the formal group Xu[ over Op to be the completion of
Xy along its special fiber. Let B/F be the quaternion algebra ramified at
all archimedean places and whose discriminant is ¢~ /. The quaternion
algebra B is said to be obtained from B by interchanging the invariants [
and . If E' is a Op-algebra, the notation E© means that the g-component
in E has been removed. Fix an isomorphism

0 : B = BOMu(F)

and choose Eichler orders R and R; of B of level ¢t and ¢*I such tAhat
R D Ry and, under the above isomorphism, R corresponds to R® = R".
Finally, set:

U:=F* - pUY) - (R* ®0, Op) and U; := F* - pUY) - (R} ®0, Op ).

Denote by C the completion of an algebraic closure of F'{ and let ﬁ[ be the
Deligne’s formal scheme over Spec(Op ) obtained by blowing-up the pro-
jective line over Spec(Op ) along its rational pomts in the special fiber over
the residue field I of Op . The generic fiber of H[ is a rigid analytic space
whose Ci-points are H:= PY(C 0 — PI(F[) For more details, see [BC,
Chapitre IJ. Flnally, let Frob; be the Frobenius automorphism of
Gal(OF{/Op ). The Cerednik-Drinfeld Theorem states that there exists
an isomorphlsm of formal schemes over Spec(Op )

‘/)E'I =~ U(I)\(ﬂlé\om %n[r X B(])X)/va

where b € B* acts on (’)“nr by Frobfvah(b) This result can be obtained by
combining Cerednik’s descmptlon [Ce] of X[ as moduli space for certain
formal groups with the Drinfeld’s description [Dr] of H: see [Z1] for more
details.

Fix representatives g1, . . ., g of UV\BO* /B* and define the following
subgroups for eachj =1,... k:

Tjox izgjl(U(DGLz(F‘[))gjﬂBx; Lo = ]0[/( ]OIOF)

F]+[ —( OI)ea { Ji+l e =T OI)ev

where the subscript e means elements whose norm has even [-adic valua-
tion. Denote by O 2 is the ring of integers of the quadratic unramified
extension F' of F'(. Define X uE = X ®op, (’)F‘]z,where X ¢ 1s the fiber of
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Xy at (. The Cerednik-Drinfeld Theorem can be combined with [JL, Section
4]to deduce that there exists an isomorphism of rigid analytic schemes over
Spec(O F,Iz):

h
Xy, 2(Co~ [T H/Tsts
J=1

where the arithmetic subgroups I'; | ( € PGL2(F) (for j =1,...,k) act on
H; by fractional linear transformations. For details, see [L2, Section 4.2].
From this description it follows that X, » is a disjoint union of admissible
curves. Set X; := H(/I';  ( and denote by G;, (respectively, X; and @) the
arithmetic graph (respectively, the character group and the group of con-
nected components) associated to X; as above. Moreover, let V; and &; be
respectively the set of vertices and edges of G;.

By the results in [L.2, Section 4.3] it is known that G; ~ 7(/I'; | (, where
7 (is the Bruhat-Tits tree of PGLg(F'). Choose the following orientation in
T (: define v, to be the vertex corresponding to the maximal order Ma(Op )
and say that a vertex v is even (respectively, odd) if its distance from vy is
even (respectively, odd). Since the determinant of the elements of I'; ,
have even [-adic valuation, the choice of this orientation in 7 induces in a
natural way an orientation in G; again denoted by s, t. The exact sequences
(1) and (2) can then be rewritten respectively as

9;

(5) 0— X; — ZIE] = 20Vl — 0
and
(6) 0—>}§j—>}§]~v—>@j—>0.

h
Define the arithmetic graph G, := [] G;, the group of connected com-
h J=1 I
ponents @ := [[ @; and the character group X;:= [] X associated to
J=1 h J=1 I
Xy Make analogous definitions for V; := ]_[1]}, and & := ]_[16'7 Then
Jj= Jj=

there are exact sequences:

. . h
=1
and
(8) 0% LxV S a0,

where the maps are obtained by taking the product for j =1,..., A of the
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corresponding maps in the exact sequences (5) and (6), so that, for example,
o = H 0; «. Taking the product of the maps w; associated to each X; as in

Equatlon (5) yields a natural non-trivial map

h
9) g : HZO[VJ — @y
j=1

2.4 — Hecke modules.

All the objects defined above are variously endowed with a Hecke
module structure.

Fix an ideal ¢ C Op. Denote by T, (respectively, U,) the Hecke op-
erator corresponding to the prime q{ ¢ (respectively, q | ¢). Denote also by
Sy the spherical operator at the prime ideal g. Let T'. denote the Hecke
algebra generated over 7 by the Hecke operators T, and S, for g/ ¢ and
U, for q | c. The Hecke algebra T acts on the space of Hilbert modular
forms Sa(c) for the I'¢(c)-level structure of parallel weight 2 and trivial
central character. Let ¢; and ¢y be two pairwise coprime ideals such that
¢ = c1ce. Let Ty, , be the quotient of I, acting faithfully on the C-subspace
S5%(¢q, c2) of Sz(c) consisting of forms which are new at primes dividing cs.
Finally, for a square-free ideal 3, denote by Tf,fffz the subalgebra of T,
generated by the Hecke operators Ty, U, and S, for q{ 3. Write simply
T for T

Let ¢* and ¢~ be as above and define ¢ := ¢*¢~. The Jacobian variety
Jer o of the Shimura curve X+ has a structure of T+ -module. The
action of Hecke operators is defined as usual via double coset decom-
position. Moreover, let 3 C Oy be a square-free ideal prime to c; if the local
component U, of U at q is isomorphic to the local component at q of
FXR(H) for all prime ideals q{ &, then the Jacobian variety J; of the
Shimura curve X;; has a natural structure of ‘TEQ —-module.

