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with the family of solutions of the quantum Yang–Baxter equation inActa Appl. Math.41 (1995),
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divisors in some of these algebras are related to the combinatorics of their related matrix, providing
a necessary and sufficient condition for the bialgebras to be a domain. We consider their Poincaré
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We discuss the problems involved with the lift of the Hopf algebra structure, working only by
localization.
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Introduction

In [34], Reshetikhinet al. described a construction (also discovered by others and
called FRT construction according to most literature) which associates a bialgebra
to every matrix with coefficients in a given fieldK. If the matrix in question
is a solution of the quantum Yang–Baxter equation, one gets what is called a
‘dual quasitriangular bialgebra’ or ‘coquasitriangular bialgebra’. This is ‘dual
quasitriangular’, as a bialgebra is equivalent to the fact that the category of its
corepresentations is braided (see [16, 20, 21], or [10] for a weaker result).

In [11], one finds a class of solutions of the quantum Yang–Baxter equation,
which we call ‘quasidiagonal’ because the matrices belonging to this family are
such thatRabcd = 0 unless{a, b} = {c, d}. Our purpose is to study the structure of
the dual quasitriangular bialgebras associated with these solutions. We will mainly
be interested in Poincaré series, in the existence of zero divisors, in the possibility
of providing Hopf algebra structures as explicitly as possible, and in the description
of those bialgebras in terms of well-known objects of quantum group theory. We
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will show how, even though we can always reduce them to standard deformations,
some peculiar phenomena still arise.

We will first focus on bialgebras associated with a particular case of quasidi-
agonal solution, namely those for which eitherRabba = 0 or Rbaab = 0 for every
a, b ∈ {1, . . . , n}. We call them ‘type II’ according to Hazewinkel’s terminology.
We describe these bialgebras in terms of (twists) of standard deformations of the
general linear group or supergroup. In the case where the bialgebra has no nilpotent
elements, this is just the multiparameter deformation on the algebra of functions
of a matrix semigroup. This is already pointed out in [11], and this bialgebra has
been studied by dozens of people. In particular, in [1] one finds how it can be
embedded in a Hopf algebra, and the fact that it is a twist of the one parameter
standard deformation of the function algebra on the semigroup ofn × n matrices
with coefficients in the fieldK.

If a bialgebra of type II has nilpotents, we show that its Poincaré series is the
same as that of the algebra of functions on a supermanifold of matrices, but it is
clear that it cannot be a deformation of that object, since it is a bialgebra and not
a super bialgebra. However, we show that it is a twist of a sub-bialgebra of the
‘bosonization’ of Manin’s deformation of the algebra of functions on Mat(p, n −
p). Bosonization is a process that associates to a Hopf superalgebra (resp. a su-
per bialgebra) a genuine Hopf algebra (resp. bialgebra). This process has been
described by D. Fischman in [7], for the universal enveloping algebra of the Lie
superalgebra of endomorphisms of a super vector space and it is a type of Radford
biproduct. This process has been introduced in the more general context of braided
categories by S. Majid in [25]. A survey of some of the results in the area can be
found in [32].

The author discovered after the completion of this work that a very similar
relation between deformations of Mat(p, n − p) and bialgebras of type II were
also found by S. Majid and M. J. Rodriguez-Plaza in [27] and [28] (which also
contain the results in [27]) using the superization process, which is essentially the
inverse of bosonization.

The identification of a type II bialgebra with a sub-bialgebra of the bosoniza-
tion of a Hopf superalgebra (see [12] for an explicit description of the antipode
construction), allows us to find easily a minimal Hopf algebra containing the type
II bialgebra by localization. The importance of this computation does not lie so
much in the description of the antipode, which is basically that in [12], but in the
rigorous proof that the localization we perform makes sense according to Ore’s
noncommutative localization theory. This allows us to say more about algebraic
properties of the localized algebra: for instance, that it does not collapse and that
the bialgebra we started with is really embedded in its localization. The casep = 1,
n = 2 was already handled in [14], and [8], but in that case it was not clear at all
that what one should invert is some sort of quantum determinant.

At this point it becomes very easy to see that if we factor a type II bialgebra
by the ideal generated by its nilpotent elements, we again obtain a bialgebra which
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is isomorphic to the twist of a tensor product of two standard deformations of the
algebras of functions on two matrix semigroups, which recalls the obvious classical
properties of GL(p | n− p).

Once the bialgebras of type II are neatly described, we can go through the whole
family of solutions in [11]. In this case, the associated bialgebra behaves poorly.
It will have zero divisors which are not nilpotent, and/or it will have a too fast
growing Poincaré series.

A key result in this paper is a necessary and sufficient condition for the matrixR

in order to have an associated bialgebra that is a domain. Moreover, once one limits
the study to those bialgebras whose Poincaré series does not grow too fast, it turns
out that there is a straightforward way to factor out zero divisors so that the quotient
is a twist of a tensor product of bialgebras of type II. In particular, those bialgebras
can be factored and their quotient is a domain which can easily be described in
terms of standard deformations of matrix semigroups and can be embedded in a
Hopf algebra. A standard way to lift the Hopf algebra structure explicitly is still
an open question, even though, by theorems in [29] and [18] we know that formal
solutions are always possible, and that a weak antipode always exists. Besides,
our factorization is too natural not to be compatible with their construction. We
show what kind of difficulties can arise if one wants to extend the antipode to an
extension ofA(R) by localization.

We also provide a different quotient which is an amusing domain, although it is
no longer a bialgebra, but only a comodule algebra: we also show what its relation
is with quantum planes.

The first two sections are merely introductory: in Section 1 we give a short
description of Hazewinkel’s ‘quasidiagonal’ solutions, while in Section 2 we recall
the FRT construction.

In Section 3 we describe in detail the bialgebras associated with a quasidiagonal
solution of the quantum YB equation such that for everya 6= b eitherRabba 6= 0 or
Rbaab 6= 0, i.e. those of type II. We describe their relation with Manin’s deformations
of the general linear supergroup and we provide their Hopf envelope by finding a
proper Ore set.

In Section 4, we show the existence of zero divisors in a general bialgebra
associated with any quasidiagonal solution of the quantum YB equation, and we
describe explicitly the relations between this algebraic property and the combina-
torics of the matrixR.

The presence of zero divisors cannot be avoided in most cases, but we build
different kinds of factor algebra: the first quotient turns out to be a twist of a tensor
product of bialgebras of the type described in Section 3. This factor algebra is
easily seen to be a bialgebra, and we are able to embed it into a Hopf algebra in
a way that is consistent with the embedding of bialgebras of type II into a Hopf
algebra.

In the Appendix, we provide a description of the construction of twisting a
comodule algebra by means of a 2-cocycle. This is actually very standard material
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but we decided to include it in this paper as an appendix, since notations differ
widely in the literature. We show the relation with the three different definitions in
the survey [32], in [1] and in [6] and [33]. For further reading on the subject, one
can consult [18].

The fieldK over which we will work shall be always be of characteristic differ-
ent from 2.

1. The ‘Quasidiagonal Solutions’ of the Yang–Baxter Equation

LetR = (rabcd ) be ann2 × n2 invertible matrix over a fieldK that we fix from now
on.
R is said to be ‘quasidiagonal’ ifrabcd = 0 unless{a, b} = {c, d}. We can viewR

as an operator onV ⊗V for some vector spaceV with basis{e1, . . . , en} as follows

R(ei ⊗ ej ) =
∑
k,l

r
ij

kl e
k ⊗ el.

In this section, we describe the conditions presented in [11] thatR needs to fulfill in
order to be both quasidiagonal and a solution of the quantum Yang–Baxter equation
(q-YB equation) in the form:

R12R13R23 = R23R13R12. (1.1)

In the above formula, ifR represents the operator acting onV ⊗ V , Rij stands for
the operator acting, onV ⊗ V ⊗ V , asR on theith andj th component, and as the
identity elsewhere. We will stick to this notation from now on.

In order to find these conditions, Hazewinkel assumed thatR is a quasidiagonal
solution of the q-YB equation, and looked for the relations that these assumptions
imply for the matrix entries. Then, he showed that these relations are also sufficient
for a quasidiagonal matrix to be a solution of the q-YB equation. We present his
procedure here.

Let theR be a quasidiagonal solution of(1.1). Each of its entries has two upper
and two lower indices all belonging to the index setI := {1,2, . . . , n}. We define
a relation onI in the following way:

a 6 b ⇔ rabba 6= 0. (1.2)

With the given assumption onR, 6 turns out to be a pre-order (not antisymmetric).
Then, one can define a relation of ‘connectedness’, denoted by∼, onI , namely:

a ∼ b ⇔ a 6 b or b 6 a. (1.3)

Provided that the assumption onR holds,∼ turns out to be an equivalence relation.
An equivalence class for ‘∼’ will be called a ‘block’.

Since6 is not antisymmetric, it may happen that inside a block, one hasa 6 b

and b 6 a with a 6= b: sucha and b will be said to be ‘strongly connected’
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(notation:a ' b). Strong connectedness is an equivalence relation inside a block,
and its equivalence classes will be called ‘components’.

Then, one finds the following condition on components and blocks, in order to
have a solution of(1.1):

PROPOSITION 1.1 ([11]).LetC be a component of a blockB determined by a
quasidiagonal solution of(1.1). Then, there is aλ 6= 0 in K, such that for all
a, b ∈ C (a 6= b):

raaaa = rbbbb = rabba = rbaab = λ, rabab = rbaba = 0. (1.4)

Since a blockB consists of several componentsC1, C2, . . . , Cp and all its
elements are connected, we can renumber the components in such a way that
C1 < C2 < · · · < Cp, where the ordering of the components is the one that agrees
with the ordering of the indices belonging to the component. Namely,Ck < Cj if
and only ifa 6 b, andb 66 a for everya ∈ Ck andb ∈ Cj .

A description follows of the submatrixRB whose entries are indexed only by
elements in blockB.

PROPOSITION 1.2 ([11]).Let R be a quasidiagonal solution of(1.1), B be a
block ofI determined byR andC1 < C2 < · · · < Cp be the components ofB.
Letλj be the scalar corresponding to the componentCj according to Proposition
1.1, for all 1 6 j 6 p. Then, there are scalarsy 6= 0 andz 6= 0 such that for all
a ∈ Ci andb ∈ Cj with i < j :

rbaab = 0, rabba = y and rabab r
ba
ba = z. (1.5)

Moreover, all theλj ’s satisfy the same quadratic equation

λ2
j = yλj + z. (1.6)

The following proposition tells us how blocks should match with each other:

PROPOSITION 1.3 ([11]).LetB1, . . . , Bm be the blocks of{1,2, . . . , n}, for the
quasidiagonal solutionR of (1.1). Then, there are nonzero scalarszst = zts for
s 6= t ∈ {1, . . . ,m}, such that

rabab r
ba
ba = zst ∀a ∈ Bs, b ∈ Bt, s 6= t. (1.7)

In the following theorem, one essentially sees that the conditions in Proposi-
tions 1.1–1.3, are also sufficient, for a quasidiagonal matrixR to be a solution of
the quantum Yang–Baxter equation.

THEOREM 1.4 ([11]). LetK be a field. LetI = {1, . . . , n}. Divide I into sub-
sets and call them ‘blocks’. Split the blocks into subsets and call those subsets
‘components’. Choose scalars inK as follows:

(i) For each blockBs consisting of a single componentC chooseλs 6= 0;
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(ii) For each blockBs with more components, chooseys 6= 0 andzs 6= 0 and for
each componentCsj in Bs chooseλsj satisfying(λsj )

2 = ysλ
s
j + zs;

(iii) For each two distinct blocksBs , Bt , choosezst = zts 6= 0;
(iv) For eacha, b ∈ Bs with a > b, choose a scalarxab 6= 0;
(v) For eacha ∈ Bs andb ∈ Bt with s > t , choosexab 6= 0.

Now, define therabcd as follows:

(I) raaaa = rbbbb = rabba = rbaab = λsj , andrabab = rbaba = 0 for a 6= b, a, b ∈ Csj ⊂ Bs;

(II) rabba = ys, rbaab = 0, rabab = zsx
−1
ba , rbaba = xba for a, b ∈ Bs, a < b;

(III) rabab = xab, rbaba = zstx
−1
ab , rabba = rbaab = 0 for a ∈ Bs, b ∈ Bt ands < t ;

(IV) rabcd = 0 if {a, b} 6= {c, d}.
Then, the matrixR thus specified constitutes a quasidiagonal solution of the quan-
tum Yang–Baxter equation. Moreover, up to a permutation of{1, . . . , n}, every
solution satisfying(IV) can be described this way.

Remarks. If R is quasidiagonal, then all powers ofR will be quasidiagonal
as well, and therefore all elements inK[R] will have the same property. IfR
is also invertible, all the elements inK[R,R−1] will be quasidiagonal. This is a
consequence of Cayley–Hamilton’s theorem, for instance.

After [11] was published, an article by Markl and Majid was published on the
glueing of Yang–Baxter operators [26]. In their Theorem 2.7, they introduce a pro-
cedure that associates to two given solutions of the quantum Yang–Baxter equation,
a third one. They mainly focus on a special case, namely when the operators are
q-Hecke. This means in our notation that there is an invertibleq ∈ K such that
(PR)2 = (q − q−1)PR + 1 whereP is the permutation matrixP abcd = δadδ

b
c .

