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Introduction

In [34], Reshetikhiret al. described a construction (also discovered by others and
called FRT construction according to most literature) which associates a bialgebra
to every matrix with coefficients in a given fiel@. If the matrix in question

is a solution of the quantum Yang-Baxter equation, one gets what is called a
‘dual quasitriangular bialgebra’ or ‘coquasitriangular bialgebra’. This is ‘dual
quasitriangular’, as a bialgebra is equivalent to the fact that the category of its
corepresentations is braided (see [16, 20, 21], or [10] for a weaker result).

In [11], one finds a class of solutions of the quantum Yang—Baxter equation,
which we call ‘quasidiagonal’ because the matrices belonging to this family are
such thatR?, = 0 unless{a, b} = {c, d}. Our purpose is to study the structure of
the dual quasitriangular bialgebras associated with these solutions. We will mainly
be interested in Poincaré series, in the existence of zero divisors, in the possibility
of providing Hopf algebra structures as explicitly as possible, and in the description
of those bialgebras in terms of well-known objects of quantum group theory. We
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will show how, even though we can always reduce them to standard deformations,
some peculiar phenomena still arise.

We will first focus on bialgebras associated with a particular case of quasidi-
agonal solution, namely those for which eith@f> = 0 or R = 0 for every
a,b e {1,...,n}. We call them ‘type II’ according to Hazewinkel's terminology.

We describe these bialgebras in terms of (twists) of standard deformations of the
general linear group or supergroup. In the case where the bialgebra has no nilpotent
elements, this is just the multiparameter deformation on the algebra of functions
of a matrix semigroup. This is already pointed out in [11], and this bialgebra has
been studied by dozens of people. In particular, in [1] one finds how it can be
embedded in a Hopf algebra, and the fact that it is a twist of the one parameter
standard deformation of the function algebra on the semigroup>of: matrices

with coefficients in the field<.

If a bialgebra of type Il has nilpotents, we show that its Poincaré series is the
same as that of the algebra of functions on a supermanifold of matrices, but it is
clear that it cannot be a deformation of that object, since it is a bialgebra and not
a super bialgebra. However, we show that it is a twist of a sub-bialgebra of the
‘bosonization’ of Manin’s deformation of the algebra of functions on (ylat —

p). Bosonization is a process that associates to a Hopf superalgebra (resp. a su-
per bialgebra) a genuine Hopf algebra (resp. bialgebra). This process has been
described by D. Fischman in [7], for the universal enveloping algebra of the Lie
superalgebra of endomorphisms of a super vector space and it is a type of Radford
biproduct. This process has been introduced in the more general context of braided
categories by S. Majid in [25]. A survey of some of the results in the area can be
found in [32].

The author discovered after the completion of this work that a very similar
relation between deformations of Mat n — p) and bialgebras of type Il were
also found by S. Majid and M. J. Rodriguez-Plaza in [27] and [28] (which also
contain the results in [27]) using the superization process, which is essentially the
inverse of bosonization.

The identification of a type Il bialgebra with a sub-bialgebra of the bosoniza-
tion of a Hopf superalgebra (see [12] for an explicit description of the antipode
construction), allows us to find easily a minimal Hopf algebra containing the type
Il bialgebra by localization. The importance of this computation does not lie so
much in the description of the antipode, which is basically that in [12], but in the
rigorous proof that the localization we perform makes sense according to Ore’s
noncommutative localization theory. This allows us to say more about algebraic
properties of the localized algebra: for instance, that it does not collapse and that
the bialgebra we started with is really embedded in its localization. Thercasé,

n = 2 was already handled in [14], and [8], but in that case it was not clear at all
that what one should invert is some sort of quantum determinant.

At this point it becomes very easy to see that if we factor a type Il bialgebra
by the ideal generated by its nilpotent elements, we again obtain a bialgebra which
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is isomorphic to the twist of a tensor product of two standard deformations of the
algebras of functions on two matrix semigroups, which recalls the obvious classical
properties of Gl(p | n — p).

Once the bialgebras of type Il are neatly described, we can go through the whole
family of solutions in [11]. In this case, the associated bialgebra behaves poorly.
It will have zero divisors which are not nilpotent, and/or it will have a too fast
growing Poincaré series.

A key result in this paper is a necessary and sufficient condition for the n#atrix
in order to have an associated bialgebra that is a domain. Moreover, once one limits
the study to those bialgebras whose Poincaré series does not grow too fast, it turns
out that there is a straightforward way to factor out zero divisors so that the quotient
is a twist of a tensor product of bialgebras of type Il. In particular, those bialgebras
can be factored and their quotient is a domain which can easily be described in
terms of standard deformations of matrix semigroups and can be embedded in a
Hopf algebra. A standard way to lift the Hopf algebra structure explicitly is still
an open question, even though, by theorems in [29] and [18] we know that formal
solutions are always possible, and that a weak antipode always exists. Besides,
our factorization is too natural not to be compatible with their construction. We
show what kind of difficulties can arise if one wants to extend the antipode to an
extension ofA (R) by localization.

We also provide a different quotient which is an amusing domain, although it is
no longer a bialgebra, but only a comodule algebra: we also show what its relation
is with quantum planes.

The first two sections are merely introductory: in Section 1 we give a short
description of Hazewinkel's ‘quasidiagonal’ solutions, while in Section 2 we recall
the FRT construction.

In Section 3 we describe in detail the bialgebras associated with a quasidiagonal
solution of the quantum YB equation such that for everst b either R{2 = 0 or
RP4 £ 0, i.e. those of type Il. We describe their relation with Manin's deformations
of the general linear supergroup and we provide their Hopf envelope by finding a
proper Ore set.

In Section 4, we show the existence of zero divisors in a general bialgebra
associated with any quasidiagonal solution of the quantum YB equation, and we
describe explicitly the relations between this algebraic property and the combina-
torics of the matrixR.

The presence of zero divisors cannot be avoided in most cases, but we build
different kinds of factor algebra: the first quotient turns out to be a twist of a tensor
product of bialgebras of the type described in Section 3. This factor algebra is
easily seen to be a bialgebra, and we are able to embed it into a Hopf algebra in
a way that is consistent with the embedding of bialgebras of type Il into a Hopf
algebra.

In the Appendix, we provide a description of the construction of twisting a
comodule algebra by means of a 2-cocycle. This is actually very standard material
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but we decided to include it in this paper as an appendix, since notations differ
widely in the literature. We show the relation with the three different definitions in
the survey [32], in [1] and in [6] and [33]. For further reading on the subject, one
can consult [18].

The fieldK over which we will work shall be always be of characteristic differ-
ent from 2.

1. The 'Quasidiagonal Solutions’ of the Yang—Baxter Equation

Let R = (r*?) be ann? x n? invertible matrix over a fiel&k that we fix from now
on.

R is said to be ‘quasidiagonal’ if'Y = 0 unlessa, b} = {c, d}. We can viewR
as an operator ol ® V for some vector spacg with basis{e?, . . ., ¢} as follows

R ®e) = Zr,i{ek ®e.
k.l
In this section, we describe the conditions presented in [11Rhmegeds to fulfill in

order to be both quasidiagonal and a solution of the quantum Yang—Baxter equation
(g-YB equation) in the form:

R12R13R23 = Ro3R13R12. (1.1)

In the above formula, iR represents the operator acting Bre V, R;; stands for
the operator acting, ol ® V ® V, asR on theith andjth component, and as the
identity elsewhere. We will stick to this notation from now on.

In order to find these conditions, Hazewinkel assumedRhata quasidiagonal
solution of the g-YB equation, and looked for the relations that these assumptions
imply for the matrix entries. Then, he showed that these relations are also sufficient
for a quasidiagonal matrix to be a solution of the g-YB equation. We present his
procedure here.

Let theR be a quasidiagonal solution @f.1). Each of its entries has two upper
and two lower indices all belonging to the index get= {1, 2, ..., n}. We define
a relation on/ in the following way:

a<berib+£0 (1.2)

With the given assumption oR, < turns out to be a pre-order (not antisymmetric).
Then, one can define a relation of ‘connectedness’, denoted by 7, namely:

a~bsa<b or b<a. 1.3)

Provided that the assumption @&holds,~ turns out to be an equivalence relation.
An equivalence class for” will be called a ‘blocK.

Since< is not antisymmetric, it may happen that inside a block, onezhas
andb < a with a # b: sucha andb will be said to be strongly connectéd
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(notation:a >~ b). Strong connectedness is an equivalence relation inside a block,
and its equivalence classes will be calledmponents

Then, one finds the following condition on components and blocks, in order to
have a solution of1.1):

PROPOSITION 1.1 ([11]).Let C be a component of a block determined by a
guasidiagonal solution of1.1). Then, there is & # 0in K, such that for all
a,beC (a#Db):

aa __ . bb __ _ab __ _ba __ ab __ _ba __
reS =y =rp =71 =X, re) =rye =0. (1.4)

Since a blockB consists of several components, Ca, ..., C, and all its
elements are connected, we can renumber the components in such a way that
C1 < Cy < --- < Cp, where the ordering of the components is the one that agrees
with the ordering of the indices belonging to the component. Nandgly: C; if
and only ifa < b, andb £ a for everya € C andb € C;.

A description follows of the submatriRz whose entries are indexed only by
elements in bloclkB.

PROPOSITION 1.2 ([11]).Let R be a quasidiagonal solution dfL..1), B be a
block of I determined byr andC; < C; < --- < C, be the components d.

Letx; be the scalar corresponding to the compon€ntaccording to Proposition
1.1, forall 1 < j < p. Then, there are scalarg # 0 andz # 0 such that for all
aeCiandb e C;withi < j:

ab

ba __ ab_.ba
Fab _0’ Tha

=y and r&re =z (1.5)
Moreover, all ther ;’s satisfy the same quadratic equation
A=y +z. (1.6)
The following proposition tells us how blocks should match with each other:

PROPOSITION 1.3 ([11]).Let By, ..., B,, be the blocks of1, 2, ..., n}, for the
guasidiagonal solutiorR of (1.1). Then, there are nonzero scalarg = z,, for
s #t€{l, ..., m}, such that

rfjll,’ré’g =z VYaeBs,be B;,s #t. @.7)

In the following theorem, one essentially sees that the conditions in Proposi-
tions 1.1-1.3, are also sufficient, for a quasidiagonal makrieo be a solution of
the quantum Yang—Baxter equation.

THEOREM 1.4 ([11]). Let K be a field. Letl = {1,..., n}. Divide I into sub-
sets and call them ‘blocks’. Split the blocks into subsets and call those subsets
‘components’. Choose scalars k as follows

(i) For each blockB, consisting of a single componefitchoosexr; # 0O;
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(ii) For each blockB; with more components, chooge# 0 andz; ## 0 and for
each componer€; in B, chooser’ satisfying()nj.)2 = ysh} + 25

(iii) For each two distinct blocks8;, B;, choosez,; = z;; # O;

(iv) For eacha, b € B, witha > b, choose a scalak,;, # O;

(v) For eacha € B; andb € B, withs > ¢, choosex,;, # 0.

Now, define the?? as follows

bb b
) réa =ryy _r,’ja = rba by =M, andr® = rb* = 0fora #b,a,b € C; C B;
() it =y, rba =0,r% = zsxbal, r® = xp, fora, b € By, a < b;
{ID) raé’ = Xup, r},’a zb,xabl, rg‘fl’ = 5’;‘ =0fora € By, b € B, ands < t;

(IV) r® = 0if {a, b} # {c, d}.

Then, the matrixk thus specified constitutes a quasidiagonal solution of the quan-
tum Yang-Baxter equation. Moreover, up to a permutatiorflof.., n}, every
solution satisfyindIV) can be described this way.

Remarks. If R is quasidiagonal, then all powers &f will be quasidiagonal
as well, and therefore all elements Ki[R] will have the same property. IR
is also invertible, all the elements K[R, R~1] will be quasidiagonal. This is a
consequence of Cayley—Hamilton’s theorem, for instance.