The strong approximation theorem [Vi, page 60] yields the following
identifications:

Vi~ (U\B*/B*) x {0,1} and & ~ U\B*/B*.

If the local components of U are equal to those of F XIA% for primes q not
dividing the ideal 3 prime to c, then there is a natural action of Tt+ /I
(respectively, T(i)[( 0 on ZIU \BX /B*] (respectively, A[UI\BX /B*]) de-
fined by double coset decompositions. See [L2, Section 3.2] for precise
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definitions. Once chosen a set of representatives of the double coset space
U\B*/B* or U/\B* /B*, this action is described by the generalized Brandt
matrices. See [L2, Section 3.2] for detaﬂs. It follows that Z[V(] (respec-
tively, Z[&(]) has a structure of Tgf’{c, /I—module (respectively, Tfj’)[ —_
module).

2.5 — Eisenstein modules.

Let ¢ € Sa(c) be a normalized Hilbert modular eigenform over F' of
parallel weight 2, trivial central character and I"o(c)-level structure. Let Ky
be the finite extension of Q generated by the eigenvalues of the action of
the Hecke algebra T on ¢ and let O; be its ring of integers. Denote by

05: T — Oy

the morphism associated to ¢ such that T(¢) = 04(T)¢ for all T € T.. For
any prime ideal p, let Oy, be the completion of Oy at p and denote by

p¢,g} : Gal(F/F) . GLZ(KQ{JKJ)

the Galois representation attached to ¢. Choose a Galois-stable lattice

Ty~ O x Oy, €Ky, x Ky

and denote by
Pop Gal(F/F) — GL3(0O;,,)

the representation on T's. Then p; , is equivalent to p; ,. Reduction modulo
p defines a morphism

0¢ : Tc — F¢aKJ = O¢/p
and a residual representation

Pop Gal(F /F) — GLy(I; )

which depends on the choice of 7. Denote by n1,,, the kernel of 6 and for
any square-free ideal 3 C Op, let mgzj =g, N ‘ng).

DEFINITION 2.1. A T®-module £ is said to be Eisenstein if its com-

pletion &« 1is zero for any maximal ideal mf; such that the residual
b0 ’

representation py, is irreducible.
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There is a characterization of Eisenstein modules introduced by [DT]
for F = Q and generalized by [J3]. An ideal Z of ng) is said to be E'isen-
stein if there exists some integral ideal | of Or so that for all but finitely
many prime ideals q of Op which are trivial in the narrow ray class group
CI(H)* of f the following relations hold:

Ty =2(modZ) and S, = 1(modI).

A Tﬁg)—module £ is Eisenstein if and only if all maximal ideals in its support
are Eisenstein. For more details and the proof of the last assertion, see [J3,
Section 3] and [DT, Proposition 2]. These results are in fact generalizations
of [Ri, Theorem 5.2, part c].

Let now Jy be a T Ei)lc,—module for some ideal 3 prime to ¢ =c"¢
Define the Hodge class of Xy to be the unique element ¢ € Pic(X,) such
that & has degree one on each connected component of X, and for any
prime ideal g C Op so that q{ ¢3, the action of T, € Tfﬁ) ~ on ¢ is given by
multiplication by |q| 4+ 1. For existence and uniquenesé of this class, see
[Z1, Section 4.1]. Denote by Pic™®(X;,) the subgroup of Pic(X,) consisting
of those elements whose restriction to any connected component of Xy, is a

multiple of &. By [Z2, Section 6.1]

Pic(Xxy) = Pic™8(xy) @ Pic’(Xy).

By [Ri, Theorem 5.2, part c] and its generalization [J3, Section 3], PicEiS(Xu)
is Eisenstein. It follows that if 7 C Tf,i{h is an Eisenstein ideal, than the
canonical inclusion PicO(Xu) C Pie(Xy) yields an isomorphism:

(10) Pic’(Xy)/T ~ Pic(Xy)/T.

2.6 — Eisenstein pairs.

ALet S C B* be U or U, defined above. Choose a basis ¢1,...,g; of
S\B* /B> (which is finite set by a compactness argument: see [Vi, V.2]) and
define

WS) == {#T'y, N Iy)/Op 1,5 €{1,...,h}},
where I'y = g7'Sg N B.
DEFINITION 2.2. The pair (F',S) is said to be Eisenstein if at least one of
the following conditions is verified:

(@) The class number of F is one and for any n € W(S) defined as



16 Matteo Longo

above, the norm map from the ideals of F'({,,) to the ideals of F is injective,
where {,, is a primitive n-root of unity.
(@) W(S) = {1}.

Denote by 6; . the restriction of J; . to ZO[E’ ;] and define J, := H Ojx-

Let U and U| be defined as above from a open subgroup U C B~ Wthh is
compact modulo F*. Assume as above that Jyisa TC+ C,—module for some
ideal & prime to ¢, where ¢ := ¢*¢~. Note that Im(d,) is a priori a ’J‘Ef)( "
module because it is a submodule of Z°[U \BX /B*]. On the other hand, the
source of wy is a ’1[‘c+ - -module because it is contained in 70U [\BX /B*1.
From this it follows that Im(J,) is also a T“ (e /1 -module and the relation
between the operators T € l[‘(”(, I and U; € Tgi)“ ) can be explicitly
computed: see [L2, Equation (9)]. In the following proposition, Im(J,) is
endowed with this structure of T¢-module.