It is possible to reduce the solutions in [11] to an iterated application of their
results, starting with multiples of the permutation matrix, and scalar matrices. On
the other hand, the matrices in [11] are not all obtained by glueing, since they are
not necessarily Hecke. Indeed, the characteristic polynomial ofPR is

det(PR − β) =
n∏
i=1

(raa − β)
∏

a<b; a∼b;a'b
(λa − β)2 ×

×
∏

a<b a∼b, a 6'b
(β2 − βya + λaµa)

∏
a<b a 6∼b

(β2 − zst ).

Hence, its minimal polynomial might have a degree higher than 2. What is very use-
ful in [11] is that we have a very explicit combinatorial description of how blocks
must match with each other, which is very simple, and that it is a classification. On
the other hand, the results in [26] refer to a less limited family. Majid and Markl
also treat the bialgebras and Hopf algebras related to the q-Hecke operators arising
by glueing. An interested reader could find in their results a categorical explanation
for the choices and the phenomena in Section 4, although the algebras we describe
are not necessarily associated with q-Hecke operators.
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2. The FRT Construction

We start this section with a silly remark about notation. The ‘R-matrices’ that
we will use from now on, are the transposed form of those appearing in most
of the literature. This choice was made for convenience, since our main tool was
the classification provided in [11], and we preferred to be faithful to the notation
adopted there. This will not, however, change the essence of our results. Indeed,
the bialgebras one meets in the literature are very close to ours (i.e. they have
opposite algebra or coalgebra structure or they are isomorphic to ours), so they have
essentially the same properties as far as being PBW algebras, integral domains or
being a Hopf algebra is concerned.

We assume that the reader is acquainted with the definitions of bialgebra, Hopf
algebra, braided category. Good references for these notions are the surveys [4, 15]
or [18]. They contain a description of most of the standard results in the theory.

Let us start with some definitions, and terminology:

DEFINITION 2.1. A ‘dual quasitriangular bialgebra’(H,m, u,1, ε, r) is a bi-
algebraH together with a linear formr onH ⊗H such that:r is invertible under
the (convolution) product defined in(H ⊗H)∗ (linear dual), and

mσ = r ∗m ∗ r−1, (2.1)

r(m⊗ id) = r13 ∗ r23, (2.2a)

r(id ⊗m) = r13 ∗ r12. (2.2b)

Here,r12, r23, andr13 are linear forms onH⊗3 defined by

r12 = r ⊗ ε, r23 = ε ⊗ r, r13 = (ε ⊗ r)(σH,H ⊗ id).

The formr is called the ‘universalR-form’ of H . A Hopf algebra is dual quasitri-
angular if the underlying bialgebra is.

The property of a bialgebra being dual quasitriangular is important when we
deal with its representations. Indeed, ifH is dual quasitriangular then, given two
H -comodulesV andW , there is a standard comodule isomorphismc:V ⊗W →
W ⊗V defined by means ofr. This is built in such a way that the category of finite
dimensional corepresentations is a ‘braided category’ (see [10, Prop. 1.1, 16, 21]
or the survey in [15]).

The FRT construction is a standard procedure to get a bialgebra starting from
any invertible solution of the q-YB equation. This was discovered by many people
independently. In order to unify notations, we give the statements of the existence
theorem, and describe the construction, following the survey [15].

THEOREM 2.2. LetV be a finite-dimensional vector space andR an endomor-
phism ofV⊗V . There exists a bialgebraA(R) together with a linear map1V :V →
A(R)⊗ V such that

(i) the map1V equipsV with the structure of a comodule overA(R);
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(ii) the mapRP becomes a comodule map with respect to this structure(P is the
flip operator associated to the permutation matrix);

(iii) if A′ is another bialgebra coacting onV with linear map1′
V such that(ii) is

satisfied, there exists a unique bialgebra morphismf : A(R) → A′ such that
1′
V = (f ⊗ idV ) ◦1V .

The bialgebraA(R) is unique up to isomorphism.
Proof.A complete proof of these statements is to be found, for instance, in [34].

We give only a short description of the construction ofA(R). Let {ei}16i6n be a
basis ofV , so thatR is represented by the matrixrabcd such that

R(ei ⊗ ej ) =
∑
k,l

r
ij

kl e
k ⊗ el.

We pickn2 indeterminatest ij , 1 6 i, j 6 n. Then, the bialgebraA(R) is defined as
the quotient of the free algebra generated by thet ij ’s by the two-sided idealI (R)
generated by all elements

Spabcd =
∑
ij

rabi,j t
i
c t
j

d −
∑
k,l

rklcd t
b
l t
a
k (∗)

for everya, b, c, d ∈ {1, . . . , n}. Those relations can also be expressed in terms
of matrix products as follows. LetIn denote then × n identity matrix. Define the
matricesT , T1 andT2 asTij := (t ij ), T1 := T ⊗ In andT2 := In ⊗ T , so that

(T1)
ij

kl = (t ikδ
j

l ) and(T2)
ij

kl = (δikt
j

l ). Then the relations forA(R) can be expressed
by means of

RT1T2 = T2T1R. (∗∗)

One can check that there is a unique bialgebra structure onA(R) such that

1(tij ) =
∑
k

t ik ⊗ tkj , ε(t ij ) = δij . (∗∗∗)

The coaction onV is given by1V (e
i) = ∑

j t
i
j ⊗ ej . 2

To clear the air a little, we point out that one does not need a solution of the q-
YB equation in order to construct a bialgebra. The observation that ifR is a solution
of q-YB equation one gets a dual quasitriangular bialgebra is due independently to
Majid in [20] and to Larson and Towber (see [16]). This is now a standard fact that
can be found in [18] and [15].

THEOREM 2.3. If R is as in Theorem2.1and satisfies the Yang–Baxter equation
(1.1), there is a unique linear formr on A(R) turning A(R) into a dual quasi-
triangular bialgebra such that the isomorphismRP is the standard isomorphism
V ⊗2 → V ⊗2 defined by means ofr. We haver(t ij ⊗ tkl ) = rikjl .
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Remark.We recall that ifR is invertible, thenr is invertible under convolution
andr−1(t ij ⊗ t lk) = (R−1)iljk.

We end this section describing two well-known bialgebras that can be obtained
by means of this construction.

EXAMPLE 2.1. Take ann2 × n2 quasidiagonal solutionR of (1.1) such that one
has one single blockB consisting of one single component. We will call this type
of block (and their associated matrixRB), ‘type I’. In this case, the relations in
A(R) are all trivial. Indeed

Spaacc = ∑
ij r

aa
i,j t

i
c t
j
c − ∑

k,l r
kl
cc t

a
l t
a
k = λtac t

a
c − λtac t

a
c ≡ 0 (a = b, c = d),

Spaacd = ∑
ij r

aa
i,j t

i
c t
j

d − ∑
k,l r

kl
cd t

a
l t
a
k = λtac t

a
d − λtac t

a
d ≡ 0 (a = b, c 6= d),

Spabcc = ∑
ij r

ab
i,j t

i
ct
j
c − ∑

k,l r
kl
cct

b
l t
a
k = λtbc t

a
c − λtbc t

a
c ≡ 0 (a 6= b, c = d),

Spabcd = ∑
ij r

ab
i,j t

i
ct
j

d − ∑
k,l r

kl
cd t

b
l t
a
k = λtbc t

a
d − λtbc t

a
d ≡ 0 (a 6= b, c 6= d).

ThereforeA(R) is isomorphic, as an algebra, to the free algebra onn2 generators.
Once we give to eacht ij degree 1, and callA(R)r the homogeneous component of
degreer, we see that the Poincaré series ofA(R) is

P(A(R), t) =
∑
r>0

dim(A(R)r)t
r =

∑
r>0

n2r t r = (1 − n2t)−1.

EXAMPLE 2.2. LetR be a quasidiagonal solution of(1.1) such thatI is a single
blockB with all componentsCi of size 1, i.e. such that|Ci | = 1. We will call this
sort of block (and their corresponding matricesRB) ‘ type II’. Suppose also that
λi = λ is constant for all components in the block. Then,A(R) is the standard
multiparameter deformation of the algebra of functions onMn(K), the semigroup
of n × n matrices with entries inK. One can always multiply the matrix by a
constant so that the second solutionµ of Equation(1.6) is equal to−1 (soz = λ),
as in [1], or to−λ−1 (so,z = 1), as in most of the literature.

The parameterspji for j > i andλ in [1], correspond, respectively, torijij λ
−1

andλ/(λ− y). The relations forA(R) are

t ij t
l
k = (rilil )

−1r
jk

jk t
l
kt
i
j + y(rilil )

−1t lj t
i
k (i > l, j > k),

t ij t
i
k = (r

kj

kj )
−1λtikt

i
j (j > k),

t ij t
l
k = (rilil )

−1r
jk

jk t
l
kt
i
j (i > l, j 6 k).

It is well known thatA(R) is Noetherian as an algebra, it is a domain and that
its Poincaré series is the same as that of the ring of polynomials inn2 commuting
indeterminates, forλ 6= µ. Namely,

P(A(R), t) =
∑
r>0

dim(A(R)r)t
r =

∑
r>0

(
n2 + r − 1

r

)
t r = (1 − t)−n

2
.
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A(R) coincides withK[t ij ; 1 6 i, j 6 n] if λ = r
ij

ij = 1 for everyi, j ∈ I , and
µ = −1, i.e. it is a genuine deformation of the algebra of functions onMn(K).

3. Bialgebras of Type II

The purpose is of this section is to study the bialgebras associated with a quasidiag-
onal solution of the q-YB equation, whose set of indicesI consists of a single block
with all components of size one. Following [11], we call them ‘bialgebras of type
II’. We will show their relation with the quantum matrix supergroups (very similar
results for a bigger class ofR-matrices were also obtained in [28]) and we embed
A(R) into a Hopf algebraH(R), by means of an Ore localization. We will show
in the next section that for other matricesR this is not always possible, because
we have zero divisors. We think this is an important issue, although it is often
neglected in the literature. Although we discovered recently that Proposition 3.11
is not a new result, we still present it here because it is useful for the definition
of the antipode forH(R), while using only the isomorphism in [28] would cost a
little more work.

One has a partition ofI = E ∪ O, such that, ifλ andµ are the two solutions
of Equation(1.6), raaaa = λ if a ∈ E andraaaa = µ if a ∈ O. If E = I orO = I ,
then we fall back on Example 2.2. In this case, it is well known that the bialgebra
A(R) can be embedded in a Hopf algebra which is the Ore localization ofA(R)

at the quantum determinant, and thatA(R) is a twist of the standard 1-parameter
deformation ofMn(K).

Suppose now that the partition ofI is nontrivial. Then, it defines an equivalence
class for its elements, which we denote by≡′. We have the following lemma:

LEMMA 3.1. LetR be any quasidiagonal solution of Equation(1.1). If raaaa 6= rbbbb ,
then(tab )

2 = 0 in A(R). In particular, ifA(R) is of typeII , and the partition ofI is
nontrivial, (tab )

2 = 0 whenevera 6≡′ b.
Proof.The relationSpaabb = 0 gives

raaaa t
a
b t
a
b = rbbbb t

a
b t
a
b , i.e. (raaaa − rbbbb )t

a
b t
a
b = 0. 2

We introduce an ordering on the monomials in thet ij ’s with i, j ∈ I as follows.
We associate to eacht ij degree 1, and we order the monomials first by their degree
(monomial of lower degree< monomial of higher degree), and then if two mono-
mials have the same degree, we order them in lexicographic order, considering the
upper index before the lower one (tab > t

c
d if a > c or if a = c andb > d, and then

again lexicographically for monomials of higher degree).
We rewrite now the relations forA(R) in such a way that we have a single

monomial on the left-hand side, and a linear combination of monomials which are
strictly smaller than the above-mentioned monomial on the right-hand side. From

ACAP1286.tex; 25/08/1998; 10:32; p.10



QUASIDIAGONAL SOLUTIONS OF THE YANG–BAXTER EQUATION 197

now on we writerab instead ofrabab for an entry ofR belonging to the diagonal, and
we writey to denoteλ+ µ. Then the relations forA(R) are

t ij t
i
j = 0 (i 6≡′ j),

t ij t
l
k = (ril)−1rjkt lkt

i
j + y(ril)−1t lj t

i
k (i > l, j > k),

t ij t
i
k = (rkj )−1rii t ikt

i
j (j > k),

t ij t
l
k = (ril)−1rjkt lkt

i
j (i > l, j 6 k).

We can check that this is a set of rewriting rules whose overlap ambiguities are
confluent. Moreover, the monomials in thet ij ’s such that for every two subwords
t < t ′ in the monomial,t is on the left oft ′, and not ij such thati 6≡′ j occurs
twice in the monomial, form a basis ofA(R). This type of monomial will be called
‘normally ordered’.

In particular, the Poincaré series ofA(R) is then the same as that of the function
algebra of the supervariety Mat(|E|, |O|), namely

P(A(R), t) =
∑
r>0

dim(A(R)r)t
r

=
∞∑
r>0

[ r∑
k=0

( |E|2 + |O|2 + r − k − 1

r − k

)
×

×
(

2|E||O|
k

)]
t r = (1 − t)−|E|2−|O|2(1 + t)2|E||O|.

The case ofA(R)with n = 2, and|E| = |O| = 1 has been studied by Jing, who
has found a concrete Hopf algebra in whichA(R) can be embedded (see [14]). The
problem of finding a concrete Hopf algebra structure for this type ofA(R) for any
n can be solved by generalizing his work and finding an appropriate localization,
as we will show.

To simplify computations, we shall assume from now on that all the indices in
E precede all the indices inO. This can always be made possible by reordering the
indices, making sure one rewrites the relations in a suitable way.

