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COMMUN. IN PARTIAL DIFFERENTIAL EQUATIONS, 17(5&6), 989-999 (1992) 

VANISHING THEOREM FOR SHEAVES OF 
MICROFUNCTIONS AT THE BOUNDARY 

ON CR-MANIFOLDS 

Dipartimento di Matematica 
UniversitA di Padova 

via Belzoni 7 
35131 Padova, Italy 

Abstract. Let X be a complex analytic manifold. Consider S C M C X,  
real analytic submanifolds with codimES = 1, and let fl be a connected 
component of M \ S. Let p E S X M  TGX, where T&X denotes the conormal 
bundle to M in X ,  and denote by v ( p )  the complex radial Euler field at 
p. Denote by p,(Ox) (for * = M, SZ) the microlocalization of the sheaf of 
holomorphic functions along *. 
Under the assumption dimR(TpT&X n v(p)) = 1, a theorem of vanishing for 
the cohomology groups H J ~ ~ ( O ~ ) ~  is proved in [K-S 1, Prop. 11.3.11, j 
being related to the number of positive and negative eigenvalues for the Levi 
form of M. 
Under the hypothesis d i m R ( ~ p ~ ; ~ n v ( p ) )  = 1, a similar result is proved here 
for the cohomology groups of the complex of microfunctions at the boundary 
p ~ ( O x ) .  Stating this result in terms of regularity at the boundary for CR- 
hyperfuntions a local Bochner-type theorem is then obtained. 

For the content of this section, we refer to [S I] and IK-S 21. 

1.1. Let X be a complex analytic manifold and M c X a real analytic 
submanifold. One denotes by .rr : T*X -, X the cotangent bundle to X, by 

Copyright O 1992 by Marcel Dekker, Inc. 
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ir : T*X --+ X the cotangent bundle with the zero section removed, and by 
T 2 X  the conormal bundle to M in X. One denotes by cr the canonical one- 
form on T*X  and sets a =da. A complex analytic submanifold A c T * X  is 
calIed Lagrangian if it is so for the homogeneous symplectic structure induced 
by a on T * X .  Let aR, ol, be twice the real and imaginary part of a .  These 
are symplectic forms on the real underlying manifold to T * X .  A real analytic 
submanifold A' is called R-Lagrangian if it is so for the symplectic structure 
given by a R .  If A' is R-Lagrangian, one says that A' is I-symplectic if allnt 

is non-degenerate. 

1.2. For p E T&X,  we use the following notations: 

E = the space TpT*X endowed with the linear symplectic structure 
given by the two-form a ,  

u(p) = the complex Euler radial field at p, 
Xo(P) = T,(+.rr(P)), 

XM(P) = TpT&X. 

We sometimes write v, Xo and A M  instead of v ( p ) ,  Xo(p) and XM(p) respec- 
tively, for short. 

If p c E is an isotropic subspace of E, one denotes by E P  the space pL/p 
endowed with the symplectic structure induced by a (here pL denotes the 
orthogonal to p with respect to a ) .  For X C E a real subspace, one sets 
XP = ((A n pL) + p)/p c E ~ .  

Let X c E be an R-Lagrangian plane. For p = X n iX, one denotes by LxOlx 
the Hermitian form on X i  defined for (u,v) E X: x X r  by L x o l x ( ~ , v )  = 
aP(u,v), where C is the complex conjugate of v with respect to the isomor- 
phism C @R Xp Z Ep. One can easily see that Lxolx is non-degenerate on 
g / ( ~  n 
The numbers s+(M,p), s-(M,p), of positive and negative eigenvalues for 
LxOlx,, are given by the relations: 

where T(., ., -) denotes the inertia index of three Lagrangian planes. 

One also introduces 

We sometimes write s*(M) and 7(M) instead of sf (M,p) and r(M,p)  re- 
spectively, for short. 

One has the following result: 

PROPOSITION 1 .l. (Cf [D'A-Z], [S-TI) s+(M), s-(M) are the numbers of 
positive and negative eigenvalues of the Levi form of M.  
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1.3. One denotes by Db(X) the derived category of the category of bounded 
complexes of sheaves of C-vector spaces and by Db(X; p) the localization of 
Db(X) at p E T'X (cf. [K-S 21). 

For A C X a locally closed subset, CA denotes the sheaf which is 0 on 
X \ A and the constant sheaf with fiber C on A. One sets, for short, T i X  = 
SS(CA) C T ' X ,  where SS(CA) denotes the micro-support of CA. 

Let p A ( C ? ~ )  = phorn(CA,ox), where Ox is the sheaf of germs of holo- 
morphic functions on X and phom(., .) is the bifunctor of microlocalization. 
Notice that the support of the complex pA(Ox) is contained in TAX. 