PRrROPOSITION 2.3. Let w( be the map defined 1n (9).

1) The restriction of w; to Im(J,) induces a TE”-equivom'ant map
o : Im(é*)/(U% -1) — .

2) If (F, U) (respectively, (F,Uy)) is Eisenstein, then the kernel (re-
spectively, the cokernel) of @ is Eisenstein.

3) If d =[F : Q] is odd or d is even and ¢~ /[ # O, then the kernel
and the cokernel of w; are Eisenstein.

ProoF. The first part follows from a calculation as in [BD2, Proposition
5.13]. The second part needs generalizations of [Ri, Proposition 3.12] and
[Ri, Theorem 5.2, part ¢] which can be performed when U or U; are Ei-
senstein. The third part follows form [Ra, Corollary 4]. For details, see [L2,
Proposition 4.4]. O

3. Construction of the Euler system.

3.1 — Congruences between Hilbert modular forms.

Let ¢ be a parallel weight 2 Hilbert modular newform with trivial
central character and I'g(n)-level structure which is an eigenform for the
Hecke algebra T';. Fix a prime g of the ring of integers O, of the field K
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generated by the eigenvalues of the action of T, on ¢. Let I, := Oy, /o be
of characteristic p > 5. Denote by

[Ty — Og/p"

the reduction modulo ©" of the morphism 0, : T\, — Oy associated to ¢.
Let Zr be the kernel of / and niy be the maximal ideal which contains Zy.

Let K/F be a quadratic totally imaginary extension. Assume from now
to the end of Section 3 that

K satisfies Assumption 1.1.

For any ideal r C Op, denote by |r| its norm.

DEFINITION 3.1. Define a prime ideal ¢ of Op to be ©"-admissible
prime if:
1) ¢ does non divide np;
2) (is inert in K/F;
3) p does non divide (] — 1;
4) " divides |£| + 1 — ¢f (Ty), where e = £ 1.

Fix an integer n > 1 and let £ be a "-admissible prime. Set T' := T+ -
and T := T+ 4. Recall the factorization n = n*n~ associated to K as in
the Introduction: n* (respectively, n™) is divisible only by prime ideals
which are split (respectively, inert) in K. By Assumption 1.1, n~ is square
free and the number of prime ideals dividing it has the same parity as the
degree d of F' over Q. It follows that n~¢ is again square free and the
number of primes dividing it and d have opposite parity. Hence, it is
possible to define the Shimura curve

X0 .= Xu*,n*/ﬁ

as in Section 2.1. Let @, and Im(J,) be the objects defined as in Section 2
relatively to X.
By the Jacquet-Langlands correspondence [JL], ¢ can be associated to
a modular form of level n* on the quaternion algebra B defined in Section
2; in other words, there is a function
F*RX

w\B*/B* — Oy
which does not factor through the adelization of the norm map and has the
same eigenvalues of ¢ under the action of the Hecke algebra 1" defined via

double coset decomposition.
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DEFINITION 3.2. ¢ is said to be p-isolated if the completion of the group
ring of R}, \ B*/B* at wy is free of rank one over Og.

The condition in the above definition simply asserts that there are no
non-trivial congruences between ¢ and other forms of level n which are
new at n~. If ¢ is p-isolated, it follows as in [BD2, Theorem 5.15] from
Definition 3.1 (p"-admissible primes) that

(11) Im(3.)/(Z, U — 1) ~ Op/p".

Let T (respectively, T') denote Hecke operators in T’ (respectively, in T)).

THEOREM 3.3. Assume that ¢ is p-isolated and the residual re-
presentation py , associated to ¢ and a choice of Galois stable lattice Ty as
wm Section 2.5 is trreducible. Then there exists a morphism

fg : T( — O¢/pn
such that:

1) Primes q{né: fi(T) = f(Ty)
2) Primes q | f(U}) = f(Uy);
3) fiU)) =«

Proor. If n=Op and d is even, this result is contained in [Ta,
Theorem 1]. In the other cases, including the cases when both (#', U) and
(F,U,) are Eisenstein, the proof is a variation of [Ri, Section 7] based on
Proposition 2.3, Equation (11) and the discussion of the Hecke operators
in Section 2.6. More precisely, recall that Im(5,)/(Z;, U2 —1) is a
Ty+en--module by the discussion in Section 2.6. So, the action of the
Hecke algebra on it is via a surjective homomorphism

f(/ : Tn*l,n* - Ogﬁ/@n

by Equation (11). Denote by Z; the kernel of f/. Since kernel and co-
kernel of @, are Eisenstein by Proposition 2.3, there is an isomorphism

(12) 04/¢" =~ Im(d,)/(Zr, U} — 1) ~ By /Iy

On the other hand, the action of T, on &,/ 1 is via its /-new part by the
discussion in Section 2.5; it follows that f; factors through T, giving the
character

ﬂ . Tz — O¢/pn.
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For more details (Wwhen 7 = 1 but the general case is completely analogous)
see [Ra, Theorem 3 and Corollary 4]. O

Assume from now on that the assumptions in Theorem 3.3 hold. Let
R := R+ and R, := R+, be Eichler orders in B of level, respectively, n*
and n*/. Let Zj be the kernel of the map f; defined in Theorem 3.3.
Equation (12) and the final step in the proof of Theorem 3.3 imply that in
many cases

@y /T, ~ Im(S,)/(Zp, U7 — 1) =~ Oy /"
where the first isomorphism is induced by the map @,. The next proposition

provides in the remaining cases a Oy/p"-module free of rank one inside
@, /T, which is isomorphie via @y to Im(d,)/(Zy, U% — 1).