We start with the following, that resembles a classical property for the algebras
of functions on the supervariety Mat(|E| | |O|).
PROPOSITION 3.2.LetA(R) be a bialgebra of typeII , let |E| = p and letN
be the ideal generated by thet ij ’s such thati 6≡′ j . Then,N is a bialgebra ideal,
andA(R)I := A(R)/N is a domain. If the fieldK contains±β, the square roots of
−λµ, thenA(R)I is isomorphic to a twist of the tensor product of standard defor-
mations of the algebras of functions onMp(K) andMn−p(K), with deformation
parameterq = λ/β andq ′ = µ/β, respectively.

Proof. For the first statement, we have to prove that1(N) ⊂ N ⊗ A(R) +
A(R)⊗N and thatε(N) = 0. If i 6≡′ j , then

1(tij ) =
∑
k

t ik ⊗ tkj =
∑
k≡′i

t ik ⊗ tkj +
∑
k≡′j

t ik ⊗ tkj ∈ A(R)⊗N +N ⊗A(R).
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Since1 is an algebra homomorphism,1(N) ⊂ N ⊗ A(R) + A(R) ⊗ N . Again,
if i 6≡′ j , clearly i 6= j henceε(tij ) = 0. Hence,ε(N) = 0 andA(R)I inherits a
bialgebra structure fromA(R).

It is easy to see thatA(R)I is isomorphic to the algebraA generated by thet ij ’s
with i ≡′ j , with relations:

t ij t
l
k = (ril)−1rjkt lkt

i
j + y(ril)−1t lj t

i
k (i > l, j > k, i ≡′ l),

t ij t
i
k = (rkj )−1rii t ikt

i
j (j > k),

t ij t
l
k = (ril)−1rjkt lkt

i
j (i > l, j 6 k or i > l, i 6≡′ k),

because

φ:A(R) → A, (3.1)

t ij 7→
{
t ij if i ≡′ j,
0 if i 6≡′ j

is a surjective bialgebra homomorphism whose kernel is exactlyN . This follows
by looking at the bases of both spaces.
A(R)I is a domain because the graded ring associated with the filtration given

by the degree firstly, and the lexicographic order secondly on the monomials is a
domain.

As far as the twist is concerned: this is again a standard fact. We show a proof
because this technique will be used frequently in this paper. Let us denote the
deformed algebras ofMp(K) andMn−p(K) byMq,p andMq ′,n−p. Let their gener-
ators be, respectively,ukl for 1 6 k, l 6 p andurs for p+1 6 r, s 6 n. We want to
twist the bialgebraMq,p⊗Mq ′,n−p (with the usual tensor product comultiplication)
by a cocycleσ1 on the left andσ−1

1 on the right.σ1 ∈ ((Mq,p ⊗ Mq ′,n−p)⊗2)∗ is
given as follows:

σ1(uvj ⊗ ulk) =


δvj δlkr

lvβ−1 if v 6 p andl > p,
δvj δlkβ

−1rlv if v < l andv ≡′ l,
δvj δlk if s = t andv > l or if t > s

on the generators of((Mq,p ⊗ Mq ′,n−p)⊗2, and it is extended multiplicatively on
the other elements of(Mq,p ⊗Mq ′,n−p)⊗2, i.e. for the monomialsu := (ui1j1)

e1 · · ·
(uit jt )

et andv := (uk1l1)
f1 · · · (ukglg )fg :

σ1(u⊗ v) =
t∏
c=1

δicjc

g∏
v=1

δkvlv

∏
ic<kv

(β−1rkv ic )ecfv

andσ−1
1 (uij ⊗ ulk) = δij δlk(σ1(uii ⊗ ukk))

−1. Then the map

φ: σ1(Mq,p ⊗Mq ′,n−p)σ−1
1

→ A(R)I

ulk 7→ t lk
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with q = λ/β, q ′ = µ/β is a well defined bialgebra isomorphism, as it can be
checked by direct computation. 2

Remark.By the previous proposition it follows that the product of two elements
ofA(R)whose expressions in terms of the basis does not contain anyt ij with i 6≡′ j
is zero if and only if at least one of the two elements are zero, since this is what
happens inA(R)I.

Besides, if at ij ∈ N , and there is ana ∈ A(R) such thatatij = 0, thent ij must
appear as a factor in the ‘highest’ (in the ordering of the monomials of the basis)
normally ordered monomial in the expression ofa, unlessa = 0. Indeed, leta =
cAt

A + lower order terms, where 06= cA ∈ K, tA follows the usual multi-index
notation, andA is ann2 matrix with entries inZ>0 and such thatakl ∈ {0,1} if
k 6≡′ l. Then 0= atij = c′cAtA+Eij+ lower order terms, whereEij is then2 matrix
with all 0 entries except for that indexed byi, j , which is 1. Hence,tA+Eij = 0
which implies thataij = 1 otherwise the monomial would belong to the basis.

COROLLARY 3.3. The Poincaré series ofA(R)I is the same as that of the algebra
onp2 + (n− p)2 commuting variables withp, andn as before. Moreover,A(R)I
is a twist of the tensor product of the standard multiparameter deformations of the
algebras of functions onMp(K) andMn−p(K).

Proof. The first statement is obvious. The second statement follows from the
fact that the multiparameter deformation ofMn(K) is nothing but a twist of the
one parameter deformation. The needed cocycleσ2 ∈ ((M ′

q,p⊗M ′
qr ,nr

)⊗2)∗ will be
given by (same notation as above)

σ2(uvj ⊗ ulk) =
{
δvj δlkr

lv(rjj )−1 if v < l, v 6≡′ l,
δvj δlk otherwise.

2

PROPOSITION 3.4.A(R)I is again a dual quasitriangular bialgebra with uni-
versalR-formu(tij ⊗ t lk) = riljk wheneveri ≡′ j , andu(tij ⊗ t lk) = 0 if i 6≡′ j .

Proof. One checks (2.1), (2.2a) and (2.2b), knowing that they hold forA(R)

and that the projection is a bialgebra homomorphism. For instance, one sees that
(2.1) inA(R) corresponds withrabij t

i
c t
j

d = ruvcd t
b
v t
a
u . Projecting ontoA(R)I one gets

(2.1) for A(R)I , by observing that if a product of somet ij ’s appears with coefficient
rabcd , with a 6≡′ c, then it belongs to the kernel of the projection, or it is involved
in a trivial relation. The other formulae are checked in a similar way, knowing that
εA(R) = εA(R)Iφ. 2

PROPOSITION 3.5. Let A(R) be a type II bialgebra. Then, there are two left
comodule algebrasSym(R) and∧(R) forA(R) such thatA(R) can be also defined
as the universal bialgebra coacting onSym(R) and∧(R), i.e. any other bialgebra
coacting onSym(R) and∧(R) is a homomorphic image ofA(R).
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Proof. If the partition ofI is trivial, the assertion is well known, being Sym(R)
and ∧(R) the usual quantum symmetric and antisymmetric algebra (see for in-
stance [30], or [4]). The same construction can be used in this case. LetS be the
matrix of the operator defined by the operatorRP whereP is the flip operator on
V ⊗ V (V as in Section 1) associated with the permutation matrix. We recall that
the entries ofS are given bySabcd = Rbacd . We can prove thatS is diagonalizable,
and its minimal polynomial is(X − λ)(X − µ). Then, Sym(R) is the associative
algebra obtained by the quotient of the free algebra on generatorsx1, . . . , xn by the
ideal generated by the entries of(S − λ)(X�X) whereX�X (notation as in [4])
is then2 column matrix with entries(X �X)

ij

11 = xixj . Sym(R) is also called the
‘quantum symmetric algebra’ defined by the matrixR. By ∧(R) we denote instead
the associative algebra obtained as the quotient of the free algebra on generators
ξ1, . . . , ξn by the ideal generated by the entries of(S − µ)(4� 4), where4�4

(notation as in [4]) is then2 column matrix with entries(4 � 4)
ij

11 = ξiξj . ∧(R)
is also called the ‘quantum antisymmetric algebra’ defined by the matrixR. The
relations for Sym(R) are then

xixj =
{−µ−1rjixj xi if i > j ,

0 if i = j ∈ O.
The relations for∧(R) are

ξiξj =
{ −λ−1rjiξj ξi if i > j ,

0 if i = j ∈ E.
It is then a standard fact that the relations onA(R) are equivalent to the fact that
Sym(R) and∧(R) are comodule algebras forA(R), with coactionδ(xi) = ∑

t ij ⊗
xj andδ′(ξi) = ∑

t ij ⊗ ξj . 2

Our purpose is now to find a suitable Hopf algebraH(R) in whichA(R) could be
embedded. This can be done by means of localizing at a certain Ore set. We know
already that a twist ofA(R)I can be embedded in a Hopf algebra, because we know
thatMqp(K)⊗Mq ′,n−p(K) can be embedded in the Hopf algebraGLqp⊗GLq ′,n−p,
by localizing at the quantum determinants. Moreover, twisting the tensor product
of the quantum exterior algebras ofMqp(K) andMq ′,n−p(K) on the left byσ1

of Proposition 3.3, we can again find a left comodule algebra forA(R)I which is
graded, and whose degreen componentLn is one-dimensional. As in the standard
case, one can define a sort of quantum determinant by requiring it to be the element
d of A(R)I such that ifLn = Kv, δ(v) = d ⊗ v. This can be computed, and it
turns out thatd = dEd0 = d0dE wheredE (respectivelydO) is the usual quantum
determinant ofMqp(K) (respectivelyMq ′,n−p(K)). It is possible to show that the
multiplicatively closed set{dk | k ∈ Z>0} satisfies Ore condition. In particular,
we can localizeA(R)I at d and the localized ring can be provided of a Hopf
algebra structure. We do not show this here, since it is follows by straightforward
but tedious computations. Anyway, we use this as a motivation. We would like
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H(R) to respect this result, so that we try and see if localizingA(R) atdE anddO
viewed as elements ofA(R), we obtain a decent algebra, that can be given a Hopf
algebra structure.

We recall that

dE =
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))t1π(1) · · · tpπ(p) (3.1E)

and that

dO =
∑

π∈Sn−p

∏
p+16j<k6n

π(j)>π(k)

(−µ−1rπ(k)π(j))t1π(1) · · · tpπ(p), (3.2O)

whereSn−p denotes the subgroup ofSn which permutes the set{p + 1, . . . n}.
Ore conditions, for a multiplicatively closed setM, are conditions in order to

localize a noncommutative ringR at the setM, i.e. they tell in which cases we are
allowed to ‘add the inverses of the elements inM to the ringR’. Those relations
make sure that the ring does not collapse and that nothing bad happens. By this
theory of localization we can say exactly what the kernel of the mapR → RM
is, whereRM is the localized ring and we can state algebraic properties aboutRM
as:RM is Noetherian ifR is, there is a sort of reciprocity for nilpotent and prime
ideals, composition of localizations give isomorphic rings, and more (see [35] and
references therein).

The conditions read as follows:

(a) For anys ∈ M andr ∈ R there existr ′ ∈ R ands′ ∈ M such thats′r = r ′s;
(b) If rs = 0 for somer ∈ R ands ∈ M, then there is ans′ ∈ M such hats′r = 0.

In particular, condition (b) is always satisfied if the elements inM are not zero
divisors. Besides, the kernel of the obvious mapR → RM , the localized ring atM,
is {r ∈ R | sr = 0 for somes ∈ M }. Hence, if the setM contains only regular
elements, the map mentioned above is an injection.

Let us defineM = {de1E do1
0 · · · derE dorO | ei, oi ∈ Z>0}. We will show now that

the multiplicative setM generated bydO anddE is an Ore set (i.e. it satisfies ore
conditions).

LEMMA 3.6. In the context above described, we have the following relations:

(i) dStij = CSij t
i
j dS , whereS = E,O, i 6≡′ j and CSij is a nonzero constant

depending oni, j andS.
(ii) dStij = CSij t

i
j dS for S = E,O, i, j ∈ S and CSij is a nonzero constant

depending onS, i andj .
(iii) dStij = CSij t

i
j dS + ν for S = E,O, i, j 6∈ S CSij is a nonzero constant and

ν ∈ N2.

Proof. (i) We prove the statement forS = E, i ∈ E andj ∈ O.
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The caseS = E, i ∈ O and j ∈ E is proven in a similar way using the
alternative formula fordE given by

dE =
∑
π∈Sp

∏
j<k

π(j)>π(k)

(−λ−1rπ(j)π(k))t
π(1)
1 · · · tπ(p)p .

The other two statements in (i) are proven in the same way.
From now on, for any pair of indicess < k, and anyπ ∈ Sp, T πs···k will denote

the monomialt sπ(s)t
s+1
π(s+1) · · · tkπ(k).

dEt
i
j =

∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))t1π(1) · · · tpπ(p)t ij

=
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))

( p∏
u=i
(rui)−1rπ(u)j

)
T π1···i−1t

i
jT

π
i···p.

We now putCip = (
∏p

u=i (r
ui)−1rπ(u)j ), and we study the productCipT π1···i−1t

i
j

T πi···p. We have

CipT
π
1···i−1t

i
j T

π
i···p = Cip

i−1∏
u=1

(rui)−1rπ(u)j t ij T
π
1···p − (λ+ µ)Dπ,

whereDπ = ∑i−1
t=1D

t
π and

Dt
π =

( p∏
k=i−t+1

(rki)−1rk,i−t
)
(ri−t,i )−1T π1···i−t−1t

i
π(i−t )T

π
i−t+1···pt

i−t
j .