After [11] was published, an article by Markl and Majid was published on the
glueing of Yang—Baxter operators [26]. In their Theorem 2.7, they introduce a pro-
cedure that associates to two given solutions of the quantum Yang—Baxter equation,
a third one. They mainly focus on a special case, namely when the operators are
g-Hecke. This means in our notation that there is an invertjble K such that
(PR)?> = (¢ — ¢ Y)PR + 1 whereP is the permutation matri??? = §4s°.

It is possible to reduce the solutions in [11] to an iterated application of their
results, starting with multiples of the permutation matrix, and scalar matrices. On
the other hand, the matrices in [11] are not all obtained by glueing, since they are
not necessarily Hecke. Indeed, the characteristic polynomiBlrois

detPR—p) = [[¢“ =8 ] Ga—B7*x
i=1

a<b; a~b;a~b

X 1_[ (ﬁz - ﬁya + )‘a/fLa) 1_[ (132 - Zst)-

a<ba~b,axb a<bab

Hence, its minimal polynomial might have a degree higher than 2. What is very use-
ful in [11] is that we have a very explicit combinatorial description of how blocks
must match with each other, which is very simple, and that it is a classification. On
the other hand, the results in [26] refer to a less limited family. Majid and Markl
also treat the bialgebras and Hopf algebras related to the g-Hecke operators arising
by glueing. An interested reader could find in their results a categorical explanation
for the choices and the phenomena in Section 4, although the algebras we describe
are not necessarily associated with g-Hecke operators.
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2. The FRT Construction

We start this section with a silly remark about notation. TiRematrices’ that

we will use from now on, are the transposed form of those appearing in most
of the literature. This choice was made for convenience, since our main tool was
the classification provided in [11], and we preferred to be faithful to the notation
adopted there. This will not, however, change the essence of our results. Indeed,
the bialgebras one meets in the literature are very close to ours (i.e. they have
opposite algebra or coalgebra structure or they are isomorphic to ours), so they have
essentially the same properties as far as being PBW algebras, integral domains or
being a Hopf algebra is concerned.

We assume that the reader is acquainted with the definitions of bialgebra, Hopf
algebra, braided category. Good references for these notions are the surveys [4, 15]
or [18]. They contain a description of most of the standard results in the theory.

Let us start with some definitions, and terminology:

DEFINITION 2.1. A ‘dual quasitriangular bialgebréH, m, u, A, ¢, r) is a bi-
algebraH together with a linear form on H ® H such thatr is invertible under
the (convolution) product defined tH ® H)* (linear dual), and

mo =rxmxrt (2.1)
r(m ®id) = rig* ras, (2.2a)
r(id ®m) = rig* rio. (2.2b)

Here,r1o, o3, andriz are linear forms o7 ® defined by
ro=rQ®e, rp=eQr, ri3=(E®r)(ogy®id).

The formr is called the ‘universak-form’ of H. A Hopf algebra is dual quasitri-
angular if the underlying bialgebra is.

The property of a bialgebra being dual quasitriangular is important when we
deal with its representations. IndeedHfis dual quasitriangular then, given two
H-comodulesV andW, there is a standard comodule isomorphisii @ W —

W ® V defined by means af This is built in such a way that the category of finite
dimensional corepresentations is a ‘braided category’ (see [10, Prop. 1.1, 16, 21]
or the survey in [15]).

The FRT construction is a standard procedure to get a bialgebra starting from
any invertible solution of the g-YB equation. This was discovered by many people
independently. In order to unify notations, we give the statements of the existence
theorem, and describe the construction, following the survey [15].

THEOREM 2.2. Let V be a finite-dimensional vector space aRcan endomor-
phism of ® V. There exists a bialgebra(R) together with alinear mapy: V —
A(R) ® V such that

(i) the mapAy equipsV with the structure of a comodule ovarR);
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(i) the mapR P becomes a comodule map with respect to this strugtlns the
flip operator associated to the permutation majrix

(i) if A”is another bialgebra coacting oW with linear mapA’, such thatii) is
satisfied, there exists a unique bialgebra morphismA(R) — A’ such that
Ay = (f®idy) o Ay.

The bialgebraA (R) is unique up to isomorphism.

Proof. A complete proof of these statements is to be found, for instance, in [34].
We give only a short description of the constructionAfR). Let {e'}1<;<, be a
basis ofV, so thatR is represented by the matrig’ such that

R ®e) = Zr,’cfek ®e.
k.l
We pickn? indeterminatesj., 1< i, j < n.Then, the bialgebrd (R) is defined as

the quotient of the free algebra generated byt}'hseby the two-sided ideal (R)
generated by all elements

E : abz E : kl .b.a
cd - T ,J c rcdtl tk (*)

for everya, b, ¢, d € {1,...,n}. Those relations can also be expressed in terms
of matrix products as follows. Let, denote the: x n identity matrix. Define the
matricesT, T, and T» asle = (ti) Th =TQ®ILandT, = I, ® T, so that
(Tl)k, = (tk(S/) and(Tz)k, = (5!:,) Then the relations foA (R) can be expressed
by means of

RTWT» = T,T4R. (%)

One can check that there is a unique bialgebra structure(@&n such that

A=ttt et =4l (o)
k

The coaction orV is given byAy (¢') = )~ zj. ®el. O

To clear the air a little, we point out that one does not need a solution of the g-
YB equation in order to construct a bialgebra. The observation ti&asif solution
of g-YB equation one gets a dual quasitriangular bialgebra is due independently to
Majid in [20] and to Larson and Towber (see [16]). This is now a standard fact that
can be found in [18] and [15].

THEOREM 2.3. If R is as in Theoren2.1and satisfies the Yang—Baxter equation
(1.1), there is a unique linear form on A(R) turning A(R) into a dual quasi-
triangular bialgebra such that the isomorphisRP is the standard isomorphism
V®2 — V®2 defined by means of We have (; ® 1) = rj.
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Remark. We recall that ifR is invertible, therr is invertible under convolution
andr~(tf ® 1) = (R™H,.

We end this section describing two well-known bialgebras that can be obtained
by means of this construction.

EXAMPLE 2.1. Take am? x n? quasidiagonal solutioR of (1.1) such that one
has one single blocB consisting of one single component. We will call this type
of block (and their associated matrig), ‘type I'. In this case, the relations in
A(R) are all trivial. Indeed

Spe =Y. el — S = mltl —wltl =0 (a=b,c=4d),

ij'i,j'c

Spti =Xy riytety = S gl = Mi1§ —ME1=0 (@ =b.e#d),

Speh =3 rl“i’tctt e TR P = Al za AMbt=0  (a#b,c=d),
b 4i —

Spg _le zajtc k.l cdtl tk _)\‘tctd_)“tcl’)tszo (a7éb’c7éd)

ThereforeA(R) is isomorphic, as an algebra, to the free algebra®generators.
Once we give to eactj degree 1, and call(R), the homogeneous component of
degreer, we see that the Poincaré seriesAgiR) is

P(A(R), 1) = Zdim(A(R),)t’ = n?¥ =1 -n?*)L.

r=0 r=0

EXAMPLE 2.2. LetR be a quasidiagonal solution ¢f.1) such that is a single
block B with all component<”; of size 1, i.e. such thdC;| = 1. We will call this
sort of block (and their corresponding matricg) ‘type II'. Suppose also that
A; = A is constant for all components in the block. TharR) is the standard
multiparameter deformation of the algebra of functionsM)i(K ), the semigroup
of n x n matrices with entries irk. One can always multiply the matrix by a
constant so that the second solutjof Equation(1.6) is equal to—1 (soz = 1),
as in [1], or to—A~1 (so,z = 1), as in most of the literature.

The parameterp;; for j > i andA in [1], correspond, respectively, t(,’aj’ At
andA/(A — y). The relations foA(R) are

rid = (r') Yhdt 4y =1L > k),
tj.tk (rk )~ 1Atkt’ (j > k),
il = (rih- 1r;,’jtkﬂ (i >1,j<k).
It is well known thatA(R) is Noetherian as an algebra, it is a domain and that

its Poincaré series is the same as that of the ring of polynomiai$ édommuting
indeterminates, fok # ©. Namely,

2 _
PAR), ) =Y dmAR) = (" +rr 1>t’ —1-n"".

r=0 r=0
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A(R) coincides withK [ri; 1< i, j <n]if A = ril = 1 for everyi, j € I, and
u = —1,i.e.itis a genuine deformation of the algebra of function341K).

3. Bialgebras of Type Il

The purpose is of this section is to study the bialgebras associated with a quasidiag-
onal solution of the g-YB equation, whose set of indi¢esnsists of a single block
with all components of size one. Following [11], we call them ‘bialgebras of type
II'. We will show their relation with the quantum matrix supergroups (very similar
results for a bigger class &-matrices were also obtained in [28]) and we embed
A(R) into a Hopf algebraH (R), by means of an Ore localization. We will show
in the next section that for other matric&sthis is not always possible, because
we have zero divisors. We think this is an important issue, although it is often
neglected in the literature. Although we discovered recently that Proposition 3.11
is not a new result, we still present it here because it is useful for the definition
of the antipode fotH (R), while using only the isomorphism in [28] would cost a
little more work.

One has a partition of = E U O, such that, ifx andu are the two solutions
of Equation(1.6), ri¢ = Aifa € Eandr{ = uifae O.fE=10r0 =1,
then we fall back on Example 2.2. In this case, it is well known that the bialgebra
A(R) can be embedded in a Hopf algebra which is the Ore localizatiof( &
at the quantum determinant, and th&tR) is a twist of the standard 1-parameter
deformation ofM,, (K).

Suppose now that the partition bis nontrivial. Then, it defines an equivalence
class for its elements, which we denote=sy We have the following lemma:

LEMMA 3.1. LetR be any quasidiagonal solution of Equatighl). If 74 =£ r2?,
then(t;;)2 = 0in A(R). In particular, if A(R) is of typell, and the partition of is
nontrivial, (/)2 = 0 wheneveu #' b.

Proof. The relationSpg; = 0 gives
radtat = rpptitie. (red — gty = 0. O

We introduce an ordering on the monomials in tj’ie with i, j € I as follows.
We associate to eacpdegree 1, and we order the monomials first by their degree
(monomial of lower degree: monomial of higher degree), and then if two mono-
mials have the same degree, we order them in lexicographic order, considering the
upper index before the lower ong (> 5 if a > c orif a = c andb > d, and then
again lexicographically for monomials of higher degree).

We rewrite now the relations foA(R) in such a way that we have a single
monomial on the left-hand side, and a linear combination of monomials which are
strictly smaller than the above-mentioned monomial on the right-hand side. From
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now on we writer“® instead of-%? for an entry ofR belonging to the diagonal, and
we write y to denotel + w. Then the relations foA(R) are

=0 G#E D

e = O g+ ye T g >0 > k),

it = DG (> k),

v =g > 1, < k).
We can check that this is a set of rewriting rules whose overlap ambiguities are
confluent. Moreover, the monomials in tkj.és such that for every two subwords
t < t' in the monomialy is on the left ofs’, and nor;i such that ' j occurs
twice in the monomial, form a basis df(R). This type of monomial will be called
‘normally ordered'.

In particular, the Poincaré series 4tR) is then the same as that of the function

algebra of the supervariety M&E|, |O|), hamely

P(A(R),t) = Z dim(A(R),)t"

r=0

_ i{i(m% |0r|2_+kr—k—1> 5

r>0 b k=0

) (2|Elil0l)]t’ = (1— ) EFHIOF @ 4 2l

The case ofA(R) withn = 2, and|E| = |O| = 1 has been studied by Jing, who
has found a concrete Hopf algebra in whi€fiR) can be embedded (see [14]). The
problem of finding a concrete Hopf algebra structure for this typé @) for any
n can be solved by generalizing his work and finding an appropriate localization,
as we will show.