ProposITION 3.4. If 1~ = O and [F : Q] is even, then there is a
component Cp ~ Op/" — ®¢/L;, and an isomorphism induced by @,
between Im(6.)/(Z ;, U2 — 1) and C;.

Proor. Forany primeideal q,{ n¢ denote by ¢(q,) the subgroup of B

U(ag) == UT1(qy),
where I"1(qy) is the subgroup of the matrixes A € GL2(Op ) so that

10

Denote by X(qy) — Spec() the Shimura curve of level U(q,) and let
X(q¢) — Spec(Op) be its integral model. Choose ¢, so that:

() There are no congruences between forms of level 1 and forms of
level U(q,) which are new at q.
(#2) The integral model X(q) is regular.

This is possible by [J2, Section 12]. See also [J1, Section 6]. Note that ¢,
viewed as a modular form of level 24(q,), is a modulo ¢" eigenform for T
with eigenvalues in Oy/"; denote by

f(%) @ Ogb/@n

h
the associated morphism and by I}qo) its kernel. Let Gi(q9) = [ Gj(ap) be
j=1
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the dual graph of the special fiber at ¢ of X'(q). Denote by

J=1 J

h h
VGi(ap) = [ [ Vi(ao) and EGiag)) = [ ] &),
=1

respectively, the vertexes and the edges of G/(q,). Define as above a map
5*(%):

h o 2.(00) T~ 0
7, [E(QJ(QO)] — 7 [V(QJ(CIO))]
i1 =1

J

J
and denote by
@¢(q9) : Im(d.(q9)) — Pe(qp)

the resulting map, where @,(q,) is the group of connected components of
the Jacobian of X(q;) at £. Since X(q,) is regular, the weights of the singular
points are all equal to one, so kernel and cokernel of @, are Eisenstein and,
as in the proof of Theorem 3.3, there is an isomorphism:

(13) Im(é*(%))/@}qo)y Uj - 1>—>¢4(q0)/1}?°)-
There are maps:
Im(@3,) x Im(8,) — Im(3,(qp) ~ and &y x &, — By(dp);

denote by Im(é*(qo))(’ld and q§g(q0)°ld the respective images. Since there are
no congruences between forms of level 11 and forms of level 2(q,) which are
new at q, there are isomorphisms:

Im(8,(qo)™ /(Z\™, UZ — 1) ~ Im(d.(ap))/(Z,", U} — 1)
and
D)™ /T ~ Dy(q0) /T3

It follows that the map (13) yields an isomorphism:

a/}(ﬂo)

Im(é*(QO)Old)/<I}%)a U% _ 1> Y djl(qo)Old/Ij(”fU)~

The following diagram, whose vertical arrows are surjections:

EZ
Im(6.)/(Z,", U — 1) x Im@)/(Z;, U7 = 1) —  &,/T;" x &y/T;"
1 m | 72

wy(ag)
Il,n(é*(qo)old)/<I](€%)7 U% _ 1) [_qo) @[(qo)old/I};To).
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implies the result. Indeed, choose a generator P of @(q,)" /I}f") ~ Oy /p".
Then there is

(@1, Q) € Im(@)/ (T, U — 1) x Im(,)/ (", U2 — 1)

such that [@,(qy) o 11 1(Q1, Q2) = P. Then also [rz o @%](Ql, Q2) = P; since P
is a generator of Og/ ", it follows that the O /"-submodule generated by
one of the Q;’s, say Q1, is isomorphic to O /¢". The desired component can
be defined to be Cy := (@¢(Q1)). O

3.2 — Galois representations

Let J© be the jacobian of X and X, the character group associated to
X as in Section 2.1. Denote by Ta,(J”) the p-adic Tate module of J.

Since X is a disjoint union of admissible curves, it is possible to use the
Mumford-Kurihara theory of ¢-adic uniformization (see [GP]) and produce
an exact sequence:

(14) 0— X, Lo XY @, Fo — JOK) — 0,

where j is the injection X, — X/ induced by the monodromy pairing, Fz is
the unramified quadratic extension of F;y and F'p2 is its algebraic closure. By
the same argument as [BD2, Section 5.6], taking cohomology and tensoring
by T¢/Zy, yields an exact sequence:

(15) By/I;, — H'(Fp, Tay(J)/1;) — H,

unr

(Fr, X¢/Ty).

Fix a choice of Galois-stable lattice T} ~ (92 , relative to the p-adic
representation Pogp: Gal(F/F) — GL2(Og,). For any integer n > 1, de-
note by 75, ~ Oy, /" the module obtained by reducing 7y modulo ".
Let my, be the maximal ideal containing 7, and K /F' a quadratic imaginary
extension as in Section 3.1. Define the singular (or ramified) part of the

cohomology group H'(K, T ,) at ¢ to be:
H;ing(Kb T¢_”) — Hl(szr’ Tqﬁ,n)Gal(K‘l”m/K[),

where for a field k& and a Gal(k/k)-module M, the group H'(k, M) is the
usual continuous cohomology of Gal(k/k) with values in M. Using that Ty,
is unramified at ¢ and the fact that the eigenvalues of the absolute Fro-
benius Frobp(¢) of F at ¢ acting on T, are £|¢| and £ 1 because ¢ is ©"-
admissible, it is possible to show as in [BD2, Lemma 2.6] that

Hl (I{g7 T¢7%) ~ O¢/p”.

sing
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PROPOSITION 3.5.  Assume that ¢ is p-isolated and that py, is resi-
dually irreducible. There exists an integer k>1 such that
Ta,(J ) jmy, ~ Tg’_l as Galots modules. Moreover, there is a direct sum-
mand Dy ~= Ty, C Ta,(JO)/Iy, such that the natwral image of C; in
HY(K,,Dy) via the map (15) is not trivial (md 1somorphic to

Smg(K 0, T ). Finally, if both the pairs (F, R) and (F, R( ) are geometric,
then k =1, so that Ta,(J©)/T;, ~ Ty,

PrOOF. Since p; , is residually irreducible, the description of the
structure of Ta,(J®)/n, follows from [BLR] combined with the Eichler-
Shimura relation, the Cebotarev density Theorem and the Brauer-Nesbitt
Theorem. For the structure of Ta, (/) /Zy, first note that there is a natural
Gal(F /F)-equivariant projection map:

7 : Ta,(J)/ T, — Tap () /vy, ~ Tk .