Our purpose is to show that∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))Dπ = 0.

We shall prove this by showing by induction that∀t , 1 6 t 6 i − 1,∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))Dt
π = 0.

Let t = 1 and letτ denote the transposition(i − 1 i) ∈ Sp. Then,∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))D1
π

=
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))

( p∏
k=i
(rki)−1rk,i−1

)
(ri−1,i)−1×
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× T π1···i−2t
i
π(i−1)t

i
π(i)T

π
i+1···pt

i−1
j

=
( p∏
k=i
(rki)−1rk,i−1

)
(ri−1,i )−1

∑
π∈Sp

π(i−1)<π(i)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))×

× T π1···i−2 [t iπ(i−1)t
i
π(i) − λ−1rπ(i−1)π(i)t iπτ(i−1)t

i
πτ(i)] T πi+1···pt

i−1
j

= 0

since the difference in square brackets ist iπ(i−1)t
i
π(i)−λ−1rπ(i−1)π(i)t iπ(i)t

i
π(i−1) = 0.

Now letw > 2 be the smallest positive integer such that the expression Diffw =∑
π∈Sp

∏
16j<k6p,π(j)>π(k)(−λ−1rπ(k)π(j))Dw

π 6= 0. Then letσ denote the transpo-
sition (i −w i −w + 1) ∈ Sp. Then,

Diff w =
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))

( p∏
k=i−w+1

(rki)−1rk,i−w
)
(ri−w,i )−1 ×

× T π1···i−w−1 t
i
π(i−w)t

i−w+1
π(i−w+1) T

π
i−w+2···pt

i−w
j

= Lwi
∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))T π1···i−w−1 ×

× [
(ri,i−w+1)−1rπ(i−w)π(i−w+1)t i−w+1

π(i−w+1)t
i
π(i−w) +

− λ−1rπσ(i−w+1)πσ(i−w)t iπσ(i−w)t
i−w+1
πσ(i−w+1)

]
T πi−w+2···pt

i−w
j

= Lwi
∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))T π1···i−w−1 ×

× [
(ri,i−w+1)−1rπ(i−w)π(i−w+1)t i−w+1

π(i−w+1)t
i
π(i−w) +

− λ−1(µ+ λ)rπ(i−w)π(i−w+1)(ri,i−w+1)−1t i−w+1
π(i−w+1)t

i
π(i−w) +

+ µ(ri,i−w+1)−1t i−w+1
π(i−w)t

i
π(i−w+1)

]
T πi−w+2···pt

i−w
j

= Lwi
∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))µ(ri,i−w+1)−1 ×

× T π1···i−w−1

[ − λ−1rπ(i−w)π(i−w+1)t i−w+1
π(i−w+1)t

i
π(i−w) +

+ t i−w+1
π(i−w)t

i
π(i−w+1)

]
T πi−w+2···pt

i−w
j

whereLwi is clearly nonzero. On the other hand,

0 = Diff w−1 :=
∑
π∈Sp

∏
16j<k6p
π(k)<π(j)

(−λ−1rπ(k)π(j))Dw−1
π

=
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))

p∏
k=i−w+2

(rki)−1rk,i−w+1 ×
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× (ri−w+1,i )−1 T π1···i−wt
i
π(i−w+1)T

π
i−w+2···pt

i−w+1
j

=
∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))×

×
( p∏
k=i−w+2

(rki)−1rk,i−w+1

)
(ri−w+1,i )−1T π1···i−w−1 ×

× [
t i−wπ(i−w)t

i
π(i−w+1) +

− λ−1rπ(i−w)π(i−w+1)t i−wπ(i−w+1)t
i
π(i−w)

]
T πi−w+2···pt

i−w+1
j .

Hence ∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))T π1···i−w−1×

× [
t i−wπ(i−w)t

i
π(i−w+1) − λ−1rπ(i−w)π(i−w+1)t i−wπ(i−w+1)t

i
π(i−w)

]×
× T πi−w+2···pt

i−w+1
j = 0.

Now we compare this last result with the expression we obtained forL−1
wi Diff w.

The last result is zero if and only if

Aw−1 : =
∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))T π1···i−w−1 ×

× [
t i−wπ(i−w)t

i
π(i−w+1) − λ−1rπ(i−w)π(i−w+1)t i−wπ(i−w+1)t

i
π(i−w)

]
T πi−w+2···p

= 0

by the remark after Proposition 3.2, since not i−w+1
j appears in the expression of

this term. By definition ofw, we have

Aw : =
∑
π∈Sp

π(i−w)<π(i−w+1)

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))T π1···i−w−1 ×

× [ − λ−1rπ(i−w)π(i−w+1)t i−w+1
π(i−w+1)t

i
π(i−w) + t i−w+1

π(i−w)t
i
π(i−w+1)

]
T πi−w+2···p

6= 0

sinceL−1
wi Diff w 6= 0. But the above expression is the same asAw−1 except for the

fact that the(i −w)th row of tkl ’s has been substituted by the(i −w + 1)th.
Now, if we rewriteAw−1 andAw as linear combinations of elements of the

basis, which means just ‘pushing thet iπ(i−w)’s and thet iπ(i−w+1)’s, respectively,
forward in the monomials’, we will have again the same expression for both, with
the t i−wk ’s replaced by thet i−w+1

k ’s, since on the left of thet iπ(i−w) and t iπ(i−w+1)
the two expressions coincide. Hence, since the elements of the basis are linearly
independent, it follows that all coefficients forAw−1 must be zero, hence they are
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zero also forAw, since they are the same. Therefore, also Diffw = 0 despite our
assumption. So, for everyt ,∑

π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))Dt
π = 0,

hence∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))Dπ = 0.

This implies that

dEt
i
j =

p∏
u=1

(rui)−1ruj
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))t ijT
π
1···p +

− (λ+ µ)
∑
π∈Sp

∏
16j<k6p
π(j)>π(k)

(−λ−1rπ(k)π(j))Dπ

=
p∏
u=1

(rui)−1ruj t ij dE + 0.

(ii) follows by the fact that this relation is true insideA(RS) whereRS is the
submatrix ofR whose entries are those that have index inS, andA(RS) is its
associated bialgebra.

(iii) follows by straightforward computation. Indeed, forS = E, i, j ∈ O, and
for anyπ ∈ Sp

tijT
π

1···p =
p∏
u=1

(rui)−1rjuT π1···pt
i
j +

+ y

p∑
l=1

(ril)−1
l−1∏
v=1

(riv)−1rjπ(v)T π1···l−1t
l
j t
i
π(l)T

π
l+1···p,

hence

t ij dE =
∑
π∈Sp

∏
t<k,π(t)>π(k)

(−λ−1rπ(k)π(t))t ijT
π
1···p

=
p∏
u=1

(rui)−1rju
∑
π∈Sp

∏
t<k,π(t)>π(k)

(−λ−1rπ(k)π(t))T π1···pt
i
j +

+ y
∑
π∈Sp

p∑
l=1

(rjπ(l))−1
∏

t<k π(t)>π(k)

(−λ−1rπ(k)π(t))×

×
l−1∏
v=1

(riv)−1rjπ(v)[T π1···l−1t
i
π(l)] · [t lj T πl+1···p].
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The second term in the sum is a linear combination of products of two elements
belonging toN , hence it belongs toN2. 2

LEMMA 3.7. N is a nilpotent ideal ofA(R).
Proof. In order to prove this statement, we introduce the concept of ‘level of

degeneracy’ of an element ofA(R). For a monomial, not necessarily ordered, this
is the number of generators of the formt ij with i 6≡′ j occurring in the monomial.
So far, the level of degeneracy need not be well defined for an element ofA(R),
since not every relation preserves it. Indeed, ifi, j ∈ E and k, l ∈ O, t lkt

i
j =

(rli)−1rkj t ij t
l
k + yrkj t ikt

l
j . On the other hand, the level of degeneracy of any basis

element is well defined. Hence, we will say that the level of degeneracyld(a) of
an elementa ∈ A(R), is the minimum level of degeneracy belonging to the basis
elements that occur in the expression ofa. We observe thatld(a) = k if and only
if a ∈ Nk . Indeed, if we take any monomial inA(R), we obtain a sum in which at
least one term has the same level of degeneracy of the monomial we started with,
and a sum of elements whose level of degeneracy is greater or equal to that one.
This can be checked considering case by case all the relations inA(R) with all the
possible partitions of indices occurring in the relation. Hence, we can read it as a
sum of products of> ld(a) elements inN . Hence,a ∈ Nld(a). It is clear then that
any element (thus also any monomial in thet ij ’s) is zero if its level of degeneracy is
bigger than 2p(n− p) = |{t ij | i 6≡′ j}|. ThereforeNk = 0 for k > 2p(n− p). 2

There follows:

THEOREM 3.8. The multiplicatively closed setM satisfies Ore conditions.
Proof. By Lemma 3.6 it follows that∀m ∈ M and∀r ∈ Nk, there exist an

r ′ ∈ Nk such thatsr ′ − rs ∈ Nk+2.
Since the idealN is nilpotent, to prove condition (a) it would be enough to show

that, once we have anr ′ ∈ Nk and ans′ ∈ M such thatsr ′ − rs′ ∈ Nk+2 for any
given r ∈ Nk ands ∈ M, we can construct ans′′ ∈ M and anr ′′ ∈ Nk such that
sr ′′ − rs′′ ∈ Nk+4. Let r, s, r ′, s′, be as above. Then,sr ′ − rs′ −nk+2 = 0, for some
nk ∈ Nk+2.

Let νk+2 be the element ofNk+2 such thatnk+2s − sνk+2 ∈ Nk+4, whose exis-
tence follows by Lemma 3.6. Then, one has:−sνk+2+nk+2s+sr ′s−rs′s−nk+2s =
s(r ′s − νk+2)− r(s′s) ∈ Nk+4. Hence, by induction, for everyr ∈ A(R) and every
s ∈ M, there exist aρ ∈ A(R) and aσ ∈ M such thatsρ = rσ .

We need to show that condition (b) holds as well. This follows by regularity of
dE anddO . This can be checked again in the associated graded ring (filtration as
before), and follows by the fact that no element in the expression ofdE or dO has a
positive level of degeneracy. 2

As a consequence of the theorem, we have an embedding ofA(R) in its lo-
calizationH(R) at M. We remark then that the idealN ′ ⊂ H(R) generated
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by the t ij ’s with i 6≡′ j is again nilpotent, sinceM is an Ore set (see [35]).
Moreover, one can check that a basis forH(R) is given by the elements of the
form d−k

E d−l
O m wherem is a normally ordered monomial in thet ij ’s such that

min(k, eij , i, j ∈ E) = min(l, eij , i, j ∈ O) = 0 whereeij is the exponent of
t ij in m.

THEOREM 3.9. H(R) defined above is a Hopf algebra.
Proof. The bialgebra structure can be extended toH(R) by putting forS =

E,O : ε(d−1
S ) = ε(dS)

−1 = 1 and1(d−1
S ) = 1(dS)

−1 ∈ H(R) ⊗ H(R).
The inverse of1(dS) exists inH(R) ⊗ H(R) since1(dS) ∈ dS ⊗ dS + N ⊗
A(R)+ A(R)⊗ N , i.e. it is an invertible element modulo a nilpotent one.(d−1

S ⊗
d−1
S )N ⊗ N ⊂ N ′ ⊗ N ′, hence it consists of nilpotent elements, therefore we

have completed the proof. The extension of the comultiplication clearly respects
the algebra structure. 2

The problem now is the construction of an antipode. We define here the value of
the candidate-antipodeι on the generators ofA(R), in such a way that the necessary
property is satisfied.

Since for everyk, l one should have
∑n

j=1 t
k
j ι(t

j

l ) = ∑n
j=1 ι(t

k
j )t

j

l = δjl, we
must actually look for a multiplicative inverse of the matrixT .

Let us divideT into four submatrices:

T =
(
TEE TEO
TOE TOO

)
,

whereTSP is the submatrix with upper index inS and lower index inP , where
S andP can beE or O. We look for a matrixU with entries inH(R) such that
TU = UT = Id. If such aU exists, then we defineι(t ij ) = Ui

j . We write then, in
the same fashion,

U =
(
UEE UEO
UOE UOO

)
.

We know that the inverse matrix ofTEE (respectivelyTOO) exists, since this is
indeed the case forH(RE) (respectivelyH(RO)), the Hopf algebra associated with
the submatrix ofR with indices inE (respectivelyO), which is the one described in
[1]. H(RE) (respectivelyH(RO)) is isomorphic, as an algebra, to the subalgebra of
H(R) generated by thet ij ’s with i, j ∈ E (respectively inO) andd−1

E (respectively

d−1
O ). Hence, it makes sense to writeT −1

EE and T −1
OO . We can then multiply the

relation TU = Id on the left by
(
T−1
EE

0

0 T−1
OO

)
. We obtain a system i n theUSP

whose solution is

UEE = (TEE − TEOT
−1
OOTOE)

−1,

UEO = −T −1
EETEO(TOO − TOET

−1
EETEO)

−1;
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UOE = −T −1
OOTOE(TEE − TEOT

−1
OOTOE)

and

UOO = (TOO − TOET
−1
EETEO)

−1.

The inverses in these formulae exist in Mat(n,H(R)). Indeed, the quantum
determinant of the matrices that we want to invert, belongs toM moduloN ′.
Therefore, these quantum determinants are themselves invertible, sinceM is an
Ore set andN ′ is nilpotent. It follows that, using the standard procedure together
with the fact thatM is an Ore set and thatN ′ is nilpotent, we can invert the matrices
as well.

