
Theoretical Computer Science 323 (2004) 129–189
www.elsevier.com/locate/tcs

Domain and event structure semantics
for Petri nets with read and inhibitor arcs�

P. Baldana ;∗ , N. Busib , A. Corradinic , G.M. Pinnad
aDipartimento di Informatica, Universit�a Ca’ Foscari di Venezia, Via Torino, 155,

I-30172 Venezia, Italy
bDipartimento di Scienze dell’Informazione, Universit�a di Bologna, Italy

cDipartimento di Informatica, Universit�a di Pisa, Italy
dDipartimento di Scienze Matematiche e Informatiche, Universit�a di Siena, Italy

Received 11 December 2002; accepted 15 April 2004
Communicated by P.S. Thiagarajan

Abstract

We propose a functorial concurrent semantics for Petri nets extended with read and inhibitor
arcs, that we call inhibitor nets. Along the lines of the seminal work by Winskel on safe (ordi-
nary) nets, the truly concurrent semantics is given at a categorical level via a chain of core5ec-
tions leading from the category SW-IN of semi-weighted inhibitor nets to the category Dom of
6nitary prime algebraic domains (equivalent to the category PES of prime event structures). As
an intermediate semantic model, we introduce inhibitor event structures, an event-based model
able to faithfully capture the dependencies among events which arise in the presence of read and
inhibitor arcs. Inhibitor event structures generalise several event structure models in the literature,
like prime, asymmetric and bundle event structures.
c© 2004 Elsevier B.V. All rights reserved.

Keywords: Petri nets; Read and inhibitor arcs; True concurrency; Unfolding; Categorical semantics; Event
structures; Domains

0. Introduction

Several generalisations of Petri nets [33,36] have been proposed in the literature
to overcome the expressiveness limitations arising from the simplicity of the classical

� Research supported by the FET-GC Project IST-2001-32747 Agile and the EC RTN 2-2001-00346
SegraVis.

∗ Corresponding author.
E-mail addresses: baldan@dsi.unive.it (P. Baldan), busi@cs.unibo.it (N. Busi), andrea@di.unipi.it

(A. Corradini), pinna@unisi.it (G.M. Pinna).

0304-3975/$ - see front matter c© 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.04.001

mailto:baldan@dsi.unive.it
mailto:busi@cs.unibo.it
mailto:andrea@di.unipi.it
mailto:pinna@unisi.it

130 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

model. At a very basic level Petri nets have been extended with two new kinds of arcs,
namely read arcs (also called test, activator or positive contextual arcs) [13,30,21,39]
and inhibitor arcs (also called negative contextual arcs) [2,30,21] which allow a tran-
sition to check for the presence, resp. absence of resources (tokens), which are not
aDected by the 6ring of the transition. Read arcs are able to faithfully represent the
situations where a resource is read but not consumed (read-only accesses). They have
been used to model concurrent accesses to shared data (e.g., read operations in a
database) [37,14], to study temporal eEciency in asynchronous systems [39] and to
give a truly concurrent semantics to concurrent constraint programs [29,8]. Inhibitor
arcs have been introduced in [2] to solve a synchronisation problem not expressible in
classical Petri nets. A study of the expressiveness of inhibitor arcs, along with a com-
parison with other extensions proposed in the literature, namely priorities, exclusive-or
transitions and switches, is carried out in [19,32]. In particular it is worth stressing
that inhibitor arcs make the model Turing complete, essentially because they allow
to simulate the zero-testing operation of RAM machines which cannot be expressed
neither by 5ow nor by read arcs. Inhibitor arcs have been employed, for example, for
performance evaluation of distributed systems [3], to provide �-calculus with a net-
based semantics [10] and to show the existence of an expressiveness gap between two
diDerent semantics of a process algebra based on Linda coordination primitives [11].
The purpose of this paper is to provide a truly concurrent semantics for inhibitor

nets, i.e., Petri nets extended with read and inhibitor arcs.
Generally speaking, a truly concurrent semantics provides a description of the be-

haviour of a system, where the events in computations and their mutual relationships,
notably causality, con5ict and concurrency, are made explicit. This information can
be useful for several purposes, e.g., to distribute independent branches of a computa-
tion over distinct processors, or, when causality is interpreted as “information 5ow”,
to verify the functional dependencies or non-interference properties between compo-
nents [14,16]. Moreover, a concurrent semantics can represent a good basis for the
development of eDective veri6cation techniques. In fact, an explicit representation of
concurrency, which does not consider all the possible interleavings of concurrent events,
may help to attack the state explosion problem [26,15].
As discussed in detail below, the greater expressiveness arising from the introduction

of inhibitor arcs is paid in terms of an increase of the complexity of the causal structure
of computations, where the dependencies among events cannot be reduced simply to
causality and con5ict. To capture these dependencies the theory must be extended in a
quite non-trivial way. The resulting semantic model turns out to have an applicability
which goes beyond inhibitor nets, being suited to model, in general, formalisms where
events can be disabled=enabled several times by other events. In particular it has been
used pro6tably to model the concurrent behaviour of graph transformation systems (see
[4]).
We remark that, whenever one is interested only in reachability properties, read arcs

can be safely replaced by self-loops, and, restricting to safe nets, also inhibitor arcs
can be encoded by means of 5ow arcs, using a complementation technique. However,
these encodings do not preserve the concurrency properties of a system. For instance,
consider the safe inhibitor net N in Fig. 1, where place s inhibits transitions t1 and t2

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 131

t1 t

s

t2 t′

t2 t

s̄ s

t′1 t′

t1 t

s̄ s

t2 t′

N N′ N′′

• • •

• • • • •

• • •

Fig. 1. The encoding of read and inhibitor arcs via 5ow arcs does not preserve concurrency.

(an inhibitor arc from a place s to a transition t is depicted as a dotted line from s to
t, ending with an empty circle). This net can be transformed into the safe net N ′ in
Fig. 1 with only read arcs by introducing a complement place Ks for s (a read arc is
represented by an undirected, horizontal line). Place Ks is marked if and only if s was
not marked and each transition having s in its pre-set has Ks in its post-set, and vice
versa. Then read arcs can be replaced by self-loops, obtaining the net N ′′ in Fig. 1.
The marking graph of the nets N ′ and N ′′, when restricted to the places originally

in N , is the same as that of N . However it is easy to see that the operations of com-
plementation and introduction of self-loops radically change the dependency relations
between transitions and thus the concurrency of the system. For instance, the comple-
mentation operation introduces a cycle of 5ow arcs involving t and t′. Observe also
that while in the original net N transitions t1 and t2 could 6re in parallel in the initial
marking, in the transformed net N ′′, after the introduction of self-loops, they are forced
to 6re sequentially.
In the development of the concurrent semantics for inhibitor nets we follow the

seminal work on ordinary safe nets of [31,41], where the semantics is given at a
categorical level via a chain of core5ections (special kinds of adjunctions), leading
from the category S-N of safe (marked) P=T nets to the category Dom of 6nitary
prime algebraic domains, through the categories O-N of occurrence nets and PES of
prime event structures (PESs), the last step being an equivalence of categories. The
diagram below represents the mentioned chain of core5ections. Given functors F and
G, we write F �G when F is right adjoint to G. The same symbol is used, possibly
rotated, in diagrams. The symbol ,→ indicates inclusion functors:

As shown in [27,28] essentially the same construction applies to the wider category of
semi-weighted nets, i.e., (possibly non-safe) P=T nets where the initial marking is a set
and transitions can generate at most one token in each post-condition. A generalisation
to the whole category of P=T nets is also possible, as shown in [28], but it requires
some additional technical machinery and it allows one to obtain a proper adjunction
rather than a core5ection.

132 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

s0

t0

s

t1

t′

t s

t0

t′

t s

t0 tn

N0 N1 N2

•

•

•

•

•

•

. . .

Fig. 2. Some basic contextual and inhibitor nets.

A categorical semantics de6ned via an adjunction can be considered satisfactory un-
der many respects. First, the semantic mapping is a functor, i.e., it “respects” the notion
of morphism between systems, which formalises the idea of “simulation”. Moreover,
given a functor, its adjoint (if it exists) is unique up to natural isomorphism. Hence,
when there is an obvious functor mapping semantic models back into the category of
systems (e.g., occurrence nets are special nets, and thus the functor is simply the inclu-
sion) the semantics can be de6ned canonically as the functor in the opposite direction,
forming an adjunction. Finally, several operations on nets (systems) may be expressed
at categorical level as limit=colimit constructions (see [41,27]). Since left=right adjoint
functors preserve colimits=limits, a semantics de6ned via an adjunction turns out to be
compositional with respect to such operations.
The categorical unfolding approach has been extended in [6] to nets with read arcs,

referred to as contextual nets (see also [40]). There, the key observation is that prime
event structures are not adequate to model in a direct way the dependencies between
transition occurrences in a contextual net. The problem is illustrated by the net N0 of
Fig. 2 where the same place s is “read” by transition t0 and “consumed” by transition
t1. The 6ring of t1 prevents t0 to be executed, so that t0 can never follow t1 in a
computation, while the converse is not true, since t1 can 6re after t0. This situation
can be interpreted naturally as an asymmetric con8ict between the two transitions and
cannot be represented faithfully in a PES. To model the behaviour of contextual nets, the
paper [6] introduces asymmetric event structures (AESs), an extension of prime event
structures where the symmetric con5ict is replaced by an asymmetric con5ict relation.
Such a feature is obviously still necessary to be able to model the dependencies arising
between events in inhibitor nets, but the nonmonotonic features related to the presence
of inhibitor arcs (negative conditions) make the situation far more complicated.
Consider the safe net N1 in Fig. 2 where the place s, which inhibits transition t, is

in the post-set of transition t′ and in the pre-set of t0. The execution of t′ inhibits the
6ring of t, which can be enabled again by the 6ring of t0. Thus t can 6re before or after
the “sequence” t′; t0, but not in between the two transitions. Roughly speaking there is
a sort of atomicity of the sequence t′; t0 with respect to t. The situation can be more
involved since many transitions t0; : : : ; tn may have the place s in their pre-set (see the
net N2 in Fig. 2). Therefore, after the 6ring of t′, the transition t can be re-enabled by

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 133

any of the con5icting transitions t0; : : : ; tn. This leads to a sort of or-causality, but only
when t 6res after t′. With a logical terminology we can say that t causally depends
on the implication t′ ⇒ t0 ∨ t1 ∨ · · · ∨ tn.
To face these additional complications in this paper we introduce inhibitor event

structures (IESs), a generalisation of PESs and AESs equipped with a ternary relation,
called DE-relation (disabling-enabling relation) and denoted by �◦(·; ·; ·), which allows
one to model the dependencies between transitions in N2 simply as
�◦({t′}; t; {t0; : : : ; tn}). As we will see, the DE-relation is suEcient to represent both
causality and asymmetric con5ict and thus concretely it is the only relation of an
IES. Using inhibitor event structures and the DE-relation as basic tools we will ex-
tend Winskel’s approach to (semi-weighted) inhibitor nets, providing this class of nets
with a core5ective concurrent semantics. The proposed constructions are informally
summarised by the diagram below.

Semi-weighted
Inhibitor Nets

(a)

Occurrence
Inhibitor Nets

(b)

IES

(c)

(e)

~

⊥

Dom

(d)

PES⊥⊥

As in the case of ordinary and contextual nets, the connection between nets and
event structures is established via an unfolding construction which maps each net into
an occurrence net (step (a) in the diagram). The complex structure of inhibitor net
computations makes it hard to 6nd an appropriate notion of occurrence inhibitor net.
We identify two distinct, in our opinion both reasonable, notions of occurrence inhibitor
net, and correspondingly we provide two diDerent unfolding constructions which asso-
ciate to each semi-weighted inhibitor net an occurrence inhibitor net. In both cases the
unfolding construction gives rise to a functor which is right adjoint to the inclusion.
The unfolding can be naturally abstracted to an IES, having the transitions of the net
as events (step (b) in the diagram).
Finally, we establish a close relationship between IESs and prime algebraic domains

(step (c) in the diagram), generalising the equivalence between PES and Dom. As
already pointed out in [12], when dealing with inhibitor nets a deterministic computation
is not uniquely determined by the events which occur in it. More concretely, in a
deterministic process the absence of a token in an inhibitor place which enables a
transition, may arise in two diDerent situations: because the transition producing the
token has not 6red yet, or because the transition removing the token has already 6red.
For instance, the net N1 of Fig. 2 admits two possible executions involving all its
transitions, namely t; t′; t0 and t′; t0; t, which should not be identi6ed from the point of
view of causality. To deal with this problem a deterministic process, as de6ned in [12],
includes also a partition of the inhibitor arcs into before and after arcs. Intuitively, the
fact that an inhibitor arc from s to t is classi6ed as “before” means that t must be
executed before the place s is 6lled, while if it is an “after” arc then t must be executed
after the token has been removed from s.

134 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

In a similar way, a con9guration of an IES is not uniquely identi6ed as a set of
events, but some additional information has to be added which plays a basic role also
in the de6nition of the order on con6gurations. More concretely, a con6guration of an
IES is a set of events endowed with a choice relation which chooses one among the
possible diDerent orders of execution of events constrained by the DE-relation. The
con6gurations of an IES, endowed with a suitable computational order, form a prime
algebraic domain, and Winskel’s equivalence between PES and Dom generalises to
a core5ection between the category IES of inhibitor event structures and Dom. By
exploiting such core5ection one can recover a domain (or, equivalently, prime event
structure) semantics for inhibitor nets.
Answering a question which was left open in the conference version of the paper

[5], also the construction leading from occurrence i-nets to PESs and domains is given a
universal characterisation as a core5ection (step (e) in the diagram). By analogy with
contextual nets one could expect that the core5ection between occurrence i-nets and
prime algebraic domains factorizes through IES, namely, that the functor from Dom
to the category of occurrence i-nets could be “decomposed” in two functors, from
Dom to IESs and from IESs to occurrence i-nets, respectively, establishing core5ections
between the corresponding categories. We show that this is not possible, discussing how
this fact is related to the complex kinds of dependencies among events expressible in
IESs.
The rest of the paper is organised as follows. Section 1 presents the category of in-

hibitor nets and focuses on the subcategory of semi-weighted inhibitor nets which we
shall work with. Section 2 introduces the categories of occurrence inhibitor nets and
the corresponding unfolding constructions. Section 3 presents some background mate-
rial regarding prime and asymmetric event structures, and their relationship with prime
algebraic domains. Then Section 4 introduces inhibitor event structures, and presents
the core5ection between the corresponding category and the category of domains. Sec-
tion 5 shows how the unfoldings can be abstracted to an IES and a PES semantics. The
construction which maps the unfoldings into PESs is characterised as a core5ection. Fi-
nally Section 6 draws some conclusions and directions of future research. An appendix
collects the full proofs of the results in the paper.
Some of the results in this paper appeared in CONCUR 2000 proceedings [5]. See

also the Ph.D. Theses [4,9] for a wider treatment of the semantics of Petri nets with
read and inhibitor arcs, with applications to process calculi.

1. The category of inhibitor nets

Inhibitor nets are an extension of ordinary Petri nets where, by means of read and
inhibitor arcs, transitions can check both for the presence and for the absence of tokens
in places of the net. This section, after giving the basics of (marked) inhibitor P=T
nets, turns the class of inhibitor nets into a category IN by introducing a suitable
notion of morphism.
To give the formal de6nition we need some notation for sets and multisets. Let A be

a set. The powerset of A is denoted by 2A. A multiset of A is a function M : A→N,

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 135

where N is the set of natural numbers. The set of multisets of A is denoted by �A.
The usual operations and relations on multisets, like multiset union + or multiset
diDerence −, are used. We write M6M ′ if M (a)6M ′(a) for all a∈A. If M ∈ �A,
we denote by <M = the multiset de6ned as <M =(a)= 1 if M (a)¿0 and <M =(a)= 0 oth-
erwise, obtained by changing all non-zero coeEcients of M to 1; sometimes <M = will
be confused with the corresponding subset {a∈A | <M =(a)= 1} of A. A multirelation
f: A→B is a multiset of A×B. We will limit our attention to 6nitary multirelations,
namely multirelations f such that the set {b∈B |f(a; b)¿0} is 6nite. Multirelation
f induces in an obvious way a (possibly partial) function �f: �A→ �B, de6ned as
�f(

∑
a∈A na · a)=

∑
b∈B

∑
a∈A (na ·f(a; b)) · b. 1 If f satis6es f(a; b)61 for all a∈A

and b∈B, i.e. f= <f=, then we sometimes confuse it with the corresponding set-relation
and write f(a; b) for f(a; b)= 1.

De nition 1 (Inhibitor net). A (marked) inhibitor Petri net (i-net) is a tuple N =
〈S; T; F; C; I; m〉, where
• S is a set of places;
• T is a set of transitions;
• F = 〈Fpre; Fpost〉 is a pair of multirelations from T to S;
• C and I are relations between T and S, called the context and inhibitor relation,
respectively;

• m is a multiset of S, called the initial marking.
If the inhibitor relation I is empty then N is called a contextual net (c-net).

We assume, as usual, that S ∩T = ∅. Moreover, we require that for each transition
t ∈T , there exists a place s∈ S such that Fpre(t; s)¿0. In the following when consid-
ering an i-net N , we will assume that N = 〈S; T; F; C; I; m〉. Moreover superscripts and
subscripts on the net names carry over the names of the net components. For instance
Ni= 〈Si; Ti; Fi; Ci; Ii; mi〉.
Let N be an i-net. As usual, the functions from �T to �S induced by the multirelat-

ions Fpre and Fpost are denoted by •() and ()•, respectively. If A∈ �T is a multiset
of transitions, •A is called its pre-set, while A• is called its post-set. Moreover, by A
we denote the context of A, de6ned as A=C(<A=), and by ©◦A= I(<A=) the inhibitor
set of A. The same notation is used to denote the functions from S to 2T de6ned
as, for s∈ S; •s= {t ∈T |Fpost(t; s)¿0}; s•= {t ∈T |Fpre(t; s)¿0}; s= {t ∈T |C(t; s)}
and ©◦s= {t ∈T | I(t; s)}. For instance, for transition t3 in the i-net N3 of Fig. 3, we
have •t3 = s3; t3•=0 and ©◦t3 = {s2; s4}. Considering place s4 we obtain •s4 = {t2}; s4•

= {t4} and ©◦s4 = {t1; t3}.
A 6nite multiset of transitions A is enabled at a marking M , if M contains the pre-set

of A and an additional multiset of tokens which covers the context of A. Furthermore
the places of the inhibitor set of A must be empty both before and after the 6ring of
the transitions in A.

1 The function �f can be partial since in6nite coeEcients are disallowed in multisets. For instance, given
the multirelation f: N→ {0} with f(n; 0)= 1 for all n∈N, then �f is unde6ned on the multiset

∑
n∈N 1 · n.

136 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

s2

s1

t2

s3

t1
s4

t3

t4

•

• •

Fig. 3. A safe inhibitor net N3.

De nition 2 (Token game). Let N be an i-net and let M be a marking of N , i.e.,
a multiset M ∈ �S. A 6nite multiset A∈ �T is enabled at M if (i) •A + A6M and
(ii) <M + A•=∩ ©◦A= ∅. The transition relation between markings is de6ned as

M [A〉M ′ iD A is enabled at M and M ′=M − •A+ A•:

Step and 6ring sequences, as well as reachable markings, are de6ned in the usual
way. For instance, in the net N3 of Fig. 3 a possible 6ring sequence starting from the
initial marking is s1 + s2 + s3[t2〉s1 + s4 + s3[t4〉s1 + s2 + s3[t1〉s2 + s3.

De nition 3 (i-Net morphism). Let N0 and N1 be i-nets. An i-net morphism h: N0→N1
is a pair h= 〈hT ; hS〉, where hT : T0→T1 is a partial function and hS : S0→ S1 is a
multirelation such that (1) �hS(m0)=m1 and (2) for each t0 ∈T0:
(a) �hS(•t0)= •hT (t0), (c) �hS(t0)= hT (t0),
(b) �hS(t0•)= hT (t0)•, (d) <hS =−1(©◦hT (t0))⊆ ©◦t0,
where we recall that <hS = is the set relation underlying the multirelation hS . We denote
by IN the category having i-nets as objects and i-net morphisms as arrows, and by
CN its full subcategory having contextual nets as objects.