Since the Gal(F/F)-module T¢1 is irreducible, for each j =1,... kit is
possible to choose elements t; € T and g; € Gal(F/F) so that {ti, g;@)}
form a I ,-basis for T ;. For any j, choose ¢; € Ta,(J®)/Zy, so that n(t)) = ;.

By Nakayama's lemma, Ta,(J®)/Z; is generated over O/¢p" by
{t;,9;t),7 = 1,k}. Define A; to be the O,/ 0"[Gal(F /F)]-module generated
by t; for j =1,... k. Note that = induces for any j =1,...,k a natural

projection map:
7 Ay — Ty,

Again by Nakayama’s lemma, 4; is generated by ¢; and g({)). Since p; , is
irreducible, the Oy, /©"-submodules generated by ¢; and g(t;) have trmal
intersection for any j = 1,..., k. This implies that A; ~ (O, /9" Y for some

i <50 Aj = Ty, Flnally, since two distinet copies of T ; in Ta, (J©)/my,
have trivial 1ntersect10n it follows that A4; N A; = 0 for ¢ # 7, so

Ta()/Zs, ~ &4 Ty,

By the same argument as in [BD2, Lemma 5.16], the generator of C, can be
lifted to anon-zero element t € Ta,(J)/Z;,, so that at least one of the n; is n.
Choose one of them, say j and define D, ~ Ty, to be the component on
the above decomposition corresponding to j. Since C; corresponds to
(t) ~ Oy/p", the exact sequence (15) shows that the natural projection of C,

in HY(K,, D) corresponds to the ramified cohomology H? Smg(K(, T
The last part of the proposition is a direct generalization of [BD2,
Theorem 5.17], since in this case @,/Zy, is isomorphic to Oy /" and k = 1.
O
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3.3 — The Gross-Zhang formula

Keep the same notations as above. Let ¢ be an eigenform of level n.
Recall from Section 3.1 the factorization n = n*1n~ associated with the
totally imaginary extension K /F. Form the L-series Lk (¢, s) attached to ¢
and K. If ¢ is the unique non-trivial quadratic character associated with the
extension K/F, then Lg(¢, s) is defined to be the base change

Lg($,8) = L($,9)L($,¢, 5),

where L(¢, s) is the usual L-series attached to ¢ and L(¢, ¢, s) is its twist. By
[S1], Lx(¢,s) can be continued to an entire function and has a functional
equation. More precisely, define

I'(s)
2m)° 1
where Dy, (respectively, Dk r) is the discriminant of ' over Q (respec-

tively, of K over F'), I'(s) is the usual complex I'-function and | - | is the norm
map on ideals. The functional equation is the following:

2d
Ax(6,) = (D2 Dy - )~ <( )LK@,s),

Ax($,s) = (= D) Ax($,2 — 5).
For more details, see [Z1, Sections 3 and 6]. The sign
enk(@ = (= D%m) = +1

of the functional equation is related to the order of vanishing of L (¢, s) at
its central point s = 1; more precisely, this orderis even if ¢, x(¢) = 1 and is
odd otherwise. Since the number of primes dividing n~ and d have the same
parity by Assumption 1.1, then

(16) enk(@) =1.

Let B be the quaternion algebra over F' which is ramified at all the
archimedean places of ' and at all the primes dividing n~. Fix an Eichler
order R of level n' in B. By the Jacquet-Langlands correspondence, there
exists (unique up to multiples) a modular form

[ F*R*\B*/B* — O,

with the same eigenvalues as ¢. Since all primes dividing 1~ are inert in K,
it follows by [Vi, I11.3.8], that there exists a monomorphism ¥ : K — B.
Assume that ¥ is an optimal embedding of the integers OK of K into the
Eichler order R, that is, ¥(Ok) = ¥(K) N R. Adelization ¥.K B yields
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a map, denoted by the same symbol,
PP ONR* JK* — P RA\B* /B
DEFINITION 3.6. The algebraic part Lx(¢) of Lx(¢,s) is:
Lk(@):=> (f o)),
a

where the sum is extended over a set of representatives a € Pie(Ok).
THEOREM 3.7. Lg(¢,1) # 0 if and only if Lx(¢) # 0.

Proor. Forareference of this resultin this form, see [Va, Theorem 6.4].
For a more precise statement, see [Z2, Theorem 1.3.2], which is a general-
ization of [Gr, Proposition 7.7]. O

REMARK 3.8. By Equation (16), the sign of the functional equation of
Lk(f,1) is +1, so this condition is compatible with the non vanishing of
Lg(¢,1). Moreover, if L(¢,1) # 0, then by [Wa] it is possible to find K
satisfying Assumption 1.1 and such that Lx(¢,1) # 0.