To simplify computations, we shall assume from now on that all the indices in
E precede all the indices i@. This can always be made possible by reordering the
indices, making sure one rewrites the relations in a suitable way.

We start with the following, that resembles a classical property for the algebras
of functions on the supervariety M&E| | |O|).

PROPOSITION 3.2.Let A(R) be a bialgebra of typdl, let |E| = p and letN
be the ideal generated by thﬁs such thati £’ j. Then,N is a bialgebra ideal,
andA(R), := A(R)/N is adomain. If the fiel& contains+g, the square roots of
—u, thenA(R), is isomorphic to a twist of the tensor product of standard defor-
mations of the algebras of functions o#,(K) and M,_,(K), with deformation
parameterg = A/B andq’ = u/fB, respectively.

Proof. For the first statement, we have to prove thaitN) € N ® A(R) +
A(R)® N and thate(N) = 0. If i &' j, then

A= et =)ot +) iertc AR ®N+N®AR).
k

k=i k='j
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SinceA is an algebra homomorphism(N) ¢ N ® A(R) + A(R) ® N. Again,
if i # j, clearlyi # j hences(s}) = 0. Henceg(N) = 0 andA(R), inherits a
bialgebra structure from (R).

It is easy to see that (R), is isomorphic to the algebra generated by th%”s
with i =" j, with relations:

e = O+ yeD T > 1 > ki =D,

iy = )G (> k),

ty =k (o>, j <kori>1i # k),
because

$:AR) — A, (3.1)
i o ifi = 7
o { 0 ifiz)
is a surjective bialgebra homomorphism whose kernel is exa¢tlyhis follows
by looking at the bases of both spaces.

A(R), is a domain because the graded ring associated with the filtration given
by the degree firstly, and the lexicographic order secondly on the monomials is a
domain.

As far as the twist is concerned: this is again a standard fact. We show a proof
because this technique will be used frequently in this paper. Let us denote the
deformed algebras dff,(K) andM,_,(K) by M, , andM, ,_,. Let their gener-
ators be, respectively,, for1 < k, I < p andu,, for p+1 < r,s < n. We wantto
twist the bialgebra?, , ® M, ,—, (with the usual tensor product comultiplication)
by a cocycles; on the left anobl‘l on the right.o; € (M, , ® M,,/,n_p)@’z)* is
given as follows:

Suidur Bt if v < pandl > p,
o1(y; @ u) = 8vj8[kﬁ_lrl” if v <landv =1,
8001k if s=tandv >1lorift >s

on the generators af M, , ® M, ,—,)®?, and it is extended multiplicatively on
the other elements @b/, , ® M,,/,n_.p)‘g’z. i.e. for the monomials := (u;,;,)* - -
(i, ;) @ndv := () -+ (g,)

! g
o1 ®v) = [ [ 8ij. [ [ Sk, [T B 1 )R
c=1 v=1 ic<ky
and"l_l(”ij ® ui) = 88 (o1(ui; ® ugy))~1. Then the map

¢: Ul(Mq,P ® Mq’,n—p)gl—l — A(R),

Uy = tli
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with g = A/8, ¢’ = /B is a well defined bialgebra isomorphism, as it can be
checked by direct computation. O

Remark.By the previous proposition it follows that the product of two elements
of A(R) whose expressions in terms of the basis does not contaitj it i £
is zero if and only if at least one of the two elements are zero, since this is what
happens iMA(R),.

Besides, if a; € N, and there is an € A(R) such thaur! = 0, thens; must
appear as a factor in the ‘highest’ (in the ordering of the monomials of the basis)
normally ordered monomial in the expressionzpiunlessa = 0. Indeed, let: =
cat? + lower order terms, where & c, € K, t follows the usual multi-index
notation, andA is ann? matrix with entries iINZ>o and such thaty,; € {0, 1} if
k #' 1. Then 0= at} = c’c,t**¥ii 4 lower order terms, wherg;; is then? matrix
with all 0 entries except for that indexed by;j, which is 1. HencetA*£i = 0
which implies that;; = 1 otherwise the monomial would belong to the basis.

COROLLARY 3.3. The Poincaré series of(R), is the same as that of the algebra
on p? + (n — p)? commuting variables witlp, andn as before. Moreover (R),

is a twist of the tensor product of the standard multiparameter deformations of the
algebras of functions oM ,(K) and M,,_,(K).

Proof. The first statement is obvious. The second statement follows from the
fact that the multiparameter deformation &f,(K) is nothing but a twist of the
one parameter deformation. The needed coaygle (M, , ® Mér,n,)®2)* will be
given by (same notation as above)

(Svj&kr[”(rjj)_l if v <l,U§é/l,

o2(ty; @ up) = {&g&k otherwise.

d

PROPOSITION 3.4. A(R), is again a dual quasitriangular bialgebra with uni-
versal R-formu(t} @ 1) = r'} whenevei =' j, andu(; ® ;) = 0if i #' .
Proof. One checks (2.1), (2.2a) and (2.2b), knowing that they holdAf@R)
and that the projection is a bialgebra homomorphism. For instance, one sees that
(2.1) in A(R) corresponds with/siz; = riitl1;. Projecting ontoA(R); one gets
(2.1) for A(R),, by observing that if a product of sorr;’és appears with coefficient
ri with a #' ¢, then it belongs to the kernel of the projection, or it is involved
in a trivial relation. The other formulae are checked in a similar way, knowing that

EAR) = EAR)D- a

PROPOSITION 3.5.Let A(R) be a type Il bialgebra. Then, there are two left
comodule algebraSym(R) and A(R) for A(R) such thatA(R) can be also defined
as the universal bialgebra coacting @ym(R) and A(R), i.e. any other bialgebra
coacting onSym(R) and A(R) is a homomorphic image of(R).
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Proof. If the partition ofI is trivial, the assertion is well known, being SyR)
and A(R) the usual quantum symmetric and antisymmetric algebra (see for in-
stance [30], or [4]). The same construction can be used in this casé. hethe
matrix of the operator defined by the operaiP where P is the flip operator on
V ® V (V as in Section 1) associated with the permutation matrix. We recall that
the entries ofS are given byS“> = R%. We can prove thas is diagonalizable,
and its minimal polynomial i$X — A)(X — w). Then, SyniR) is the associative
algebra obtained by the quotient of the free algebra on genesators, x, by the
ideal generated by the entries(@f— 1) (X © X) whereX © X (notation as in [4])
is then? column matrix with entrie$X © X)7; = x;x;. Sym(R) is also called the
‘quantum symmetric algebra’ defined by the maRixBy A(R) we denote instead
the associative algebra obtained as the quotient of the free algebra on generators
&1, ..., &, by the ideal generated by the entrieg 8f— w)(E © B), whereg © &
(notation as in [4]) is the? column matrix with entrieg2 © E)’ijl = §&;. AN(R)
is also called the ‘quantum antisymmetric algebra’ defined by the mRtrikhe
relations for SymiRr) are then

T O T :
o woriixx ifio>
it {o ifi=jeo.

The relations foln(R) are

£t — —2YitgE ifi > g,
S N0 ifi=jckE.

It is then a standard fact that the relations AfR) are equivalent to the fact that
Sym(R) andA(R) are comodule algebras fdr(R), with coactiond (x;) = ) t}i ®

xjandd' (&) = ) 1) ®&;. O

Our purpose is now to find a suitable Hopf algelfar) in which A(R) could be
embedded. This can be done by means of localizing at a certain Ore set. We know
already that a twist ofA(R), can be embedded in a Hopf algebra, because we know
thatM,,(K)®M, ,—,(K) can be embedded in the Hopf alge®t,,®GL ; ,,—p,

by localizing at the quantum determinants. Moreover, twisting the tensor product
of the quantum exterior algebras #f,,(K) and M, ,_,(K) on the left byo;

of Proposition 3.3, we can again find a left comodule algebraifat), which is
graded, and whose degreeomponent., is one-dimensional. As in the standard
case, one can define a sort of quantum determinant by requiring it to be the element
d of A(R), such that ifL,, = Kv, §(v) = d ® v. This can be computed, and it
turns out that! = drdy = dodr Wheredg (respectivelyd,) is the usual quantum
determinant ofM,,(K) (respectivelyM, ,_,(K)). It is possible to show that the
multiplicatively closed se{d* | k € Zxo} satisfies Ore condition. In particular,

we can localizeA(R), at d and the localized ring can be provided of a Hopf
algebra structure. We do not show this here, since it is follows by straightforward
but tedious computations. Anyway, we use this as a motivation. We would like
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H (R) to respect this result, so that we try and see if localiZAi®) atdy andd,
viewed as elements of(R), we obtain a decent algebra, that can be given a Hopf
algebra structure.

We recall that

-1 k j 1
dE:Z 1_[ (=27t )ﬂ(j))tna)“‘fff(p) (3.1E)
meS, 1< j<k<p
7 (j)>m (k)

and that

dp = Z 1_[ (_M—lrn(k)n(j))t;(l) .. t:(p)’ (3.20)
TESu—p pHISj<k<n
7 (j)>m (k)
wheres,_, denotes the subgroup §f which permutes the s¢p + 1, ... n}.

Ore conditions, for a multiplicatively closed sk, are conditions in order to
localize a noncommutative ring at the setM, i.e. they tell in which cases we are
allowed to ‘add the inverses of the elementsVinto the ringR’. Those relations
make sure that the ring does not collapse and that nothing bad happens. By this
theory of localization we can say exactly what the kernel of the Rap- Ry,
is, whereR), is the localized ring and we can state algebraic properties ahput
as: Ry is Noetherian ifR is, there is a sort of reciprocity for nilpotent and prime
ideals, composition of localizations give isomorphic rings, and more (see [35] and
references therein).

The conditions read as follows:

(&) Foranys € M andr € R there exist’ € R ands’ € M such that’r = r's;
(b) If rs = O for somer € R ands € M, then there is as’ € M such hat’r = 0.

In particular, condition (b) is always satisfied if the elements/imre not zero
divisors. Besides, the kernel of the obvious nkap> R, the localized ring a/,
is{r € R | sr =0 for somes € M }. Hence, if the seM contains only regular
elements, the map mentioned above is an injection.

Let us defineM = {dzdy*---didy | ei,0; € Z=o}. We will show now that
the multiplicative setV generated byl, anddg is an Ore set (i.e. it satisfies ore
conditions).

LEMMA 3.6. In the context above described, we have the following relations:

(i) dst; = Cjtids, whereS = E, 0, i # j andC;; is a nonzero constant
depending om, j andS.
(i) dstt = Cjtids for S = E,0,i,j € S andC;; is a nonzero constant
depending or§, i and ;.
(iii) dsti; = Cjtids +vfor S = E,0,i,j ¢ S C} is anonzero constant and
v e N2,

Proof. (i) We prove the statement f&t= E,i € E andj € O.