Conditions (1), (2a) and (2b) are the de6ning conditions of Winskel’s morphisms
on ordinary nets. Condition (2c) takes into account read arcs. 2 Note that the left-
hand side of the equality is a multiset, while the right-hand side is a set. Hence this
condition imposes �hS(t0) to be a set (each element must occur with multiplicity 1)
and to coincide with hT (t0). Condition (2d) regarding the inhibitor arcs can be better
explained by recalling that morphisms are intended to represent simulations: in order to
map computations of N0 into computations of N1 morphisms are required to preserve
pre-conditions and contexts, while, dually, inhibitor conditions must be re5ected, since
they are negative conditions. In fact observe that condition (2d) on inhibiting places

2 The category of contextual nets considered in [6] is isomorphic to CN, although there the inhibitor
relation is absent rather than empty.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 137

can be rewritten as

s1 ∈ <�hS(s0)= ∧ I1(hT (t0); s1) ⇒ I0(t0; s0);

which shows more explicitly that inhibitor arcs are re5ected. In particular, if hS is a
total function then

I1(hT (t0); hS(s0)) ⇒ I0(t0; s0):

It is easy to show that i-net morphisms are closed under composition.

Proposition 4 (Composition of i-net morphisms). The class of i-net morphisms is
closed under composition.

Proof. See the appendix.

Observe that i-net morphisms can be seen as a generalisation of the process mappings
of [9,12]. More precisely, processes of inhibitor nets in the style of Goltz–Reisig for
a net N can be de6ned as special morphisms from a (deterministic) occurrence i-net
to the net N (see [4]).
By the next proposition i-net morphisms preserve the token game, and thus marking

reachability.

Proposition 5 (Morphisms preserve the token game). Let N0 and N1 be i-nets, and let
h= 〈hT ; hS〉: N0→N1 be an i-net morphism. Then for each M;M ′ ∈ �S0 and A∈ �T0:

M [A〉M ′ ⇒ �hS(M)[�hT (A)〉�hS(M ′):

Therefore i-net morphisms preserve reachable markings, i.e., if M0 is a reachable
marking in N0 then �hS(M0) is reachable in N1.

Proof. Suppose that M [A〉M ′. Thus •A+ A6M and <M + A•=∩ ©◦A= ∅.
First notice that �hT (A) is enabled at �hS(M). The proof of condition (i) in the

de6nition of enabling (see De6nition 2), i.e., •�hT (A)+�hT (A)6�hS(M), is essentially
the same as for ordinary nets, adapted to take into account also the read arcs (see [6]
for details). As for condition (ii), which involves the inhibiting places, notice that

<�hS(M) + �hT (A)•= ∩ ©◦�hT (A) [by (2b) in the de6nition of morphism]

= <�hS(M) + �hS(A•)= ∩ ©◦�hT (A)

= <�hS(M + A•)= ∩ ©◦�hT (A)

= ∅:
The last passage is justi6ed by observing that if s1 ∈ <�hS(M + A•)=∩ ©◦�hT (A), then
there is s0 ∈ <M + A•= such that s1 ∈ <�hS(s0)= and s1 ∈ ©◦hT (A). By condition (2d) in
the de6nition of i-net morphism, this implies s0 ∈ ©◦A and therefore s0 ∈ <M +A•=∩ ©◦A,
which instead is empty by hypothesis.
It is now immediate to conclude that �hS(M)[�hT (A)〉�hS(M ′).

138 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

s′

t′ t′′

t s

t0

s

t

s′

N4 N5

(a) (b)

••

•

••

Fig. 4. (a) A semi-weighted i-net which is not safe and (b) a non semi-weighted i-net.

As in [41,28,6] we will restrict our attention to a subclass of nets where each token
produced in a computation has a uniquely determined history. The next de6nition
introduces the corresponding subcategory of IN.

De nition 6 (Semi-weighted and safe i-nets). A semi-weighted i-net is an i-net N such
that the initial marking m is a set and Fpost is a relation (i.e., t• is a set for all t ∈T). We
denote by SW-IN the full subcategory of IN having semi-weighted i-nets as objects;
the corresponding subcategory of c-nets is denoted by SW-CN.
A semi-weighted i-net is called safe if also Fpre is a relation and each reachable

marking is a set.

An example of semi-weighted net which is not safe is given in Fig. 4(a). As men-
tioned above, the basic property of semi-weighted nets, which will be essential in
the unfolding construction, is that any token produced in a computation of the net
has a uniquely determined history. More precisely, the tokens in the initial marking
are uniquely identi6ed by the place where they are and, inductively, any other token
produced along the computation can be identi6ed with the set of tokens consumed
to produce it, the transition 6red and the name of the place where the token is. For
instance, referring to net N4 in Fig. 4(a), the token in s′ in the initial marking is iden-
ti6ed as s′. The token produced in s after the 6ring of t′ corresponds to 〈〈{s′}; t〉; s〉.
The property of uniqueness of causal history ceases to hold for general i-nets, as one
can immediately verify by considering the simple net N5 in Fig. 4(b), where even the
two tokens in the initial marking are indistinguishable. For a detailed discussion about
the role of semi-weightedness see, e.g., [27].

2. Occurrence i-nets and the unfolding constructions

Generally speaking, an occurrence net provides a static representation of some com-
putations of a net, in which the events (6ring of transitions) and the relationships
between events are made explicit. In [40,6] the notion of (non-deterministic) occur-
rence net has been generalised to the case of nets with read arcs. Here, the presence

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 139

of the inhibitor arcs and the complex kind of dependencies they induce on transitions,
makes it hard to 6x a unique notion of occurrence i-net.
In this section we present two diDerent, in our opinion both reasonable, notions of

occurrence i-net and, correspondingly, we develop two unfolding constructions.
In the 6rst construction, given an i-net N , we consider the underlying contextual net

Nc, obtained from N by forgetting the inhibitor arcs. Then, disregarding the inhibitor
arcs, we apply to Nc the unfolding construction for contextual nets de6ned in [6], which
produces an occurrence contextual net Ua(Nc). Finally, if a place s and a transition t
were originally connected by an inhibitor arc in the net N , then we insert an inhibitor
arc between each occurrence of s and each occurrence of t in Ua(Nc), thus obtaining
the unfolding Ui(N) of the net N . Then the characterisation of the unfolding as a
universal construction can be lifted from contextual to inhibitor nets.
It is worth observing that in this way the unfolding of an inhibitor net is decidable,

in the sense that the problem of establishing if a possible transition occurrence actu-
ally appears in the unfolding is decidable. This fact may be helpful if one wants to
use the unfolding in practice to prove properties of the modelled system. The price to
pay is that, diDerently from what happens for ordinary and contextual nets, some of
the transitions in the unfolding may not be 6rable, since they are generated without
taking care of inhibitor places. Therefore not all the transitions of the unfolding corre-
spond to a concrete 6ring of a transition of the original net, but only those which are
executable.
In the second approach, the dependency relations (of causality and asymmetric con-

5ict) for a net are de6ned only with respect to a 6xed assignment for the net which
speci6es, for any inhibitor arc (t; s), if the inhibited transition t is executed before or
after the place s is 6lled, and in the second case which one of the transitions in the
post-set s• of the inhibitor place consumes the token. Then the 6rability of a transition
t amounts to the existence of an assignment which is acyclic on the transitions which
must be executed before t. Relying on this idea we can de6ne a notion of occurrence
net where each transition is really executable. The corresponding unfolding construction
produces a net where the mentioned problem of the existence of non-6rable transitions
disappears. However, in this way, as a consequence of the Turing completeness of
inhibitor nets (see, e.g. [1]) the produced unfolding is not decidable.

2.1. Lifting the unfolding from contextual to inhibitor nets

In the 6rst approach, the unfolding construction disregards the inhibitor arcs. Con-
sequently the notion of occurrence i-net is de6ned considering only the dependencies
induced by 5ow and read arcs. As mentioned in the introduction, these dependencies
can be fully captured by using two relations that we call read causality and read asym-
metric con5ict (the quali6cation “read” is due to the fact that they consider read arcs
only, disregarding inhibitor arcs).

De nition 7 (Read causality). Let N be a safe i-net. The read causality relation is
de6ned as the least transitive relation ¡r on S ∪T such that, for all s∈ S and t; t′ ∈T :
1. s¡r t if s∈ •t,

140 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

t

s

t′

t

s
t′

s

t t′

t

s

t′

(a) (b) (c) (d)

Fig. 5. Read causality and asymmetric con5ict: (a), (b) t¡r t′ and (c), (d) t ↗r t
′.

2. t¡r s if s∈ t•,
3. t¡r t′ if t• ∩ t′ �= ∅.

Clauses (1) and (2) above are standard (see Fig. 5(a)). The only novelty with respect
to ordinary nets is the last clause stating that a transition causally depends on transitions
generating tokens in its context (see Fig. 5(b)).

De nition 8 (Read asymmetric con5ict). Let N be a safe i-net. The read asymmetric
con8ict ↗r is de6ned by taking, for all t; t

′ ∈T , t↗r t
′ if one of the following conditions

holds:
1. t ∩ •t′ �= ∅,
2. t �= t′ ∧ •t ∩ •t′ �= ∅,
3. t¡r t′.

To understand the above de6nition consider an i-net N where each transition is in-
tended to represent a single event and thus can 6re at most once. Clause (1) considers
the basic case of asymmetric con5ict: if a transition t′ consumes a token in the context
of t (see Fig. 5(d)), then, as already discussed, the 6ring of t′ prevents the 6ring
of t. Notice that asymmetric con5ict determines an order of execution locally to each
computation: if t↗r t

′ and t; t′ 6re in the same computation then t must precede t′.
Therefore a set of transitions in a cycle of asymmetric con5ict cannot occur in the
same computation, a fact that can be naturally interpreted as a kind of con5ict. This
explains clause (2) which capture the usual symmetric con5ict as an asymmetric con-
5ict in both directions (see Fig. 5(c)). Asymmetric con5ict can be also seen as a weak
form of causal dependency, in the sense that if t↗ t′ then t precedes t′ in all com-
putations containing both transitions. Hence in clause (3) we also let t↗r t

′ whenever
t¡r t′.

De nition 9 (Read concurrency). Let N be a safe i-net. A set of places X ⊆ S is called
read concurrent, written concr(X), if for all x; y∈X , ¬(x¡r y), the set of read causes
of X , i.e., {y| ∃ x∈X: y¡r x} is 6nite and ↗r is acyclic on such a set.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 141

Fig. 6. Not all events of an occurrence i-net are executable.

Fig. 7. Functors relating semi-weighted (occurrence) c- and i-nets.

Intuitively, the last requirement in the de6nition above corresponds to the absence
of con5icts in the causes of X .

De nition 10 (Occurrence i-nets). An occurrence i-net N is a safe i-net N where read
causality ¡r is a 6nitary partial order, read asymmetric con5ict ↗r is acyclic on the
causes of each transition, there are no backward con5icts (for all s∈ S, |•s|61) and
the initial marking is m= {s∈ S | •s= ∅}.
The full subcategory of SW-IN having occurrence i-nets as objects is denoted by

O-IN, while O-CN denotes the category of occurrence c-nets, namely the full subcat-
egory of O-IN having only c-nets as objects.

We remark that, since the above de6nition does not take into account the inhibitor
arcs of the net, we are not guaranteed that each transition in an occurrence i-net is
6rable. For instance, N6 in Fig. 6 is an occurrence i-net, but the only transition t can
never 6re.
It is worth introducing now some functors relating the categories of nets de6ned so

far (see Fig. 7).

De nition 11. We denote by Ric: SW-IN→SW-CN the functor which maps each
i-net into the underlying c-net with an empty inhibitor relation, de6ned as Ric(〈S; T; F;
C; I; m〉)= 〈S; T; F; C; ∅; m〉, and by Ici: SW-CN→SW-IN the obvious inclusion.

The relations 6r and ↗r associated to an i-net N are exactly the relations of causality
and asymmetric con5ict of the underlying c-net. Therefore the category of occurrence
c-nets O-CN is the same as in [6] or [40], and occurrence i-nets are semi-weighted
i-nets N such that Ric(N) is an occurrence c-net.

142 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

The paper [6] de6nes an unfolding functor Ua: SW-CN→O-CN, mapping each
semi-weighted c-net to an occurrence c-net.

De nition 12 (Unfolding of contextual nets). Let N be a semi-weighted contextual net.
The unfolding Ua(N)= 〈S ′; T ′; F ′; C′; ∅; m′〉 of the net N and the folding morphism
fN = 〈fT ; fS〉: Ua(N)→N are the unique occurrence contextual net and morphism
satisfying the following equations:

m′ = {〈∅; s〉 | s ∈ m};
S ′ =m′ ∪ {〈t′; s〉 | t′ ∈ T ′ ∧ s ∈ fT (t′)

•};
T ′ = {t′ | t′ = 〈Mp;Mc; t〉 ∧ t ∈ T ∧Mp ∪Mc ⊆ S ′ ∧Mp ∩Mc = ∅

∧ concr(Mp ∪Mc) ∧ �fS(Mp) = •t ∧ �fS(Mc) = t};
F ′
pre(t

′; s′) iD t′ = 〈Mp;Mc; t〉 ∧ s′ ∈ Mp (t ∈ T);
F ′
post(t

′; s′) iD s′ = 〈t′; s〉 (s ∈ S);
C′(t′; s′) iD t′ = 〈Mp;Mc; t〉 ∧ s′ ∈ Mc (t ∈ T);
fT (t′) = t iD t′ = 〈Mp;Mc; t〉;
fS(s′; s) iD s′ = 〈x; s〉 (x ∈ T ′ ∪ {∅}):

As usual, places and transitions in the unfolding represent respectively tokens and
6ring of transitions in the original net. Each item of the unfolding is a copy of an item
in the original net, enriched with the corresponding “history”. The folding morphism f
maps each item of the unfolding to the corresponding item in the original net. In the
mentioned paper, the functor Ua is shown to be right adjoint to the inclusion functor
of O-CN into SW-CN.

Theorem 13. The unfolding construction over contextual nets extends to a functor
Ua: SW-CN→O-CN which is right adjoint to the inclusion functor.

By suitably using the functors Ric and Ici we can lift both the construction and the
result from contextual nets to inhibitor nets.

De nition 14 (Unfolding). Let N be a semi-weighted i-net. Consider the occurrence
c-net Ua(Ric(N))= 〈S ′; T ′; F ′; C′; ∅; m′〉 and the folding morphism fN : Ua(Ric(N))→
Ric(N). De6ne an inhibiting relation on the net Ua(Ric(N)) by taking for s′ ∈ S ′ and
t′ ∈T ′:

I ′(s′; t′) iD I(fN (s′); fN (t′)):

Then the unfolding Ui(N) of the net N is the occurrence i-net 〈S ′; T ′; F ′; C′; I ′; m′〉 and
the folding morphism is given by fN seen as a function from Ui(N) into N .

The fact that Ui(N) is an occurrence i-net immediately follows from its construction.
Furthermore, since the place component of fN is a total function, according to condition
(2d) in the de6nition of i-net morphism, the unfolding Ui(N) can be characterised as

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 143

s′1 s′2 s′3

t′2

s′4

t′4

s″2

t″2

t′1

s″4
t′3

t″4

s′′′2

t′′′2

s′′′4

•••

Fig. 8. Part of the unfolding Ui(N3) of i-net N3 of Fig. 3.

the least i-net which extends Ua(Ric(N)) with the addition of inhibitor arcs in a way
that fN : Ui(N)→N is a well de6ned i-net morphism.
Fig. 8 presents (part of) the unfolding Ui(N3) of the i-net N3 of Fig. 3. Occurrences

of an item x are denoted by x′; x′′; : : : . Observe the unfolding includes an instance of
transition t3, although it is not executable.
The unfolding construction is functorial, namely we can de6ne a functor Ui: SW-IN

→O-IN, which acts on arrows as Ua ◦Ric. In other words, given h: N0→N1, the
arrow Ui(h): Ui(N0)→Ui(N1) is obtained by interpreting h as a morphism between
the c-nets underlying N0 and N1, taking its image via Ua, and then considering the
map Ua(h) as an arrow from Ui(N0) to Ui(N1).

Proposition 15. The unfolding construction extends to a functor Ui: SW-IN→O-IN,
which acts on arrows as Ua ◦Ric.

Proof. The only thing to verify is that given an i-net morphism h: N0→N1, the
morphism h′=Ua ◦Ric(h): Ua(Ric(N0))→Ua(Ric(N1)), seen as a mapping h′: Ui(N0)
→Ui(N1) is still an i-net morphism.

144 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

First notice that the following diagram, where f0 and f1 are the folding morphisms,
commutes by construction (although h′, in principle, may not be an i-net morphism).

Conditions (1) and (2a)–(2c), not involving inhibitor arcs, are automatically veri6ed
since h′ is a morphism between the underlying c-nets. Let us prove the validity of
condition (2d), as expressed by the remark which follows De6nition 3, namely

s′1 ∈ <�h′
S(s

′
0)= ∧ I ′

1(h
′
T (t

′
0); s

′
1) ⇒ I ′

0(t
′
0; s

′
0):

Assume s′1 ∈ <�h′
S(s

′
0)=∧ I ′

1(h
′
T (t

′
0); s

′
1). Hence, f1S(s′1)∈ <�(f1S ◦ h′

S)(s
′
0)= and, by de6-

nition of the unfolding, I1(f1T (h′
T (t

′
0)); f1S(s

′
1)). Therefore, by commutativity of the

diagram

f1S(s′1) ∈ <�hS(f0S(s′0))= and I1(hT (f0T (t′0)); f1S(s
′
1)):

Being h an i-net morphism, by condition (2d) in De6nition 3, we have that

I0(f0T (t′0); f0S(s
′
0))

and therefore, by de6nition of the unfolding, I ′
0(t

′
0; s

′
0), which is the desired conclusion.

We can now state the main result of this section, establishing a core5ection between
semi-weighted i-nets and occurrence i-nets. It essentially relies on Theorem 13 which
characterises the unfolding for c-nets as a universal construction.

Theorem 16 (Core5ection between SW-IN and O-IN). The unfolding functor Ui:
SW-IN→O-IN is right adjoint to the obvious inclusion functor IO: O-IN→SW-IN
and thus establishes a core8ection between SW-IN and O-IN.
The component at an object N in SW-IN of the counit of the adjunction, f: IO ◦

Ui
·→ 1, is the folding morphism fN : Ui(N)→N .

Proof. Let N be a semi-weighted i-net, let Ui(N)= 〈S ′; T ′; F ′; C′; I ′; m′〉 be its unfold-
ing and let fN : Ui(N)→N be the folding morphism as in De6nition 14. We have to
show that for any occurrence i-net N1 and for any morphism g: N1→N there exists
a unique morphism h: N1→Ui(N) such that the following diagram commutes:

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 145

The existence is readily proved by observing that an appropriate choice is h=Ui(g).
The commutativity of the diagram simply follows by the commutativity of the diagram
involving the underlying c-nets and morphisms, namely

With a little abuse of notation, we have denoted with the same symbol the morphism
between the underlying c-nets and the same mapping seen as a morphism between the
i-nets.
Also uniqueness follows easily by the universal property of the construction for

c-nets given by Theorem 13. In fact let h′: N1→Ui(N) be another i-net morphism
such that fN ◦ h′= g. This means that h′ is another c-net morphism which makes
commute the diagram involving the underlying c-nets. This implies that, as desired, h
and h′ coincide.

2.2. Executable occurrence i-nets

The second approach is inspired by the notion of deterministic process of an i-net
in [9]. As mentioned in the introduction, the inhibitor arcs of the net underlying a
process are partitioned into two subsets: the before inhibitor arcs and after inhibitor
arcs. Then the dependencies induced by such a partition are required to be acyclic in
order to guarantee the 6rability of all the transitions of the net in a single computation.
Following this idea, to ensure that each transition of a nondeterministic occurrence
net is 6rable in some computation, we require, for each transition t, the existence of
a so-called assignment which partitions the inhibitor arcs into before and after arcs,
without introducing cyclic dependencies on the transitions which must be executed
before t.

De nition 17 (Assignment). Let N be a safe i-net. An assignment for N is a function
": I →T such that, for all (t; s)∈ I , "(t; s)∈ •s∪ s•.

Intuitively, an assignment " speci6es for each inhibitor arc (t; s), if the transition t
6res before or after the place s receives a token. If "(t; s)∈ •s then (t; s) is a before
arc, while if "(t; s)∈ s• then (t; s) is an after arc. In the last case, since the place s
may be in the pre-set of several transitions, the assignment speci6es also which of the
transitions in s• consumes the token.
Given a safe net N , once an assignment " for N is 6xed, new dependencies arise

between the transitions of the net, formalised by means of the relations ≺"
i and ↗"

i .
We de6ne t≺"

i t
′ iD ∃ s∈ ©◦t′ ∩ •t. "(t′; s)= t and t↗"

i t′ iD ∃ s∈ ©◦t ∩ t′•. "(t; s)= t′.
Observe that, as suggested by the adopted symbols, the additional dependencies can
be seen as a kind of causality and asymmetric con5ict, respectively. In fact if t≺"

i t
′,

then t′ can happen only after t has removed the token from s, and thus t acts as a

146 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

kind of cause for t′. If t↗"
i t′ then if both t and t′ happen in the same computation

then necessarily t occurs before t′, since t′ generates a token in a place s which
inhibits t, while according to the interpretation of ", t must occur before the place s is
6lled.
Under a 6xed assignment ", we can introduce a kind of generalised causality and

asymmetric con5ict by joining the “read” relations 6r and ↗r de6ned in the previous
subsection with the additional dependencies induced by the inhibitor arcs. We de6ne
¡"=(¡r∪≺"

i)
+ and ×↗"=¡" ∪↗r ∪↗"

i , i.e., ×↗" records both kinds of dependency.
Furthermore, for x∈ S ∪T we denote by �x�" the set {t ∈T | t6" x}, and similarly,
for X ⊆ S ∪T , we de6ne �X �"=

⋃{�x�" | x∈X }.
Now we are ready to introduce executable occurrence i-nets, which re6ne occurrence

i-nets by constraining all the transitions of the net to be 6rable.