3.4 — Heegner points on Shimura curves

Recall the complex analytic description from Section 2.1 of the Shimura
curve X¥ considered in Section 3.1:

XOC) = F*R*\B* x H*/B",

where B is a quaternion algebra over F' of discriminant 1~ ¢ which is split in
precisely one of the archimedean places of F, say y, and R is an Eichler
order of level n*. The existence of a factorization such as n = n™n~ implies
that the set of F-homomorphisms Hom(KX, B) is not empty. Each point
P = (g,y) of the double coset space

X(K) := F*R*\B* x Hom(K, B)/B"

defines naturally a point P € X(K3) by [S2, Chapter 9, Theorem 9.6], where
K is the Hilbert class field of K. Define an Heegner point by Ok to be a
point (g,2,) € X(K;) defined by the previous construction from a pair

(g,w) € F*R*\(B* x Hom(K, B))/B*,
where i is an optimal embedding of Ok into R, := g‘lﬁg NnB.
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Define the action of Pic(Ok)/Pic(Of) on X(K) as follows. For any ele-
ment a of

F*O{\K* /K* ~ Pie(Ok)/Pic(Op)
and any point (g, y) € X(K), define:
alg,y) = (gu(a),y).

By [S2, Theorem 9.6], the action of Pic(Ok)/Pie(Or) on Heegner points is
free and corresponds via class field theory to the Galois action of Gal(K; / K).
Let P be an Heegner point by O and define the Heegner divisor

Dg :=» P° € Div(X)(Ky),

where the sum is extended over all ¢ € Gal(K;/K). By the isomorphism
induced by the inclusion (10), it follows that Dk defined a point

Py € JOK) /Ty,

3.5 — The reciprocity law

To simplify notations, denote by C, (respectively, D,):

e the component group @,/Zy, (respectively, the Galois module T,,)
if [F: Q] is odd or [F' : Q] is even and n~ # O,

e the component in Proposition 3.4 (respectively, in Proposition 3.5)
otherwise.

Since the completion of K; at a prime ideal above ¢ is isomorphic to K,
because / is inert in K, it follows that Dg can be viewed as an element in
Div()(y)(K[)), where Xg) is the fiber at ¢ of X©. By the same reason, Pk
defines a point in JO(K,)/Zy,.

Define Xéﬁ) = X" ®0,, Op p. (Recall the definition given in Section
2.3). Using the ¢-adic description of Heegner points obtained from the
Cereknik-Drinfeld Theorem, it is possible to show that an Heegner point
P € X(K;) reduces to a non singular point of the special fiber X'y, of XZ?. It
follows that Dg defines a divisor vg € Im(d,)/(Zy, U% —1).

Denote by 9, the reduction map J(K;) — &,. Combining Equation (4)
and the isomorphism coming from the inclusion (10) yields the following
relation in C,

(17) 0i(Pg) = @y(vg).

(Recall that the image of @, is always contained in C;). The following
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proposition is the reciprocity law connecting Heegner points and the
special value of L-series.

PRrROPOSITION 3.9. The equality
0u(Pg) = Lk (@)

holds in Cp ~ Oy /" up to multiplication by invertible elements.

Proor. The (-adic description of Heegner points recalled in [L2,
Section 5.2] implies that the action of a € Pic(O,)/Pic(Or) on Heegner
points corresponds to right multiplication by a. The result follows by
comparing the right hand side of Equation (17) with the definition of Lx(¢).

O

3.6 — The Euler system

From now on assume that p; , is residually irreducible and that @is p-
isolated. Assume moreover that p is prime to n and the absolute dis-
criminant of K. Taking tensor product by O; and quotients by 7y, the
Kummer map ¢ : JOK)/p"JO(K) — HY(K,JO[p"]) yields a map:

k
d: JOK)/T;, — H'(K,Ta,(J)/Z;) ~ [[H' K, Tg,,).
j=1

Let

k
e [ [HYK, Ty — H Ky, Dp) ~ H'(Ky, Ty )
j=1

be the projection map to D,. Define «; := n,/(d(Pg)).

To describe the behavior of x; and show that it has the property of Euler
systems described in Section 1, it is necessary to study the local structures
associated to 7' ,. Denote as above by T'; ~ Oi) o the Gal(F/F)-stable lattice
associated to the representation p,, and define V, :=T,® K; ~ Kg o
Define as above

Tqﬁ’n = Tqﬁ/pnTgﬁ ~ (Oqﬁ/pn)z

so that the multiplication by : T',, — Ts,_1 yields a projective system and
Ty =limTy,,. Define:
«—n

Ay =V /Ty = Ky, /Oy, F
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and denote by Az, ~ (Oy/ @) its p"-torsion. The natural inclusion
A@J’L ‘—>A¢7n+1

yields an inductive system and A; = hmAé - Note that the Galois modules
Ty, and Ay, are isomorphic and they correspond to the Galois module
associated to the reduction modulo ©" of the representation p; ..

For a Gal(F /F)-module M and a prime ideal q of Op, let Hl(Kq,M)
denote the direct sum @&y, H' (K, M) of the local cohomology groups al all
prime ideals g’ of K dividing ¢.

Define the following finite/singular structures, where M = Ay, or Ty,
Let q C Op be a prime ideal such that q{np. The singular part of
HY(K,,M) is
(Kq, M) := ® o H Uy, M) K 50,

qlng

where the sum is extended over the primes o C Ok dividing g,
Gy C Gal(K/K) is the choice of a decomposition subgroup at g’ and
Iy C Gy denotes the inertia subgroup. The finite part is defined by the
exactness of the following sequence:

0 — HL, Ky, M) — H'(Ky, M) 2 HY, (Ky, M).

s1ng(

The groups H} (K, Ag,) and H smg(Kq? Ty,) are annihilators of each other
under the local Tate pairing (,),. See [Mi, Chapter I] for the definition of
the local Tate pairing and its properties.