202 GIOVANNA CARNOVALE

The caseS = E,i € O andj € E is proven in a similar way using the
alternative formula foe/; given by

dp =Y ] (=20 ®y @ rw,

mes, j<k
7 (j)>m (k)

The other two statements in (i) are proven in the same way.
From now on, for any pair of indices < k, and anyr € S,, T, , will denote

s k
the monomiat; .z WH) Ly

i 1 n(k)n(])
ety = ) [ Yz Ll

eSS, 1< j<k<p
7 (j)>m (k)

— Z 1_[ ( A l n(k)n(j))(l_[(ruz) 1 ﬂ(u)])TfL’ 1t Tn

meS, 1< j<k<p
7 (j)>m (k)

We now putC;, = (TTZ_, (r*)~1r™®J), and we study the produc;), Tf“i_lt;-
T - We have

i—1

. B Ny

CipT7 i oS T, = Cip [ [ IE T — o+ ) Dy
u=1
whereD, = Y'_1 D! and
p
kin—1 .k,i— 1
=( 1_[ (rl) re! t)(l “) Tl i—t— ltﬂ(l t)T —t+1-- pt; t'
k=i—t+1

Our purpose is to show that

Z 1_[ <_)\._lrn(k)7T(j))Dn -0

meS, 1< j<k<p
7 (j)>m (k)

We shall prove this by showing by induction théat 1 < r < i — 1,

>[I & ® bl =o.

meS, 1< j<k<p
7 (j)>m (k)

Letr = 1 and letr denote the transpositiai — 1i) € S,. Then,

Z 1_[ (—)»_lrn(k)n(j))Di

meS, 1< j<k<p
7 (j)>m (k)

_ Z 1—[ (=2~ n(k)ﬂ(]))(l_[( ki)—lrk,i—1>(ri—1,i)—1x

eSS, 1< j<k<p
7 (j)>m (k)
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' i 1
X T ol e Tt pl)

(l—[(rkt) 1 kyi— l)(l 11) -1 Z l—[ (=~ 1 ﬂ(k)ﬂ(]))x

TeS, 1<j<k<p
n(i-<n@) m(j)>nk)

. IR . L
x T2 [tn(t ey = AT T iyt iy] T pt;
=0
since the difference in square bracketgjs 1, — A~ ™Y Or r ) = 0.

Now letw > 2 be the smallest positive integer such that the expressiop Biff
Y res, 1_[1</<k<,, (ot (ATITOTI) DY 5£ 0. Then lets denote the transpo-
sition(i —wi —w+1) € S,. Then,

P
Diff, = Z 1_[ (_)L—lrn(k)rr(j))< l—[ (rki)—lrk,i—w)(ri—w,i)—lX

weS, 1< <k<p k=i—w+1
(= k)
T i i—w+1 T i—w
X T w1 tri—wy b i—wt1) Limwt2- ptj

n(i—w)<m(i—w+. n(j)>m
ii—w+1\—1 JT(l w)m(i—w+1) i—w+1 i
[(V ) tJ'[(l —w+1) J'[(l w) +
1 710(1 wH+)mo (i—w) i i—w+1 T i—w
— A t?TO'(l w)tmf(z w+l)] Tl w2+ pt/
L Y [ ey, L x
mesy 1<j<k<p
n(i—w)<w(i—-w+l) 7w(j)>nk)
ii—w+1\—1 JT(l w)r(i—w+1) i—w+1 i
[(7‘ ) tJ'[(l —w+1) J'[(l w) +
-1 a(i—w)r(i—w+1) /i, i—w+1\—1 i—w+1 i
— A (w4 M) (r ) lm e i—w) T
i,i—w+IN—1i—w+1,i i—w
-|-,LL(I" ) tn(i—w)tn(i—w-‘rl)]Tz w2 pt/

= Ly Z 1_[ (_)L_lr”(k)ﬂ(j))M(rt,i—w+l)—l «

TeSy 1<j<k<p
n(i—w)<w(i—-w+l) 7w(j)>nk)
T . 1 J'[(l w)r(i—w+1) i—w+1l i
X Ty 1[ A LGt D) I (i—w) T

i w+1z T i—w
+tn(1 —w) J'[(l w+l)]7—; w+2-- ptj

whereL,,; is clearly nonzero. On the other hand,
O = Diﬁw_l = Z l_[ (—)x_lrﬂ(k)n(j))D;f—l

neS, 1< j<k<p
w(k)y<m(j)

p
Z 1‘[ (—A "L om Gy 1—[ (PR it

meSy 1< j<k<p k=i—w+2
7(j)>m (k)
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i—w+1,i\— i—w+1
X (I" ) Tl i— wtﬂ(l w+l)Tl w+2-- pt

= Z 1‘[ (—a~ LTy o

TeSy 1<j<k<p
m(i—w)<n(i—-w+l) 7(j)>m(k)

14
x ( 1_[ (rkl)—lrk,l—w-‘rl) (rl_w+l’l)_le..i_w_1 x
k=i—w+2

i—w i
X [tn(i wylri—wt+n T

-1 J'[(l w)m(i—w—+1) i i i—w+1
—A tﬂ(l w+l)trr(z w)]Tl w+2-- [)t]
Hence
-1 _w(k j
Z 1_[ (=X gt )ﬂ(j))Tle__w_lX
TeSy 1<j<k<p
n(i—w)<w(i-w+l) 7w(j)>mk)
i—w 1 71(1 w)m (i—w—+1) i
X [tn(t wlri-wst) — A ATy SR P
T i—w+l _
X T yio.pt; =0.

Now we compare this last result with the expression we obtained. fpDiff .
The last result is zero if and only if

. § | | -1 _m(k)m(j
Aw—l - = (_)" rn( )H(J))Tjgni—w—l X
TES) 1<j<k<p
ri—w)<n(i—-w+l) 7w(j)>m(k)
i—w -1 m(i—w)r(i—w+1l) i T
X [tﬂ(l w)tn(l —w+1) —AT t]'[(l w+l)tn(l w)]]—;’—w+2---p

=0

by the remark after Proposition 3.2, sincenjﬁ”*l appears in the expression of
this term. By definition ofw, we have

Aw L= Z 1_[ (_k_lrﬂ(k)n(j))Tlr-[--i—w—l X

wesy 1<j<k<p
a(i—w)<mw(i—-w+l) w(j)>m(k)

1 J'[(l w)m(i—w+1) i—w+1 i i w+1 i T
X [ — A" trr(z —w+1) JT(l w) + t]'[(l —w) J'[(l w+l)]Ti—w+2---p
£ 0

sinceL;} Diff , # 0. But the above expression is the samelgs; except for the
fact that the(i — w)th row of ’s has been substituted by tlie— w + 1)th.

Now, if we rewrite A,_; and A,, as linear combinations of elements of the
basis, which means just ‘pushing tlnjg )s and ther! ri-wi 'S respectively,
forward in the monomials’, we will have again the same expression for both, with
the t;™’s replaced by the~"*"'s, since on the left of the.,_,, andz,;_,.1,
the two expressions comude. Hence, since the elements of the basis are linearly
independent, it follows that all coefficients fdr,_, must be zero, hence they are
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zero also forA,,, since they are the same. Therefore, also D# 0 despite our
assumption. So, for every

Z 1_[ (—)L_lr”(k)ﬂ(j))D;T -0

eSS, 1< j<k<p
7 (j)>m (k)

hence

Z 1_[ (=270 p =0

meS, 1< j<k<p
7 (j)>m (k)

This implies that

p
dptt = [[ey 2 S [ (a oy

u=1 weSy 1< j<k<p
7(j)>m (k)

— (A0 Z 1_[ (—)L_lrn(k)”(j))Dn

weS), 1< j<k<p
7 (j)>m (k)

p
= H(r”i)_lr“jt;dE +0.
u=1
(ii) follows by the fact that this relation is true inside(Rs) where Rg is the
submatrix of R whose entries are those that have indexsjrand A(Rg) is its
associated bialgebra.
(iii) follows by straightforward computation. Indeed, f6r= E, i, j € O, and
foranym € §,

6L, 1_[<r"’> Tt
-1
-1
+y2<rl) | (G I SR,y i
=1 v=1
hence

g = Y 1 it

7T€Sp t<k,m(t)>m (k)

— H(rm) r/u Z 1_[ (—K_lrn(k)ﬂ(t))Tﬁnpt; +

weSy t<k,m(t)>mk)

+y Z Xp:(rjn([))—l 1_[ (_)L—lrn(k)n(t)) x

mes, =1 t<k w(t)>m (k)
-1
ion—1 i . !
X H(VIU) rjn(v)[Tf..l_lt;f(l)] : [tj T[f_lmp]-
v=1



206 GIOVANNA CARNOVALE

The second term in the sum is a linear combination of products of two elements
belonging toN, hence it belongs t&/?2. O

LEMMA 3.7. N is a nilpotent ideal ofA(R).

Proof. In order to prove this statement, we introduce the concept of ‘level of
degeneracy’ of an element df{ R). For a monomial, not necessarily ordered, this
is the number of generators of the for;'.nNith i #' j occurring in the monomial.
So far, the level of degeneracy need not be well defined for an elementR)f
since not every relation preserves it. Indeed;, if € E andk,l € O, t,lct; =
(r'"~trM ity + yr¥itrh. On the other hand, the level of degeneracy of any basis
element is well defined. Hence, we will say that the level of degendia@y of
an element: € A(R), is the minimum level of degeneracy belonging to the basis
elements that occur in the expressioruoiVe observe thatd(a) = k if and only
if a € N¥. Indeed, if we take any monomial ii(R), we obtain a sum in which at
least one term has the same level of degeneracy of the monomial we started with,
and a sum of elements whose level of degeneracy is greater or equal to that one.
This can be checked considering case by case all the relatiehigRinwith all the
possible partitions of indices occurring in the relation. Hence, we can read it as a
sum of products of [d(a) elements inV. Hencega € N'¥@ Itis clear then that
any element (thus also any monomial in tp’e) is zero if its level of degeneracy is

bigger than 2(n — p) = |{r} | i #' j}|. ThereforeN* = 0fork > 2p(n — p). O
There follows:

THEOREM 3.8. The multiplicatively closed sét satisfies Ore conditions.

Proof. By Lemma 3.6 it follows thavm € M andVr e N¥, there exist an
r’ € N¥ such thatr’' — rs € N¥*2.

Since the ideaN is nilpotent, to prove condition (a) it would be enough to show
that, once we have ari ¢ N* and ans’ € M such thatsr’ — rs’ € N¥+2 for any
givenr € N¥ ands € M, we can construct ast € M and anv” € N* such that
s’ —rs” € N¥*4, Letr, s, r',s’, be as above. Thes;’ —rs’ —n;,» = 0, for some
ng € Nk+2.

Let v, be the element oV +2 such thati_ s — svio € N4, whose exis-
tence follows by Lemma 3.6. Then, one hasy, o+ny o5 +sr's—rs's—nj o8 =
s(r's — vipo) — r(s’s) € N*¥T4. Hence, by induction, for everye A(R) and every
s € M, there exist ® € A(R) and ao € M such thatp = ro.

We need to show that condition (b) holds as well. This follows by regularity of
dr anddy. This can be checked again in the associated graded ring (filtration as
before), and follows by the fact that no element in the expressidp of dp has a
positive level of degeneracy. O

As a consequence of the theorem, we have an embeddiAgRJ in its lo-
calization H(R) at M. We remark then that the ided’ ¢ H(R) generated
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by ther}’s with i ' ; is again nilpotent, sincé/ is an Ore set (see [35]).
Moreover, one can check that a basis f#6(R) is given by the elements of the
form d;*d,'m wherem is a normally ordered monomial in thé's such that

min(k, e;j, i, j € E) = min(l,¢;;,i,j € O) = 0 wheree;; is the exponent of
t;inm.

THEOREM 3.9. H(R) defined above is a Hopf algebra.

Proof. The bialgebra structure can be extendedHt@R) by putting forS =
E,O : e(dsh) = e(ds)™ = LandA(dgh) = A(ds)™* € H(R) ® H(R).
The inverse ofA(ds) exists INH(R) ® H(R) sinceA(ds) € ds @ds + N ®
A(R) + A(R) ® N, i.e. itis an invertible element modulo a nilpotent o(té;l ®
dg N ® N ¢ N’ ® N, hence it consists of nilpotent elements, therefore we
have completed the proof. The extension of the comultiplication clearly respects
the algebra structure. O

The problem now is the construction of an antipode. We define here the value of
the candidate-antipoden the generators of(R), in such a way that the necessary
property is satisfied.