De nition 18 (Executable occurrence i-net). An executable occurrence i-net is a safe
i-net N such that
• for all t ∈T there exists an assignment " such that (×↗")	t
" is acyclic and �t�" is
6nite,

• for all s∈ S |•s|61, and
• m= {s∈ S | •s= ∅}.

It is not diEcult to see that each executable occurrence i-net is an occurrence i-net.
We denote by O-INe the full subcategory of O-IN having executable occurrence i-nets
as objects.
We remark that it is not possible to require the existence of a single assignment "

such that ×↗" is acyclic on �t�" for each transition t of the net. For instance, such an
assignment does not exist for the net in Fig. 9, although each of its transitions can 6re
in some computation (thus for each transition t there exists an assignment " for which
×↗" is acyclic on its causes �t�"). In fact, for the assignment "(t2; s)= t1 the relation
×↗" is cyclic on �t4�", while for "(t2; s)= t3 the relation ×↗" is cyclic on �t5�".
Now, a notion of concurrent set of places of an executable occurrence i-net can be

naturally de6ned.

t1

t2 s

t5 t4 t3

•

•

Fig. 9. An executable occurrence i-net for which there exists no assignment " making relation ×↗" acyclic
on the causes of each transition in the net.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 147

De nition 19 (Concurrency). A set of places M ⊆ S is called concurrent, written
conc(M), if there is an assignment " such that
(i) for all s; s′ ∈M ¬(s¡" s′),
(ii) �M�" is 6nite and
(iii) ×↗" is acyclic on �M�".

It is possible to show that, as for ordinary and contextual nets, a set of places M
is concurrent if and only if there is a reachable marking in which all the places of M
contain a token.

Proposition 20. Let N be an executable occurrence i-net and let M⊆S. Then conc(M)
i> there exists a reachable marking M ′ such that M ⊆M ′.

Proof. See the appendix.

The above immediately implies a basic property of executable occurrence i-nets,
namely the fact that each transition of such a net can 6re in some computation (and
thus each place contains a token at some reachable marking).

Proposition 21. Let N be an executable occurrence i-net. Then for each transition
t ∈T there exists a reachable marking such that t is enabled at M .

Proof. Immediate from the previous proposition and the de6nition of executable oc-
currence i-net.

We introduce now an unfolding construction, that, when applied to a semi-weighted
i-net N , produces an executable occurrence i-net.

De nition 22 ((Executable) unfolding). Let N be a semi-weighted i-net. The (exe-
cutable) unfolding Ue

i (N)= 〈S ′; T ′; F ′; C′; I ′; m′〉 of the net N and the folding morphism
fN = 〈fT ; fS〉: Ue

i (N)→N are the unique executable occurrence i-net and i-net mor-
phism satisfying the equations given in De6nition 12, with the following changes:

T ′ = {t′ | t′ = 〈Mp;Mc; t〉 ∧ t ∈T ∧Mp ∪Mc ⊆ S ′ ∧Mp ∩Mc = ∅
∧ conc(Mp ∪Mc) ∧ �fS(Mp) = •t ∧ �fS(Mc) = t

∧∃": (�t′�" 6nite ∧ ×↗" acyclic on �t′�")};
I ′(t′; s′) iD fS(s′; s) ∧ I(fT (t′); s):

The main diDerence with respect to the unfolding of contextual nets is the fact that
we refer here to a notion of concurrency which takes into account also the eDect of
inhibitor arcs.
Fig. 10 presents (part of) the executable unfolding of the i-net N3 of Fig. 3. Oc-

currences of an item x are denoted by x′; x′′; : : : . Observe that the non-executable
occurrence of transition t3 is not included in this unfolding.

148 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

s′1 s′2 s′3

t′2

s′4

t′4

s″2

t″2

t′1 s″4

t″4

s′′′2

t′′′2

s′′′4

•••

Fig. 10. Part of the unfolding Ue
i (N3) of i-net N3 of Fig. 3.

As one would expect, the two proposed unfolding constructions are tightly related,
in the sense that Ue

i (N) can be obtained from Ui(N) simply by removing the non-
executable transitions (e.g., compare Figs. 8 and 10). This fact can be exploited
elegantly to prove the universality of the executable unfolding as follows. First of
all, let #: O-IN→O-INe be the pruning functor which maps each occurrence i-net
N = 〈S; T; F; C; I; m〉 to the net N ′= 〈S ′; T ′; F ′; C′; I ′; m〉, where T ′ is the subset of ex-
ecutable transitions, S ′ is the subset of reachable places and the relations F ′, C′ and
I ′ are the obvious restrictions of the original relations. The construction extends in an
obvious way to a functor, mapping each morphism f: N1→N2 into the restriction
f#(N1): #(N1)→#(N2) which is well-de6ned since morphisms preserve the token
game and thus the executability of transitions.
Next one can show that, given an executable occurrence i-net N and any occurrence

i-net N ′, a morphism f: N →N ′ is also a morphism from N to #(N ′), and thus
that the pruning functor #: O-IN→O-INe is right adjoint to the inclusion functor
Je: O-INe ,→ O-IN, and O-INe is a core5ective subcategory of O-IN. At this point,
one can formally state the relationship between Ue

i (N) and Ui(N), which provides also
an indirect proof of the universality of the new unfolding construction.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 149

Proposition 23. For any semi-weighted i-net N , Ue
i (N)=#(Ui(N)). Therefore Ue

i
is right adjoint to the inclusion functor Ie

O: O-INe→SW-IN and they establish a
core8ection between SW-IN and O-INe.

3. Prime and asymmetric event structures, and their relation with domains

In this background section we recall some basic notions and results on prime event
structures and domains, as developed in [31,41]. Furthermore we give some intuition on
how such results have been extended in [6] to structures with asymmetric con5ict. These
notions and results will be useful later in the treatment of inhibitor event structures.

3.1. Prime event structures and domains

3.1.1. Prime event structures.
PESs [31] are a simple event-based model of concurrent computations in which events

are considered as atomic and instantaneous steps, which can appear only once in a
computation. The relationships between events are expressed by two binary relations:
causality and con8ict.

De nition 24 (Prime event structures). A prime event structure (PES) is a tuple P=
〈E;6; #〉, where E is a set of events and 6, # are binary relations on E called causality
relation and con8ict relation, respectively, such that:
1. the relation 6 is a partial order and �e�= {e′ ∈E: e′6e} is 6nite for all e∈E;
2. the relation # is irre5exive, symmetric and hereditary with respect to 6, i.e., e#e′

and e′6e′′ imply e#e′′ for all e; e′; e′′ ∈E;

Let P0 = 〈E0;60; #0〉 and P1 = 〈E1;61; #1〉 be two PESs. A PES-morphism
f: P0→P1 is a partial function f: E0→E1 such that for all e0; e′

0 ∈E0, assuming that
f(e0) and f(e′

0) are de6ned:
1. �f(e0)�⊆f(�e0�);
2. (a) f(e0)=f(e′

0)∧ e0 �= e′
0⇒ e0#0e′

0;
(b) f(e0)#1f(e′

0)⇒ e0#0e′
0.

The category of prime event structures and PES-morphisms is denoted by PES.

An event can occur only after some other events (its causes) have taken place, and
the execution of an event can prevent the execution of other events. This is formalised
via the notion of con9guration of a PESP= 〈E;6; #〉, which is a subset of events C ⊆E
such that for all e; e′ ∈C ¬(e#e′) (con8ict-freeness) and �e�⊆C (left-closedness).
Given two con6gurations C1⊆C2 if e0; : : : ; en is any linearisation of the events in
C2 − C1, compatible with causality, then

C1 ⊆ C1 ∪ {e0} ⊆ C1 ∪ {e0; e1} ⊆ · · · ⊆ C2

is a sequence of well-de6ned con6gurations. Therefore subset inclusion can be safely
thought of as a computational ordering on con6gurations. The set of con6gurations of
a prime event structure P, ordered by subset inclusion, is denoted by Conf (P).

150 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

3.1.2. Prime algebraic domains
A pre-ordered or partially ordered set 〈D; �〉 will be often denoted simply as D, by

omitting the (pre)order relation. Given an element x∈D, we write ↓ x to denote the
set {y∈D |y� x}. Given a subset X ⊆D, the least upper bound and greatest lower
bound of X , when they exist, are denoted by

⊔
X and �X , respectively. A subset

X ⊆D is compatible, written ↑X , if there exists an upper bound d∈D for X (i.e.,
x�d for all x∈X). It is pairwise compatible if ↑ {x; y} (often written x ↑y) for all
x; y∈X . A subset X ⊆D is directed if any 6nite subset of X has an upper bound in
X . The partial order D is complete (CPO) if any directed subset of X has a least upper
bound in D.
Let D be a CPO. Recall that an element e∈D is compact if for any directed set

X ⊆D, e�⊔
X implies e� x for some x∈X . The set of compact elements of D is

denoted by K(D).

De nition 25 (Prime algebraic 6nitary coherent poset). A partial order D is called co-
herent (pairwise complete) if for all pairwise compatible X ⊆D, there exists the least
upper bound

⊔
X of X in D.

A complete prime of D is an element p∈D such that, for any compatible X ⊆D,
if p�⊔

X then p� x for some x∈X . The set of complete primes of D is denoted
by Pr(D). The partial order D is called prime algebraic if for any element d∈D we
have d=(

⊔ ↓d∩Pr(D)). The set ↓d∩Pr(D) of complete primes of D below d will
be denoted Pr(d). We say that D is 9nitary if for each compact element e ∈ K(D) the
set ↓ e is 6nite.
Coherent, prime algebraic, 6nitary partial orders will be referred to as (Winskel’s)

domains.

Being not expressible as the least upper bound of other elements, the complete primes
of D can be seen as elementary indivisible pieces of information (events). Thus prime
algebraicity expresses the fact that any element can be obtained by composing these
elementary blocks of information.
The de6nition of morphism between domains is based on the notion of immediate

precedence. Given a domain D and two distinct elements d �=d′ ∈D we say that d is
an immediate predecessor of d′, written d≺d′ if

d � d′ ∧ ∀d′′ ∈ D: (d � d′′ � d′ ⇒ d′′ = d ∨ d′′ = d′):

Moreover we write d4d′ if d≺d′ or d=d′. According to the informal interpretation
of domain elements sketched above, d≺d′ intuitively means that d′ is obtained from
d by adding a quantum of information. Domain morphisms are required to preserve
such relation.

De nition 26 (Category Dom). Let D0 and D1 be domains. A domain morphism
f:D0→D1 is a function, such that:
• ∀x; y∈D0 if x4y then f(x)4f(y) (4-preserving);
• ∀X ⊆D0, X pairwise compatible, f(

⊔
X)=

⊔
f(X) (Additive);

• ∀X ⊆D0, X �= ∅ and compatible, f(�X)=�f(X) (Stable).

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 151

We denote by Dom the category having domains as objects and domain morphisms as
arrows.

3.1.3. Relating prime event structures and domains
Both event structures and domains can be seen as models of systems where compu-

tations are built out from atomic pieces. Formalising this intuition, in [41] the category
Dom is shown to be equivalent to the category PES, the equivalence being established
by two functors L: PES→Dom and P: Dom→PES

The functor L associates to each PES the poset Conf (P) of its con6gurations which
can be shown to be a domain. The image via L of a PES-morphism f: P0→P1 is the
obvious extension of f to sets of events.
The de6nition of the functor P, mapping domains back to PESs requires the intro-

duction of the notion of prime interval.

De nition 27 (Prime interval). Let 〈D; �〉 be a domain. A prime interval is a pair
[d; d′] of elements of D such that d≺d′. Let us de6ne

[c; c′]6 [d; d′] if (c = c′ � d) ∧ (c′ ! d = d′)

and let ∼ be the equivalence obtained as the transitive and symmetric closure of (the
preorder) 6.

The intuition that a prime interval represents a pair of elements diDering only for a
“quantum” of information is con6rmed by the fact that there exists a bijective corre-
spondence between ∼-classes of prime intervals and complete primes of a domain D
(see [31]). More precisely, the map

[d; d′]∼ #→ p;

where p is the only element in Pr(d′) − Pr(d), is an isomorphism between the
∼-classes of prime intervals of D and the complete primes Pr(D) of D, whose in-
verse is the function:

p #→ [⊔{c ∈ D | c ❁ p}; p]
∼ :

The above machinery allows us to give the de6nition of the functor P “extracting” an
event structure from a domain.

De nition 28 (From domains to PESs). The functor P: Dom→PES is de6ned as fol-
lows:
• given a domain D, P(D)= 〈Pr(D);6; #〉 where

p6 p′ iD p � p′ and p#p′ iD ¬(p ↑ p′);

152 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

• given a domain morphism f: D0→D1, the morphism P(f): P(D0)→P(D1) is the
function:

P(f)(p0) =

p1 if p0 #→ [d0; d′
0]∼; f(d0) ≺ f(d′

0)
and [f(d0); f(d′

0)]∼ #→ p1;
⊥ otherwise; i:e:; if f(d0) = f(d′

0):

3.2. Asymmetric event structures and domains

Asymmetric event structures have been introduced in [6] as a generalisation of prime
event structures where the con5ict relation is allowed to be non-symmetric. Formally,
an asymmetric event structure (AES) is a triple G= 〈E;6;↗〉, where E is a set of
events, 6 is the causality relation and ↗ is a binary relation on E called asymmetric
con8ict.
The notion of con6guration extends smoothly to AESs, the main diDerence being the

fact that the computational order between con6gurations is not simply set-inclusion. In
fact, a con6guration C can be extended with an event e′ only if for any event e∈C,
it does not hold that e′ ↗ e (since, in this case, e would disable e′).
The set of con6gurations of an AES with such a computational order is a domain.

The corresponding functor from the category AES of asymmetric event structures to
category Dom has a left adjoint which maps each domain to the corresponding prime
event structure (each PES can be seen as a special AES). Hence Winskel’s equivalence
between PES and Dom generalises to a core5ection between AES and Dom.

4. Inhibitor event structures

This section introduces the class of event structures that we consider adequate for
modelling the complex phenomena which arise in the dynamics of inhibitor nets. Fur-
thermore we establish a connection between IESs and domains, by showing that the
equivalence between PES and Dom generalises to the existence of a categorical core-
5ection between IES and Dom. We 6nally study the problem of removing the non-
executable events from an IES, by characterising the full subcategory IESe, consisting
of the IESs where all events are executable, as a core5ective subcategory of IES.

4.1. The category of inhibitor events structures

Let us 6x some notational conventions. Given a set X , by 2X6n we denote the set
of 6nite subsets of X and by 2X1 the set of subsets of X of cardinality at most one
(singletons or the empty set). In the sequel generic subsets of events will be denoted
by upper case letters A; B; : : :, and singletons or empty subsets by a; b; : : : .

De nition 29 (Pre-inhibitor event structure). A pre-inhibitor event structure (pre-IES)
is a pair I = 〈E; �◦〉, where E is a set of events and �◦⊆ 2E1 × E × 2E is a ternary
relation called disabling-enabling relation (DE-relation for short).

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 153

Informally, if �◦({e′}; e; A) then the event e′ inhibits the event e, which can be
enabled again by one of the events in A. The 6rst argument of the relation can be also
the empty set ∅, �◦(∅; e; A) meaning that the event e is inhibited in the initial state of the
system. Moreover the third argument (the set of events A) can be empty, �◦({e′}; e; ∅)
meaning that there are no events that can re-enable e after it has been disabled by e′.
The DE-relation is suEcient to represent both causality and asymmetric con5ict and

thus, concretely, it is the only relation of a (pre-)IES. This is formalised in the de6nition
below, which introduces generalised (or-) causality, asymmetric con5ict and con5ict
(over sets of events) as relations derived from the DE-relation.

De nition 30 (Dependency relations). Let I = 〈E; �◦〉 be a pre-IES. The relations of
(generalised) causality ¡⊆ 2E×E, asymmetric con8ict ↗⊆E×E and con8ict #⊆ 2E6n
are de6ned by the following set of rules:

�◦(∅; e; A) #pA
A¡e

(¡1)
A¡e ∀e′ ∈ A: Ae′¡e′ #p(∪{Ae′ | e′ ∈ A})

(∪{Ae′ | e′ ∈ A})¡e
(¡2)

�◦({e′}; e; ∅)
e↗e′ (↗1) e ∈ A¡e′

e↗e′ (↗2)
#{e; e′}
e↗e′ (↗3)

e0↗ : : :↗en↗e0
#{e0; : : : ; en} (#1)

A′¡e ∀e′ ∈ A′: #(A ∪ {e′})
#(A ∪ {e}) (#2)

where #pA means that the events in A are pairwise con5icting, namely #{e; e′} for
all e; e′ ∈A with e �= e′. We will use the in6x notation for the binary con5icts, writing
e#e′ instead of #{e; e′}. Moreover we will write e¡e′ to indicate {e}¡e′.

To understand the basic rule (¡1) note that if �◦(∅; e; {e′}) then the event e can
be executed only after e′ has 6red. This is exactly what happens in a PES when e′

causes e, or in symbols when e′¡e. Here, more generally, if �◦(∅; e; A) then we can
imagine A as a set of disjunctive causes for e, since at least one of the events in A
will appear in every history of the event e; intuitively we can think that e causally
depends on

∨
A. This generalisation of causality, restricted to the case in which the set

A is pairwise con5icting (namely all distinct events in A are in con5ict), is represented
as A¡e. Notice that under the assumption that A is pairwise con5icting, when A¡e
exactly one event in A appears in each history of e. Therefore, in particular, for any
event e′ ∈A, if e and e′ are executed in the same computation then surely e′ must
precede e. Similar notions of or-causality have been studied in general event structures
[41], 5ow event structures [7] and in bundle event structures [24,25].
As for rule (↗ 1), note that, if �◦({e′}; e; ∅) then e can never follow e′ in a com-

putation since there are no events which can re-enable e after the execution of e′.
Instead the converse order of execution is admitted, namely e can 6re before e′. This
situation is naturally interpreted as an asymmetric con8ict between the two events and

154 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

it is written e↗ e′. According to the “weak causality” interpretation of asymmetric
con5ict (if e↗ e′ then e precedes e′ in all computations containing both events) rule
(↗ 2) imposes asymmetric con5ict to include (also generalised) causality, by asking
that A¡e implies e′ ↗ e for all e′ ∈A.
In rule (#1) cycles of asymmetric con5ict are used to de6ne a notion of con5ict on

sets of events. If e0↗ e1 : : : en ↗ e0 then all such events cannot appear together in the
same computation, since each one should precede the others. This fact is formalised
via a con5ict relation on sets of events #{e0; e1; : : : ; en}. In particular, binary (symmet-
ric) con5ict corresponds to asymmetric con5ict in both directions as expressed by rule
(↗ 3).
Rule (¡2) generalises the transitivity of the causality relation. If A¡e and for every

event e′ ∈A we can 6nd a set of events Ae′ such that Ae′¡e′, then the union of all such
sets, namely ∪{Ae′ | e′ ∈A}, can be seen as (generalised) cause of e, provided that it is
pairwise con5icting. Observe that in particular, if {e′}¡e and {e′′}¡e′ then {e′′}¡e.
Rule (#2) expresses a kind of hereditarity of the con5ict with respect to causality.
Suppose A′¡e and that any event e′ ∈A′ is in con5ict with A, namely #(A∪{e′}) for
any e′ ∈A′. Since by de6nition of ¡ the execution of e must be preceded by an event
in A′ we can conclude that also e is in con5ict with A, i.e., #(A∪{e}). In particular by
taking A′= {e′} and A= {e′′} we obtain that if {e′}¡e and #{e′; e′′} then #{e; e′′}.
The intended meaning of the relations ¡, ↗ and # is summarised below.

A¡e means that in every computation where e is executed, there is exactly one
event e′ ∈A which is executed and it precedes e;

e′ ↗ e means that in every computation where both e and e′ are executed, e′ precedes
e;

#A means that there are no computations where all events in A are executed.