Let p | p be a prime ideal of Og and suppose that ¢ is ordinary at p.
Then there is an exact sequence of I,-modules (where I, is the inertia
subgroup of G,):

0 —>A<p) — Ay —>A(1) -0

such that I, acts on the free of rank one Oy -module A“’ ) by the cyclotomic
character ¢ and it acts trivially on the quotient AL, Wthh is also free of rank
one over Oy . Let

Ip @n’\le(Kn’»A;p)) — @ypH Ky, Ag)

be the map of cohomology groups induced by the inclusion Af;) C Ay, where
the sum is over all prime ideals p’ of K dividing p. Define the ordinary part
H} (K, ,Ag) of H'(K,,Az) to be the maximal divisible subgroup of
Image(/y). Define

H(p, ) := Hopg(Ky, Ag) N H' Ky, Ag).
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For any subgroup H C H' (Kp,Ag,), use the isomorphism Ay, ~ Ty, to
define a subgroup H* C H'(K,,T,,) such that H ~ H*. Then define
H} (K, ,Ag,) to be the maximal subgroup of H'(K,,As,) containing
H(p,n) and such that H. ,(Ky,A;,,) and H. (K, A;,)" are the exact an-
nihilators of each other under the local Tate pairing at p.

For any prime ideal q C Op, let res, : H{(K M;,) — H'(Ky,M,,) be
the restriction map. For primes g/ np, denote d,(res,(x)) simply by 9,(x),
where x € H(K,Mj,,).

THEOREM 8.10. Suppose that ¢ is p-isolated, py , is residually irre-
ducible and ¢ is ordinary at every prime ideal p dividing the residue
characteristic p of p. Then the class i, € H'(K, T,,) satisfies the following
properties.

1) For q{npt, 04(xs) = 0.

2) Forp | p, resy(icy) € HL Ky, T ).

3) The equality 0,(ic;) = LK) holds in Og/e" up to multiplication
by invertible elements.

Proor. For primes not dividing np¢, this follows by [Mi, Chapter I,
Section 3]. The second part follows form the description of the Kummer
map given by [CG, Proposition 4.5]. For the last part, first note that by
Proposition 3.5, Cy ~ H ;ing(K[, Ts,) ~ Og/p". By Equation (17), the image
of ¢y is then contained in the singular cohomology group. The result follows
by Proposition 3.9. O

4. Arithmetic applications.
4.1 — Modular abelian varieties

Let A/F be an abelian variety of GLq-type, that is, [Endo(A4) : Q] =
= dim(A4), where Endy(A4) := End4) ®,, Q. Set £ := Endp(A) and as-
sume that End(A) ~ Og, where O is the ring of integers of E. For any
prime ideal p C Of, denote by A[p"] the p"-torsion in A and by T,(4) its
p-adic Tate module. Denote by

Pa * GF - AUt(Tp(A)) = GLZ(OE',gJ)

the associated representation. Finally, denote by 1 C Op the arithmetic
conductor of A/F.
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DEFINITION 4.1. An abelian variety A/F is said to be modular if there
exists a newform ¢ € So(n), which is an eigenform for the Hecke algebra
Ty, suchthat E = Kg and py , is equivalent to py ., where p is a prime ideal
Of O¢.

Let K/F be a quadratic totally imaginary extension and assume A /F be
modular. Fix a prime ideal p of Oy of residue characteristic p. The Selmer
group Sel.(A/K) is defined by the exactness of the following sequence:

0 — Sel(A/K) — H' (K, A[p"]) — &, H'(K,, Alp"])/Tm(3,),

where the direct sum is over the set of prime ideals q of Op and Im(J,) is
the image of the local Kummer map

5q  AKy) /9" AK ) — HY (K, Alp"]).

Note that the image Im(J,;) of the Kummer map can be described in terms
of the representation A, as follows:

1) Primes qfnp: Im(d,) = Hflin(KC“A@n). This follows from [Mi,
Chapter I, Section 3].

2) Primes p dividing p and such that A/K has ordinary reduction at p:
Im(d,) = H}.,(Ky, Ag,,). This follows from [CG, Proposition 4.5].

Finally, define the p-primary part Sel ~(4/K) of the Selmer group to
be:

Sel,~(A/K) := lir}Ll Sel«(A/K),

where the direct limit is computed by means of the inclusion maps

4.2 — Bounding Selmer groups

Let A/K be a modular abelian variety and let ¢ its associated Hilbert
modular form. Define L(A,s) := L(¢,s) and Lg(A,s) := Lg(¢,s) to be the
Hasse-Weil L series of A over F' and K. Fix a positive integer » and denote
as above by o, : A(K,)/¢p"AK,) — H 1 (Ky,A[p"]) the local Kummer map.

Recall the conditions on the prime ideal g of residue characteristic p
stated in Assumption 1.2. For convenience, these conditions are restated
and briefly commented in the following:

ASSUMPTION 1.2, CONDITION 1. Pop 18 residuallg irreducible. This is
equivalent to require that the representation of Gal(#'/F) on the p-torsion
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Alp] of A is irreducible. If A is an elliptic curve without complex multi-
plication, thanks to [Se] it is known that A[p] is irreducible for all rational
primes p except possibly a finite number of them.

ASSUMPTION 1.2, CONDITION 2. ¢ s ordinary at all prime ideals p | p.
If the modular abelian variety A is ordinary at p | p, then the associated
Hilbert modular form ¢ is also ordinary at p. For a proof, see for example
[Go, Chapter 3, §6.2].