Since for everyk, / one should havg’_; t5u(t)) = Y _; u(th)t) = 8, we
must actually look for a multiplicative inverse of the matfix

Let us divideT into four submatrices:

T — (TEE Tro )
Tor Too )’
whereTsp is the submatrix with upper index ifi and lower index inP, where
S and P can beE or 0. We look for a matrixU with entries inH (R) such that

TU = UT = Id. If such aU exists, then we defing:) = U:. We write then, in
the same fashion,

Ure Uko
v= (U oe U 00) '
We know that the inverse matrix dfzz (respectivelyTyo) exists, since this is
indeed the case fdif (Rg) (respectivelyH (Ro)), the Hopf algebra associated with
the submatrix ol with indices inE (respectively0), which is the one described in
[1]. H(RE) (respectivelyH (Ry)) is isomorphic, as an algebra, to the subalgebra of
H (R) generated by tht-;i's with i, j € E (respectively inO) andd,g1 (respectively

dyt). Hence, it makes sense to wrifg: and 7,,5. We can then multiply the

-1
relation TU = Id on the left by(TléE Tﬁl ) We obtain a system i n th&sp

. . 00
whose solution is

Urgg = (Tee — TeoTopTor) ™

Uro = —T;Teo(Too — ToeTpsTeo) ™
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Uok = ~T5Toe(Tee — Teo Ty Tok)
and

Uoo = (Too — ToeTzpTeo) ™.

The inverses in these formulae exist in MatH (R)). Indeed, the quantum
determinant of the matrices that we want to invert, belongd/tanodulo N'.
Therefore, these quantum determinants are themselves invertible, Mirisen
Ore set andV’ is nilpotent. It follows that, using the standard procedure together
with the fact thatV is an Ore set and that’ is nilpotent, we can invert the matrices
as well.

We can check that the matriX is then also a right inverse fdr. It remains to
definec(d; "), «(d,"), and to check thatcan be extended to an algebra antihomo-
morphism. We will postpone this discussion to the end of this section.

We describe nowA(R) in terms of objects that are better known. For this
purpose, we introducg,, Manin’s deformation of the function algebra on the su-
permanifold Mata | b), and its bosonizatio®(E,), which is a genuine bialgebra.

We will show that for a particular choice of the parametersrRofA(R) is a
sub bialgebra of the bosonized object, and that one can then define an antipode
for this particularA(R) using the fact that a Hopf super algel#fain which E, is
contained has been computed by Manin and by Ho Hai, so that its bosonization has
an antipode as well.

Finally, we will show that all the other bialgebras of type Il can be twisted into
one of theA(R)’s that can be embedded B{H), and that the only essential datum
is the partition off.

Manin’s Quantum General Linear Supergroups.order to define commutation
relations forE,, we have to fix a ‘format’, i.e. am-tuple {as, ..., a,} with ele-
ments inZ,, and a family of(;) nonzero elements in the fieki: {¢;;}1<i <, Such
thatg;; = ¢;;q whereg;; = £1, ¢ is a given parameter. Thek, is the algebra
generated by thef’s with 1 < k,i < n, subject to the following relations:

(Z5? =0 fora +ar =1,
b = (—patDatly ok fora; = 1 andk < I,

ik = (=D*gzkzl  fora; =0andk <1,

zf = (=D)“%g;ziz5 fora, =0andj > k,

lezf»‘ = (—1)(“"+l)(“f+l)ql.;lzf.‘zlj‘- fora, =1andj > i,

iz = (=D Wrwtag, g 787 forl > kandj > i,

Ik a)(aj+an) k] aj+aia+a; 1\ 1k
2z = gjjen (=) @TW@GTW L gy (— 1) At (g — gzl

fori > kandj > i.
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We say thatz’; is ‘even’ if ; + a; = 0 and that it is otherwise ‘odd’, so that
E, becomes a superalgebra. It is actually a super bialgebra with comultiplication
defined on the generators Asz) = ), z} ® z{, and extended to the whole &f,
in the unique way that provides a superalgebra homomorplism> E, ® E,.
The counit is given by (z}) = .

We define an ordering on thé's by z/ < z; if eitheri > k ori = k and
j > 1. We call ‘normally ordered monomials’ those monomials inztﬁe such that
smaller subwords occur on the left of the bigger ones, anq. natha; +a; =1
occurs twice. By Theorem 3.12 in [31], normally ordered monomials form a basis
E,. Therefore E, is a deformation of the algebra of functions on the supermanifold
Mat(a | b) wherea andb denote, respectively, the amount of even and odd terms
in the format:

Manin then defines the deformation of the general linear supergroup as the Hopf
envelope off, . This is a Hopf superalgebrd, together with a super bialgebra map
y. E, — H, having universal properties with respect to all superbialgebra maps
from E, to a Hopf superalgebra’. Itis built formally in [31], where the existence
of a quantum Berezinian is also shown. In [12], one can find an explicit computa-
tion of the Hopf envelope for a multiparameter deformatio&: | b), using the
existence of the quantum Berezinian, so that we have an explicit description of a
Hopf superalgebra (E,) containingE,.

We show the link betweefr, andA(R). This is given by bosonization:

Bosonization of a Hopf Superalgebi@iven a super bialgebra, or a Hopf superal-
gebra, one can construct an ordinary bialgebra or Hopf algebra in such a way that
the super object and the ordinary one, have ‘equivalent’ representation theories (see
[25] for further details). We describe the process for a Hopf superalgebra pointing
out that in case we are dealing with a super bialgebra, we can simply forget about
the existence of the antipode, holding all the results involving only the bialgebra
structure.

Let’s recall briefly what a Hopf super algebra is. LEt = Hy & H; be a
Z,-graded algebra, having alsoZa-graded coalgebra structure, i.A(H;) C
Y k= He ® H; ande(Hy) = 0, such that comultiplication and counit are algebra
maps where the multiplication oA ® H is defined agm ® m) o (id ®1 ® id)
wherer is the graded flip operator. Such &his called a super bialgebra. i also
possesses an antipode, which B,agraded mapH is called a Hopf superalgebra.
Sometimes, we will writéa| =i if a € H;.

PROPOSITION 3.10 ([25, Corollary 4.3]Let H be a Hopf superalgebra over a
field K. Then,H is a subalgebra of the Hopf algeb®(H), defined as follows.
As an algebra,B(H) is the extension off by adjoining an element such that
j2 =1, jb = (=1)'bj for b € H;. The comultiplication, counit and antipode are

* By Theorem 3.12 in [31] we also see that our omission ofjthi in the defining relations does
not really limit the generality.
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given by;j being grouplike A gy (b) = > bi1j"2! @ bip if Ay(b) = bi1 ® bio;
en(b) = ey (b) and Sp(yy(b) = j*ISy(b) for all homogeneous € H. B(H) is
called the ‘bosonization’ off.

Now let nowB(E,) be the bosonization of,, associated with a given format
{a1, ..., a,} and a given choice of;; for every 1< i < j < n. Let us take an
n? x n® quasidiagonal solution of the g-YB equatighsuch thatr is of type II,
and such that = {l € I|aq; = 0}. In particular,! =" k & a; = a. If the field
of definition K contains the square root of= —Apu, (A andu are as usual, the
roots of Equation (1.6)), then one can always make sure that the relatigiRpf
can be defined by a matriR’ with u’ = —(1')~%, by multiplying R by the scalar
matrix 8~11d with g2 = z.

We will assume from now on that the above conditionfoiis always fulfilled
so that it will not be restrictive to assume that ®oriu = —1.

Let us now take*® = (—1)%“g¢,, for e < b, andr = ¢ of Manin’s E,. This
gives a well defined bialgebra(R).

We define the linear map

Y. A(R) — B(E,)
S zfj“k.
PROPOSITION 3.11.The mapy above defined is a bialgebra homomorphism.
Proof. v is a coalgebra map sineg/ (1)) = (z})e(j*) = &, and

Wenauh = ven(Yier)

_ Zzlrja, ® ercjak — <ZZ;’j(ar+dk) ® Z/rc) (jak ® jak)

= AGDAG™) = ARG = AY ).
We look at the image of the relations A(R): if k ' [
lp_(tlkt[k) — Z;(jclszcjak — (_1)(clk+a[)akZ;€Z;< =0
by the first relation ofz,,.
Now we look at the second relation 4{R). If e > b andc > d,
Wty — i) T Hréqtgre — yog) Tl j et
— [(_1)flc(ab+“d)zzzz _ gbegdc(_1)ae(clb+ad)zzzz_
_ (q _ q—l)ebe(_1)(czeab+agczg+adaf)zzzj]
which is zero by the last relation fdF, .
As far as the third relation fad (R) is concerned, we have, for> d,
Wity — rgd) i)
— [Z;'Z;l(_l)(a,'+ad)af _ 8dc(_1 a,'adriiz;lzlg]jaﬁ-ad =0

ii



QUASIDIAGONAL SOLUTIONS OF THE YANG-BAXTER EQUATION 211

by the second and third relation féi,, depending on the parity af.
Finally, the image undey of the last generating relation far(R) is given by
the following: fori > [ andc¢ < k:

i 1 iIN—1_.ck i
Yty — (rip) " ractd,)
— [(_1)czf(ak+czl)zlgz;c _ 8li86k(_1)(ak+a1)a,'Z;czlg]jaﬁ-ak =0

by the second last relation fdf, .
If, at last,i > [ andc = k, the relation becomes instead
Yt — rihThrecrlshy

ccce

— (_1)czf(ap+a1)zlgz[c _ 8”r;‘é'(_1)(ag+a1)a,'+agzlczlg =0

by the fourth and fifth relation foE,, depending on the parity af. O

PROPOSITION 3.12.The mapyr above described is injective, hend€R) can
be identified with a sub bialgebra &f(E,).

Proof. By construction,B(E,) = E, ® KZ, as a vector space, hence a basis
for B(E,) is given by elements of the formj” wherem is a normally ordered
monomial inE,, andp e Z,. Therefore, those elements are linearly independent.
Now, any element of the basis a{ R) goes over to a different element of this basis
for B(E,), up to a sign. Hencaey is injective. O

Remark.One can easily check th#t(A(R)) is the subalgebra a8 (E,) whose
basis is given by the elements of the formj? wherem is a normally ordered
monomial inE, and p is the sum of all’s with the right multiplicity such thak
occurs as an upper index in the monomial

If we have a Hopf superalgebrH,, which is the Hopf envelope of,, its
bosonizationB(H,) will also have an antipode, and(A(R)) C B(H,). We may
wonder whethe# (R) can also be embedded 8{H, ), and whether the antipodes
of the two objects correspond to each other. The answer is positive, as we will
show. In order to do this, we need to recall the constructioHpin [12].

Let A, B, C, D denote, respectively, the submatricesZoE (z};) as follows.A
contains only the entries such that both indices arg;iB has only entries such
that the upper index is i@ and the lower index is itk; C has entries such that the
upper index is inE and the lower index is i@, and D has only the entries with
bothindices inD. Given a square matrix/ of elements inE,, we can use the usual
formula for the quantum determinant in order to defing @b (see [12, 30, 31]).

If the determinant turns out to be invertible in some extensioB ofthen we can
write the inverse of the matrid using the usual formulae (see, for instance, [1]).
Then we have the following theorem:

THEOREM 3.13 ([12]). The quantum linear supergroufi, can be derived from
E, by localizing the elementdet, A and det,(D — CA™1B). In GL,(alb) the
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elementsdet, (D) and det, (A — BD™1C) are also invertible, and the quantum
Berezinian isdet, (A) det,(D — CA™'B)~! = det, (D) *det,(A — BD1C).

In particular, one can obtaif, by localizingE, at def, (D) and def(A). There-
fore, B(H,) can be obtained by localizing(E,) at det, (D) and def(A). A basis
for H, is given by the elements of the form get)~* det,(D)~'m wherem is a
normally ordered monomial in the;’s such that mik, e,,; a, = a, = 0) =
min(l, epy; a, = a, = 1) = 0 wheree,,, is the exponent of; in m. Therefore, a
basis forB(H,) is given by the elements of the formi® wherea is an element of
the basis off, ande € {0, 1}.