Note that, due to the greater generality of IESs, the rules de6ning the dependency
relations are more involved than in PESs and AESs, and it is not possible to give a
separate de6nition of the various relations. In fact, according to rules (¡1) and (¡2)
one can derive A′¡e only provided that the events in A′ are pairwise con5icting.
Asymmetric con5ict is in turn induced both by generalised causality (rule (↗ 2)) and
by con5ict (rule (↗ 3)). Finally, the con5ict relation is de6ned by using the asymmetric
con5ict (rule (#1)) and it is inherited along causality (rule (#2)). From a technical point
of view, the set of rules in De6nition 30 can be interpreted as a monotone operator
over the lattice 22

E×E × 2E×E × 22
E
6n , so that the relations de6ned by mutual recursion

are, formally, the least 6xed point of such operator.
Inhibitor event structures properly generalise prime and asymmetric event structures;

moreover, when applied to (the encoding into IESs of) prime and asymmetric event
structures the above rules induce the usual relations of causality and (asymmetric)
con5ict. For what regards the treatment of disjunctive or-causality (relation ¡) the
presented rules resembles also the equivalence rules for bundle event structures in [25].
An inhibitor event structure is de6ned as a pre-IES where events related by the DE-

relation satisfy a few further requirements suggested by the intended meaning of such
relation. Furthermore the causality and asymmetric con5ict relations must be induced
“directly” by the DE-relation.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 155

De nition 31 (Inhibitor event structure). An inhibitor event structure (IES) is a pre-IES
I = 〈E; �◦〉 satisfying, for all e∈E, a∈ 2E1 and A⊆E:
1. if �◦(a; e; A) then #pA and ∀e′ ∈ a: ∀e′′ ∈A: e′¡e′′;
2. if A¡e then �◦(∅; e; A);
3. if e↗ e′ then �◦({e′}; e; ∅).

Note that we can have �◦(∅; e; ∅), meaning that event e can never be executed. In
this case, by rule (¡1), we deduce ∅¡e and thus, by rule (#2), we have #{e}, i.e.,
the event e is in con5ict with itself. Similarly if �◦(e; e′; A), with e∈A, by condition
(2) above, necessarily e¡e and thus the event e is not executable. In an analogous
way, if �◦(e; e; A) then e↗ e and thus e is not executable.
We next de6ne the category of IESs by introducing a notion of IES-morphism which,

as discussed later, generalises both PES and AES-morphisms.

De nition 32 (Category IES). Let I0 = 〈E0; �◦0〉 and I1 = 〈E1; �◦1〉 be two IESs. An
IES-morphism f: I0→ I1 is a partial function f: E0→E1 such that for all e0; e′

0 ∈E0,
A1⊆E1, assuming that f(e0) and f(e′

0) are de6ned:
1. f(e0)=f(e′

0) ∧ e0 �= e′
0⇒ e0#0e′

0;
2. A1¡f(e0)⇒∃A0⊆f−1(A1): A0¡e0;
3. �◦1({f(e′

0)}; f(e0); A1)⇒∃A0⊆f−1(A1): ∃a0⊆{e′
0}: �◦0(a0; e0; A0).

We denote by IES the category of inhibitor event structures and IES-morphisms.

Condition (1) is the usual condition of event structure morphisms which allows
one to confuse only con5icting branches of computations. As formally proved later
in Proposition 35 condition (2) can be seen as a generalisation of the requirement
of preservation of causes, namely of the property �f(e)�⊆f(�e�), of PES (and AES)
morphisms. Finally, condition (3), as it commonly happens for event structures mor-
phisms, just imposes the preservation of computations by asking, whenever some events
in the image are constrained in some way, that stronger constraints are present in the
pre-image. More precisely suppose that �◦1({f(e′

0)}; f(e0); A1). Thus we can have a
computation where f(e′

0) is executed 6rst and f(e0) can be executed only after one of
the events in A1. Alternatively the computation can start with the execution of f(e0).
According to condition (3), e0 and e′

0 are subject in I0 to the same constraint of their
images or, when a0 = ∅ or A0 = ∅, to stronger constraints selecting one of the possible
orders of execution. It is worth stressing that, since Ai¡ei can be equivalently ex-
pressed as �◦(∅; ei; Ai), condition (2) is essentially a variation of (3), which is needed
to cover the case in which the 6rst argument of the DE-relation is the empty set.
The next proposition gives some useful properties of IES-morphisms, which are ba-

sically generalisations of analogous properties holding in the case of prime and asym-
metric event structures.

Proposition 33. Let I0 and I1 be IESs and let f: I0→ I1 be an IES-morphism. For any
e0; e′

0 ∈E0:
1. if f(e0)¡f(e′

0) then ∃A0: e0 ∈A0¡e′
0 or e0#e′

0;
2. if f(e0)↗f(e′

0) then e0↗ e′
0.

156 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

Proof. See the appendix.
In particular the above results are useful in showing that IES-morphisms are closed

under composition and thus that category IES is well-de6ned.

Proposition 34. The IES-morphisms are closed under composition.

Proof. See the appendix.

The category PES of prime event structures can be viewed as a full subcategory
of IES. This result substantiates the claim that IESs (and constructions on them) are a
“conservative” extension of PESs.

Proposition 35 (Prime and inhibitor event structures). Let Ji: PES→ IES be the
functor de9ned as follows. To any PES P= 〈E;6; #〉 the functor Ji associates the IES

〈E; �◦〉 where the DE-relation is de9ned by �◦(∅; e; {e′′}) if e′′¡e and �◦({e′}; e; ∅)
if e#e′, and for any PES morphism f: P1→P2 its image Ji(f) is f itself. Then the
functor Ji is a full embedding of PES into IES.

More generally, it is possible to show that the category of asymmetric event struc-
tures introduced in [6] fully embeds into IES (see [4]). Also (extended) bundle
event structures [25] and prime event structures with possible events [35] can be
seen as special classes of IESs. As we will discuss later, the categorical treatment
of IESs and the results relating IESs and domains specialises to such event structure
models.

4.2. Saturation of pre-IESs

Given a pre-IES I satisfying only condition (1) of De6nition 31, it is always possible
to “saturate” the relation �◦ in order to obtain an IES where the relations of causality and
(asymmetric) con5ict are exactly the same as in I . Intuitively, in a PES-like structure
where only “direct” causality and con5ict between events are given, the saturation
would amount to taking the transitive closure of causality and to inherit con5ict along
causality. The DE-relation derived from the unfolding of an i-net will be not saturated,
hence the saturation operation will play a central role in de6ning the IES semantics of
an i-net (see De6nition 55).

Proposition 36. Let I = 〈E; �◦〉 be a pre-IES satisfying condition (1) of De9nition 31.
Then I = 〈E; �◦s〉, where �◦s= �◦∪{(∅; e; A) |A¡e}∪ {({e′}; e; ∅) | e↗ e′} is an IES,
called the saturation of I . Moreover the relations of causality, asymmetric con8ict
and con8ict in I are the same as in I .

The next technical lemma will be quite useful later to prove that some mappings be-
tween IESs are well-de6ned IES-morphisms (see Propositions 52 and 56 and Lemma 61).
It singles out some suEcient conditions for a function between pre-IESs to be a well-
de6ned IES-morphism between the IESs obtained by saturating them.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 157

Lemma 37. Let Ii= 〈Ei; �◦i〉 (i∈{0; 1}) be pre-IESs satisfying condition (1) of Def-
inition 31, let Ii=¡Ei; �◦si 〉, and let ¡i, ↗i and #i be the relations of causality,
asymmetric con8ict and con8ict in Ii. Let f: E0→E1 be a partial function such that
for each e0; e′

0 ∈E0 and A1⊆E1:
1. f(e0)=f(e′

0) ∧ e0 �= e′
0⇒ e0#0e′

0;
2. �◦1(∅; f(e0); A1)⇒∃A0⊆f−1(A1): A0 ¡0 e0;
3. �◦1(f(e′

0); f(e0); ∅)⇒ e0↗0 e′
0;

4. �◦1({f(e′
0)}; f(e0); A1) ∧ A1 �= ∅⇒∃A0⊆f−1(A1):∃a0⊆{e′

0}: �◦s0(a0; e0; A0).
Then f: I0→ I1 is an IES-morphism.

Proof. See the appendix.

4.3. The domain of con9gurations of inhibitor event structures

The domain associated to an IES is obtained by considering the family of its con-
6gurations with a suitable order. Since here computations involving the same events
may be diDerent from the point of view of causality, a con6guration is not uniquely
identi6ed as a set of events, but some additional information has to be added which
plays a basic role also in the de6nition of the order on con6gurations. More concretely,
a con6guration of an IES is a set of events endowed with a choice relation (playing a
role similar to assignments for occurrence i-nets) which chooses among the possible
diDerent orders of execution of events constrained by the DE-relation.
Consider a set of events C of an inhibitor event structure I , and suppose e′; e; e′′ ∈C

and �◦({e′}; e; A) for some A, with e′′ ∈A. We already noticed that in this case there
are two possible orders of execution of the three events (either e; e′; e′′ or e′; e′′; e),
which cannot be identi6ed from the point of view of causality. A choice relation for
C must choose one of them by specifying that e precedes e′ or that e′′ precedes e.
To ease the de6nition of the notion of choice relation, we 6rst introduce, for a given
set of events C, the set choices(C), a relation on C which “collects” all the possible
precedences between events induced by the DE-relation. A choice relation for C is
then de6ned as suitable subset of choices(C). To ensure that all the events in the
con6guration are executable in the speci6ed order, the choice relation is also required
to satisfy suitable properties of acyclicity and 6nitariness.

De nition 38 (Choice). Let I = 〈E; �◦〉 be an IES and let C ⊆E. We denote by
choices(C) the set

{(e; e′) | ∃A: �◦C({e′}; e; A)}∪ {(e′′; e) | ∃a: ∃A: �◦C(a; e; A) ∧ e′′ ∈ A} ⊆ C × C;

where the restriction of �◦(; ;) to C is de6ned by �◦C(a; e; A) if and only if �◦(a; e; A′)
for some A′, with e∈C, a⊆C and A=A′ ∩C.
A choice for C is a relation ,→C ⊆ choices(C) such that

1. if �◦C(a; e; A) then ∃e′ ∈ a: e ,→C e′ or ∃e′′ ∈A: e′′ ,→C e;
2. ,→C is acyclic;
3. ∀e∈C: {e′ ∈C | e′ ,→∗

C e} is 6nite.

158 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

Condition (1) intuitively requires that whenever the DE-relation permits two possi-
ble orders of execution, the relation ,→C chooses one of them. The fact that ,→C ⊆
choices(C) ensures that ,→C imposes precedences only between events involved in the
DE-relation. Conditions (2) and (3) guarantee that the precedences speci6ed by ,→C do
not give rise to cyclic situations and that each event must be preceded only by 6nitely
many others. Note that the acyclicity of ,→C ensures that exactly one of the two pos-
sible choices in condition (1), namely either ∃e′ ∈ a: e ,→C e′ or ∃e′′ ∈A: e′′ ,→C e is
taken. Otherwise, if e ,→C e′ and e′′ ,→C e, since necessarily e′¡e′′ and thus e′ ,→C e′′,
the relation ,→C would be cyclic. It is worth observing that conditions (2) and (3) can
be equivalently rephrased by saying that ,→∗

C is a 6nitary partial order.
Con6gurations of PESs (and AESs, see [6]) are required to be con5ict free and down-

ward closed with respect to causality. The following proposition shows that the property
of admitting a choice implies a generalisation of causal closedness and con5ict free-
ness. Furthermore any choice certainly agrees with the asymmetric con5ict (since both
relations impose an order of execution on events).

Proposition 39. Let I = 〈E; �◦〉 be an IES and let C ⊆E be a subset of events such
that there exists a choice ,→C for C. Then
1. for any e∈C, if A¡e then A∩C �= ∅;
2. ↗C ⊆ ,→C ;
3. for any A⊆C it is not the case that #A.

Proof. 1. Observe that if A¡e, by de6nition of IES, �◦(∅; e; A). Therefore, if A∩C = ∅
then we would have �◦C(∅; e; ∅). Therefore no relation over C could be a choice, since
condition (1) of De6nition 38 could not be satis6ed.
2. Consider C ⊆E and e; e′ ∈C. If e↗ e′ then, by de6nition of IES, �◦({e′}; e; ∅)

and thus �◦C({e′}; e; ∅). Therefore, if ,→C is a choice for C, by condition (1) in
De6nition 38, necessarily e ,→C e′.
3. Let A⊆C and suppose that #A. Then it is easy to show that C contains a cycle

of asymmetric con5ict, and thus by point (2), any choice for C would be cyclic as
well, contradicting the de6nition.
The proof of the fact that if #A for some A⊆C then C contains a cycle of asymmetric

con5ict proceeds by induction on the height of the derivation of #A. The base case in
which the last rule in the derivation is (#1), namely

e0 ↗ : : : ↗ en ↗ e0
#{e0; : : : ; en} (#1)

is trivial. Suppose instead that the last rule in the derivation is (#2), namely

A′′ ¡ e ∀e′ ∈ A′′: #(A′ ∪ {e′})
#(A′ ∪ {e}) (#2):

In this case, by point (1), there exists e′′ ∈A′′ ∩C. Since #(A′ ∪{e′′}) by the second
premise of the rule, and A′ ∪{e′′}⊆C we conclude by inductive hypothesis.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 159

A con6guration of an IES is now introduced as a set of events endowed with a choice
relation. Proposition 39 above shows how this de6nition generalises the notion of PES
and AES con6guration.

De nition 40 (Con6guration). Let I = 〈E; �◦〉 be an IES. A con9guration of I is a pair
〈C; ,→C〉, where C ⊆E is a set of events and ,→C ⊆C × C is a choice for C.

In the sequel, with abuse of notation, we will often denote a con6guration and the
underlying set of events with the same symbol C, referring to the corresponding choice
relation as ,→C .
As the reader probably noted, the notions of choice and that of assignment are

strictly related. Formally, as we will see later, each occurrence i-net N can be mapped
to an IES and, for any subset X ⊆T , an assignment " for N such that X = �X �" and
×↗" is acyclic and 6nitary on X , uniquely determines a choice turning X in a con6gu-
ration of the IES corresponding to N .
We already know that the existence of a choice implies the causal closedness and

con5ict freeness of a con6guration. Moreover, if C is a con6guration, given any e∈C
and A¡e, not only A∩C �= ∅, but since by de6nition of ¡ necessarily #pA, we have
that A∩C contains exactly one event. More generally, for the same reason, if C is a
con6guration and �◦(a; e; A) for some e∈C, then A∩C contains at most one element,
and if it is non-empty then a⊆C. The last assertion is obvious if a= ∅, while if
a= {e′} it follows from Proposition 39(1), recalling that e′¡e′′ for all e′′ ∈A.
The next technical proposition shows a kind of maximality property of the choice

relation for a con6guration. It states that if a choice for C relates two events, then
any other choice for C must establish an order between such events. Consequently two
compatible choices on the same set of events must coincide.

Proposition 41. Let 〈Ci; ,→Ci〉 for i∈{1; 2} be con9gurations of an IES I .
1. If e; e′ ∈C1 ∩C2 and e ,→C1 e

′ then e ,→C2 e
′ or e′ ,→∗

C2 e.
2. If C1 =C2 and ,→∗

C1 ⊆ ,→∗
C2 then ,→C1 = ,→C2 , namely the two con9gurations

coincide.

Proof. See the appendix.

The next de6nition introduces a computational order on the set of con6gurations of
an IES.

De nition 42 (Extension). Let I = 〈E; �◦〉 be an IES and let C and C′ be con6gurations
of I . We say that C′ extends C and we write C �C′, if
1. C ⊆C′;
2. ∀e∈C: ∀e′ ∈C′: e′ ,→C′ e⇒ e′ ∈C;
3. ,→C ⊆ ,→C′ .
The poset of all con6gurations of I , ordered by extension, is denoted by Conf(I).

The extension relation de6ned on IESs con6gurations is a generalisation of that in-
troduced in [6] for AESs. The basic idea is that a con6guration C can be extended only

160 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

by adding events which are not supposed to happen before other events already in C,
as expressed by condition (2). Moreover the extension relation takes into account the
choice relations of the two con6gurations. Intuitively, condition (3) serves to ensure,
together with (2), that the past history of events in C remains the same in C′.
The history of an event in a con6guration C is formally de6ned as a suitable sub-

con6guration of C.

De nition 43 (History). Let I be an IES and let C ∈Conf (I) be a con6guration. For
any e∈C we de6ne the history of e in C as the con6guration 〈C<e=; ,→C<e=〉, where
C<e== {e′ ∈C | e′ ,→∗

C e} and ,→C<e== ,→C ∩ (C<e=×C<e=).

It is not diEcult to see that 〈C<e=; ,→C<e=〉 is a well-de6ned con6guration. The only
fact that is not obvious is the validity of condition (1) in the de6nition of choice
(De6nition 38). Now, if �◦C<e=(a; e′; A) then �◦C(a; e′; A′) with a⊆C<e=, e′ ∈C<e= and
A=A′ ∩C<e=. Being C a con6guration, it must be e′ ,→C e0 for e0 ∈ a or e1 ,→C e′

for some e1 ∈A′. In the 6rst case, e0 ∈ a⊆C<e= and thus e′ ,→C<e= e0, while in the
second case, since e′ ∈C<e=, by de6nition of history we must have e1 ∈C<e=, thus
e1 ,→C<e= e′.
Recall that, by de6nition, the re5exive and transitive closure of a choice is a 6nitary

partial order, and thus each history C<e= is a 9nite con6guration. Furthermore, it is
easy to see that C<e=�C.
The next lemma shows that, given a pairwise compatible set of con6gurations

X ⊆Conf (I) of an IES I , its greatest lower bound and least upper bound can be
computed componentwise. Furthermore, for any C1 and C2 in X , if they contain a
common event e, then the history of e in the two con6gurations is the same, namely
C1<e==C2<e=.

Lemma 44. Let X ⊆Conf (I) be a pairwise compatible set of con9gurations of an IES

I and let C1; C2 ∈X . Then
1. if e ,→∗

C1 e
′ and e′ ∈C2 then e∈C2 and e ,→∗

C2 e
′;

2. if e∈C1 ∩C2 then C1<e==C2<e=;
3. C1 �C2 =C1 ∩C2, with ,→C1 ∩ C2 = ,→C1 ∩ ,→C2 ;
4. the least upper bound of X exists, and it is given by

⊔
X =

〈 ⋃
C∈X

C;
⋃

C∈X
,→C

〉
:

Proof. See the appendix.

By exploiting such properties, we can prove that the poset of con6gurations of an
IES has the desired algebraic structure.

Theorem 45 (Con6gurations form a domain). Let I be an IES. Then 〈Conf (I);�〉 is
a domain. The complete primes of Conf (I) are the possible histories of events

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 161

in I , i.e.

Pr(Conf (I)) = {C<e= |C ∈Conf (I); e ∈ C}:

Proof. Let us start by showing that for each C ∈Conf (I) and e∈C, the con6guration
C<e= is a complete prime element. Suppose C<e=�⊔

X for X ⊆Conf (I) pairwise com-
patible. Therefore there exists C1 ∈X such that e∈C1. Since C1 and C<e= are bounded
by

⊔
X , by Lemma 44(2), C<e==C1<e=. Observing that C1<e=�C1, it follows that, as

desired, C<e=�C1.
Now, by a set-theoretical calculation exploiting the de6nition of history (De6ni-

tion 43) and the characterisation of the least upper bound in Lemma 44, we obtain

C =
⊔
e∈C

C<e= =
⊔
Pr(C):

This shows that Conf (I) is prime algebraic and that Pr(Conf (I))={C<e= |C ∈Conf (I);
e∈C}.
The fact that Conf (I) is coherent has been proved in Lemma 44(4). Finally, the

6nitariness of Conf (I) follows from prime algebraicity and the fact that C<e= is 6nite
for each C ∈Conf (I) and e∈C.

We remark that if P is a PES and I =Ji(P) is its encoding into IESs, then for
each con6guration of I the choice relation is uniquely determined as the restriction of
causality to the con6guration. Therefore the domain of con6gurations Conf (I) de6ned
in this section coincides with the domain Conf (P) as de6ned by Winskel. A similar
situation arises for the IES encoding of asymmetric event structures [6], PES with possible
events [34] and (extended) bundle event structures [25].

4.4. A core8ection between IES and Dom

To prove that the construction which associates the domain of con6gurations to an
IES lifts to a functor from IES to Dom, a basic result is the fact that IES-morphisms
preserve con6gurations. Observe that since con6gurations are not simply sets of events
it is not completely obvious, a priori, what should be the image of a con6guration
through a morphism. Let f: I0→ I1 be an IES-morphism and let C0 be a con6guration
of I0. According to the intuition underlying IES (and general event structure) morphisms,
we expect that any possible execution of the events in C0 can be simulated in f(C0).
But the converse implication is not required to hold, namely the level of concurrency
in f(C0) may be higher. For instance we can map two causally related events e06e1
to a pair of concurrent events. Hence we cannot pretend that the whole image of the
choice relation of C0 is a choice for f(C0), but just that there is a choice for f(C0)
included in such image. By the properties of choices, there is only one choice on f(C0)
included in the image of ,→C0 , which is obtained as the intersection of the image of
,→C0 with choices(f(C0)).
Given a function f: X →Y and a relation r⊆X ×X , we will denote by f(r) the

relation in Y de6ned as f(r)= {(y; y′) | ∃(x; x′)∈ r: f(x)=y∧f(x′)=y′}.