We can check that the matrixU is then also a right inverse forT . It remains to
defineι(d−1

E ), ι(d−1
O ), and to check thatι can be extended to an algebra antihomo-

morphism. We will postpone this discussion to the end of this section.
We describe nowA(R) in terms of objects that are better known. For this

purpose, we introduceEq , Manin’s deformation of the function algebra on the su-
permanifold Mat(a | b), and its bosonizationB(Eq), which is a genuine bialgebra.

We will show that for a particular choice of the parameters ofR, A(R) is a
sub bialgebra of the bosonized object, and that one can then define an antipode
for this particularA(R) using the fact that a Hopf super algebraH in whichEq is
contained has been computed by Manin and by Ho Hai, so that its bosonization has
an antipode as well.

Finally, we will show that all the other bialgebras of type II can be twisted into
one of theA(R)’s that can be embedded inB(H), and that the only essential datum
is the partition ofI .

Manin’s Quantum General Linear Supergroups.In order to define commutation
relations forEq , we have to fix a ‘format’, i.e. ann-tuple {a1, . . . , an} with ele-
ments inZ2, and a family of

(
n

2

)
nonzero elements in the fieldK: {qij }16i<j6n such

that qij = εij q whereεij = ±1, q is a given parameter. ThenEq is the algebra
generated by thezki ’s with 1 6 k, i 6 n, subject to the following relations:

(zki )
2 = 0 for ai + ak ≡ 1,

zliz
k
i = (−1)(ak+1)(al+1)q−1

kl z
k
i z
k
i for ai ≡ 1 andk < l,

zliz
k
i = (−1)akalqklz

k
i z
l
i for ai ≡ 0 andk < l,

zkjz
k
i = (−1)aiaj qij z

k
i z
k
j for ak ≡ 0 andj > k,

zkjz
k
i = (−1)(ai+1)(aj+1)q−1

ij z
k
i z
k
j for ak ≡ 1 andj > i,

zkj z
l
i = (−1)(aj+ak)(ai+al)εij εklzkjz

l
i for l > k andj > i,

zljz
k
i = εij εkl(−1)(ai+ak)(aj+al)zki z

l
j + εij (−1)(aiaj+aial+aj al)(q − q−1)zliz

k
j

for l > k andj > i.
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We say thatzij is ‘even’ if ai + aj ≡ 0 and that it is otherwise ‘odd’, so that
Eq becomes a superalgebra. It is actually a super bialgebra with comultiplication
defined on the generators as1(zji ) = ∑

k z
k
i ⊗ zjk , and extended to the whole ofEq

in the unique way that provides a superalgebra homomorphismEq → Eq ⊗ Eq .
The counit is given byε(zik) = δik.

We define an ordering on thezij ’s by zji < zlk if either i > k or i = k and
j > l. We call ‘normally ordered monomials’ those monomials in thezij ’s such that
smaller subwords occur on the left of the bigger ones, and nozij with ai + aj ≡ 1
occurs twice. By Theorem 3.12 in [31], normally ordered monomials form a basis
Eq . Therefore,Eq is a deformation of the algebra of functions on the supermanifold
Mat(a | b) wherea andb denote, respectively, the amount of even and odd terms
in the format.?

Manin then defines the deformation of the general linear supergroup as the Hopf
envelope ofEq . This is a Hopf superalgebraHq together with a super bialgebra map
γ : Eq → Hq having universal properties with respect to all superbialgebra maps
fromEq to a Hopf superalgebraH ′. It is built formally in [31], where the existence
of a quantum Berezinian is also shown. In [12], one can find an explicit computa-
tion of the Hopf envelope for a multiparameter deformation ofM(a | b), using the
existence of the quantum Berezinian, so that we have an explicit description of a
Hopf superalgebraH(Eq) containingEq .

We show the link betweenEq andA(R). This is given by bosonization:

Bosonization of a Hopf Superalgebra.Given a super bialgebra, or a Hopf superal-
gebra, one can construct an ordinary bialgebra or Hopf algebra in such a way that
the super object and the ordinary one, have ‘equivalent’ representation theories (see
[25] for further details). We describe the process for a Hopf superalgebra pointing
out that in case we are dealing with a super bialgebra, we can simply forget about
the existence of the antipode, holding all the results involving only the bialgebra
structure.

Let’s recall briefly what a Hopf super algebra is. LetH = H0 ⊕ H1 be a
Z2-graded algebra, having also aZ2-graded coalgebra structure, i.e.1(Hi) ⊂∑

k+l≡i Hk ⊗Hl andε(H1) = 0, such that comultiplication and counit are algebra
maps where the multiplication onH ⊗ H is defined as(m ⊗ m) ◦ (id ⊗τ ⊗ id)
whereτ is the graded flip operator. Such anH is called a super bialgebra. IfH also
possesses an antipode, which is aZ2-graded map,H is called a Hopf superalgebra.
Sometimes, we will write|a| = i if a ∈ Hi.
PROPOSITION 3.10 ([25, Corollary 4.3]).LetH be a Hopf superalgebra over a
fieldK. Then,H is a subalgebra of the Hopf algebraB(H), defined as follows.
As an algebra,B(H) is the extension ofH by adjoining an elementj such that
j2 = 1, jb = (−1)ibj for b ∈ Hi. The comultiplication, counit and antipode are
? By Theorem 3.12 in [31] we also see that our omission of theηij ’s in the defining relations does

not really limit the generality.
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given byj being grouplike,1B(H)(b) = ∑
bi1j

|bi2| ⊗ bi2 if 1H(b) = ∑
bi1 ⊗ bi2;

εH(b) = εH (b) andSB(H)(b) = j |b|SH(b) for all homogeneousb ∈ H . B(H) is
called the ‘bosonization’ ofH .

Now let nowB(Eq) be the bosonization ofEq , associated with a given format
{a1, . . . , an} and a given choice ofεij for every 16 i < j 6 n. Let us take an
n2 × n2 quasidiagonal solution of the q-YB equationR such thatR is of type II,
and such thatE = {l ∈ I |al ≡ 0}. In particular,l ≡′ k ⇔ al ≡ ak. If the field
of definitionK contains the square root ofz = −λµ, (λ andµ are as usual, the
roots of Equation (1.6)), then one can always make sure that the relations ofA(R)

can be defined by a matrixR′ with µ′ = −(λ′)−1, by multiplyingR by the scalar
matrixβ−1Id with β2 = z.

We will assume from now on that the above condition onK is always fulfilled
so that it will not be restrictive to assume that forR, λµ = −1.

Let us now takereb = (−1)aeabεeb for e < b, andλ = q of Manin’sEq . This
gives a well defined bialgebraA(R).

We define the linear map

ψ : A(R) → B(Eq)

tik 7→ zki j
ak .

PROPOSITION 3.11.The mapψ above defined is a bialgebra homomorphism.
Proof.ψ is a coalgebra map sinceεψ(tlk) = ε(zkl )ε(j

ak) = δkl and

(ψ ⊗ ψ)1(tlk) = (ψ ⊗ ψ)
( ∑

r

t lr ⊗ t rk

)

=
∑
r

zrl j
ar ⊗ zkr j

ak =
( ∑

r

zrl j
(ar+ak) ⊗ zkr

)
(jak ⊗ jak )

= 1(zkl )1(j
ak ) = 1(zkl j

ak ) = 1ψ(tlk).

We look at the image of the relations inA(R): if k 6≡′ l

ψ(tkl t
k
l ) = zkl j

ak zkl j
ak = (−1)(ak+al)akzkl z

k
l = 0

by the first relation ofEq .
Now we look at the second relation ofA(R). If e > b andc > d,

ψ(tec t
b
d − (rebeb )

−1rcdcd t
b
d t
e
c − y(rebeb )

−1tbc t
e
d )j

(ad+ae)

= [
(−1)ac(ab+ad )zcez

d
b − εbeεdc(−1)ae(ab+ad)zdbz

c
e−

− (q − q−1)εbe(−1)(aeab+aeac+adac)zcbz
d
e

]
which is zero by the last relation forEq .

As far as the third relation forA(R) is concerned, we have, forc > d,

ψ(tict
i
d − (rdcdc )

−1riiii t
i
d t
i
c)

= [
zci z

d
i (−1)(ai+ad )ac − εdc(−1)aiad riiii z

d
i z
c
i

]
jac+ad = 0
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by the second and third relation forEq , depending on the parity ofai .
Finally, the image underψ of the last generating relation forA(R) is given by

the following: fori > l andc < k:

ψ(tict
l
k − (rilil )

−1rckck t
l
kt
i
c)

= [
(−1)ac(ak+al )zci z

k
l − εliεck(−1)(ak+al)ai zkl z

c
i

]
jac+ak = 0

by the second last relation forEq .
If, at last,i > l andc = k, the relation becomes instead

ψ(tict
l
c − (rilil )

−1rcccc t
l
ct
i
c)

= (−1)ac(ac+al)zci z
c
l − εlir

cc
cc (−1)(ac+al )ai+aczcl z

c
i = 0

by the fourth and fifth relation forEq , depending on the parity ofac. 2

PROPOSITION 3.12.The mapψ above described is injective, henceA(R) can
be identified with a sub bialgebra ofB(Eq).

Proof. By construction,B(Eq) ∼= Eq ⊗ KZ2 as a vector space, hence a basis
for B(Eq) is given by elements of the formmjp wherem is a normally ordered
monomial inEq , andp ∈ Z2. Therefore, those elements are linearly independent.
Now, any element of the basis ofA(R) goes over to a different element of this basis
for B(Eq), up to a sign. Hence,ψ is injective. 2

Remark.One can easily check thatψ(A(R)) is the subalgebra ofB(Eq) whose
basis is given by the elements of the formmjp wherem is a normally ordered
monomial inEq andp is the sum of allak ’s with the right multiplicity such thatk
occurs as an upper index in the monomialm.

If we have a Hopf superalgebraHq , which is the Hopf envelope ofEq , its
bosonizationB(Hq) will also have an antipode, andψ(A(R)) ⊂ B(Hq). We may
wonder whetherH(R) can also be embedded inB(Hq), and whether the antipodes
of the two objects correspond to each other. The answer is positive, as we will
show. In order to do this, we need to recall the construction ofHq in [12].

LetA,B,C,D denote, respectively, the submatrices ofZ = (zik) as follows.A
contains only the entries such that both indices are inE; B has only entries such
that the upper index is inO and the lower index is inE; C has entries such that the
upper index is inE and the lower index is inO, andD has only the entries with
both indices inO. Given a square matrixM of elements inEq , we can use the usual
formula for the quantum determinant in order to define detq(M) (see [12, 30, 31]).
If the determinant turns out to be invertible in some extension ofEq , then we can
write the inverse of the matrixM using the usual formulae (see, for instance, [1]).
Then we have the following theorem:

THEOREM 3.13 ([12]). The quantum linear supergroupHq can be derived from
Eq by localizing the elementsdetq A and detq(D − CA−1B). In GLq(a|b) the
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elementsdetq(D) and detq(A − BD−1C) are also invertible, and the quantum
Berezinian isdetq(A)detq(D − CA−1B)−1 = detq(D)−1 detq(A− BD−1C).

In particular, one can obtainHq by localizingEq at detq(D) and detq(A). There-
fore,B(Hq) can be obtained by localizingB(Eq) at detq(D) and detq(A). A basis
for Hq is given by the elements of the form detq(A)

−k detq(D)−lm wherem is a
normally ordered monomial in thezpq ’s such that min(k, epq; ap ≡ aq ≡ 0) =
min(l, epq; ap ≡ aq ≡ 1) = 0 whereepq is the exponent ofzpq in m. Therefore, a
basis forB(Hq) is given by the elements of the formaje wherea is an element of
the basis ofHq ande ∈ {0,1}.
PROPOSITION 3.14.LetR be a typeII matrix with reb = εeb(−1)aeab , λ = q

andµ = −q−1. Then, one can extend the mapψ to an injection ofH(R) in B(Hq)
andH(R) can be identified with a Hopf subalgebra ofB(Hq).

Proof. Sinceψ(dE) = detq(A) andψ(dO) = detq(D)jn−p, we can extendψ
to d−1

E andd−1
O by ψ(d−1

E ) = detq(A)−1 andψ(d−1
O ) = detq(D)−1jn−p, and this

clearly extends to a bialgebra homomorphism. This map is again injective because
it sends different elements of the basis ofH(R) to different elements of the basis
of B(Hq) up to a sign.

Claim. On thet ij ’s, ψ ◦ ι = SB(Hq) ◦ ψ .

As a consequence of the claim,ι can be extended to an algebra antihomomor-
phismH(R) → H(R), sinceψ is an algebra embedding andS can be extended
to an algebra antihomomorphism. Indeed,ι can be extended to an algebra anti-
homomorphismA(R) → H(R). Hence,ι(dE) and ι(dO) are well defined, and
they are invertible because their image underψ is so. Therefore, we can define
ι(d−1

E ) = ι(dE)
−1 andι(d−1

O ) = ι(dO)
−1, respecting the relationψ ◦ ι = SB(Hq)◦ψ .

We still have to prove the claim. We do it forTEE andTEO :

ψ(ι(TEE))

= ψ(TEE − TEOT
−1
OOTOE)

−1 = (A− BjD−1j (n−p)+(n−p−1)C)−1

= (A− BD−1C)−1 = j0SHq (A) = SB(Hq)(ψ(TEE)),

ψ(ι(TEO))

= −ψ(−T −1
EETEO(TOO − TOET

−1
EETEO)

−1) = −A−1Bj (Dj − CA−1Bj)−1

= −A−1Bj2(D − CA−1B)−1 = SHq (B) = jSHq (Bj) = SB(Hq)(ψ(B)).