PROPOSITION 3.14.Let R be a typell matrix withr¢’ = g,,(—1)%%, A = ¢
andp = —g~1. Then, one can extend the mago an injection ofH (R) in B(H,)
and H (R) can be identified with a Hopf subalgebra ®tH, ).
Proof. Sincey (dg) = det,(A) andy (dp) = det,(D);"?, we can extend
to d;' andd,! by y(d;') = det, (A)~ andy(d,) = det,(D)~1j"~*, and this
clearly extends to a bialgebra homomorphism. This map is again injective because
it sends different elements of the basisH{R) to different elements of the basis
of B(H,) up to a sign.

Claim. On thet}’s, ¥ o t = S, o V.

As a consequence of the claimgan be extended to an algebra antihomomor-
phism H(R) — H(R), sincey is an algebra embedding asdcan be extended
to an algebra antihomomorphism. Indeedian be extended to an algebra anti-
homomorphismA(R) — H(R). Hence,.(dg) and(do) are well defined, and
they are invertible because their image unders so. Therefore, we can define
1(dgY) = u(dp)~t andu(dyh) = 1(do) L, respecting the relatiop ot = Spp,) 0 .

We still have to prove the claim. We do it f@;; andTgo:

Vv ((TeE))
=¥ (Tex = TroTopTor) ™ = (A — BjD71j = PH0=r=bey
=(A-BDO) = jOSH,, (A) = Spu,) (Y (TeE)),

Y ((Tgo))
= (=T Teo(Too — ToeTriTro) ) = —A7*Bj(Dj — CA7'Bj)™ !
=—A"'Bj*(D — CA™'B)™ = Sy, (B) = jSu,(Bj) = Sgu, (¥ (B)).

For Tor one has to use another form of writiig, z, namelyUor = —UpoToE
i O

So far we have shown that for any elemént of Manin’s family of deformation
of the general linear supergroup, there is a particRlanatrix of type 1l such that
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H(R) is a Hopf subalgebra a#(H,). Using again the cocycle twists, one sees that
eachA(R) has essentially the property stated in Propositions 3.11, 3.12.

PROPOSITION 3.15.Every algebraA(R) of typell can be twisted into one of
the particular types described above, provided tRatontains the square roots of
—A.

Proof. We have shown that, ondé satisfies the given condition, we can always
make sure thatu = —1, so that-/r/* = 1 for everyi # j € I. For any choice
of ¢; € {—1,1}, we can provide a 2-cocycle € (A(R) ® A(R))* such that
+A(R),-1 is isomorphic to the bialgebrd (P) associated with the matri® of
type Il with entriesp’/ = ¢;;(—1)%%, p'* € {1, —1~'} depending on the parity of
a;, p’/l. = L—A"Ltif i < j. The cocycle is defined on the generatord 6R) @ A(R)
as follows, and extended in the usual way:

; 8i;é if i <1
i I\ _ ijOlk X b
G(tj ® tk) - {Sijélkr’leﬂ(—l aidj if i>1.

Remark. Let A(R) as in Proposition 3.11, and Igt(R) v Z, be the bialgebra
obtained by extendingt(R) by the elemeng such thatg? = 1, g is grouplike
and gt; = (—l)“""’“ft;-g. Then it is immediate to prove that the map@ (R) v
Z, — B(E,) sendingg to j extends the mag to a bialgebra isomorphism. This
is Theorem V.3 in [28].

4. More Blocks and Zero Divisors

We study now the behaviour of(R) whenR is a quasidiagonal solution of the
quantum Yang—Baxter equation, not necessarily of type Il. We start showing the
existence of not nilpotent zero divisors A(R) in most of the cases.

PROPOSITION 4.1.Let R be a quasidiagonal solution @fi.1) having at least
two blocks. If at least one block has more than one componentAfbghhas zero
divisors which are not nilpotent.

Proof. We use the same notation as in Section 1. Reand B, be two distinct
blocks, and letB; have more than one component.

We divide the proof into two cases:

Case 1(r“)? is not constant for alk € B, U B,.
Then leta € B, U By, ¢ € B; andd € B,. By relationsSp¢j = 0 andSp4¢ = 0 we
get

R e R L (st M i 50
Hence, whenever?ric = z,, # (r*)?, we have a family of zero divisors. Am
for whichz,, # (r*)? exists always becausg depends only on the pair of blocks.
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In particular, taking eithet = a or d = a (depending on whether belongs toB;

or B,) we have either thaft; = 0 orzZt! = 0, neither of the two elements can be
zero because relations have a degree of at least 2. Morepeannot be nilpotent
because(r?) = 1.

Case 2 (r**)? is constant for al € B, U B,.
In particular, the above condition, together with the hypothesiB,amply that
r% is constant onB,. Indeed, it follows that for any, b € B,, r** = +r"* but
the fact thatB; has more than one component implies that the minus sign has to
be excluded. Otherwise, for somendd, and forr** = —r®* there would follow
that 0# ri? = y, = A, + p, = r* + b = 0.
Hence, we have? = A, for everya € B; andr?* = =+A, for everya in B;.
Now, if z,; # (r**)? we get the same zero divisors as in Case 1. So we might as well
restrict to the case that, = A2. Then we consider the produgt(:, (r*?)~1tPt —
tbtd) fora € By, forb,d € B;, b < d.
By the relationSp2¢ = 0 we haver{'t? = 1-1rPtPt?, by relationsSp’¢ = 0 and
Spib = 0 we gettft? = A-1rb14t; by the relationsSpid = Spad = Spids = 0
we get 14t = A, (r’")~1tf1d, finally, by the relationSp?4 = 0 we get #)t4 =
(rbcz)—lrbdtgtfl
Hence, for the above product we have

bd\—=1.b.d b.d
ty O (rP) 7yt — 1g1y)
= (r"Dy et — A S
-1 _ba b.a.d —1._.bd .b bd\—1.b,a .d
= A, it — A () T, = 0.
tf is nonzero because it has degree 1, énd-*/)~1t2t¢ — t51) is not nilpotent
and nonzero since(h, (r’?) 1P td — thed) = A, (r’?) 71 # 0. O

In particular, if all blocks have only components of size one, the proposition
below states that (R) behaves in a ‘strange’ way unlegsis diagonal.

We are now able to make a classification of the quasidiagonal solutions of the
quantum Yang—Baxter equatighfor which the bialgebrai (R) is a domain.

THEOREM 4.2. Let K contain the square roots af,, andr®* for everys, r and
a. In the setting above, and if the square rootggfexist inK; A(R) is a domain
if and only if eitherR is a scalar multiple of the permutation matrix, or there is
a X such that““ = A for everya € I, andR is g-Hecke up to a scalar factor.

Proof. The case oR multiple of the permutation matrix (i.e® corresponds to
one single component) is clear, sind€R) is the free algebra in this case. Let'’s
assume now thak # « P for any scalarx.

We recall that rescalin®® gives the same set of algebra relations, hence the
fact thatR is g-Hecke up to a scalar factor is equivalent to the fact thatis
diagonalizable and that it has two eigenvaluek iis big enough.
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(=). If Risadomain, it follows from Lemma 3.1 thet* must be constant oh so
necessity of the first condition is clear. The characteristic polynomi&l ef PR
is

dets—p) = [[e* =B [ Cu—87*x
i=1

a<b;a~b;a~b

<[] B*=Byat+raa) [] B2 =z

a<ba~b,ab a<bab

SinceR is a domain, we know from Proposition 4.1 that either there is only one
block, or each block has only one component. Hence, the characteristic polynomial
is either of the form

dets—p) = [[e“ =B [ CGu—87*x
i=1

a<b;a~b;a~b

X 1_[ (132 - IBya + )‘aﬂa)

a<ba~b,ab

or of the form

detS—py=[Jc“-8 J] =87 ] B -z
i=1

a<b;a~b;a~b a<bab

Hence, the eigenvalues are orllyand . in the first case, and and+,/z, in

the second case. Moreover, by the proof of Proposition 4.2 we see thaRif

is a domaingz,, = A2 for everys andz. Hence, also in the second case there are
only two distinct eigenvalues. It is also easy to see that in both setfiyss
diagonalizable, hencg is g-Hecke.

(«). Suppose thak is Hecke and that”® = A. By the analysis of the characteristic
polynomial it follows that there are only two cases possible. Either there is only
one block associated tB, or there are more blocks associatedrtoeach block
consists of only one component, ang = A2 for every block B, and B,. One
works out those two cases and sees #1@®) is a domain. Indeed, the relations for
the one-block case are

(r?)~ st if a ~bandc > d,
b — A(r)~LbrS if a > bandc ~ d,
ctd (r*ty~Lredibra if @ > bande < d,
(r*0)Lredghra 4 (0 4 ) (re?)~4b1¢ if a > bande > d

and the relations for the more blocks case are

r”d)»_ltjtf if a ~bandc > d,
tth = 3 (r*")aeltd if a > bandc ~ d,
red(raby=Lbre if a > b ande # d,
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where bya > b we mean in both formulae 2 b anda > b. In both cases one
checks the confluence of the rewriting rules and by the diamond lemma (see [3])
one concludes that in both cases a basisAfGR) is given by monomials of the

form AJAZ--- ATAZ--- A7, A7 whereA’; is anymonomial in the’s with u € C;

andv € C; andCyq, Cy, ..., C, are the components relatedRo In both cases we

can build a filtration omPA(R) given by the degree first, then by the lexicographic
order on theA’’s viewed as an undecomposable entity, and then by lexicographic
order on the single monomials. One checks that the associated graded ring is a
domain, hencet(R) is a domain. O

Remark. The theorem says that(R) is a domain if and only ifP R is diago-
nalizable and it has at most two eigenvalues. One can compute the Poincaré series
of such anA(R). It is given by

P(A(R),1) = Z[ > ( ] (cicj)dfj)]td

d>0 Ly dyj=d Vij=1

wherer is the number of components; is the size of the componenqt; and the
indicesi and in d;; run from 1 tor.

In particular, an easy consequence of the theorem is the analysis of the case that
R is diagonal.

COROLLARY-PROPOSITION 4.3.Let R be a diagonal solution of the g-YB
equation. Thend(R) is adomain if and only if? = A = constant, ana/ /i = A?
forall i # j.Inthis caseA(R) is isomorphic as an algebra to a twist &ffu;;; 1 <
i, j < n], taken with the usual comultiplicatiom (u;;) = Y ;_; uix ® ux;. The
Poincaré series of the above-mentioned bialgebras are therefore the same.

Proof. The first statement is a consequence of Theorem 4.2. The second fact is
standard and rather easy. The cocyglec (K[u;;j;1 <i,j < nl® Klu;j;1 <
i, j < n])* that does the job is

. _ | yduraTt i<,
oq(uij @ up) = {5ij5lk ifi >1.

d

Now the question becomes whether factoring out a choice of the zero divisors
provides a domain which is still a bialgebra. We would like the dual quasitriangular
structure to descend to the quotient, and this quotient to be embedded in a Hopf
algebra.

From [18] we know that if the dual quasitriangular structureddf®) descends
to a quotient, then, in order to have a Hopf algebra we reéal be bi-invertible.

This means thaR and R"2 (¢, stands for transposing only with respect to the
second factor in the tensor product, i(&2)25 = R%!) should both be invertible.
The condition onR2 is equivalent to the fact thail components associated with
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R are of size ongas it is easy to check. Therefore, we will reduce from now on to
this case.

The first attempt is factoring out the idgal generated by the elements of ty?ée
withi ¢ j. This seems the right starting point because of the following proposition:

PROPOSITION 4.4.1.. is also a coideal, henca(R) /1. is a bialgebra.
Proof.As in Proposition 3.2. We point out that this property holds independently
of the size of the components. O

We are going to describe this quotient in terms of the objects studied in the pre-
vious section, namely in terms of bialgebras of type Il. We see that their description
is analogous to that in Proposition 3.2.