162 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

Lemma 46. Let f: I0→ I1 be an IES-morphism and let 〈C0; ,→0〉 ∈Conf (I0). Then
the pair 〈C1; ,→1〉 with C1 =f(C0) and ,→1 =f(,→0)∩ choices(f(C0)), namely the
unique choice relation on C1 included in f(,→C0), is a con9guration in I1. Moreover
the function f∗: Conf (I0)→Conf (I1) which associates to each con9guration C0 the
con9guration C1 de9ned as above, is a domain morphism.

Proof. See the appendix.

The previous lemma implies that the construction taking an IES into its domain of
con6gurations can be viewed as a functor.

Proposition 47. There exists a functor Li: IES→Dom de9ned as Li(I) = Conf (I)
for each IES I and Li(f)=f∗ for each IES-morphism f: I0→ I1.

A functor going back from domains to IESs, namely Pi: Dom→ IES can be obtained
simply as the composition of the functor P: Dom→PES, de6ned by Winskel, with
the full embedding Ji of PES into IES discussed in Proposition 35. The functor Pi is
left adjoint to Li and thus they establish a core5ection between IES and Dom.

Theorem 48 (Core5ection between IES and Dom). The functor Pi: Dom→ IES is
left adjoint to Li: IES→Dom. The counit of the adjunction at an IES I is the
function ,I : Pi ◦Li(I)→ I , mapping each history of an event e into the event e itself,
i.e., ,I (C<e=)= e, for all C ∈Conf (I) and e∈C.

Proof (Sketch). Let I be an IES and let ,I : Pi(Li(I))→ I be the function de6ned as
,I (C<e=)= e, for all C ∈Conf (I) and e∈C. It is not diEcult to prove that ,I is a
well-de6ned IES-morphism (see the full proof in the appendix).
We have to show that given any domain (D;�) and IES-morphism h: Pi(D)→ I ,

there is a unique domain morphism g: D→Li(I) such that the following diagram
commutes:

The morphism g: D→Li(I) can be de6ned as follows. Given d∈D, observe that
Cd= 〈Pr(d);❁Pr(d)〉 is a con6guration of Pi(D), where ❁Pr(d) =❁∩ (Pr(d)×Pr(d)).
Therefore we can de6ne

g(d) = h∗(Cd):

The fact that h∗(Cd) is a con6guration in I and thus an element of Li(I), follows from
Lemma 46. Moreover g is a domain morphism. In fact it is 4-preserving, Additive and
Stable (see the full proof in the appendix).

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 163

The rest of the proof essentially relies on a general result which holds of any domain
morphism f: D→Li(I) having as target the domain of con6gurations of an IES: for
all p∈Pr(D), |f(p)−⋃

f(Pr(p)− {p}) |61 and

Pi(f)(p) =
{⊥ if f(p)−⋃

f(Pr(p)− {p}) = ∅;
f(p)<e= if f(p)−⋃

f(Pr(p)− {p}) = {e}:
Exploiting such result, the fact that morphism g de6ned as above makes the diagram
commute and its uniqueness follow as easy consequences.

It is worth stressing that the above result, together with Winskel’s equivalence be-
tween the category Dom of domains and the category PES of prime event structures,
allows one to translate an IES I into a PES P(Li(I)).

Corollary 49. The functor Ji: PES→ IES is left adjoint of P ◦Li: IES→PES. The
unit will be denoted by -: 1→P ◦Li ◦Ji.

The universal characterisation of the construction intuitively ensures that the obtained
PES is the “best approximation” of I in the category PES. By the characterisation of the
complete prime elements in the domain of con6gurations (see Theorem 45) we have
that the events in P(Li(I)) are the possible histories of the events in I . The picture
below depicts the PES corresponding to a basic IES containing the events {e; e′; e0; : : : ; en}
related by the DE-relation as �◦({e′}; e; {e0; : : : ; en}). We explicitly represent a history
of an event e as a set of events, where e appears in boldface style.

As observed before, asymmetric event structures [6], (extended) bundle event struc-
tures [25], prime event structures with possible events [35] can be seen as subcategories
of IES. Let ES be any of such subcategories. Since ES includes all the prime event
structures, it is easy to prove that the core5ection between IES and Dom restricts to
a core5ection between ES and Dom [4].

4.5. Removing non-executable events

The non-executability of events in an IES is not completely captured by the proof sys-
tem of De6nition 30, in the sense that we cannot derive #{e} for every non-executable
event. Here we propose a semantic approach to rule out unused events from an IES,
namely we simply remove from a given IES all events which do not appear in any con-
6guration. Nicely, this can be done functorially and the subcategory IESe of IESs where

164 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

all events are executable turns out to be a core5ective subcategory of IES. Moreover,
the core5ection between IES and Dom restricts to a core5ection between IESe and
Dom.
We start de6ning the subcategory of IESs where all events are executable.

De nition 50. We denote by IESe the full subcategory of IES consisting of the IESs
I = 〈E; �◦〉 such that for any e∈E there exists C ∈Conf (I) with e∈C.

Any IES is turned into an IESe object by forgetting the events which do not ap-
pear in any con6guration. The next de6nition introduces the functor .: IES→ IESe

performing such construction.

De nition 51. We denote by .: IES→ IESe the functor mapping each IES I into the
IESe object .(I)= 〈 (E); �◦ (E)〉, where (:) denotes saturation (see Proposition 36)
and (E) is the set of executable events in I , namely

 (E) = {e ∈ E | ∃C ∈ Conf (I): e ∈ C}:
Moreover if f: I0→ I1 is an IES-morphism then .(f)=f| (E0). With JIES: IES

e→
IES we denote the inclusion.

The fact that .(I) is an IESe object follows easily from its de6nition. The well-
de6nedness of .(f) for any IES-morphism f is basically a consequence of the fact
that, by Lemma 46, an IES-morphism preserves con6gurations and thus also executable
events.

Proposition 52. Let I0 and I1 be IESs and let f: I0→ I1 be an IES-morphism. Then
.(f): .(I0)→.(I1), de9ned as above, is an IES-morphism. Hence . is a well-
de9ned functor.

Proof. See the appendix.

It is easy to verify that, if I is a IESe object and I ′ an arbitrary IES, then any IES-
morphism f: I →.(I ′) is also a morphism f: I → I ′. This implies that the inclusion
of IESe into IES is left adjoint to ., i.e., . � JIES, and thus that IES

e is a core5ective
subcategory of IES.

Proposition 53 (Relating IES and IESe). . �JIES.

Finally observe that the functor Pi: Dom→ IES maps each domain into the encod-
ing of a PES, which is clearly an object in IESe. Therefore it is easy to prove that
the core5ection between IES and Dom restricts to a core5ection between IESe and
Dom.

Corollary 54. Let Pe
i : Dom→ IESe and Le

i : IES
e→Dom denote the restrictions of

the functors Pi and Li. Then Pe
i %Le

i .

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 165

5. Event structure semantics for i-nets

To provide an event structure and a domain semantics for i-nets we investigate the
relationship between occurrence i-nets and inhibitor event structures. The kind of depen-
dencies arising among transitions in an occurrence i-net can be represented naturally by
the DE-relation, and therefore the IES corresponding to an occurrence i-net is obtained
by forgetting the places and taking the transitions of the net as events. Furthermore
morphisms between occurrence i-nets restrict to morphisms between the correspond-
ing IESs, and therefore the semantics can be given via a functor Ei: O-IN→ IES.
The construction, when applied to an executable occurrence i-net, restricts to a functor
Ee
i : O-IN

e→ IESe.
When combined with the core5ection between IES and Dom and with Winskel’s

equivalence between Dom and PES, this result allows us to obtain a functor from
O-IN to PES. Answering a question left open in [5], we show that such functor
admits a left adjoint providing a core5ection between O-IN and PES.
The analogy with contextual nets breaks for the fact that, while in [6] the core5ection

between O-CN and PES is expressed as the composition of two core5ections, between
O-CN and the category AES of asymmetric event structures and between AES and
PES, here, in the case inhibitor nets, the functor from PES to O-IN does not factorize
through the category IES. An object level construction can be easily performed, asso-
ciating to each IES a corresponding i-net. However such a construction does not give
rise to a functor and, actually, we show that there is no functor from IES to O-IN
forming a core5ection with Ei. The last part of this section brie5y discusses the origin
of this problem, showing that it is intimately connected to or-causality.

5.1. From occurrence i-nets to IESs and PESs

Let us show 6rst how an IES can be extracted from an occurrence i-net.

De nition 55. Let N be an occurrence i-net. The pre-IES associated to N is de6ned as
IpN = 〈T; �◦pN 〉, with �◦pN ⊆ 2T1 ×T × 2T , given by: for t; t′ ∈T , t �= t′ and s∈ S:
1. if t• ∩ (•t′ ∪ t′) �= ∅ then �◦pN (∅; t′; {t});
2. if (•t ∪ t)∩ •t′ �= ∅ then �◦pN ({t′}; t; ∅);
3. if s∈ ©◦t then �◦pN (

•s; t; s•).
The IES associated to N , denoted by IN = 〈T; �◦N 〉, is obtained by saturating IpN ,
i.e., IN = IpN .

The 6rst two clauses of the de6nition encode, by using the DE-relation, the causal
dependencies and the asymmetric con5icts induced by the 5ow and read arcs (we
could have written “if t ¡r t′ then �◦pN (∅; t′; {t})” and “if t↗r t

′ then �◦pN ({t′}; t; ∅)”).
The last clause fully exploits the expressiveness of the DE-relation to represent the
dependencies induced by inhibitor places. Note that IpN is a pre-IES satisfying also
condition (1) of the de6nition of IES. Thus, by Proposition 36, it can be saturated to
obtain the IES IN .

166 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

The next proposition shows that the transition component of an i-net morphism is
an IES-morphism between the corresponding IESs.

Proposition 56. Let N0 and N1 be occurrence i-nets and let h: N0→N1 be an i-net
morphism. Then hT : IN0 → IN1 is a IES-morphism.

Proof. See the appendix.

By the above proposition we get the existence of a functor which maps each i-net
to the corresponding IES de6ned as in De6nition 55 and each i-net morphism to its
transition component.

De nition 57. We denote by Ei: O-IN→ IES the functor de6ned as Ei(N) = IN for
each occurrence i-net N and Ei(h: N0→N1) = hT for each morphism h: N0→N1.

By exploiting the relation between choices and assignments mentioned before, one
can verify that if N is an executable occurrence i-net then Ei(N) is an IESe object.
Therefore the functor Ei restricts to a functor Ee

i : O-IN
e→ IESe.

The core5ection between IES (IESe) and Dom can be 6nally used to obtain a
domain semantics, and, by exploiting Winskel’s equivalence, a prime event structure
semantics for semi-weighted i-nets. As explained in Section 4.4, the PES semantics is
obtained from the IES semantics by introducing an event for each possible diDerent
history of events in the IES.
Fig. 11 presents part of the domain associated to the net N3 of Fig. 3, namely

of Li(Ei(Ui(N3)))=Le
i (E

e
i (U

e
i (N3))). The choice relation for each con6guration is

implicitly represented by the order in which events are mentioned in the corresponding
set. Observe that several distinct con6gurations contains exactly the same events.

Fig. 11. Part of the domain Li(Ei(Ui(N3)))=Le
i (E

e
i (U

e
i (N3))) associated to the net N3 in Fig. 3.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 167

5.2. From prime event structures to occurrence i-nets

In [41] Winskel maps each prime event structure into a canonical occurrence net,
via a free construction which generates for each set of events related in a certain way
by the dependency relations a unique place that induces that kind of relation on the
events. We next show how this construction can be generalised to inhibitor nets.

De nition 58 (From PESs to occurrence i-nets). Let P= 〈E;6; #〉 be a PES and let ↗
denote the corresponding asymmetric con5ict relation, i.e., ↗=¡∪ #. Then Ni(P) is
the i-net N = 〈S; T; F; C; I; m〉 de6ned as follows, where A; B range over 2E and e∈E,
• m= {〈∅; A; B〉 | ∀a∈A: ∀b∈B: a↗b∧ #pB};
• S =m∪{〈{e}; A; B〉 | ∀e′ ∈A∪B: e¡e′ ∧∀a∈A: ∀b∈B: a↗b∧ #pB};
• T =E;
• F = 〈Fpre; Fpost〉, with

Fpre = {(e; s) | s = 〈x; A; B〉 ∈ S; e ∈ B};
Fpost = {(e; s) | s = 〈{e}; A; B〉 ∈ S};

• C = {(e; s) | s= 〈x; A; B〉 ∈ S; e∈A};
• I = {(e; s) | s= 〈x; A; B〉 ∧ ((∃e′ ∈ x: e↗e′)∨ (∃e′ ∈B: e′¡e))}.

The de6nition of m, S, T and C is similar to the construction in [6], which asso-
ciates a canonical contextual net to an asymmetric event structure. The transitions of
net Ni(P) are the events of P and the places are triples of the form 〈x; A; B〉, with
x; A; B⊆E, and |x|61, added to induce the same dependencies between events as those
existing in P. A place 〈x; A; B〉 is a pre-condition for all the events in B and a context
for all the events in A. Moreover, if x= {e}, such a place is a post-condition for e,
otherwise if x= ∅ the place belongs to the initial marking. Therefore each place gives
rise to a con5ict between each pair of (distinct) events in B and to an asymmetric
con5ict between each pair of events a∈A and b∈B.
With the same spirit, the net is saturated with all the inhibitor arcs inducing the

correct dependencies among events. Consider a place s= 〈x; A; B〉 and two events e,
e′. To understand the second branch of the disjunction in the de6nition of I above,
assume that e′ ∈B and e′¡e. Then place s is in the pre-set of e′ and thus it must
be emptied by the 6ring of e′ before the execution of e. Hence we force s to inhibit
e in Ni(P), i.e., we insert the pair (e; s) in I . The 6rst branch of the disjunction is
motivated by analogous considerations.
Two technical lemmata follow which will play a crucial role in the proof of the

main result of this section. The 6rst one can be proved as Lemma 7.2 in [6], hence
its proof is omitted. In the sequel, given an i-net N and a transition t ∈T , we will
denote by &{t}' its set of consequences, namely &{t}'= {t′ ∈T | t¡rt′}. For notational
convenience the consequences are de6ned also for the empty set by &∅'=T .

Lemma 59. Let N0, N1 be occurrence i-nets and let h: N0→N1 be a morphism. For
s0 ∈ S0 and s1 ∈ S1, if hS(s0; s1) then

168 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

1. hT (•s0)= •s1;
2. s0•= h−1

T (s1•)∩ &•s0';
3. s0 = h−1

T (s1)∩ &•s0';
4. h−1

T (©◦s1)⊆ ©◦s0.

Lemma 60. Let P be a PES, let N0 be an occurrence i-net and let hT : Ji(P)→Ei(N0)
be an IES-morphisms (recall that Ji is the full embedding of PES into IES de9ned in
Proposition 35). Then there exists a unique hS such that h= 〈hT ; hS〉: Ni(P)→N0 is
an i-net morphism.

Proof. See the appendix.

The next lemma shows that constructing the occurrence i-net for a given PES and
then taking the corresponding IES, one recovers (an IES isomorphic to) the original
PES.

Lemma 61. For any PES P, the identity over the events "P: Ji(P)→Ei(Ni(P)) is an
IES-isomorphism.

Proof. See the appendix.

We can thus present the main result of this section, which shows that the func-
tor Ni is left adjoint to the functor PLiEi, mapping each occurrence i-net into the
corresponding PES.

Theorem 62. The construction Ni extends to a functor Ni: PES→O-IN and
Ni %PLiEi.

Proof. Let us prove that Ni %PLiEi with unit 0P: P→PLiEi(Ni(P)) de6ned as
0P = -P;PLi("P)

P -P−→ PLiJi(P)
PLi("P)−→ PLiEi(Ni(P));

where -P is the unit of the core5ection between IES and PES (see Corollary 49) and
"P is the identity on events (see Lemma 61).
We must show that for any PES P, occurrence i-net N and morphism f: P→

PLiEi(N) there is a unique arrow g: Ni(P)→N such that the outer triangle commutes

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 169

Since, by Corollary 49 Ji %PLi, there is a unique h: Ji(P)→Ei(N) such that the
left triangle above commutes.
Furthermore, by Lemma 60, h uniquely extends to a morphism g: Ni(P)→N such

that Ei(g)= gT = h, thus making the right triangle in the diagram above commute (recall
that "P is the identity on events). This proves the existence of the morphism g we
were looking for. Uniqueness follows from the observation that the existence of two
distinct choices for g would violate the uniqueness of h.

Observe that the image of the functor Ni is entirely included in O-INe, i.e., for
any PES P the net Ni(P) is an executable occurrence i-net. Hence Ni naturally re-
stricts to a functor Ne

i : PES→O-INe, which, by general arguments, is left adjoint
to P ◦Le

i ◦Ee
i . Also note that since the functors IO ◦Ni ;Ie

O ◦Ne
i : PES→SW-IN

clearly coincide, as a byproduct we immediately have that also their right-adjoints are
the same, i.e., the two proposed constructions (with or without non-executable events)
lead to the same PES (and domain).

5.3. From IESs to i-nets: a negative result

We 6nally show that, diDerently from what happens for contextual nets and asym-
metric event structures, the core5ection between O-IN and PES described above
does not factorize through the category IES, i.e., that there is no left adjoint func-
tor Mi: IES→O-IN which forms a core5ection with Ei.
More generally we can show that there is no functor Mi: IES→O-IN such that,

Ei ◦Mi is naturally isomorphic to the identity. Assume by contradiction that there
is such a functor. Consider two IESs I0 and I1, obtained by saturating the pre-IESs
〈{e0; e′

0}; {(∅; e0; {e′
0})}〉 (where e′

0¡e0) and 〈{e1; e′
1; e

′′
1 }; {({e′

1}; e′′
1 ; {e1})}〉.

Since Ei(Mi(I1))(I1 and the only way to generate a triple where all components are
non-empty is to have an inhibiting place, in Mi(I1) there must be a place s1 ∈ ©◦e′′

1 ∩ e′
1
•

∩ •e1 (see Fig. 12(b)). Since the mapping h: I0→ I1 such that h(e0)= e1 and h(e′
0)= e′

1
is a well-de6ned IES-morphism, there must exist an i-net morphism Mi(h): Mi(I0)→
Mi(I1). This implies that there are places s′0 ∈ e′

0
• and s0 ∈ •e0 such that Mi(h)(s′0; s1)

and Mi(h)(s0; s1). Since Mi(h) is an occurrence i-net morphism, necessarily s0 = s′0,
otherwise we would have s0#s′0, hence e0#e′

0 in Mi(I0) and thus in Ei(Mi(I0)), contra-
dicting the assumption Ei(Mi(I0))(I0 (see Fig. 12(a)).
Consider now the IES I2 which is obtained by saturation of the pre-IES 〈{e2; e′

2; e
′′
2 };

{(∅; e2; {e′
2; e

′′
2 }); ({e′

2}; e′′
2 ; ∅); ({e′′

2 }; e′
2; ∅)}〉 (where e′

2#e
′′
2 and {e′

2; e
′′
2 }¡e2) and the

IES-morphism f: I2→ I0, de6ned by f(e2)= e0 and f(e′
2)=f(e′′

2)= e′
0. Since there is

an i-net morphism Mi(f): Mi(I2)→Mi(I0), there must be places s′2 ∈ e′
2
• and s2 ∈ •e2

such that Mi(f)(s2; s0) and Mi(f)(s′2; s0). Therefore Mi(f)(e′
2)¡Mi(f)(e2) and thus,

since Mi(f) is an occurrence i-net morphism, necessarily e′
2¡e2 or e2#e′

2 in Mi(I2)
and thus in Ei(Mi(I2)). Hence in both cases we would reach a contradiction with the
assumption that Ei(Mi(I2))(I2.
At a more intuitive level, imagine to construct an i-net for an inhibitor event structure

by following Winskel’s idea of saturating the IES with places in order to induce the
same relations among events as in the IES. Fig. 13 represents fragments of the nets

170 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

e′0

s0

e0

e′1

s1 e′′1

e1

(a) (b)

Fig. 12. (a) Part of Mi(I0) and (b) part of Mi(I1).

s′2

e′2 e″2

s2

e2

s′0

e′0

s0

e0

(a) (b)

•

•

•

•

Fig. 13. (a) Part of Mi(I2) and (b) part of Mi(I0):

Mi(I2) and Mi(I0) which we would obtain for event structures I2 and I0. Observe that
the causal dependency e′

0¡e0 is induced both by place s0 ∈ e′
0
• ∩ •e0 and by means

of an inhibitor arc, i.e., through the marked place s′0 ∈ •e′
0 ∩ ©◦e0. Correspondingly, the

functoriality of Mi would require the net Mi(I2) to include the places s2 and s′2 (since
the IES-morphism f: I2→ I0, de6ned by f(e2)= e0 and f(e′

2)=f(e′′
2)= e′

0, must be
“extensible” to a i-net morphism Mi(f): Mi(I2)→Mi(I0)). However Mi(I2) cannot
be de6ned in this way since backward con5icts (several transitions in the pre-set of a
place, like s2 in Mi(I2)) are not allowed in occurrence i-nets.
Observe also that the naQRve solution of widening the category of occurrence i-net to

include also nets with backward con5icts (which, by analogy with the 5ow nets of [7],
could be called 8ow i-nets) does not work, as one can easily check.