ForTOE one has to use another form of writingUOE, namelyUOE = −UOOTOE
T −1
EE . 2

So far we have shown that for any elementHq of Manin’s family of deformation
of the general linear supergroup, there is a particularR matrix of type II such that
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H(R) is a Hopf subalgebra ofB(Hq). Using again the cocycle twists, one sees that
eachA(R) has essentially the property stated in Propositions 3.11, 3.12.

PROPOSITION 3.15.Every algebraA(R) of typeII can be twisted into one of
the particular types described above, provided thatK contains the square roots of
−λµ.

Proof.We have shown that, onceK satisfies the given condition, we can always
make sure thatλµ = −1, so thatrij rji = 1 for everyi 6= j ∈ I . For any choice
of εij ∈ {−1,1}, we can provide a 2-cocycleσ ∈ (A(R) ⊗ A(R))∗ such that
σA(R)σ−1 is isomorphic to the bialgebraA(P ) associated with the matrixP of
type II with entriespij = εij (−1)aiaj , pii ∈ {λ,−λ−1} depending on the parity of
ai,p

ij

ji = λ−λ−1 if i < j . The cocycle is defined on the generators ofA(R)⊗A(R)
as follows, and extended in the usual way:

σ(tij ⊗ t lk) =
{
δij δlk if i 6 l,
δij δlkr

ilεil (−1)aiaj if i > l.
2

Remark. LetA(R) as in Proposition 3.11, and letA(R)5 Z2 be the bialgebra
obtained by extendingA(R) by the elementg such thatg2 = 1, g is grouplike
andgtij = (−1)ai+aj t ij g. Then it is immediate to prove that the mapφA(R) 5
Z2 → B(Eq) sendingg to j extends the mapψ to a bialgebra isomorphism. This
is Theorem IV.3 in [28].

4. More Blocks and Zero Divisors

We study now the behaviour ofA(R) whenR is a quasidiagonal solution of the
quantum Yang–Baxter equation, not necessarily of type II. We start showing the
existence of not nilpotent zero divisors inA(R) in most of the cases.

PROPOSITION 4.1.Let R be a quasidiagonal solution of(1.1) having at least
two blocks. If at least one block has more than one component, thenA(R) has zero
divisors which are not nilpotent.

Proof.We use the same notation as in Section 1. LetBs andBt be two distinct
blocks, and letBt have more than one component.

We divide the proof into two cases:

Case 1. (raa)2 is not constant for alla ∈ Bs ∪ Bt .
Then leta ∈ Bt ∪ Bs , c ∈ Bt andd ∈ Bs. By relationsSpaacd = 0 andSpaadc = 0 we
get

raatac t
a
d = rcd tad t

a
c = (raa)−1rcdrdctac t

a
d .

Hence, wheneverrcdrdc = zst 6= (raa)2, we have a family of zero divisors. Ana
for whichzst 6= (raa)2 exists always becausezst depends only on the pair of blocks.
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In particular, taking eitherc = a or d = a (depending on whethera belongs toBs
orBt ) we have either thattaa t

a
d = 0 or tac t

a
a = 0, neither of the two elements can be

zero because relations have a degree of at least 2. Moreover,taa cannot be nilpotent
becauseε(taa ) = 1.

Case 2. (raa)2 is constant for alla ∈ Bs ∪ Bt .
In particular, the above condition, together with the hypothesis onBt imply that

raa is constant onBt . Indeed, it follows that for anya, b ∈ Bt , raa = ±rbb but
the fact thatBt has more than one component implies that the minus sign has to
be excluded. Otherwise, for somec andd, and forraa = −rbb there would follow
that 0 6= rcddc = yt = λt + µt = raa + rbb = 0.

Hence, we haveraa = λt for everya ∈ Bt andraa = ±λt for everya in Bs .
Now, if zst 6= (raa)2 we get the same zero divisors as in Case 1. So we might as well
restrict to the case thatzst = λ2

t . Then we consider the producttab (λt(r
bd)−1tbb t

d
d −

tbd t
d
b ) for a ∈ Bs, for b, d ∈ Bt , b < d.
By the relationSpbabb = 0 we havetab t

b
b = λ−1

t r
batbb t

a
b , by relationsSpbadb = 0 and

Spabbd = 0 we get tab t
b
d = λ−1

t r
bd tad t

b
b ; by the relationsSpadbd = Spaddb = Spdabd = 0

we get tad t
d
b = λt(r

bd)−1tab t
d
d , finally, by the relationSpbabd = 0 we get tbb t

a
d =

(rba)−1rbd tad t
b
b .

Hence, for the above product we have

tab (λt(r
bd)−1tbb t

d
d − tbd t

d
b )

= (rbd)−1rbatbb t
a
b t
d
d − λ−1

t r
bd tad t

b
b t
d
b

= λ−1
t r

batbb t
a
d t
d
b − λ−1

t r
bdrba(rbd)−1tbb t

a
d t
d
b = 0.

tab is nonzero because it has degree 1, and(λt(r
bd)−1tbb t

d
d − tbd t

d
b ) is not nilpotent

and nonzero sinceε(λt(rbd)−1tbb t
d
d − tbd t

d
b ) = λt (r

bd)−1 6= 0. 2

In particular, if all blocks have only components of size one, the proposition
below states thatA(R) behaves in a ‘strange’ way unlessR is diagonal.

We are now able to make a classification of the quasidiagonal solutions of the
quantum Yang–Baxter equationR for which the bialgebraA(R) is a domain.

THEOREM 4.2. LetK contain the square roots ofzst , andraa for everys, t and
a. In the setting above, and if the square roots ofzst exist inK; A(R) is a domain
if and only if eitherR is a scalar multiple of the permutation matrixP , or there is
a λ such thatraa = λ for everya ∈ I , andR is q-Hecke up to a scalar factor.

Proof.The case ofR multiple of the permutation matrix (i.e.R corresponds to
one single component) is clear, sinceA(R) is the free algebra in this case. Let’s
assume now thatR 6= αP for any scalarα.

We recall that rescalingR gives the same set of algebra relations, hence the
fact thatR is q-Hecke up to a scalar factor is equivalent to the fact thatPR is
diagonalizable and that it has two eigenvalues ifK is big enough.
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(⇒). If R is a domain, it follows from Lemma 3.1 thatraa must be constant onI , so
necessity of the first condition is clear. The characteristic polynomial ofS = PR

is

det(S − β) =
n∏
i=1

(raa − β)
∏

a<b;a∼b;a'b
(λa − β)2 ×

×
∏

a<ba∼b,a 6'b
(β2 − βya + λaµa)

∏
a<ba 6∼b

(β2 − zst).

SinceR is a domain, we know from Proposition 4.1 that either there is only one
block, or each block has only one component. Hence, the characteristic polynomial
is either of the form

det(S − β) =
n∏
i=1

(raa − β)
∏

a<b;a∼b;a'b
(λa − β)2 ×

×
∏

a<ba∼b,a 6'b
(β2 − βya + λaµa)

or of the form

det(S − β) =
n∏
i=1

(raa − β)
∏

a<b;a∼b;a'b
(λa − β)2

∏
a<ba 6∼b

(β2 − zst).

Hence, the eigenvalues are onlyλ andµ in the first case, andλ and ±√
zst in

the second case. Moreover, by the proof of Proposition 4.2 we see that ifA(R)

is a domain,zst = λ2 for everys and t . Hence, also in the second case there are
only two distinct eigenvalues. It is also easy to see that in both settingsPR is
diagonalizable, henceR is q-Hecke.

(⇐). Suppose thatR is Hecke and thatraa = λ. By the analysis of the characteristic
polynomial it follows that there are only two cases possible. Either there is only
one block associated toR, or there are more blocks associated toR, each block
consists of only one component, andzst = λ2 for every blockBs andBt . One
works out those two cases and sees thatA(R) is a domain. Indeed, the relations for
the one-block case are

tac t
b
d =



(rdc)−1λtad t

b
c if a ' b andc > d,

λ(rab)−1tba t
c
d if a > b andc ' d,

(rab)−1rcd tbd t
a
c if a > b andc 6 d,

(rab)−1rcd tbd t
a
c + (λ+ µ)(rab)−1tbc t

a
d if a > b andc > d

and the relations for the more blocks case are

tac t
b
d =



rcdλ−1tad t

b
c if a ∼ b andc > d,

(rab)−1λtbc t
a
d if a > b andc ∼ d,

rcd(rab)−1tbd t
a
c if a > b andc 6∼ d,
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where bya > b we mean in both formulaea 6' b anda > b. In both cases one
checks the confluence of the rewriting rules and by the diamond lemma (see [3])
one concludes that in both cases a basis forA(R) is given by monomials of the
formA1

1A
1
2 · · ·A1

rA
2
1 · · ·Arr−1A

r
r whereAij is anymonomial in thetuv ’s with u ∈ Ci

andv ∈ Cj andC1, C2, . . . , Cr are the components related toR. In both cases we
can build a filtration onA(R) given by the degree first, then by the lexicographic
order on theAij ’s viewed as an undecomposable entity, and then by lexicographic
order on the single monomials. One checks that the associated graded ring is a
domain, henceA(R) is a domain. 2

Remark. The theorem says thatA(R) is a domain if and only ifPR is diago-
nalizable and it has at most two eigenvalues. One can compute the Poincaré series
of such anA(R). It is given by

P(A(R), t) =
∑
d>0

[ ∑
∑
dij=d

( r∏
i,j=1

(cicj )
dij

)]
td

wherer is the number of components,cj is the size of the componentCj and the
indicesi andj in dij run from 1 tor.

In particular, an easy consequence of the theorem is the analysis of the case that
R is diagonal.

COROLLARY–PROPOSITION 4.3.Let R be a diagonal solution of the q-YB
equation. Then,A(R) is a domain if and only ifrii = λ = constant, andrij rji = λ2

for all i 6= j . In this caseA(R) is isomorphic as an algebra to a twist ofK[uij ; 1 6
i, j 6 n], taken with the usual comultiplication:1(uij ) = ∑n

k=1 uik ⊗ ukj . The
Poincaré series of the above-mentioned bialgebras are therefore the same.

Proof.The first statement is a consequence of Theorem 4.2. The second fact is
standard and rather easy. The cocycleσd ∈ (K[uij ; 1 6 i, j 6 n] ⊗ K[uij ; 1 6
i, j 6 n])∗ that does the job is

σd(uij ⊗ ulk) =
{
δij δlkr

li
li λ

−1 if i < l,
δij δlk if i > l.

2

Now the question becomes whether factoring out a choice of the zero divisors
provides a domain which is still a bialgebra. We would like the dual quasitriangular
structure to descend to the quotient, and this quotient to be embedded in a Hopf
algebra.

From [18] we know that if the dual quasitriangular structure ofA(R) descends
to a quotient, then, in order to have a Hopf algebra we needR to be bi-invertible.
This means thatR andRt2 (t2 stands for transposingR only with respect to the
second factor in the tensor product, i.e.(Rt2)abcd = Radcb ) should both be invertible.
The condition onRt2 is equivalent to the fact thatall components associated with
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R are of size one, as it is easy to check. Therefore, we will reduce from now on to
this case.

The first attempt is factoring out the idealI∼ generated by the elements of typet ij
with i 6∼ j . This seems the right starting point because of the following proposition:

PROPOSITION 4.4.I∼ is also a coideal, henceA(R)/I∼ is a bialgebra.
Proof.As in Proposition 3.2. We point out that this property holds independently

of the size of the components. 2

We are going to describe this quotient in terms of the objects studied in the pre-
vious section, namely in terms of bialgebras of type II. We see that their description
is analogous to that in Proposition 3.2.

At first it is straightforward to check thatA(R)/I∼ is isomorphic as an algebra
to the subalgebra ofA(R) generated only by thet ij ’s with i ∼ j .

Inside a given block, we again use the equivalence relation≡′, defined as in
Section 3. If we then writei 6≡′ j , this implies also thati ∼ j . If Bt is one of the
blocks in which the index setI is parted, we denote byλt andµt the solutions of
Equation(1.6) corresponding toBt .

The relations forA(R)/I∼ are then

t ij t
l
k =



(ril)−1rjkt lkt

i
j if i 6∼ l or if i > l andj <6 k

0 if i = l, j = k andi 6≡′ l
(ril )−1rjkt lkt

i
j + y(ril )−1t lj t

i
k if i ∼ l, i > l andj > k

rii(rkj )−1t ikt
i
j if i = l andj < k.

Then we have:

PROPOSITION 4.5.LetR be a quasidiagonal solution of the q-YB equation, such
that each block in which the set of indices is partitioned, has only components of
size one. Then letB1, . . . , Bp be the blocks ofI , and letA(R)i be the bialgebra
corresponding to the submatrixRi of R that has as entries only those which are
indexed by elements inBi. Then,A(R)/I∼ is isomorphic to a twist of the tensor
product of theA(R)i ’s. The Poincaré series ofA(R)/I∼ is then the same as that of
the function algebra onMat(a | b) with a being the amount of indicesj in I such
that rjjjj = λj andb the amount of indicesj in I such thatrjjjj = µj .