At first it is straightforward to check that(R)/I. is isomorphic as an algebra
to the subalgebra of(R) generated only by thg”s with i ~ j.

Inside a given block, we again use the equivalence relatigrdefined as in
Section 3. If we then writé #’ j, this implies also that ~ j. If B, is one of the
blocks in which the index set is parted, we denote by, and i, the solutions of
Equation(1.6) corresponding ta,.

The relations forA(R) /1. are then
=ik ifi #lorifi >landj <<k
0 ifi=1,j=kandi #1[
ik 4y Ty Wi~ > landj > k
r”(rk/)‘lt,ﬁtj. ifi =1/andj < k.

il _
i =

Then we have:

PROPOSITION 4.5.Let R be a quasidiagonal solution of the g-YB equation, such
that each block in which the set of indices is partitioned, has only components of
size one. Then leBy, ..., B, be the blocks of, and letA(R); be the bialgebra
corresponding to the submatri®; of R that has as entries only those which are
indexed by elements iB;. Then,A(R)/I- is isomorphic to a twist of the tensor
product of theA(R);’s. The Poincaré series of(R)/I. is then the same as that of
the function algebra oMat(a | b) with a being the amount of indicesin / such
thatrj/ = i; andb the amount of indiceg in I such thatj/ = ;.

Proof. We have to find the suitable 2-cocyalefor (A(R); ® --- ® A(R),)
provided by the obvious coalgebra structure. Let us denote the generatyiR )pf
by u;; for YX-1B,| < i,j < Y*_,|Bi|. Theno is defined on the generators

Mij ® Uys Of (A(R)l ® te ® A(R)p)®21 by
B _ | 8t if i > jandi # j,
G(ulj ® un) = {Sij(skl otherwise.

Now it is easy to show that(A(R)1 ® --- ® A(R),),-1 = A(R) as a bialgebra.
The statement about the Poincaré series then follows easily. O
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Hence, forR as in the proposition above, there always exists a quotient bialge-
bra of A(R) which is a domain. The next question is whether this is again dual
guasitriangular. The answer is affirmative.

PROPOSITION 4.6.Let R be as above. Thed,(R)/I- is a dual quasitriangular
bialgebra with universak-form U given byU (r ® ;) = R’} on the generators.

Proof. Straightforward from the fact that(R)/I. is isomorphic as an algebra
to a subalgebra oA (R), and from Proposition 4.4. O

We know by Proposition 4.5 and Section 3 that, up to a twisk)//. can be
embedded in a Hopf algebra. We try to get rid of the ‘up to a twist’ now.

PROPOSITION 4.7.Let R, A(R), A(R);, A(R)/1- be as above. LeE; = {k
Bj | r** =i;}and0; = {k € B; | n; = r*}, for a blockB; of I. Letd, (resp.
do,) denote the element of formu(@.1E) (resp.3.20) relative to A(R); and let
d;j = dg,;do,. Then the corresponding elemedf of d; in A(R)/I. after the twist
by o in Proposition 4.5 has exactly the same expression/;asso that we can
identify them. TheD;’s commute with each other as elementsAoR)/1-, their
product D is grouplike up to nilpotent elements, and the multiplicatively closed set
generated by the trivial lift oD in A(R) is an Ore set.

Proof. The fact that the expression is the same is clear because the twist by
o does not affect products of elements with indices in the same block. The fact
that theD’s commute with each other follows by direct computation. Indeed, for
summands’;, and7;, in the expressions ab; and Dy respectively, withj > k,
we have:

T L Nj+1 Nj+2 Nj+|Bj|
T = v avi+2) T (1B )
and

T i VL G Nek2 NI Bl

kt = tr(Ne+1) ' (N +2) 7 (Nk+| Bk )’

whereN; = 7 |B,|, Ny = Y/_, |B,|, x is a permutation ir§jz,| x S0, and
T is a permutation irf|g,| x S, Then,

if w £ id and /ort # id,

0
0 (Tjx ® Tier) = { [Tic,sen )™ ™0 =1 if x =id andr = id,

The fact thatD is grouplike modulo a nilpotent element follows from the fact
that it is so iNA(R); ® --- ® A(R),. The fact that{D* | K > 0} is an Ore

set follows from the fact that eadh; satisfies Ore conditions with respect to the
elements containing only indices belongingAg Indeed, twisting by does not
affect products of elements with indices all belonging to the same block. Bach
commutes then up to a constant factor with the generators with indices in all the
other blocks. Indeed, fc;ﬁ withi, j € B,

Dif; = Y oD ®tho Dy ® thdt; + 0= ]_[(r“)—lrﬂ”kd_z;,

s,leB; teBy
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where overlining stands for the identification betwe&(R)/I. and the tensor
product of theA(R);’s. O

We have just seen that it makes sense to localigR)/I. at D, and that the
expression ofD andd are the same. One can now extend the 2-cocycke
(A(R)1®---®A(R),)4, the localization of A(R)1®- - - ® A(R) ,) atd. Indeed, if
we poser (d1®a) = o ~1(d®a)e(a) for amonomiak € (A(R)1®---®A(R),),
we see that is again a 2-cocycle and that

AR ® - ® A(R) )alo ™ = (A(R)/1.)p,

the localization ofA(R) /1. at D. Hence, by the fact that the twist of a Hopf algebra

is again a Hopf algebra, we know thatR)/I. is a Hopf algebra. Besides, since

the sub-bialgebras generated by elements with indices in a single blacksay

B,, together withD;! have always an antipode, from what we saw in Section 3,
we also have a definition of the antipode on the generators, since the antipode is
always unique. Hence we have:

PROPOSITION 4.8.(A(R)/I.)p is a Hopf algebra.

Remark.We might wonder whether the construction of an antipode AqiR) /
I.)p could be lifted to an antipode for some extensionAgfR) itself. In par-
ticular, we would like to describe the Hopf enveloge of A(R) in this way.
By the universal property off, it follows that there must be a unique Hopf al-
gebra mapy: H — (A(R)/I.)p such thaty o« = &, wherex is the map
A(R) = A(R)/I. — (A(R)/1.)p. In particular, this implies that for any lifD
of D, (D) + ker(x) must be invertible modulo kéx). Sincet(ker(z)) C ker(x),
it is not absurd to wonder whether algb could be constructed by localization
at some set in(A(R)). Of course this is not necessary, but it is reasonable to
assume that the invertibility of(D) + ker(x) modulo kefy) implies genuine
invertibility of some element in(D) + ker(x) N t(A(R)) = «(D) + «(I.). Then a
straightforward assumption would be to assume that this element is ex@aily
but this is too strong an assumption. Indeed, localizii®) itself at D leads in
general no further than to localizingy(R) /1. at D, as we see from the following
proposition.

PROPOSITION 4.9.Let D; be the obvious lift oD; in A(R), i.e. and letD =
[15_1(D;). Then, if every; and O, have never sizé, 1. is equal toAnn(D), the
annihilator of D.

Proof. Let / € I., with i € B,. Then,t/D = t/(Dg,Do,;) x others =
Ct/ (Do, Dg,) x others for some constagt

If rikrki £ (#'1)2 for everyk € B,, then, as in the proof of Proposition 4.1,
t/1f = 0. Sincer! commutes with the elements of typg, up to a constant, it
follows that the above product is zero.
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Hence we might assume that = (r'")2. We look then at the produo:ber
for P, =E,ifi e E.,,andP, = O, if I € O,. Then, if|P,| > 2:

J 1,7(b)m(a) Sp
li (Z ( l—[ (—(’””) “ )) w(s1) tn(sp)>
T a<b; w(a)>m(b)
_ 52 iiy—1 pTEDT(s2) (51 452 3 Sp
= Z q length(r)t (n(u)tn(ez) ) Lo tntsn s Lty

7 (s1) <7 (52)

whereq length(m) = (], n(a)>7,(b)(—(r”)‘l prdm@y),

We look at the producty (1% 152 —(ri) 1762 472 y: one can check
as in the proof of Proposition 4.1 that this is always zero. Since the elements of the
form tl.j with i ¢ j quasicommutes with all the elements exceptrftewith k ~ j

andi ~1[,1.D = 0. 0

From the proof of this proposition we see that the annihilatoDds at least
the ideal generated by all th¢'s with i not belonging to ark, or an O, of size
one, and it might be bigger, for instance if the # (/)2 for everys, t andi.

Hence if we localizedA(R) at D (supposing localization were possible) the
kernel of the mapA(R) — (A(R))j; would be, under the hypothesis of Proposi-
tion 4.9, the whold . since the elements of the forchwith i %% j quasicommutes
with all the elements except thgs with k ~ j andi ~ .

We might now look for another lift oD in A(R) and wonder if its annihilator
can be zero. We show with an example what can go wrong.

EXAMPLE. Let R be the following 9x 9 solution of the quantum Yang—Baxter
equation: the blocks arB; = {1} andB, = {2 3}, every component has size one
and O£ rtt =1 # o =r2=r3£0,r83 = Ay + 1 # 0,733 = p1221 =

23, 13223 = —)u # A3. Then we know from Proposition 4.1 tha(R) is not a
domain./. is generated by, 13, £, 2 and Dy = &, Dy = 365 — A, %243, and
2D, = 2D, = 0 by Proposition 4.9. Sincer/t = (12)? # (L)% for j € By,

it follows thatzj7; = 0 = tlt], hencel. = Ann(D). We see by the relations
thatt§ L= (- lrzftltk and thatt1 (rlk)_lrj3tkt1 for j, k € B,. Moreover,
12 = (r72) 2] andt,f’t1 = (r3f) ~11424] | hencel.. quasicommutes with
elements with indices only iB; or in B;. We can easily see that elements/in
also quasicommute with each other. Hence, a lifDo& A(R)/IN would be of the
form F = 1] (1213 — A5 1r?%263) + arots + apt? + azitd + arat}, with thea;; € A(R)
not necessarily unique.

But then, taking for instance, with j € Bz we would haveFr] = ajrdtd +
a3t because{tl‘)2 = 0, andt?s? = 0 = £¢? by taking therv! with k € B, we
have finally thatFr/r} = 0. Hence, all the elements of the fomfy! for j, k €
{2, 3} are in the annihilator of such af, so that localizing af (for a suitable
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choice of thes;;’s that makes it an Ore set) would still not be an embedding, being
those elements in the kernel. In this case we also observd hat 0 since all

its generators are nilpotent and quasicommute with all elements &). Still,
A(R)/I. is a domain and it can be embedded in the Hopf algebra localized at
m(tH (23 — 25 r%%23).

We have seen so far what can go wrong in lifting an antipode from a quotient of
A(R). We would like to recall that the question of the antipode has been treated by
Manin, with a formal construction of the Hopf envelope, and Majid, who presents
different approaches to the problem, for instance by the definition of a weak an-
tipode, that always exists, by localization, and by formal extension (see [29] and
[18] for further reading).

We want to devote the last part of this section to another choice for a quotient
of A(R). This is not again a bialgebra, but has amusing properties. It can be made
more general, but we only want to give an idea of what can happen.

Let R from now on be such that all components are of size offe= A for
everya € I, and such that,, = A2 for everys and¢, and suppose that is not
diagonal. If there is more than one bloci(R) is not a domain. One can then factor
out A(R) by the ideall, generated by all elements of the forfe, — A(r"/) 11}
withi <[ andj > k. Some of those elements are zero already (iR). We want
to give a presentation of the new algebtér), = A(R)/I. by generators and
relations. One can check that the relationsAigR), combined with the new ones,
provide a set of rewriting rules fot (R), with confluent overlap ambiguities. They
are, as follows:

g = ()7l G =1,) > k), (4.9)
e = il (> 1,j <k, (4.b)
fr = ()il =1, < k). (4.0)

A basis for this algebra is given by all the monomials such that both upper and
lower indices are in nondecreasing ordnﬁr:- tji with iy < i» < --- < i, and
A< je < < ke

Again we have

PROPOSITION 4.10.The algebraA(R), is a domain.