6. Conclusions

We have provided a core5ective concurrent semantics for Petri nets with read and
inhibitor arcs. The proposed constructions, which generalise Winskel’s work on safe
ordinary nets and the work in [6] on contextual nets, are summarised in the diagram

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 171

below (where unnamed functors are inclusions).

The paper singles out two distinct notions of occurrence i-net: ordinary occurrence
i-nets, where some events might be non-executable, and executable occurrence i-nets,
where some additional conditions ensure the 6rability of any transition. Correspond-
ingly two diDerent unfolding constructions are provided which associate to each semi-
weighted inhibitor net an occurrence inhibitor net. The unfoldings can be naturally
abstracted to an IES, having the transitions of the net as events, and thus, by exploiting
a core5ection between IES and Dom, to a domain (or, equivalently, to a prime event
structure). Both constructions (with or without non-executable events) lead to the same
domain.
The core5ection between occurrence nets and prime event structures does not fac-

torize through IES, namely, the functor from PES to the category of occurrence i-nets
cannot be expressed as the composition of functors one from PES to IESs, and the
other from IESs to occurrence i-nets.
In the paper we hinted at the relationship between IESs and other event structure

models proposed in the literature. It can be easily seen that IESs properly generalise
prime [41], asymmetric [6], (extended) bundle event structures [25] and prime event
structures with possible events [35]. Instead IESs and 5ow event structures [7] (with
possible 5ow [35]), although strictly related, are, in a sense, not comparable since there
are IESs whose sets of con6gurations cannot be described by a 5ow event structure and
vice versa.
Inhibitor event structures are also related to event automata [35], a class of automata

where states are sets of events and the transition relation speci6es which events can
occur in a certain state. Although not explicitly worked out in this paper, it is easy to
see that given an IES we can obtain a corresponding event automaton via a functorial
construction which takes the partial order of con6gurations, forgetting about the history
of events, namely identifying diDerent con6gurations which involve the same set of
events.
This connection between IESs and event automata suggests also the possibility of

comparing our model with other event based models proposed in the literature as
generalisations of the family of con6gurations of event structures, like con6guration
structures [38] and Chu spaces [18]. In particular it could be interesting to try to give
a logical view of IESs, in the style of the presentation of event structures as propositional

172 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

theories in [38]. To this end, also the logical approach to causality of [17] could
provide some interesting hints. Some similarities can be found also with local event
structures [20], where, as in the case of IESs, the enabling of events is not required to be
monotonic. However a direct comparison appears diEcult to carry out since local event
structures explicitly represent con6gurations and concurrent enabling of sets of events,
while IESs give an intensional description of such notions by means of the DE-relation.
Probably also in this case one could try a comparison at the level of corresponding event
automata.
A semantics for inhibitor nets, based on a generalisation of Mazurkiewicz traces,

has been developed in [21]. Such paper assumes a notion of enabling diDerent from
ours, allowing for the concurrent 6ring of steps where a token is generated in the
inhibitor set. Consequently concurrent steps may not be serializable and this is the
reason why the simultaneity (independence) relation of Mazurkiewicz traces is not
suEciently expressive, and one must consider also a serializability relation which ex-
plicitly says if two simultaneous events are serializable and in which order. Along
the same line, more recently a process semantics for inhibitor nets (possibly un-
bounded and with weighted arcs) has been developed [22,23]. Understanding if, de-
spite the diDerent notions of enabling, a relationship can be established with our work
is left as a matter of future investigation. We also conjecture that, keeping our no-
tion of enabling, Mazurkiewicz trace theory could be successfully applied to extract
a PES from an inhibitor net and that the domain of con6gurations of such a PES

would be isomorphic to the prime algebraic domain obtained through our unfolding
construction.

Acknowledgements

We are grateful to the anonymous referees for their useful and constructive comments
on the submitted version of this paper.

Appendix A. Full proofs of results in the paper

A.1. Categories of i-nets

Proposition 4 (Composition of i-net morphisms). The class of i-net morphisms is
closed under composition.

Proof. Let h0: N0→N1 and h1: N1→N2 be two i-net morphisms. Their composition
h1 ◦ h0 obviously satis6es conditions (1) and (2a)–(2c) of De6nition 3, since these
are exactly the de6ning conditions of c-net morphisms which are known to be closed
under composition.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 173

Finally, h1 ◦ h0 satis6es also condition (2d). In fact, for any transition t in N0:
<h1S ◦ h0S =−1(©◦h1T ◦ h0T (t))
= <h0S =−1(<h1S =−1(©◦h1T (h0T (t))))

⊆ <h0S =−1(©◦h0T (t)) (since h1 is a morphism)

⊆ ©◦t (since h0 is a morphism).

Proposition 20. Let N be an executable occurrence i-net and let M ⊆ S. Then
conc(M) i> there exists a reachable marking M ′ such that M ⊆M ′.

Proof. (⇒) By de6nition of concurrency (De6nition 19), there is an assignment "
such that �M�" is 6nite and ×↗" is acyclic on �M�". Therefore there is an enumeration
of transitions t(1); : : : ; t(k) in �M�" compatible with ×↗+

" . Let us show by induction on
k that

m = M (0) [t(1)〉M (1) [t(2)〉 : : : M (k−1) [t(k)〉M (k) ⊇ M:

(k =0) Obvious.
(k¿0) By construction t(k) is ×↗"-maximal �M�". Take M ′′=M−t(k)•+•t(k). It is easy
to show that conc(M ′′) (with the same assignment ") and �M ′′�"= {t(1); : : : ; t(k−1)}.
Hence by inductive hypothesis

m = M (0) [t(1)〉M (1) [t(2)〉 : : : M (k−1) [t(k−1)〉M (k−1) ⊇ M ′′:

Now, showing that t(k) is enabled at M (k−1) we can conclude. To this aim, observe
that clearly •t(k)⊆M (k−1). Moreover t(k)⊆M (k−1) and ©◦t(k) ∩M (k−1) = ∅, as otherwise
t(k) would not be ×↗"-maximal in �M�".
Therefore t(k) is enabled at M (k−1) and we can extend the 6ring sequence above to

m = M (0) [t(1)〉M (1) [t(2)〉 : : : M (k−1) [t(k−1)〉M (k−1) [t(k)〉M (k)

with M (k) =M (k−1) − •t(k) + t(k)• ⊇M ′′ − •t(k) + t(k)•=M .
(⇐) The thesis follows from an inductive reasoning on the number of 6rings leading

from the initial marking m to M ′.

A.2. Basic results on IESs

Proposition 33. Let I0 and I1 be IESs and let f: I0→ I1 be an IES-morphism. For any
e0; e′

0 ∈E0:
1. if f(e0)¡f(e′

0) then ∃A0. e0 ∈A0¡e′
0 or e0#e′

0;
2. if f(e0)↗f(e′

0) then e0↗ e′
0.

Proof. (1) Let f(e0)¡f(e′
0), namely {f(e0)}¡f(e′

0). By condition (2) in the def-
inition of IES-morphisms, there exists A0⊆f−1({f(e0)}) such that A0¡e′

0. Now, if

174 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

e0 ∈A0 the desired property is proved. Otherwise for each e′′
0 ∈A0, e′′

0 �= e0 and, by
construction f(e′′

0)=f(e0). Hence by condition (1) in the de6nition of IES-morphism,
it must be e0#e′′

0 for each e′′
0 ∈A0. Hence, by rule (#2), we conclude e0#e′

0.

(2) Let f(e0)↗f(e′
0). Then, by de6nition of IES, �◦({f(e′

0)}; f(e0); ∅). By condition
(3) in the de6nition of IES-morphism there must exist a0⊆{e′

0} and A0⊆f−1(∅)=
∅ such that �◦(a0; e0; A0). Therefore, if a0 = {e′

0} then �◦({e′
0}; e0; ∅) and thus, by rule

(↗1), we conclude e0↗ e′
0. If instead a0 = ∅ then �◦(∅; e0; ∅) and thus, by rule (¡1),

∅¡e0. Hence, by rule (#2), we deduce #{e0; e′
0} and thus e0↗ e′

0 by (↗ 3).

Proposition 34. The IES-morphisms are closed under composition.

Proof. Let f0: I0→ I1 and f1: I1→ I2 be IES-morphisms. We want to show that their
composition f1 ◦f0 still satis6es conditions (1)–(3) of De6nition 32:
1. Let e0; e′

0 ∈E0 be events such that e0 �= e′
0 and f1(f0(e0))=f1(f0(e′

0)). If f0(e0)=
f0(e′

0) then, being f0 a morphism, e0#e′
0. Otherwise, since also f1 is a morphism,

f0(e0)#f0(e′
0) and thus, by rule (↗ 3), f0(e0)↗f0(e′

0)↗f0(e0). Hence, by Propo-
sition 33(2), it must hold that e0↗ e′

0↗ e0, which in turn, by rule (#1) allows us
to deduce e0#e′

0.
2. Consider A2⊆E2 and e0 ∈E0 such that A2¡f1(f0(e0)). Since f1 is an IES-morphism
there exists A1⊆f−1

1 (A2) such that A1¡f0(e0). By using again condition (2) in
the de6nition of IES-morphism, applied to f0, we obtain the existence of A0⊆
f−1
0 (A1) satisfying A0¡e0. We conclude observing that A0⊆f−1

0 (A1)⊆
f−1
0 (f−1

1 (A2))= (f1 ◦f0)−1(A2).
3. Let us assume �◦({f1(f0(e′

0))}; f1(f0(e0)); A2). Since f1 is an IES-morphism there
exist A1⊆f−1

1 (A2) and a1⊆{f0(e′
0)} such that �◦(a1; f0(e0); A1). We can distin-

guish two cases according to the form of a1.
• If a1 = ∅ and thus A1¡f0(e0), since f0 is an IES-morphism, there will be A0⊆

f−1
0 (A1) such that A0¡e0. By de6nition of IES this implies �◦(∅; e0; A0). More-
over A0⊆f−1

0 (A1)⊆f−1
0 (f−1

1 (A2)) and thus condition (3) is satis6ed.
• If a1 = {f0(e′

0)} and thus �◦({f0(e′
0)}; f0(e0); A1) reasoning as above, but using

point (3) in the de6nition of morphism, we deduce the existence of A0⊆f−1
0 (A1)

⊆f−1
0 (f−1

1 (A2)) and a0⊆{e′
0} such that �◦(a0; e0; A0), thus satisfying condition

(3).

Lemma 37. Let Ii= 〈Ei; �◦i〉 (i∈{0; 1}) be pre-IESs satisfying condition (1) of Def-
inition 31, let Ii= 〈Ei; �◦si 〉, and let ¡i, ↗i and #i be the relations of causality,
asymmetric con8ict and con8ict in Ii. Let f: E0→E1 be a partial function such that
for each e0; e′

0 ∈E0 and A1⊆E1:
1. f(e0)=f(e′

0)∧ e0 �= e′
0⇒ e0#0e′

0;
2. �◦1(∅; f(e0); A1)⇒∃A0⊆f−1(A1): A0¡0e0;
3. �◦1(f(e′

0); f(e0); ∅)⇒ e0↗0 e
′
0;

4. �◦1({f(e′
0)}; f(e0); A1) ∧ A1 �= ∅⇒∃A0⊆f−1(A1):∃a0⊆{e′

0}: �◦s0(a0; e0; A0).
Then f: I0→ I1 is an IES-morphism.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 175

Proof. We 6rst show that f satis6es the following properties:
(a) A1¡1f(e0)⇒∃A0⊆f−1(A1): A0¡0e0;
(b) f(e0)↗1f(e

′
0)⇒ e0↗0e

′
0;

(c) #1f(A0)⇒ #0A0.
The three points are proved simultaneously by induction on the height of the derivation
of the judgement, involving the relations ¡1, ↗1 and #1, which appears in the premise
of each implication and by cases on the form of the judgement.
(a) Judgement A1¡1f(e0).

We distinguish various subcases according to the last rule used in the derivation:
(¡1) Let the last rule be

�◦1(∅; f(e0); A1) #pA1
A1 ¡1 f(e0)

(¡1):

In this case, since �◦1(∅; f(e0); A1), we immediately conclude by using point (2)
in the hypotheses.

(¡2) Let the last rule be

A′
1 ¡1 f(e0) ∀e1 ∈ A′

1: Ae1 ¡1 e1 #p(∪{Ae1 | e1 ∈ A′
1})

(∪{Ae1 | e1 ∈ A′
1})¡1 f(e0)

(¡2):

By inductive hypothesis from A′
1¡1f(e0) we deduce that

∃A0 ⊆ f−1(A′
1): A0 ¡0 e0: (†)

Now, for all e′
0 ∈A0, by (†), f(e′

0)∈A′
1. Therefore, by the second premise of

the rule above, Af(e′
0)¡1f(e′

0), and thus, by inductive hypothesis, there exists
Ae′

0
⊆f−1(Af(e′

0)) such that Ae′
0
¡0e′

0. Finally, ∪{Ae′
0
| e′
0 ∈A0} is pairwise con-

5icting. In fact if e10; e
2
0 ∈∪{Ae′

0
| e′
0 ∈A0} with e10 �= e20, we have f(e10); f(e

2
0)∈⋃

e1∈A′
1
Ae1 , which is pairwise con5icting. Therefore f(e10)=f(e20) or f(e

1
0)#1f(e

2
0)

and, by using point (1) in the hypotheses in the 6rst case, and by inductive hy-
pothesis in the second case, we conclude e10#0e

2
0.

By using the facts proved so far we can apply rule (¡2) as follows:

A0 ¡0 e0 ∀e′
0 ∈ A0: Ae′

0
¡0 e′

0 #p(∪{Ae′
0
| e′
0 ∈ A0})

(∪{Ae′
0
| e′
0 ∈ A0})¡0 e0

(¡2):

This concludes the proof of this case since

∪{Ae′
0
| e′
0 ∈ A0}

⊆ ∪{f−1(Af(e′
0)) | e′

0 ∈ A0}
⊆ {f−1(Ae1) | e1 ∈ A′

1}
= f−1(∪{Ae1 | e1 ∈ A′

1}):

176 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

(b) Judgement f(e0)↗1f(e
′
0).

We distinguish various subcases according to the last rule used in the derivation:
(↗ 1) Let the last rule be

�◦1({f(e′
0)}; f(e0); ∅)

f(e0)↗1f(e
′
0)

(↗1):

From �◦1({f(e′
0)}; f(e0); ∅), by point (3) in the hypotheses, we immediately have

that e0↗0e
′
0.

(↗ 2) Let the last rule be

f(e0) ∈ A1 ¡1 f(e′
0)

f(e0)↗1f(e
′
0)

(↗2):

By inductive hypothesis there exists A0⊆f−1(A1) such that A0¡0e′
0.

For all e′′
0 ∈A0, we have f(e′′

0)∈A1. Thus recalling that, since A1¡1f(e′
0), the

set A1 is pairwise con5icting, it follows that f(e′′
0)=f(e0) or f(e′′

0)#1f(e0). By
using point (1) of the hypotheses in the 6rst case and the inductive hypothesis in
the second case, we can conclude that for all e′′

0 ∈A0, e0 = e′′
0 or e0#0e′′

0 .
Consequently there are two possibilities. One is that e0 = e′′

0 ∈A0 for some e′′
0 ∈A0,

which allows us to conclude since A0¡0e′
0. The other one is that e0#0e

′′
0 for all

e′′
0 ∈A0. Thus, by rule (#2), we can derive that #0{e0; e′

0}, and therefore e0↗0e
′
0

by rule (↗ 3).

(↗ 3) Let the last rule be

#1{f(e0); f(e′
0)}

f(e0)↗1f(e
′
0)

(↗3):

In this case by inductive hypothesis #0{e0; e′
0} and therefore, by rule (↗ 3),

e0↗0e
′
0.

(c) Judgement #1f(A0).
We distinguish various subcases according to the last rule used in the derivation:
(#1) Let the last rule be

f(e(0)0)↗1 · · ·↗1f(e
(n)
0)↗1f(e

(0)
0)

#1{f(e(0)0); : : : ; f(e(n)0)}
(#1);

where A0 = {e(0)0 ; : : : ; e(n)0 }. By inductive hypothesis e(0)0 ↗0 · · ·↗0e
(n)
0 ↗0e

(0)
0 , and

therefore #A0.

(#2) Let the last rule be

A1 ¡1 f(e0) ∀e1 ∈ A1: #1(f(A′
0) ∪ {e1})

#1(f(A′
0) ∪ {f(e0)}) (#2);

where A0 =A′
0 ∪{e0}.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 177

By inductive hypothesis, from A1¡1f(e0) it follows that

∃A′′
0 ⊆ f−1(A1): A′′

0 ¡0 e0: (†)

Now, for all e′
0 ∈A′′

0 , by (†), f(e′
0)∈A1. Therefore, by the second premise of

the rule above, #1(f(A′
0)∪{f(e′

0)}), namely #1f(A′
0 ∪{e′

0}). Thus, by inductive
hypothesis, #0(A′

0 ∪{e′
0}) for all e′

0 ∈A′′
0 . Recalling that A′′

0¡0e0, by using rule
(#2), we obtain

A′′
0 ¡0 e0 ∀e′

0 ∈ A′′
0 : #0(A

′
0 ∪ {e′

0})
#0(A′

0 ∪ {e0}) (#2);

which is the desired result.
This completes the proof of properties (a)–(c).
It is now easy to conclude that f: I0→ I1 is a IES-morphism. Let Ii= 〈Ei; �◦si 〉 for

i∈{1; 2}. Conditions (1) and (2) of the de6nition of IES-morphism (De6nition 32) are
clearly satis6ed. In fact, by Proposition 36 the relations of causality and con5ict in
Ii and Ii coincide, and thus the mentioned conditions coincide with point (1) in the
hypotheses and point (a) proved above.
Hence it remains to verify condition (3) of De6nition 32, that is

�◦s1({f(e′
0)}; f(e0); A1) ⇒ ∃A0⊆f−1(A1): ∃ a0⊆{e′

0}: �◦s0(a0; e0; A0):

Suppose that �◦s1({f(e′
0)}; f(e0); A1). If A1 �= ∅, by de6nition of Ii, it must be the

case that �◦1({f(e′
0)}; f(e0); A1) and thus the thesis trivially holds by point (4) in

the hypotheses. If instead A1 = ∅ then, by rule (↗ 1), f(e0)↗1f(e
′
0). Hence, by point

(b) proved above, e0↗0e
′
0 and therefore �◦s0({e′

0}; e0; ∅), which satis6es the desired
condition.

A.3. Algebraic properties of the domain of con9gurations of an IES

Proposition 41. Let 〈Ci; ,→Ci〉 for i∈{1; 2} be con9gurations of an IES I .
(1) If e; e′ ∈C1 ∩C2 and e ,→C1 e

′ then e ,→C2 e
′ or e′ ,→∗

C2 e.

(2) If C1 =C2 and ,→∗
C1 ⊆ ,→∗

C2 then ,→C1 = ,→C2 , namely the two con9gurations
coincide.

Proof. (1) Let e; e′ ∈C1 ∩C2 with e ,→C1 e
′. By de6nition of choice, it follows that

�◦C1 ({e′}; e; A) or �◦C1 (a; e
′; A′), with e∈A′. Assume that �◦C1 ({e′}; e; A) and thus

�◦({e′}; e; A′′) with A=A′′ ∩C1 (the other case can be treated in a similar way).
Since e; e′ ∈C2, �◦C2 ({e′}; e; A′′ ∩C2), and thus, by de6nition of choice, also C2 must
choose among the two possible orders of executions, namely e ,→C2 e

′ or e′′ ,→C2 e
for e′′ ∈A′′ ∩C2. In the second case, since by de6nition of IES e′¡e′′, by Proposition
39(2), we have e′ ,→C2 e

′′ and thus e′ ,→∗
C2 e.