Proof. We have to find the suitable 2-cocycleσ for (A(R)1 ⊗ · · · ⊗ A(R)p)

provided by the obvious coalgebra structure. Let us denote the generators ofA(R)k
by uij for

∑k−1
t=1 |Bt | < i, j 6

∑k
t=1 |Bt |. Thenσ is defined on the generators

uij ⊗ urs of (A(R)1 ⊗ · · · ⊗ A(R)p)
⊗2, by

σ(uij ⊗ ukl) =
{
δij δkl(r

ik)−1 if i > j andi 6∼ j ,
δij δkl otherwise.

Now it is easy to show thatσ (A(R)1 ⊗ · · · ⊗ A(R)p)σ−1 ' A(R) as a bialgebra.
The statement about the Poincaré series then follows easily. 2
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Hence, forR as in the proposition above, there always exists a quotient bialge-
bra ofA(R) which is a domain. The next question is whether this is again dual
quasitriangular. The answer is affirmative.

PROPOSITION 4.6.LetR be as above. Then,A(R)/I∼ is a dual quasitriangular
bialgebra with universalR-formU given byU(tij ⊗ t lk) = Riljk on the generators.

Proof. Straightforward from the fact thatA(R)/I∼ is isomorphic as an algebra
to a subalgebra ofA(R), and from Proposition 4.4. 2

We know by Proposition 4.5 and Section 3 that, up to a twist,A(R)/I∼ can be
embedded in a Hopf algebra. We try to get rid of the ‘up to a twist’ now.

PROPOSITION 4.7.LetR, A(R), A(R)i, A(R)/I∼ be as above. LetEj = {k ∈
Bj | rkk = λj } andOj = {k ∈ Bj | µj = rkk}, for a blockBj of I . LetdEj (resp.
dOj ) denote the element of formula(3.1E) (resp.3.2O) relative toA(R)j and let
dj = dEj dOj . Then the corresponding elementDj of dj in A(R)/I∼ after the twist
by σ in Proposition 4.5 has exactly the same expression asdj , so that we can
identify them. TheDj ’s commute with each other as elements ofA(R)/I∼, their
productD is grouplike up to nilpotent elements, and the multiplicatively closed set
generated by the trivial lift ofD in A(R) is an Ore set.

Proof. The fact that the expression is the same is clear because the twist by
σ does not affect products of elements with indices in the same block. The fact
that theD′s commute with each other follows by direct computation. Indeed, for
summandsTjπ andTkτ in the expressions ofDj andDk respectively, withj > k,
we have:

Tjπ := t
Nj+1
π(Nj+1)t

Nj+2
π(Nj+2) · · · tNj+|Bj |

π(Nj+|Bj |)
and

Tkτ := t
Nk+1
π(Nk+1)t

Nk+2
π(Nk+2) · · · tNk+|Bk |

π(Nk+|Bk |),

whereNj = ∑j

t=1 |Bt |, Nk = ∑j

t=1 |Bt |, π is a permutation inS|Ej | × S|Oj | and
τ is a permutation inS|Ek | × S|Ok |. Then,

σ(Tjπ ⊗ Tkτ ) =
{

0 if π 6= id and /orτ 6= id,∏
i∈Bj ;s∈Bk(r

is)−1rπ(i)τ (s) = 1 if π = id andτ = id.

The fact thatD is grouplike modulo a nilpotent element follows from the fact
that it is so inA(R)1 ⊗ · · · ⊗ A(R)p. The fact that{Dk | K > 0} is an Ore
set follows from the fact that eachDj satisfies Ore conditions with respect to the
elements containing only indices belonging toBj . Indeed, twisting byσ does not
affect products of elements with indices all belonging to the same block. EachDj

commutes then up to a constant factor with the generators with indices in all the
other blocks. Indeed, fort ij with i, j ∈ Bt

Dkt
i

j =
∑
s,l∈Bt

σ (Dk ⊗ t is )σ
−1(Dk ⊗ t lj )dt

s
l + 0 =

∏
t∈Bk

(rti)−1rπ(t)kdt ij ,
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where overlining stands for the identification betweenA(R)/I∼ and the tensor
product of theA(R)i ’s. 2

We have just seen that it makes sense to localizeA(R)/I∼ atD, and that the
expression ofD and d are the same. One can now extend the 2-cocycleσ to
(A(R)1⊗· · ·⊗A(R)p)d , the localization of(A(R)1⊗· · ·⊗A(R)p) atd. Indeed, if
we poseσ(d−1⊗a) = σ−1(d⊗a)ε(a) for a monomiala ∈ (A(R)1⊗· · ·⊗A(R)p),
we see thatσ is again a 2-cocycle and that

σ [(A(R)1 ⊗ · · · ⊗ A(R)p)d ]σ−1 ' (A(R)/I∼)D,

the localization ofA(R)/I∼ atD. Hence, by the fact that the twist of a Hopf algebra
is again a Hopf algebra, we know thatA(R)/I∼ is a Hopf algebra. Besides, since
the sub-bialgebras generated by elements with indices in a single block ofI , say
Bt , together withD−1

t have always an antipode, from what we saw in Section 3,
we also have a definition of the antipode on the generators, since the antipode is
always unique. Hence we have:

PROPOSITION 4.8.(A(R)/I∼)D is a Hopf algebra.

Remark.We might wonder whether the construction of an antipode for(A(R)/

I∼)D could be lifted to an antipode for some extension ofA(R) itself. In par-
ticular, we would like to describe the Hopf envelopeH of A(R) in this way.
By the universal property ofH , it follows that there must be a unique Hopf al-
gebra mapχ :H → (A(R)/I∼)D such thatχ ◦ ι = π , whereπ is the map
A(R) → A(R)/I∼ → (A(R)/I∼)D. In particular, this implies that for any lift̃D
of D, ι(D̃)+ ker(χ)must be invertible modulo ker(χ). Sinceι(ker(π)) ⊂ ker(χ),
it is not absurd to wonder whether alsoH could be constructed by localization
at some set inι(A(R)). Of course this is not necessary, but it is reasonable to
assume that the invertibility ofι(D̃) + ker(χ) modulo ker(χ) implies genuine
invertibility of some element inι(D̃)+ ker(χ) ∩ ι(A(R)) = ι(D̃)+ ι(I∼). Then a
straightforward assumption would be to assume that this element is exactlyι(D̃),
but this is too strong an assumption. Indeed, localizingA(R) itself at D̃ leads in
general no further than to localizingA(R)/I∼ atD, as we see from the following
proposition.

PROPOSITION 4.9.Let D̃j be the obvious lift ofDj in A(R), i.e. and letD̃ =∏p

j=1(D̃j ). Then, if everyEj andOj have never size1, I∼ is equal toAnn(D̃), the

annihilator ofD̃.
Proof. Let tji ∈ I∼, with i ∈ Br . Then, tji D̃ = t

j

i (D̃Ej D̃Oj ) × others =
Ct

j

i (D̃Oj D̃Ej )× others for some constantC.
If rjkrkj 6= (rii)2 for everyk ∈ Br , then, as in the proof of Proposition 4.1,

t
j

i t
k
i = 0. Sincetji commutes with the elements of typetaπ(a) up to a constant, it

follows that the above product is zero.
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Hence we might assume thatzjr = (rii)2. We look then at the producttji D̃Pr

for Pr = Er if i ∈ Er , andPr = Or if I ∈ Or . Then, if|Pr | > 2:

t
j

i

( ∑
π

( ∏
a<b; π(a)>π(b)

(−(rii)−1rπ(b)π(a))

)
t
s1
π(s1)

· · · t spπ(sp)
)

=
∑

π(s1)<π(s2)

q length(π)tji
(
t
s1
π(s1)

t
s2
π(s2)

− (rii)−1rπ(s1)π(s2)t
s1
π(s2)

t
s2
π(s1)

)
t
s3
π(s3)

· · · t spπ(sp),

whereq length(π) = (∏
a<b; π(a)>π(b)(−(rii)−1rπ(b)π(a))

)
.

We look at the product:tji (t
s1
π(s1)

t
s2
π(s2)

−(rii)−1rπ(s1)π(s2)t
s1
π(s2)

t
s2
π(s1)

): one can check
as in the proof of Proposition 4.1 that this is always zero. Since the elements of the
form t

j

i with i 6∼ j quasicommutes with all the elements except thetkl ’s with k ∼ j

andi ∼ l, I∼D̃ = 0. 2

From the proof of this proposition we see that the annihilator ofD̃ is at least
the ideal generated by all thetji ’s with i not belonging to anEr or anOr of size
one, and it might be bigger, for instance if thezst 6= (rii )2 for everys, t andi.

Hence if we localizedA(R) at D̃ (supposing localization were possible) the
kernel of the mapA(R) → (A(R))D̃ would be, under the hypothesis of Proposi-
tion 4.9, the wholeI∼ since the elements of the formtji with i 6∼ j quasicommutes
with all the elements except thetkl ’s with k ∼ j andi ∼ l.

We might now look for another lift ofD in A(R) and wonder if its annihilator
can be zero. We show with an example what can go wrong.

EXAMPLE. LetR be the following 9× 9 solution of the quantum Yang–Baxter
equation: the blocks areB1 = {1} andB2 = {2,3}, every component has size one
and 0 6= r11 = λ1 6= ±λ2 = r22 = r33 6= 0, r23

32 = λ2 + µ 6= 0, r13r31 = r12r21 =
λ2

2, r
32r23 = −λ2µ 6= λ2

1. Then we know from Proposition 4.1 thatA(R) is not a
domain.I∼ is generated byt12, t

1
3, t

3
1 , t

2
1 andD̃1 = t11 , D̃2 = t22 t

3
3 − λ−1

2 r23t23 t
3
2, and

t21D̃2 = t31D̃2 = 0 by Proposition 4.9. Sincer1j rj1 = (λ2)
2 6= (λ1)

2 for j ∈ B2,
it follows that t11 t

1
j = 0 = t11 t

j

1 , henceI∼ = Ann(D̃). We see by the relations
that tk2 t

1
j = (rk1)−1r2j t1j t

k
2 and thatt1j t

k
3 = (r1k)−1rj3tk3 t

1
j for j, k ∈ B2. Moreover,

t
j

1 t
2
k = (rj2)−1r1kt2k t

j

1 and t3k t
j

1 = (r3j )−1rk1t2k t
j

1 , henceI∼ quasicommutes with
elements with indices only inB2 or in B1. We can easily see that elements inI∼
also quasicommute with each other. Hence, a lift ofD ∈ A(R)/I∼ would be of the
formF = t11(t

2
2 t

3
3 −λ−1

2 r
23t23 t

3
2)+a12t

1
2 +a21t

2
1 +a31t

3
1 +a13t

1
3 , with theaij ∈ A(R)

not necessarily unique.
But then, taking for instancetj1 , with j ∈ B2 we would haveFtj1 = a12t

1
2 t

3
1 +

a13t
1
3 t

3
1 because(tj1 )

2 = 0, andt21 t
3
1 = 0 = t31 t

2
1 by taking thent1k with k ∈ B2 we

have finally thatFtj1 t
1
k = 0. Hence, all the elements of the formtj1 t

1
k for j, k ∈

{2,3} are in the annihilator of such anF , so that localizing atF (for a suitable
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choice of theaij ’s that makes it an Ore set) would still not be an embedding, being
those elements in the kernel. In this case we also observe thatI 3∼ = 0 since all
its generators are nilpotent and quasicommute with all elements inA(R). Still,
A(R)/I∼ is a domain and it can be embedded in the Hopf algebra localized at
π(t1t (t

2
2 t

3
3 − λ−1

2 r23t23 t
3
2).

We have seen so far what can go wrong in lifting an antipode from a quotient of
A(R). We would like to recall that the question of the antipode has been treated by
Manin, with a formal construction of the Hopf envelope, and Majid, who presents
different approaches to the problem, for instance by the definition of a weak an-
tipode, that always exists, by localization, and by formal extension (see [29] and
[18] for further reading).

We want to devote the last part of this section to another choice for a quotient
of A(R). This is not again a bialgebra, but has amusing properties. It can be made
more general, but we only want to give an idea of what can happen.

Let R from now on be such that all components are of size one,raa = λ for
everya ∈ I , and such thatzst = λ2 for everys and t , and suppose thatR is not
diagonal. If there is more than one block,A(R) is not a domain. One can then factor
outA(R) by the idealI× generated by all elements of the formt ij t

l
k − λ(rkj )−1t ikt

l
j

with i < l andj > k. Some of those elements are zero already inA(R). We want
to give a presentation of the new algebraA(R)II = A(R)/I× by generators and
relations. One can check that the relations ofA(R), combined with the new ones,
provide a set of rewriting rules forA(R)II with confluent overlap ambiguities. They
are, as follows:

t ij t
l
k = (r

kj

kj )
−1λtikt

l
j (i > l, j > k), (4.a)

t ij t
l
k = (rilil )

−1r
jk

jk t
l
kt
i
j (i > l, j 6 k), (4.b)

t ij t
l
k = (r

kj

kj )
−1λtikt

l
j (i > l, j < k). (4.c)

A basis for this algebra is given by all the monomials such that both upper and
lower indices are in nondecreasing order:t

i1
j1

· · · t ikjk with i1 6 i2 6 · · · 6 ik and
j1 6 j2 6 · · · 6 jk.