ASSUMPTION 1.2, CONDITION 3. ¢ is p-isolated. Since the dimension of
the space of Hilbert modular forms of given weight and level is finite, this
condition is verified by all prime ideals p except, possibly, a finite number
of them.

AssuMPTION 1.2, CONDITION 4. Im(dy) = 0 for primes q | n and q1 p,
where p is the residue characteristic of p. This condition is verified by all
prime ideals g except, possibly, a finite number of them. This follows from
a theorem of Mattuck which states that, for an abelian variety A4 of di-
mension g defined over a finite extension K of (Q;, where [ is a prime of Q,
there is an isomorphism A(K) ~ 7",;;7[’C AN , where H is a finite group.
For references, see for example [CG, Section 4].

REMARK 4.2. Suppose that Assumptions 1.1 is verified and that the
special value Lk (¢,1) is not zero. Suppose also that there are infinitely
many prime ideals p verifying Assumption 1.2. Then there are infinitely
many prime ideals p verifying Assumption 1.2 and such that p| Lx(¢).

The following theorem corresponds to Theorem 1.4 of the Introduction
and proves the existence of Euler systems relative to A/K and p", where @
satisfies Assumption 1.2.

THEOREM 4.3. Suppose that K/F satisfies Assumption 1.1. If p sa-
tisfies Assumption 1.2, then for every positive integer n the set
{Ky : L is a p"-admissible prime}
is an Euler system relative to A/K and ¢". More precisely:

1) The set of @"-admissible primes controls the Selmer group
Sel(A/K).
2) Primes q # L: resy(ic) € Im(dy).
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8) The equality 0,(ic;) = Ls(K) holds in Hsling(Kg,A[p"]) ~ Oy /" up
to multiplication by invertible elements in Oy/p".

Proor. By the generalization of [BD2, Theorem 3.2], the set of -
admissible primes controls the Selmer group Sel,(4/K). The equality of
O(ry) and Lk(¢) up to invertible elements follows from Theorem 3.10,
statement 3. The description of res,(«,) for primes q{ n and primes p | p
comes from Theorem 3.10, statements 1 and 2, combined with Condition 2 of
Assumption 1.2 enjoyed by . Since, by Condition 4 in Assumption 1.2, the
image of the Kummer map at primes dividing 11 but not p is trivial, the result
follows. O

The following theorem explains how to use the Euler system of Theo-
rem 4.3 to control the Selmer group of A/K.

THEOREM 4.4. Suppose that K/F satisfies Assumption 1.1 and the
central critical value Lg(A,1) of Lg(A,s) is not zero. If o satisfies As-
sumption 1.2 and pf{ Lx(¢), then Sel,(A/K) =0 for every n. It follows
that the p-primary part Sel~(A/K) of the Selmer group is trivial too.

ProoF. Assume that Sel;»(4/K) # 0 and fix s € Sel,,»(4/K) anon-zero
element. As in [BD2, Theorem 3.2], choose, among infinitely many, a ©"-
admissible prime ¢ so that res,(s) # 0 and consider the class x, built in
Section 3.6. By the choice of p and Theorem 4.3, it follows that res,(x;) is
orthogonal to res,(s) with respect to the local Tate pairing (, ), for all prime
ideals q # 4. By the global reciprocity law of class field theory, it follows that

(18) (9u(rcp), res(s)), = 0.
Since /¢ is p"-admissible, it follows as recalled above that

H. (Ky, Tgb,n) = Ogﬁ/@n

sing
and, by the same argument as in [BD2, Lemma 2.6], its orthogonal com-
plement H%in(KZ,AW) is isomorphic to Og4/p" too. Since J(x,) # 0 by
Theorem 4.3 and res,(s) # 0, Equation (18) contradicts the non degeneracy
of the local Tate pairing. It follows that the Selmer group Sel,(A/K) is
trivial. The last statement follows from the definition of Sel ~(4/K). O

COROLLARY 4.5. Suppose that K /F satisfies Assumption 1.1 and the
central critical value Li(A, 1) of Li(A,s) is not zero. Suppose also that
there exists at least one prime ideal o verifying Assumption 1.2 and such
that p{ Lx(p). Then the rank of A(K) is zero.
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ProoF. Let pbe asinthe statement. Then, by Theorem 4.4, the Selmer
group Sel,(4/K) is trivial. Since the Kummer map

AK)/pA(K) — Sel,(A/K)

is injective, the rank of A(K) is zero. O

Under stronger hypotheses on A such that the existence of infinitely
many prime ideals g verifying Assumption 1.2, it is possible to prove the
following more compact result. The first statement corresponds to Cor-
ollary 1.7 of the Introduction.

COROLLARY 4.6. Suppose that Assumption 1.1 is verified. Suppose
also that there exists infinitely many prime ideals o satisfying Assump-
tion 1.2.

1) If Lg(A, 1) # 0, then the rank of A(K) is zero.
2) If L(A, 1) # 0, then the rank of A(F) is zero.

ProoF. To prove the first statement about the rank of A(X), choose,
among infinitely many, a prime ideal p satisfying Assumption 1.2 and such
that o | Lx(¢$). This is possible by Remark 4.2. Then apply Corollary 4.5.

To prove the second statement on the rank of A(F"), choose, by Remark
3.8, a quadratic totally imaginary extension K /F verifying Assumption 1.1
and such that the special value Lg(A, 1) is not zero. Then apply the first
part of this Corollary and use that A(F) C A(K). O
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