Proof. Standard reasoning as before. As usual, the degree and the lexicographic
ordering provide an ordering of the monomials of the basis. Then, any two el-
ementsa andb in A(R), can be written asg = c4t4+ lower order terms, and
b = cptB+ lower order terms. Herd and B aren x n matrices with nonnegative

* We say thatr < g if degredB) > degreé€w) or if degre€s) = degreéw) andg precedes in
lexicographic order.
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integer entries satisfying the conditiods j € {1,...,n},a;; #0 = ay =0
unlessk <iandj <lori < kandl < j. Then, the leading term afb is

i1 ks — . N ki~ —1-a::
cacy || RGO TT meih™m - [T o) ™ee,

i>l,j>k izl j<k i<l,j>k
whereC is the (unique)? matrix with coefficients ir - satisfying the conditions
Vi,jef{l,...n}:¢c;; #0= ¢y =0 unlessk <iandj <! ori <kand! < j

and

Vi, j e {1,...I’l}ZC,’j =Z(a,’j+b,’j) and ZCj,' =Z(aji+bji).
j=1 j=1 j=1 j=1
Thereforeab # 0. |

We now have a ‘negative’ result:

PROPOSITION 4.11.The ideall, defined in Sectiod is not a bialgebra ideal.
HoweverA(Iy) C A(R) ® I, i.e.1, is a left coideal.

Proof.If i < j, s(tj.tl/ - A(rjj)‘ltjtj)) # 0. The second statement follows by
direct computation. O

So, even if one does not have a bialgebra structurd @,,, one does still have

a comultiplication coming from that of (R), which is an algebra homomorphism

from A(R); to A(R)®A(R)), i.e. A(R) is a comodule algebra. One can say more

about the algebra structure af R)),. It turns out to be isomorphic to a subalgebra

of a tensor product of two different skew polynomial algebras (quantum planes).
Let X (resp.Y) be the algebra of polynomials with coefficientskinn the com-

muting variables:, ..., x, (resp.ys, ..., y,). They are left comodules far (M,,),

the bialgebra of polynomial functions av,,(K) with the usual comultiplication.

Therefore, one can twist (resp.Y) on the left by means of a 2 cocyalg (resp.

oy)in (F(M,) ® F(M,))*. Letoyx (resp.oy) be

N | sdurrinTt if i > 1,
oxlityy ® i) = {5ij51k if i <.

) _ | sydurtrht it j >k,

UY(Ml/ ® u) {Sijélk if i< k.

Then,, X is the skew polynomial algebra with generaters. . ., x, and relations
XiX; = A(rlfjf.)‘lxjxi fori > j, and,, Y is the skew polynomial algebra with
generatorgy, . .., y, and relationsy;y; = A(r/})"ty;y; fori > j.
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Their tensor product, X ®,, Y is Z>o x Zx>o-graded, once we have given the
usual grading to the two componepis and,, Y. We consider then the subalgebra
G generated by all elements whose degree belongéktd) | k € Zxo}, that is
G = ZkGZZO(UXX)k ® (oy Y)k. Clearly, G is Z>o-graded. We have the following

description ofA(R),,.

PROPOSITION 4.12.The algebraA(R),, is isomorphic toG.
Proof. The relations forA (R);; can be rewritten as follows:

Az(rf;r,ff)_lt,it; if i >1andj > k,
thh = )L(ri"l[.)_ltj-'t,i if i >/andj <k,
Mg kit if i <landj > k.
Then, it is easy to see that the map sendriqu) x; ® y; is an algebra isomor-
phism. O

This gives an easy way to compute the Poincaré serids Bf) .

COROLLARY 4.13. The Poincaré series of(R), is given by)", -, (’*”‘1)2#.

r

We end this section with a remark that will not be surprising to an attentive
reader. We work under the same assumptiolR@s above. Le#A(B;) be the sub-
algebra ofA(R) corresponding to the block;. This is isomorphic, as an algebra,
to the standard multiparameter deformation of the algebra of functions,o(K).
Again we denote by, the quantum determinant of this subalgebra. Then we have
the following proposition:

PROPOSITION 4.14.With the assumption abov&, belongs to the kernel of the
projectionproj: A(R) — A(R)y, i.e. to the ideal ., for each blockB; with at least
two elements.

Proof. One easily computes

ey = 3 (] )

JTESHQ i<jm(i)y>m(j)

r(Hm@)y-1),1 ng
X( 1_[ Mm@ )’1"“tn.;

i<jm@)y>m(j)

- < Z sign(n))tll/ : t: =0. 4

JTESn;

Appendix

In this appendix we want to describe in detail the construction of twists of bial-
gebras. The notion of twist that we used in this paper is the same that appears in
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[1, 32]. Itis a standard concept in mathematics, due to many people before them.
It is, as we show here, a special case of the dual of the notion of twist defined in
[4, 6, 33] (Drinfel'd gives an even more general definition, though). We add these
computations for completeness, sake and readability, although we do not claim any
originality for them. Another treatment of these results is, for instance, to be found
in [18]. A deeper discussion on specializations would also be needed, in order to
be clear about what we mean by tensor products, and duality, but we would walk
‘too far from our path’. Our purpose is just to show how to compute twists, and
what they represent. We start with Drinfel'd’s type of twist.

DEFINITION-PROPOSITION.Let (A, m, i, A, &, S) be a Hopf algebra over a
commutative ring. LeF be an invertible element of ® A such that

(@) Fi2(A ®id)(F) = Fa(id ®A)(F),
() (e ®id)(F) = 1= (id®e)(F).

Thenv = m(id ®S)(F) is an invertible element of with v = m(S ® id)(F~1).
Moreover, if we define

Af?A > A®A and
SFrA > A

by

(c) Af(a) = FA(a)F~* (product inA ® A),
(d) SF(a) =vS(@)v™t Va e A,

then(A, m,i, AT, e, S¥) is again a Hopf algebra, denoted by and called the
‘co-twist’ of A by F.

This proposition is to be found in the survey [4], Chapter 4, where the ‘co-twist’
is called ‘twist'(see there for further references, and, of course, [6], where the case
of quasi Hopf algebras is treated). Actually, one can apply the same construction
even if A is just a bialgebra, obtaining a ‘cotwisted’ bialgebra.

Suppose now that we have a non degenerate pairing of Hopf algebras (or bialge-
bras),A and B, and suppose we perform the ‘co-twist’ 40 We look for some sort
of ‘twist’ for B in order to get again a pairing. Of course, since ‘co-twisting’ doesn't
affect the multiplication, the new notion of twist should leave the comultiplication
w in B unchanged. We make use of the following construction, as described in the
survey [32].

DEFINITION-PROPOSITION.Let H be a Hopf algebra over the field, and
B be a left(resp. righ) H-comodule algebrdi.e. B is an algebra, and arf -
comodule such that the comodule majs also an algebra homomorphignieto
be alinear map: H ® H — K satisfying

(@et) Y0 (ks @ m1)o (h @ kamy) = Y 0 (h1 ® k1)o (haky @ m),
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(respectively gny)

Y o(ke@ma)o(h @ kymy) = Y 0 (hy ® ka)o (haky ® m))
and

Hoh®1l) =c(1lQh)=¢Ch), Vh,k,me H
with w(h) = > h1 ® hy, etc.

Then, theo-left (resp. o-right) twisted comodule algebraB (resp. B,) is an
algebra with the same underlying vector spaceBasind product given by

(@) @-b =) 0(ha®hy)eacy if p(a) =) hy®cq, a,b€B
(respectively ghne)

a-b=> o (ha®hy)if pla) =Y cq®ha, a,b € B),

where one denotes lay— a the identification of vector spaces.

Alinear mapo: H ® H — K satisfying (&), (resp. (ggny) and f, is called a
2-left (resp. right) cocycle.

If B is a Hopf algebra, given a 2-cocycle, one can perform such a twiBt to
viewed as a left (resp. righ3-comodule algebra. Then, one sees fhat , B —
B®, B is an algebra homomorphism, but in general this does not ho}d,foy B —

«B ®, B, so that, B is not a bialgebra in general. However, one can see that, if
is a left-2-cocycle and is invertible as an elemen{®f® B)* (which is always an
algebra), theno ! is a right-2-cocycle. The double twisB, -1 is again a bialge-
bra. In fact, one does not even find it necessary fhaas an antipode. Everything
can be done for any bialgebra, with an invertible 2-cocycle.

Now let A and B be bialgebras, so that, B) is a pairing. We ‘cotwist’A by an
F satisfying (a) and (b)F € (A® A) C B*® B* C (B® B)*, and itis easily seen
that F satisfies (a) and (b} F satisfies (f) and (¢ Therefore, we can twist the
multiplication in B by F on the left andF~ on the right, obtaining- B-1 which
is a bialgebra. Moreover, we can define a pairitfy x rBr-1 — K using the
identificationsA — Af andB — gBp-1: (f,a)r = (f.a)Va € pBp-1and f
e AF. This form is clearly bilinear and nondegenerate, since the underlying vector
spaces are the same as before. One can easily check that it defines a bialgebra
pairing. Indeed’f, g € A,a,b e B

(f®& uw@)r=(f®g u@)=(fg.a) = (fs.a)r.
ear(f) = (F. 1r = (. 1) = ealf).

8FBF_1(6_1) =e¢p(a) =(14,a) = (L a)r

* Namely, there is a in (B ® B)* such thatva andb in B m(t ® 0)Apgp(a ® b) = m(c ®
T)Apgp(a®b) = e(a)e(b).
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and

(f,m@®@Db)r )
(f, (FQmp® F Yoo @ idQu Qid) (1 ® 1)@ ® b)) r
=Y (F,a1 @ b1){A(f), a2 ® by)(F*, as @ b)
= (A" (f),a®Db)p.

Here,0;;; denotes the action of the cyadlgk/) by permuting factors in the tensor
product. IfA is an Hopf algebra with antipod®, then B is also an Hopf algebra,

and the antipode also satisfies a pairing condition. In this case, we can also provide
rBp-1with the antipodeS™)* = k7 := (v®k®v~1) (u®id)u. With this antipode,
rBr-1is a Hopf algebra in pairing witd 7. The fact thak” is indeed an antipode
follows from nondegeneracy df )». Indeed, for everyf € A’ and everya e

rBr-1, 0ne can check that

(f m(id ®") (@) r
= (e(Nlar.a)r
= 8A(f)8B(a) = (f? E(é)lFBF_1>F-

Because of the duality between these twisting processes, one could also start from
the twist of a given algebr&, and try to cotwist the dual algebrg but in this case

it is not at all obvious that a 2-cocyctee (B ® B)* is an element oA ® A. The

way of escape is to observe that® A C (B ® B)* and that the latter is always

an algebra. For this reason, the produet( f)o ~* still makes sense itB ® B)*,

where one can check if the necessary conditions are satisfied. However, we cannot
be sure that\” lands inA ® A, therefore, we may need some sort of completed
tensor product or restrict to the algebta defined ada € A | A%(a) € A ® A}.

A’ lands in the tensor product of this idea is that all those things work once one
finds a suitable context in which the computations make sense, which may differ
case by case.

The link between the twist in [1] and the one we described here is given as
follows. In [1] the authors just look for a 2-cocyctein Hom(G, K*) for some
Abelian groupG by means of which the algebra is graded. In their paper this is
given by the free Abelian group with generatersl < i < n. This fits into the
picture we gave as follows. There is a natural projectidrom their quantunGL,,
onto the group algebr& G given byu;; — §;;t;, i.e.,K G is the quantum subgroup
corresponding to the torus, and one can check thaisifa 2-cocycle as defined in
[1], then,c o 7 is a cocycle as it is defined in this section.
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