(2) If e ,→C1 e
′, by point (1), e ,→C2 e

′ or e′ ,→∗
C2 e. But the second possibility cannot

arise, since e ,→C1 e
′ implies e ,→∗

C1 e
′ and thus e ,→∗

C2 e
′. Vice versa, if e ,→C2 e

′, by

178 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

point (1), e ,→C1 e
′ or e′ ,→∗

C1 e. Again the second possibility cannot arise, otherwise
we would have e′ ,→∗

C2 e, contradicting the acyclicity of ,→C2 .

Lemma 44. Let X ⊆Conf (I) be a pairwise compatible set of con9gurations of an IES

I and let C1; C2 ∈X . Then
1. if e ,→∗

C1 e
′ and e′ ∈C2 then e∈C2 and e ,→∗

C2 e
′;

2. if e∈C1 ∩C2 then C1<e==C2<e=;
3. C1 �C2 =C1 ∩C2, with ,→C1�C2 = ,→C1 ∩ ,→C2 ;
4. the least upper bound of X exists, and it is given by

⊔
X =

〈 ⋃
C∈X

C;
⋃

C∈X
,→C

〉
:

Proof. (1) Let us 6rst suppose that e ,→C1 e
′ and e′ ∈C2. Let C ∈X be an upper bound

for C1 and C2, which exists since X is pairwise compatible. From C1�C, by de6nition
of extension, we have that e; e′ ∈C and e ,→C e′. Recalling that C2�C and e′ ∈C2 we
deduce e∈C2. Since e; e′ ∈C2 =C2 ∩C and e ,→C e′, by Proposition 41(1), it must be
e ,→C2 e

′ or e′ ,→∗
C2 e. The second possibility cannot arise, otherwise we should have

e′ ,→∗
C e, contradicting the acyclicity of ,→C . Hence we can conclude e ,→C2 e

′.
In the general case in which e ,→∗

C1 e
′ the desired property is easily derived via an

inductive reasoning using the above argument.

(2) Immediate consequence of point (1).

(3) To show that ,→C1�C2 = ,→C1 ∩ ,→C2 is a choice for C1 ∩C2, the only non-trivial
point is the proof of condition (1) of De6nition 38. Suppose that �◦C1 ∩ C2 (a; e; A),
namely �◦(a; e; A′) with a⊆C1 ∩C2 and A=A′ ∩ (A1 ∩A2). Hence �◦C1 (a; e; A

′ ∩C1)
and thus either e ,→C1 e

′ for e′ ∈ a or e′′ ,→C1 e with e′′ ∈A′ ∩C1. Being C1 and C2
compatible, by Lemma 44(1) it must be e ,→C2 e

′, or e′′ ∈A′ ∩C2 and e′′ ,→C2 e, re-
spectively. Therefore, as desired, e ,→C1�C2 e

′ or e′′ ∈A with e′′ ,→C1�C2 e.
Hence C1 ∩C2 is a con6guration. Moreover, it is the greatest lower bound of C1

and C2 as one can check via a routine veri6cation using Lemma 44(1).

(4) Let us verify that ,→⊔
X =

⋃
C∈X ,→C is a choice for

⋃
X . First, it is easy to

see that ,→⊔
X ⊆ choices(

⋃
X).

As for condition (1) of the de6nition of choice, suppose that �◦⋃X (a; e; A), namely

�◦(a; e; A′) with a⊆⋃
X and A=A′ ∩⋃

X . Since a; {e}⊆⋃
X we can 6nd C; C′ ∈X

such that a⊆C and e∈C′. Moreover, being X pairwise compatible, there is C′′ ∈X ,
upper bound of C and C′, containing both a and e. Therefore �◦C′′(a; e; A′ ∩C′′), and
thus by de6nition of choice e ,→C′′ e′ for e′ ∈ a or e′′ ,→C′′ e for e′′ ∈A′ ∩C′′. It follows
that, as desired, e ,→⊔

X e′ or (e′′ ∈⋃
X and) e′′ ,→⊔

X e.
The relation ,→⊔

X is acyclic since Lemma 44(1) implies that a cycle of ,→⊔
X in⋃

X should be entirely inside a single con6guration C ∈X . Furthermore it is easily
seen that given an event e∈⋃

X , (
⋃

X)<e==C<e=, for any C ∈X such that e∈C.
Therefore (

⋃
X)<e= is surely 6nite.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 179

Hence ,→⊔
X is a choice and thus

⊔
X is a con6guration. A routine veri6cation,

using Lemma 44(1) allows one to conclude that
⋃

X is the least upper bound of X .

Lemma 46. Let f: I0→ I1 be an IES-morphism and let 〈C0; ,→0〉 ∈Conf (I0). Then
the pair 〈C1; ,→1〉 with C1 = f(C0) and ,→1 =f(,→0)∩ choices(f(C0)), namely the
unique choice relation on C1 included in f(,→C0), is a con9guration in I1. Moreover
the function f∗: Conf (I0)→Conf (I1) which associates to each con9guration C0 the
con9guration C1 de9ned as above, is a domain morphism.

Proof. To prove that ,→1 is a choice for f(C0) and thus 〈f(C0); ,→1〉 is a con6gura-
tion, 6rst observe that ,→1⊆ choices(C1) by de6nition.
Let us verify the validity of condition (1) in the de6nition of choice (De6nition 38).

Assume that �◦f(C0)(a1; f(e0); A1). This means that �◦1(a1; f(e0); A′
1) with a1⊆f(C0)

and A1 =A′
1 ∩f(C0). We distinguish two cases according to the shape of a1:

• If a1 = ∅, and thus A′
1¡f(e0), by condition (2) in the de6nition of IES-morphism it

follows that there exists A0⊆f−1(A′
1) such that A0¡e0. Since e0 ∈C0, by Propo-

sition 39(1), A0 ∩C0 is non-empty (precisely, it is a singleton). Take e′′
0 ∈A0 ∩C0.

By rule (↗ 2), e′′
0 ↗ e0 and thus, by Proposition 39(2), we have e′′

0 ,→0 e0. Hence,
by construction, f(e′′

0) ,→1 f(e0). Notice that f(e′′
0)∈A′

1 ∩f(C0)=A1.
• If a1 = {f(e′

0)}, then by condition (3) in the de6nition of IES-morphism we can 6nd
a0⊆{e′

0} and A0⊆f−1(A′
1) such that �◦0(a0; e0; A0).

If a0 = ∅ we proceed as in the previous case. If instead a0 = {e′
0} then, by de6nition

of choice e0 ,→0 e′
0 or e

′′
0 ,→0 e0 for e′′

0 ∈A0. Therefore f(e0) ,→1 f(e′
0) or f(e

′′
0) ,→1

f(e0) (and observe that f(e′′
0)∈A1).

As for condition (2), to show that ,→1 is acyclic, 6rst observe that a IES-morphism
is injective on a con6guration. In fact, if e0; e′

0 ∈C0 and f(e0)=f(e′
0) then e0 = e′

0
or e0#e′

0. But, by Proposition 39(3), the second possibility cannot arise. Now, if there
were a cycle of ,→1 then, by the above observation and by de6nition of ,→1, a cycle
should have been already present in ,→0, contradicting the hypothesis that C0 is a
con6guration.
Finally, observe that also condition (3) holds, since by an analogous reasoning, the

6nitariness of the choice in C0 implies the 6nitariness of the choice in f(C0).

Let us show that f∗: Conf (I0)→Conf (I1) is a morphism in Dom.
• If C and C′ are compatible then f∗(C �C′)=f∗(C)�f∗(C′).
Recalling how the greatest lower bound of con6gurations is computed (see
Lemma 44(3)), we have that

f∗(C � C′) = 〈f(C ∩ C′); f(,→C ∩ ,→C′) ∩ choices(f(C ∩ C′))〉;
while

f∗(C) � f∗(C′)

= 〈f(C); f(,→C) ∩ choices(f(C))〉 � 〈f(C′); f(,→C′) ∩ choices(f(C′))〉
= 〈f(C) ∩ f(C′); f(,→C) ∩ f(,→C′) ∩ choices(f(C)) ∩ choices(f(C′))〉:

180 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

Observe that f is injective on C ∪C′ since C and C′ have an upper bound C′′, and,
as already observed, f is injective on con6gurations. By using this fact, we can de-
duce that f(C)∩f(C′)=f(C ∩C′), f(,→C)∩f(,→C′)=f(,→C ∩ ,→C′). Moreover
it is easy to see that choices(C ∩C′)= choices(C)∩ choices(C′) holds in general.
Therefore we conclude that f∗(C �C′)=f∗(C)�f∗(C′).

• f∗(
⊔

X)=
⊔

f∗(X), for X ⊆Conf (I0) pairwise compatible.
Keeping in mind the characterisation of the least upper bound given in Lemma 44(4),
we obtain

⊔
f∗(X)

= 〈⋃ {f(C) |C ∈ X };⋃{f(,→C) ∩ choices(f(C)) |C ∈ X }〉
= 〈f (⋃X) ; f (

⋃ {,→C |C ∈ X }) ∩ choices (f (
⋃

X))〉
= f∗ (〈⋃X;

⋃ {,→C |C ∈ X }〉)
= f∗ (

⊔
X) :

To understand the second passage observe that
⋃{f(,→C) ∩ choices(f(C)) |C ∈ X } (by set-theoretical properties)

⊆ ⋃ {f(,→C) |C ∈ X } ∩ ⋃ {choices(f(C)) |C ∈ X }
(by de6nition of choices)

⊆ f (
⋃ {,→C |C ∈ X }) ∩ choices (f (

⋃
X)) :

Therefore Proposition 41(2) and the equality
⋃ {f(C) |C ∈X }=f(

⋃
X) allow us

to conclude.
• C ≺C′ implies f∗(C)4f∗(C′).
This property immediately follows from the observation that, as in the case of AESs,
C ≺C′ iD C �C′ and |C′ − C|=1.

Theorem 48. The functor Pi: Dom→ IES is left adjoint to Li: IES→Dom. The
counit of the adjunction at an IES I is the function ,I : Pi ◦Li(I)→ I , mapping each
history of an event e into the event e itself, i.e., ,I (C<e=)= e, for all C ∈Conf (I) and
e∈C.

Proof. Let I be an IES and let ,I : Pi(Li(I))→ I be the function de6ned as ,I (C<e=)= e,
for all C ∈Conf (I) and e∈C. Let us prove that ,I is a well-de6ned IES-morphism by
showing that ,I satis6es conditions (1)–(3) of De6nition 32.
1. ,I (C<e=)= ,I (C′<e′=)∧C<e= �=C′<e′=⇒C<e=#C′<e′=.
Assume that ,I (C<e=)= ,I (C′<e′=), namely e= e′, and C<e= �=C′<e′=. By Lemma 44(2)
it follows that there is no upper bound for {C; C′}. In fact, if there were an upper
bound C′′ then necessarily C<e==C′′<e==C′<e=. Hence e#e′.

2. A1¡,I (C<e=)⇒∃A0⊆ ,−1I (A1): A0¡C<e=.
Let us assume A1¡,I (C<e=)= e. Since e∈C, by Proposition 39(1), A1 ∩C = {e′}
for some e′. Moreover, since e′ ∈A1¡e, by rule (↗ 2), e′ ↗ e and thus, by Propo-
sition 39(2) and the de6nition of history, e′ ∈C<e=.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 181

By point (1) of Lemma 44, one easily derives that C<e′=�C<e=. Therefore, accord-
ing to the de6nition of Pi, C<e′=¡C<e= and since e′ ∈A1, {C<e′=}⊆ ,−1I (A1).

3. �◦({,I (C′<e′=)}; ,I (C<e=); A1)⇒∃A0⊆,−1I (A1): ∃a0⊆{C′<e′=}: �◦(a0; C<e=; A0).
Assume �◦({,I (C′<e′=)}; ,I (C<e=); A1), namely

�◦({e′}; e; A1):
If ¬(C<e= ↑C′<e′=) then, by de6nition of Pi, C<e=#C′<e′= and thus C<e=↗C′<e′=. Hence
�◦({C′<e′=}; C<e=; ∅), which clearly satis6es the desired condition.
Suppose, instead, that C<e= ↑C′<e′=. We distinguish two subcases:
• If e′ ∈C<e= then A1 ∩C<e= �= ∅. Indeed, being C<e= a con6guration, A1 ∩C<e= must
be a singleton {e′′}. As above, by Lemma 44(2), C<e′′=�C<e= and thus, by
de6nition of Pi, C<e′′=¡C<e=. Therefore �◦(∅; C<e=; {C<e′′=}), which allows us to
conclude, since e′′ ∈A1 implies {C<e′′=}⊆ ,−1I (A1).

• Assume e′ =∈C<e=. Consider a con6guration C′′, upper bound of C<e= and C′<e′=,
which exists by assumption. Since e; e′ ∈C′′ it must be e ,→C′′ e′. In fact, oth-
erwise there would be e′′ ∈C′′ ∩A1 and e′′,→C′′e. But then, by Lemma 44(1),
e′′ ∈C<e=, and thus, being e′¡e′′, we would have e′ ∈C<e=, contradicting the
hypothesis.
Therefore, by Lemma 44(1), e∈C′<e′=, and thus C<e=�C′<e′=, implying C<e=¡
C′<e′=. Hence C<e=↗C′<e′=, and therefore �◦({C′<e′=}; C<e=; ∅).

We have to show that given any domain (D;�) and IES-morphism h: Pi(D)→ I ,
there is a unique domain morphism g: D→Li(I) such that the following diagram
commutes:

The morphism g: D→Li(I) can be de6ned as follows. Given d∈D, observe that
Cd= 〈Pr(d);❁Pr(d) 〉 is a con6guration of Pi(D), where ❁Pr(d) =❁∩ (Pr(d)×Pr(d)).
Therefore we can de6ne

g(d) = h∗(Cd):

The fact that h∗(Cd) is a con6guration in I and thus an element of Li(I), follows
from Lemma 46.
Moreover g is a domain morphism. In fact it is

• 4-preserving. By prime algebraicity, d; d′∈D, with d≺d′ then Pr(d′)−Pr(d)={p},
for some p∈Pr(D). Thus

g(d′)− g(d)

= h∗(Pr(d′))− h∗(Pr(d))

⊆ {h(p)}:

182 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

Therefore |g(d′)−g(d)|61 and, since it is easy to see that g(d)� g(d′), we conclude
g(d)4 g(d′).

• Additive. Let X ⊆D be a pairwise compatible set. Then

g (
⊔
X) = h∗(〈CX ; ,→CX 〉) = 〈h(CX); h(,→CX) ∩ choices(h(CX))〉

where CX =Pr(
⊔
X)=

⋃
x∈X Pr(x) and ,→CX =❁CX . On the other hand⊔

x∈X
g(x)

=
⊔
x∈X

h∗(〈Pr(x);❁Pr(x))〉)

=
〈 ⋃

x∈X
h(Pr(x));

⋃
x∈X

(h(❁Pr(x)) ∩ choices(h(Pr(x))))
〉

=
〈
h(CX);

⋃
x∈X

(h(❁Pr(x)) ∩ choices(h(Pr(x))))
〉

:

Now, the choice relation of the con6guration above is included in the choice of the
con6guration g(

⊔
X), namely⋃

x∈X
(h(❁Pr(x)) ∩ choices(h(Pr(x)))) ⊆ h(,→CX) ∩ choices(CX):

Thus by using Proposition 41(2) we can conclude that g(
⊔
X) =

⊔
x∈X g(x).

• Stable. Let d; d′ ∈D with d ↑d′, then

g(d � d′) = h∗(〈C; ,→C〉) = 〈h(C); h(,→C) ∩ choices(h(C))〉;
where C = Pr(d � d′) = Pr(d) ∩ Pr(d′) and ,→C =❁C . Moreover

g(d) � g(d′)

= 〈h(Pr(d)); h(❁Pr(d)) ∩ choices(h(Pr(d)))〉
�〈h(Pr(d′)); h(❁Pr(d′)) ∩ choices(h(Pr(d′)))〉:

Now, since d ↑d′ it is easy to see that h is injective on Pr(d)∪Pr(d′) and therefore
the set of events of g(d)� g(d′) is

h(Pr(d)) ∩ h(Pr(d′)) = h(Pr(d) ∩ Pr(d′)) = h(C);

namely it coincides with the set of events of g(d�d′).
By a similar argument, h(❁Pr(d))∩ h(❁Pr(d′))= h(❁Pr(d)∩Pr(d′))= h(❁C). Moreover,
reasoning as in the proof of Lemma 46, we have

choices(h(Pr(d))) ∩ choices(h(Pr(d′)))

= choices(h(Pr(d)) ∩ h(Pr(d′)))

(since choices(X ∩ Y) = choices(X) ∩ choices(Y))

= choices(h(Pr(d) ∩ Pr(d′))) (by injectivity of h on C)

= choices(h(C))

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 183

and we are able to conclude that also the choice relation in g(d)� g(d′) is the same
as in g(d�d′). In fact

h(❁Pr(d)) ∩ h(❁Pr(d′)) ∩ choices(h(Pr(d))) ∩ choices(h(Pr(d′)))

= h(❁C) ∩ choices(h(Pr(d) ∩ Pr(d′)))

(by injectivity of h on C and remark above)

= h(,→C) ∩ choices(h(C)):

The rest of the proof essentially relies on a general result which holds of any domain
morphism f: D→Li(I) having as target the domain of con6gurations of an IES: for
all p∈Pr(D), |f(p)−⋃

f(Pr(p)− {p})|61 and

Pi(f)(p) =
{⊥ if f(p)−⋃

f(Pr(p)− {p}) = ∅;
f(p)<e= if f(p)−⋃

f(Pr(p)− {p}) = {e}:
Exploiting such result, the fact that morphism g de6ned as above makes the diagram
commute and its uniqueness follow as easy consequences.

A.4. Removing non-executable events from an IES

Proposition 52. Let I0 and I1 be IESs and let f: I0→ I1 be an IES-morphism. Then
.(f) : .(I0)→.(I1), de9ned as in De9nition 51, is an IES-morphism. Hence . is a
well-de9ned functor.

Proof. We start observing that for any IES I and for any e; e′ ∈ (E) and A⊆E
F1. e↗I e

′ ⇒ e↗.(I) e
′;

F2. A¡Ie⇒ (A∩ (E))¡.(I)e;
F3. #IA∧A⊆ (E)⇒ #.(I)A.
Now, note that

f((E0)) ⊆ (E1) (†)

and thus the restriction f| (E0): (E0)→ (E1) is a well-de6ned function. In fact,
if e0 ∈ (E0) then e0 ∈C0 for some con6guration C0 ∈Conf (I0). Hence, if de6ned,
f(e0)∈f(C0) and, by Lemma 46, f∗(C0) is a con6guration of I1. Thus f(e0)∈ (E1).
For i∈{0; 1}, let us denote by �◦i, ¡i, ↗i and #i the relations in Ii, and by

�◦ i , ¡ i , ↗ i
and # i the relations in 〈 (Ei); �◦ (Ei)〉, the pre-IES which, when sat-

urated, gives the IES .(Ii). To show that .(f) :.(I0)→.(I1) is an IES-morphism
we verify that .(f): 〈 (E0); �◦ (E0)〉→ 〈 (E1); �◦ (E1)〉 satis6es conditions (1)–(4) of
Lemma 37, namely
1. .(f)(e0)=.(f)(e′

0)∧ e0 �= e′
0⇒ e0# 0e

′
0;

2. �◦ 1 (∅; .(f)(e0); A1)⇒∃A0⊆.(f)−1(A1): A0¡ 0e0;
3. �◦ 1 ({.(f)(e′

0)}; .(f)(e0); ∅)⇒ e0↗ 0e
′
0;

4. �◦ 1 ({.(f)(e′
0)}; .(f)(e0); A1)∧A1 �= ∅⇒

∃A0⊆.(f)−1(A1): ∃a0⊆{e′
0}: �◦ 0 (a0; e0; A0).

184 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

To lighten the notation let f′ denote .(f), i.e., the restriction f| (E0).
1. If f′(e0)=f′(e′

0) and e0 �= e′
0, since f: I0→ I1 is an IES-morphism, it must be the

case that e0#0e′
0. Hence, by Fact (F3) above, e0# 0e

′
0.

2. Assume that �◦ 1 (∅; f′(e0); A1). By de6nition of .(I1), recalling that f′(e0)=f(e0),
we have �◦1(∅; f(e0); A′

1), with A1 =A′
1 ∩ (E1). Since, by de6nition of IES, #pA′

1,
we can apply rule (¡1), thus obtaining

�◦1(∅; f(e0); A′
1) #pA′

1

A′
1¡1f(e0)

(¡ 1):

By de6nition of morphism, there exists A′
0⊆f−1(A′

1) such that A′
0¡0e0. If we

de6ne A0 =A′
0 ∩ (E0) then, by Fact (F1) above, A0¡ 0e0 and, by the property (†)

above, A0⊆f
′−1(A1).