Again we have

PROPOSITION 4.10.The algebraA(R)II is a domain.
Proof.Standard reasoning as before. As usual, the degree and the lexicographic

ordering? provide an ordering of the monomials of the basis. Then, any two el-
ementsa andb in A(R)II can be written asa = cAt

A+ lower order terms, and
b = cBt

B+ lower order terms. HereA andB aren× n matrices with nonnegative

? We say thatα < β if degree(β) > degree(α) or if degree(β) = degree(α) andβ precedesα in
lexicographic order.
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integer entries satisfying the conditions∀i, j ∈ {1, . . . , n}, aij 6= 0 ⇒ akl = 0
unlessk 6 i andj 6 l or i 6 k andl 6 j . Then, the leading term ofab is

cAcB
∏

i>l,j>k

[λ2(rilil r
jk

jk )
−1]aij blk ·

∏
i>l,j6k

[λ(rilil )−1]aij blk ·
∏

i<l,j>k

[λ(rkjkj )−1]aij blk tC,

whereC is the (unique)n2 matrix with coefficients inZ>0 satisfying the conditions

∀i, j ∈ {1, . . . n} : cij 6= 0 ⇒ ckl = 0 unlessk 6 i andj 6 l or i 6 kandl 6 j

and

∀i, j ∈ {1, . . . n}
n∑
j=1

cij =
n∑
j=1

(aij + bij ) and
n∑
j=1

cji =
n∑
j=1

(aji + bji).

Therefore,ab 6= 0. 2

We now have a ‘negative’ result:

PROPOSITION 4.11.The idealI× defined in Section4 is not a bialgebra ideal.
However,1(I×) ⊂ A(R)⊗ I×, i.e.I× is a left coideal.

Proof. If i < j , ε(t ij t
j

i − λ(r
ij

ij )
−1t ii t

j

j )) 6= 0. The second statement follows by
direct computation. 2

So, even if one does not have a bialgebra structure onA(R)II , one does still have
a comultiplication coming from that ofA(R), which is an algebra homomorphism
fromA(R)II toA(R)⊗A(R)II , i.e.A(R)II is a comodule algebra. One can say more
about the algebra structure ofA(R)II . It turns out to be isomorphic to a subalgebra
of a tensor product of two different skew polynomial algebras (quantum planes).

LetX (resp.Y ) be the algebra of polynomials with coefficients inK in the com-
muting variablesx1, . . . , xn (resp.y1, . . . , yn). They are left comodules forF(Mn),
the bialgebra of polynomial functions onMn(K) with the usual comultiplication.
Therefore, one can twistX (resp.Y ) on the left by means of a 2 cocycleσX (resp.
σY ) in (F (Mn)⊗ F(Mn))

∗. Let σX (resp.σY ) be

σX(uij ⊗ ulk) =
{
δij δlkλ(r

il
il )

−1 if i > l,
δij δlk if i 6 l.

σY (uij ⊗ ulk) =
{
δij δlkλ(r

kj

kj )
−1 if j > k,

δij δlk if j 6 k.

ThenσXX is the skew polynomial algebra with generatorsx1, . . . , xn and relations
xixj = λ(r

ij

ij )
−1xjxi for i > j , and σY Y is the skew polynomial algebra with

generatorsy1, . . . , yn and relationsyiyj = λ(r
ji

ji )
−1yjyi for i > j .
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Their tensor productσXX ⊗σY Y is Z>0 × Z>0-graded, once we have given the
usual grading to the two componentsσXX andσY Y . We consider then the subalgebra
G generated by all elements whose degree belongs to{(k, k) | k ∈ Z>0}, that is
G = ∑

k∈Z>0
(σXX)k ⊗ (σY Y )k. Clearly,G is Z>0-graded. We have the following

description ofA(R)II .

PROPOSITION 4.12.The algebraA(R)II is isomorphic toG.
Proof.The relations forA(R)II can be rewritten as follows:

t ij t
l
k =



λ2(rilil r

kj

kj )
−1t lkt

i
j if i > l andj > k,

λ(rilil )
−1t lj t

i
k if i > l andj 6 k,

λ(r
kj

kj )
−1t ikt

l
j if i < l andj > k.

Then, it is easy to see that the map sendingt ij to xi ⊗ yj is an algebra isomor-
phism. 2

This gives an easy way to compute the Poincaré series ofA(R)II .

COROLLARY 4.13. The Poincaré series ofA(R)II is given by
∑

r>1

(
r+n−1
r

)2
t r .

We end this section with a remark that will not be surprising to an attentive
reader. We work under the same assumption onR as above. LetA(Bs) be the sub-
algebra ofA(R) corresponding to the blockBs. This is isomorphic, as an algebra,
to the standard multiparameter deformation of the algebra of functions onMns (K).
Again we denote byds the quantum determinant of this subalgebra. Then we have
the following proposition:

PROPOSITION 4.14.With the assumption above,ds belongs to the kernel of the
projectionproj:A(R) → A(R)II , i.e. to the idealI×, for each blockBs with at least
two elements.

Proof.One easily computes

proj(ds) =
∑
π∈Sn′s

( ∏
i<j,π(i)>π(j)

(−λ)−1r
π(j)π(i)

π(j)π(i)

)
×

×
( ∏
i<j,π(i)>π(j)

λ(r
π(j)π(i)

π(j)π(i) )
−1

)
t1

′
1′ · · · tn′

s

n′
s

=
( ∑
π∈Sn′s

sign(π)

)
t1

′
1′ · · · tn′

s

n′
s

= 0.
2

Appendix

In this appendix we want to describe in detail the construction of twists of bial-
gebras. The notion of twist that we used in this paper is the same that appears in
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[1, 32]. It is a standard concept in mathematics, due to many people before them.
It is, as we show here, a special case of the dual of the notion of twist defined in
[4, 6, 33] (Drinfel’d gives an even more general definition, though). We add these
computations for completeness, sake and readability, although we do not claim any
originality for them. Another treatment of these results is, for instance, to be found
in [18]. A deeper discussion on specializations would also be needed, in order to
be clear about what we mean by tensor products, and duality, but we would walk
‘too far from our path’. Our purpose is just to show how to compute twists, and
what they represent. We start with Drinfel’d’s type of twist.

DEFINITION–PROPOSITION.Let (A,m, i,1, ε, S) be a Hopf algebra over a
commutative ring. LetF be an invertible element ofA⊗A such that

(a) F12(1⊗ id)(F ) = F23(id ⊗1)(F),
(b) (ε ⊗ id)(F ) = 1 = (id ⊗ε)(F ).
Thenv = m(id ⊗S)(F ) is an invertible element ofA with v−1 = m(S ⊗ id)(F−1).
Moreover, if we define

1F :A → A⊗A and

SF :A → A

by

(c) 1F(a) = F1(a)F−1 (product inA⊗A),
(d) SF (a) = vS(a)v−1 ∀a ∈ A,

then(A,m, i,1F , ε, SF ) is again a Hopf algebra, denoted byAF and called the
‘co-twist’ ofA byF .

This proposition is to be found in the survey [4], Chapter 4, where the ‘co-twist’
is called ‘twist’(see there for further references, and, of course, [6], where the case
of quasi Hopf algebras is treated). Actually, one can apply the same construction
even ifA is just a bialgebra, obtaining a ‘cotwisted’ bialgebra.

Suppose now that we have a non degenerate pairing of Hopf algebras (or bialge-
bras),A andB, and suppose we perform the ‘co-twist’ toA. We look for some sort
of ‘twist’ for B in order to get again a pairing. Of course, since ‘co-twisting’ doesn’t
affect the multiplication, the new notion of twist should leave the comultiplication
µ in B unchanged. We make use of the following construction, as described in the
survey [32].

DEFINITION–PROPOSITION.LetH be a Hopf algebra over the fieldK, and
B be a left (resp. right) H -comodule algebra(i.e. B is an algebra, and anH -
comodule such that the comodule mapρ is also an algebra homomorphism). Letσ
be a linear mapσ : H ⊗H → K satisfying

(eleft)
∑

σ(k1 ⊗m1)σ (h⊗ k2m2) =
∑

σ(h1 ⊗ k1)σ (h2k2 ⊗m),
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(respectively eright)∑
σ(k2 ⊗m2)σ (h⊗ k1m1) =

∑
σ(h2 ⊗ k2)σ (h1k1 ⊗m))

and

(f) σ (h⊗ 1) = σ(1⊗ h) = ε(h), ∀h, k,m ∈ H
withµ(h) = ∑

h1 ⊗ h2, etc.

Then, theσ -left (resp. σ -right) twisted comodule algebraσB (resp.Bσ ) is an
algebra with the same underlying vector space asB, and product given by

(gleft) ā · b̄ =
∑

σ(ha ⊗ hb)cacb if ρ(a) =
∑

ha ⊗ ca, a, b ∈ B
(respectively gright)

ā · b̄ =
∑

cacbσ (ha ⊗ hb) if ρ(a) =
∑

ca ⊗ ha, a, b ∈ B),
where one denotes bya 7→ ā the identification of vector spaces.

A linear mapσ :H ⊗H → K satisfying (eleft), (resp. (eright)) andf , is called a
2-left (resp. right) cocycle.

If B is a Hopf algebra, given a 2-cocycle, one can perform such a twist toB,
viewed as a left (resp. right)B-comodule algebra. Then, one sees thatµσ : σB →
B⊗σB is an algebra homomorphism, but in general this does not hold forµσ : σB →
σB ⊗σ B, so thatσB is not a bialgebra in general. However, one can see that, ifσ

is a left-2-cocycle and is invertible as an element of(B ⊗ B)∗ (which is always an
algebra)?, thenσ−1 is a right-2-cocycle. The double twistσBσ−1 is again a bialge-
bra. In fact, one does not even find it necessary thatB has an antipode. Everything
can be done for any bialgebra, with an invertible 2-cocycle.

Now letA andB be bialgebras, so that(A,B) is a pairing. We ‘cotwist’A by an
F satisfying (a) and (b).F ∈ (A⊗A) ⊂ B∗ ⊗B∗ ⊂ (B⊗B)∗, and it is easily seen
thatF satisfies (a) and (b)⇔ F satisfies (f) and (el). Therefore, we can twist the
multiplication inB by F on the left andF−1 on the right, obtainingFBF−1 which
is a bialgebra. Moreover, we can define a pairingAF × FBF−1 → K using the
identificationsA → AF andB → FBF−1: 〈f̄ , a〉F := 〈f, a〉 ∀ā ∈ FBF−1 andf̄
∈ AF . This form is clearly bilinear and nondegenerate, since the underlying vector
spaces are the same as before. One can easily check that it defines a bialgebra
pairing. Indeed∀f , g ∈ A, a, b ∈ B

〈f̄ ⊗ ḡ, ¯µ(a)〉F = 〈f ⊗ g,µ(a)〉 = 〈fg, a〉 = 〈fg, ā〉F ,
εAF (f̄ ) = 〈f̄ ,1〉F = 〈f,1〉 = εA(f ),

ε
FBF−1(ā) = εB(a) = 〈1A, a〉 = 〈1, ā〉F

? Namely, there is aτ in (B ⊗ B)∗ such that∀a andb in B m(τ ⊗ σ)1B⊗B(a ⊗ b) = m(σ ⊗
τ)1B⊗B(a ⊗ b) = ε(a)ε(b).
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and

〈f̄ , m(ā ⊗ b̄)〉F
〈f̄ , (F ⊗mB ⊗ F−1)σ2354(µ⊗ id ⊗µ⊗ id)(µ⊗ µ)(ā ⊗ b̄)〉F

=
∑

〈F, a1 ⊗ b1〉〈1(f ), a2 ⊗ b2〉〈F−1, a3 ⊗ b3〉
= 〈1F (f̄ ), ā ⊗ b̄〉F .

Here,σijkl denotes the action of the cycle(ijkl) by permuting factors in the tensor
product. IfA is an Hopf algebra with antipodeS, thenB is also an Hopf algebra,
and the antipode also satisfies a pairing condition. In this case, we can also provide
FBF−1 with the antipode(SF )∗ = kF := (v⊗k⊗v−1)(µ⊗id)µ. With this antipode,
FBF−1 is a Hopf algebra in pairing withAF . The fact thatkF is indeed an antipode
follows from nondegeneracy of〈, 〉F . Indeed, for everyf̄ ∈ AF and everyā ∈
FBF−1, one can check that

〈f̄ , m(id ⊗kF )µ(ā)〉F
= 〈ε(f̄ )1AF , ā〉F
= εA(f )εB(a) = 〈f̄ , ε(ā)1

F BF−1〉F .
Because of the duality between these twisting processes, one could also start from
the twist of a given algebraB, and try to cotwist the dual algebraA, but in this case
it is not at all obvious that a 2-cocycleσ ∈ (B ⊗ B)∗ is an element ofA⊗A. The
way of escape is to observe thatA ⊗ A ⊂ (B ⊗ B)∗ and that the latter is always
an algebra. For this reason, the productσ1(f )σ−1 still makes sense in(B ⊗ B)∗,
where one can check if the necessary conditions are satisfied. However, we cannot
be sure that1σ lands inA ⊗ A, therefore, we may need some sort of completed
tensor product or restrict to the algebraAσ defined as{a ∈ A | 1σ(a) ∈ A⊗ A}.
1σ lands in the tensor product of this idea is that all those things work once one
finds a suitable context in which the computations make sense, which may differ
case by case.

The link between the twist in [1] and the one we described here is given as
follows. In [1] the authors just look for a 2-cocyclec in Hom(G,K∗) for some
Abelian groupG by means of which the algebra is graded. In their paper this is
given by the free Abelian group with generatorsti , 1 6 i 6 n. This fits into the
picture we gave as follows. There is a natural projectionπ from their quantumGLn
onto the group algebraKG given byuij 7→ δij ti , i.e.,KG is the quantum subgroup
corresponding to the torus, and one can check that ifc is a 2-cocycle as defined in
[1], then,c ◦ π is a cocycle as it is defined in this section.
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