3. Assume that �◦ 1 ({f′(e′
0)}; f′(e0); ∅). By de6nition of �◦ 1 and recalling that f

′ is
the restriction of f, it must be the case that �◦1({f(e′

0)}; f(e0); A1) with A1 ∩ (E1)
= ∅. Hence, by de6nition of morphism, there exist a0⊆{e′

0} and A0⊆f−1(A1) such
that �◦0(a0; e0; A0). Since A1 ∩ (E1)= ∅, we deduce that A0 ∩ (E0)= ∅. Moreover,
recalling that e0 ∈ (E0), namely it is executable, necessarily a0 = {e′

0}. Therefore
�◦ 0 ({e′

0}; e0; ∅), and thus e0↗ 0e
′
0.

4. Assume that �◦ 1 ({f′(e′
0)}; f′(e0); A1) with A1 �= ∅. Then, by de6nition of �◦ 1 , we

must have

�◦1({f(e′
0)}; f′(e0); A′

1);

where A1 =A′
1 ∩ (E1). By de6nition of IES-morphism, there must exist A′

0⊆
f−1(A′

1) and a0⊆{e′
0} such that �◦0(a0; e0; A′

0).
If we de6ne A0 =A′

0 ∩ (E0), then by de6nition of �◦ 0 , we have �◦ 0 (a0; e0; A0)
and, by the property (†) proved above, A0⊆f′−1(A1).

A.5. Event structure semantics for i-nets

Proposition 56. Let N0 and N1 be occurrence i-nets and let h: N0→N1 be an i-net
morphism. Then hT : IN0 → IN1 is a IES-morphism.

Proof. For i∈{0; 1}, let ¡i, ↗i and #i be the relations of causality, asymmetric
con5ict and con5ict in the pre-IES IpNi

= 〈Ei; �◦p〉. We show that hT : I
p
0 → Ip1 satis6es

conditions (1)–(4) in the hypotheses of Lemma 37 and thus hT is an IES-morphism
between the corresponding “saturated” IESs:
1. hT (t0)= hT (t′0)∧ t0 �= t′0⇒ t0#0t′0.
This property can be proved exactly as for ordinary nets.

2. �◦p1 (∅; hT (t0); A1)⇒∃A0⊆ h−1
T (A1): A0¡0t0.

Let us assume �◦p1 (∅; hT (t0); A1). By the de6nition of �◦p1 we can have
(a) A1 = {t1} and t1• ∩ •hT (t0) �= ∅.
Consider s1 ∈ t1• ∩ •hT (t0). By Lemma 59 there must exist s0 ∈ t0 such that hS(s0; s1),
and t′0 ∈T0 such that hT (t′0)= t1 and s0 ∈ t′0

•. By de6nition of �◦p0 , if we de6ne

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 185

A0 = {t′0}, it follows that �◦p0 (∅; t0; A0), and thus by rule (¡1), A0¡t0. Recalling
that t′0 ∈ h−1

T (t1) and thus A0⊆ h−1
T (A1) we conclude.

(b) A1 = {t1} and t1• ∩ hT (t0) �= ∅.
Analogous to case (a).

(c) ∃s1 ∈ ©◦hT (t0): •s1 = ∅∧ s1•=A1.
Since •s1 = ∅, namely s1 is in the initial marking m1 of N1, by de6nition of i-net
morphism, there exists a unique s0 ∈m0 such that hS(s0; s1). Again, by de6nition
of i-net morphism, from s1 ∈ ©◦hT (t0) and hS(s0; s1) it follows that s0 ∈ ©◦t0. Hence
�◦p0 (

•s0; t0; s0•), namely, recalling that s0 ∈m0:

�◦p0 (∅; t0; s0•):

Therefore, by rule (¡1), we have s0•¡0t0. Observe that, by condition (2a) in the
de6nition of i-net morphisms, hT (s0•)⊆ s1• and, since hS(s0; s1), necessarily h is
de6ned on each t′0 ∈ s0•. Thus s0• ⊆ h−1

T (s1•) concluding the proof for this case.
3. �◦p1 ({hT (t′0)}; hT (t0); ∅)⇒ t0↗0t

′
0.

By de6nition of �◦p1 , we can have
(a) (•hT (t0)∪ hT (t0))∩ •hT (t′0) �= ∅.
Let s1 ∈ (•hT (t0)∪ hT (t0))∩ •hT (t′0). If s1 is in the initial marking then, by the
de6nition of i-net morphisms, one easily deduces that there exists a unique place
s0 ∈ S0 such that hS(s0; s1) and moreover s0 ∈ (•t0 ∪ t0)∩ •t′0. Therefore, by de6nition,
�◦p0 ({t′0}; t0; ∅) and thus, by rule (↗1), t0↗0t

′
0.

Suppose instead that s1 =∈m1. If (•t0 ∪ t0)∩ •t′0 �= ∅ then we conclude as above. Oth-
erwise, one easily deduces that t0#0t′0, and therefore, by rule (↗3), we can conclude
t0↗0t

′
0.

(b) ∃s1 ∈ hT (t′0)
• ∩ ©◦hT (t0)∧ s1•= ∅.

By condition (2c) in the de6nition of i-net morphism (De6nition 3), there must
be s0 ∈ t′0

• such that hS(s0; s1). By condition (2d) in the same de6nition, s0 ∈ ©◦t0.
Observing that necessarily s0•= ∅, we conclude �◦p0 ({t′0}; t0; ∅) and thus t0↗0t

′
0.

4. �◦p1 ({hT (t′0)}; hT (t0); A1)∧A1 �= ∅⇒∃A0⊆ h−1
T (A1): ∃a0⊆{t′0}: �◦p0 (a0; t0; A0).

Assume �◦p1 ({hT (t′0)}; hT (t0); A1) and A1 �= ∅. Thus, by de6nition of �◦p1 there is
a place s1 ∈ ©◦hT (t0)∩ hT (t′0)

• such that A1 = s1•. Hence there is s0 ∈ t′0
• such that

hS(s0; s1). By condition (2a) in the de6nition of i-net morphism hT (s0•)⊆ s1•=A1
and necessarily hT is de6ned on each t′′0 ∈ s0•. Therefore

s0• ⊆ h−1
T (A1):

Since s1 ∈ ©◦hT (t0) and hS(s0; s1), by condition (2d) in the de6nition of i-net mor-
phism, s0 ∈ ©◦t0. Hence we conclude that, as desired, �◦N0 ({t′0}; t0; s0•).

Lemma 60. Let P be a PES, let N0 be an occurrence i-net and let hT : Ji(P)→Ei(N0)
be an IES-morphisms. Then there exists a unique hS such that h= 〈hT ; hS〉: Ni(P)→N0
is an i-net morphism.

186 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

Proof. Consider the contextual net Ric(Ni(P)), obtained from Ni(P) by removing
the inhibitor arcs. Then there exists a unique hS such that h= 〈hT ; hS〉: Ric(Ni(P))→
Ric(N0) is a contextual net morphism. The relation hS is de6ned by taking the con-
ditions of Lemma 59 specialised to the net Ni(P), that is, for all s= 〈x; A; B〉 ∈ S and
s0 ∈ S0:

hS(s; s0) iD ((x = ∅ ∧ s0 ∈ m0) ∨ (x = {t} ∧ s0 ∈ hT (t)•))

∧B = h−1
T (s0•) ∩ &x'

∧A = h−1
T (s0) ∩ &x':

This can be proved along the same lines of Theorem 7.3 in [6].
Therefore, to conclude the validity of the thesis we only need to prove that h, seen

as a morphism h= 〈hT ; hS〉: Ni(P)→N0, is a well-de6ned i-net morphism. To this
aim, observe that h: Ric(Ni(P))→Ric(N0) is a c-net morphism and thus it satis6es
conditions (1), (2a)–(2c) of De6nition 3. Hence it remains only to verify the validity
of condition (2d), i.e., that for all e∈T , h−1

S (©◦hT (e))⊆ ©◦e. Let s= 〈x; A; B〉∈ S and
assume s∈ h−1

S (©◦hT (e)), namely that there exists s0 ∈ ©◦hT (e) such that hS(s; s0). We
distinguish two cases:
(x= ∅). In this case, in Ei(N0) we have �◦(∅; hT (e); s0•) and thus s0•¡hT (e). Since
hT is an IES-morphism, there exists X ⊆ h−1

T (s0•) such that X¡e. By de6nition of hS

we have h−1
T (s0•)=B and thus, by de6nition of Ni, e∈ ©◦s, namely s∈ ©◦e

(x= {e′}). In this case •s= {e′}. Hence, by Lemma 59,
•s0 = hT (•s) = {hT (e′)}

and thus �◦({hT (e′)}; hT (e); s0•) in Ei(N0). Therefore, by de6nition of IES-morphism,
there exist y⊆{e′} and X ⊆ h−1

T (s0•) such that �◦(y; e; X) in Ji(P). Since P is a PES

we have two possibilities:
(i) X = {e′′}, y= ∅, and thus e′′¡e.

Since e′′ ∈ h−1
T (s0•), we have hT (e′)¡hT (e′′) and thus, by Proposition 33, e′¡e′′

or e′#e′′. In the 6rst case e′′ ∈B and thus e∈ ©◦s, while, in the second case, e′#e,
and thus �◦({e′}; e; ∅), implying (since ∅⊆B) that e∈ ©◦s.

(ii) X = ∅.
Since trivially X ⊆B, by de6nition of Ni we have e∈ ©◦s.

Lemma 61. For any PES P, the identity over the events "P: Ji(P)→Ei(Ni(P)) is an
IES-isomorphism.

Proof. We 6rst observe that 0P is a well-de6ned IES-morphism. To this aim we prove
that the identity, seen as a mapping from Ji(P) to the pre-IES associated to Ni(P)
(whose DE-relation is denoted as �◦N) satis6es the conditions of Lemma 37. Condi-
tion (1) trivially holds, while (2)–(4) are discussed below, where the subscript P is
used to refer to the dependency relations of Ji(P).

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 187

2. �◦N (∅; e; A)⇒∃A′ ⊆A: A′¡Pe.
Let �◦N (∅; e; A). We distinguish two possibilities. If A= {e′} and e′• ∩ (•e∪ e) �= ∅
in Ni(P), then e′¡Pe. Otherwise, there is place s in Ni(P) such that e∈ ©◦s and
A= s•. Thus, by de6nition of Ni, there is e′ ∈A such that e′¡Pe.

3. �◦N ({e′}; e; ∅)⇒ e↗Pe
′.

Let �◦N ({e′}; e; ∅). This triple is generated in two cases. The 6rst one is that
(•e∪ e)∩ •e′ �= ∅ in the net Ni(P) and thus e↗Pe

′. Otherwise there must exist
s∈ ©◦e, with •s= {e′} and s•= ∅. Hence, by de6nition of I (see De6nition 58),
e↗Pe

′.
4. �◦N ({e′}; e; A)∧A �= ∅⇒∃A′ ⊆A:∃a⊆{e′}: �◦P(a; e; A′).
Let �◦N ({e′}; e; A) and A �= ∅. Therefore there exists a place s in Ni(P), with
•s= {e′}, e∈ ©◦s and A= s•. Hence, by de6nition of I (see De6nition 58), there are
two possibilities:
• ∃e′′ ∈ x: e↗e′′. Since x= {e′} this implies e↗ e′ and thus �◦P({e′}; e; ∅).
• ∃e′′ ∈A: e′′ ¡e. Hence �◦P(∅; e; {e′′}).
Observe that in both cases we can conclude the existence of A′ ⊆ s•=A (possibly
empty) and a⊆{e′} such that �◦P(a; e; A′).

A similar reasoning shows that the identity on events is a morphism also from
Ei(Ni(P)) to P. Hence "P is an isomorphism.

References

[1] T. Agerwala, A complete model for representing the coordination of asynchronous processes, Hopkins
Computer Research Report 32, John Hopkins University, 1974.

[2] T. Agerwala, M. Flynn, Comments on capabilities, limitations and “correctness” of Petri nets, Comput.
Archit. News 4 (2) (1973) 81–86.

[3] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, G. Franceschinis, Modelling with Generalized
Stochastic Petri Nets, Wiley, New York, 1995.

[4] P. Baldan, Modelling concurrent computations: from contextual Petri nets to graph grammars, Ph.D.
Thesis, Department of Computer Science, University of Pisa, 2000. Available as Technical Report No.
TD-1/00.

[5] P. Baldan, N. Busi, A. Corradini, G.M. Pinna, Functorial concurrent semantics for Petri nets with read
and inhibitor arcs, in: C. Palamidessi (Ed.), CONCUR’00 Conference Proceedings, Lecture Notes in
Computer Science, Vol. 1877, Springer, Berlin, 2000, pp. 442–457.

[6] P. Baldan, A. Corradini, U. Montanari, Contextual Petri nets, asymmetric event structures and processes,
Inform. and Comput. 171 (1) (2001) 1–49.

[7] G. Boudol, Flow event structures and 5ow nets, in: Semantics of System of Concurrent Processes,
Lecture Notes in Computer Science, Vol. 469, Springer, Berlin, pp. 62–95.

[8] F. Bueno, M. Hermenegildo, U. Montanari, F. Rossi, Partial order and contextual net semantics for
atomic and locally atomic CC programs, Sci. Comput. Programming 30 (1998) 51–82.

[9] N. Busi, Petri nets with inhibitor and read arcs: semantics, analysis and application to process calculi,
Ph.D. Thesis, Department of Computer Science, University of Siena, 1998.

[10] N. Busi, R. Gorrieri, A petri nets semantics for �-calculus, in: Proceedings of CONCUR’95, Lecture
Notes in Computer Science, Vol. 962, Springer, Berlin, 1995, pp. 145–159.

[11] N. Busi, R. Gorrieri, G. Zavattaro, On the expressiveness of Linda coordination primitives, Inform. and
Comput. 156 (2000) 90–121.

[12] N. Busi, G.M. Pinna, Process semantics for place/transition nets with inhibitor and read arcs, Fundam.
Inform. 40 (2–3) (1999) 165–197.

188 P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189

[13] S. Christensen, N.D. Hansen, Coloured Petri nets extended with place capacities, test arcs and inhibitor
arcs, in: M. Ajmone-Marsan (Ed.), Applications and Theory of Petri Nets, Lecture Notes in Computer
Science, Vol. 691, Springer, Berlin, 1993, pp. 186–205.

[14] N. De Francesco, U. Montanari, G. Ristori, Modeling concurrent accesses to shared data via petri nets,
in: Programming Concepts, Methods and Calculi, IFIP Transactions A-56, North Holland, Amsterdam,
1994, pp. 403–422.

[15] J. Esparza, Model checking using net unfoldings, Sci. Comput. Programming 23 (2–3) (1994)
151–195.

[16] J.A. Goguen, J. Meseguer, Security policies and security models, in: Proc. 1982 IEEE Symp. on Security
and Privacy, IEEE Computer Society, Silver Spring, MD, 1982, pp. 11–20.

[17] J. Gunawardena, Geometric logic, causality and event structures, in: J.C.M. Baeten, J.F. Groote (Eds.),
Proc. CONCUR’91, Lecture Notes in Computer Science, Vol. 527, Springer, Berlin, 1991, pp. 266–
280.

[18] V. Gupta, Chu spaces: a model for concurrency, Ph.D. Thesis, Stanford University, Department of
Computer Science, August 1994.

[19] M. Hack, Petri net languages, Technical Report 159, MIT, Cambridge, MA, 1976.
[20] P.W. Hoogers, H.C.M. Kleijn, P.S. Thiagarajan, An event structure semantics for general Petri nets,

Theoret. Comput. Sci. 153 (1–2) (1996) 129–170.
[21] R. Janicki, M. Koutny, Semantics of inhibitor nets, Inform. and Comput. 123 (1995) 1–16.
[22] J. Kleijn, M. Koutny, Process semantics of P/T-nets with inhibitor arcs, in: M. Nielsen, D. Simpson

(Eds.), ICATPN 2000, Lecture Notes in Computer Science, Vol. 1825, 2000, pp. 261–281.
[23] J. Kleijn, M. Koutny, Causality semantics of petri nets with weighted inhibitor arcs, in: L. Brim,

P. Jancar, M. KretWRnskWy, A. Kucera (Eds.), CONCUR 2002, Lecture Notes in Computer Science, Vol.
2421, Springer, Berlin, 2002, pp. 531–546.

[24] R. Langerak, Bundle event structures: a non-interleaving semantics for lotos, in: 5th Internat. Conf. on
Formal Description Techniques (FORTE’92), North-Holland, Amsterdam, 1992, pp. 331–346.

[25] R. Langerak, Transformation and semantics for LOTOS, Ph.D. Thesis, Department of Computer Science,
University of Twente, 1992.

[26] K.L. McMillan, Symbolic Model Checking, Kluwer, Dordrecht, 1993.
[27] J. Meseguer, U. Montanari, V. Sassone, On the semantics of petri nets, in: Proc. CONCUR ’92, Lecture

Notes in Computer Science, Vol. 630, Springer, Berlin, 1992, pp. 286–301.
[28] J. Meseguer, U. Montanari, V. Sassone, Process versus unfolding semantics for place/transition petri

nets, Theoret. Comput. Sci. 153 (1–2) (1996) 171–210.
[29] U. Montanari, F. Rossi, Contextual occurrence nets and concurrent constraint programming, in: H.-J.

Schneider, H. Ehrig (Eds.), Proc. Dagstuhl Seminar 9301 on Graph Transformations in Computer
Science, Lecture Notes in Computer Science, Vol. 776, Springer, Berlin, 1994.

[30] U. Montanari, F. Rossi, Contextual nets, Acta Inform. 32 (6) (1995) 545–596.
[31] M. Nielsen, G. Plotkin, G. Winskel, Petri nets, event structures and domains, Part 1, Theoret. Comput.

Sci. 13 (1981) 85–108.
[32] J.L. Peterson, Petri net theory and the modelling of systems, Prentice-Hall, Englewood CliDs, NJ, 1981.
[33] C.A. Petri, Kommunikation mit Automaten, Ph.D. Thesis, Schriften des Institutes fQur Instrumentelle

Matematik, Bonn, 1962.
[34] G.M. Pinna, A. PoignWe, On the nature of events, in: Proc. of MFCS’92, Lecture Notes in Computer

Science, Vol. 629, Springer, Berlin, 1992, pp. 430–441.
[35] G.M. Pinna, A. PoignWe, On the nature of events: another perspective in concurrency, Theoret. Comput.

Sci. 138 (2) (1995) 425–454.
[36] W. Reisig, Petri Nets: An Introduction, EACTS Monographs on Theoretical Computer Science, Springer,

Berlin, 1985.
[37] G. Ristori, Modelling systems with shared resources via petri nets, Ph.D. Thesis, Department of

Computer Science, University of Pisa, 1994.
[38] R.J. van Glabbeek, G.D. Plotkin, Con6guration structures, in: D. Kozen (Ed.), Proc. 10th Annu. IEEE

Symp. on Logic in Computer Science, IEEE Computer Society Press, Silver Spring, MD, June 1995,
pp. 199–209.

P. Baldan et al. / Theoretical Computer Science 323 (2004) 129–189 189

[39] W. Vogler, EEciency of asynchronous systems and read arcs in Petri nets, in: Proc. ICALP’97, Lecture
Notes in Computer Science, Vol. 1256, Springer, Berlin, 1997, pp. 538–548.

[40] W. Vogler, A. Semenov, A. Yakovlev, Unfolding and 6nite pre6x for nets with read arcs, in: Proc.
CONCUR’98, Lecture Notes in Computer Science, Vol. 1466, Springer, Berlin, 1998, pp. 501–516.

[41] G. Winskel, Event structures, in: Petri Nets: Applications and Relationships to Other Models of
Concurrency, Lecture Notes in Computer Science, Vol. 255, Springer, Berlin, 1987, pp. 325–392.

	Domain and event structure semanticsfor Petri nets with read and inhibitor arcs
	The category of inhibitor nets
	Occurrence i-nets and the unfolding constructions
	Lifting the unfolding from contextual to inhibitor nets
	Executable occurrence i-nets

	Prime and asymmetric event structures, and their relation with domains
	Prime event structures and domains
	Prime event structures.
	Prime algebraic domains
	Relating prime event structures and domains

	Asymmetric event structures and domains

	Inhibitor event structures
	The category of inhibitor events structures
	Saturation of pre-IESs
	The domain of configurations of inhibitor event structures
	A coreflection between IES and Dom
	Removing non-executable events

	Event structure semantics for i-nets
	From occurrence i-nets to IESs and PESs
	From prime event structures to occurrence i-nets
	From IESs to i-nets: a negative result

	Conclusions
	Acknowledgements
	Appendix A. Full proofs of results in the paper
	Categories of i-nets
	Basic results on IESs
	Algebraic properties of the domain of configurations of an IES
	Removing non-executable events from an IES
	Event structure semantics for i-nets

	References