$2. STATEMENT OF THE RESULT 

2.1. Let S c M be real analytic submanifolds of a complex analytic n- 
dimensional manifold X with codim&S = 1 and codimgM = I .  Let R 
be a connected component of M \ S in a neighborhood of x, E S and take 
p E S X M  T&X with ~ ( p )  = x,. 

In [K-S 11 the vanishing of H j P ~ ( O x ) ,  is related to the number of positive 
and negative eigenvalues for the Levi form of M as follows: 

THEOREM 2.1. (Cf [K-S 1, Prop. 11.3.1, Prop. 11.351) 

(i) Assume 

(2.1) dirnR(XM n v(p)) = 1. 

Then H i p ~ ( o ~ ) p  = 0 for j < 1 + s-(M,p) - y(M,p) and for j > 
n - ~ + ( M > P )  + ~ ( M , P ) .  

(ii) Assume (2.1) and moreover: 

(2.2) S - ( M , ~ ' )  - y(M,p') is locally constant for E TLX near p. 

Then H i P ~ ( o x ) ,  = 0 for j # 1 + s-(M,p) - y(M,p). 

2.2. The aim of this paper is to prove analogous results for the complex of 
microfunctions at the boundary. 

THEOREM 2.2 

(i) Assume 

Then H ~ ~ ~ ( O ~ ) ~  = 0 for j < I + ~ - ( M , P )  - Y ( M , ~ )  and for j > 
-.+(M,p)+y(M,p). 

(ii) Assume (2.3) and moreover: 



D
ow

nl
oa

de
d 

B
y:

 [K
yo

to
 U

ni
ve

rs
ity

] A
t: 

07
:1

6 
3 

A
ug

us
t 2

00
7 

992 D'AGNOLO AND ZAMPIERI 

REMARK 2.4. In the case of X being a complexification of M one recovers 
results of [S 21. 

53. PROOF OF THE THEOREM 

3.1. We must first state some preliminary results of symplectic geometry. 

The following lemma is a slight generalization of a result of [S 11. 

LEMMA 3.1. (Cf [S 1, Prop. 1.91) Let X I  and X2 be twoR-Lagrangimplanes 
of E ,  and assume: 

Then there exists a complex Lagrangian plane Xo such that: 

(3.3) { dimR(Xl n Xo) = dimR(X2 n A,) = 1, 

the forms LxOlx, ,  LxOlx, are positive definite. 

For the reader's convenience, we give a proof here. 

PROOF: Set p = (XI n iX1 n A, n iA2) + u. 

Since LxOlxl = L g l x ;  and LxOlx, = one reduces to work in the 
space EP. 
Setting p = X I  n X2, one may then assume from the beginning 

and look for a complex Lagrangian plane Xo such that: 

(3.3)' { Xo is transversal to XI and X 2 ,  

the forms LxOlx, and LxOlx, are positive definite. 

Notice that if Xi ( i  = 1,2) is degenerate (i.e. if A; n iAi # (0))' by (3.1), (3.4) 
we have Xi  + iXi = p + ip, (and hence X i  n i X i  > p n ip). Then either X I  or 
A2 is non-degenerate, for otherwise A1 fl iX1 = X2 n iXz # 0 which violates 
(3.4). 

Assume that X I  is non-degenerate. Choose symplectic coordinates (2, () = 
(x + i y ;  J + irl) in E so that X,  = ((2, C); y  = J = 0) and p is the hyperplane 
of X I  of equation xl = 0. 

Consider the symplectic splitting E = El @ E' for El = C,, x C,, , E' = 
C,, x CCj and set X' = { ( z ' ,  C'); y' = J' = 0), pl = {(O,C1); C1 E C )  (so that 

(P + i d 1  = PI @ (0)). 

One can see that XI = 11 $ A', X2 = i2 $ A', where 
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XI = {(z1,C1);y1 = (1 = 01, 
if Xi? is degenerate, 

{(zl, (1); t1 =  EX^, y1 = O), if X2 is non-degenerate (E > 0). 

Choose Xb C E' transversal to A' and such that Lxblxt is positive definite. 

Reasoning as in loc. cit. one may find io C El transversal to both il and iz 
such that LxoIX,  is positive definite and LXOIiI is 0 (resp. positive definite) 

if 1 2  is degenerate (resp. non-degenerate). - 
One may then take Xo = Xo $ Xb. Q.E.D. 

REMARK 3.2. From the preceeding proof it follows in particular that under 
the hypotheses of Lemma 3.1 either XI n i X 1  c X2 n i X 2  or XI n i X 1  > Xz n i X z .  

Noticing that (2.3) implies (2.1), one gets: 

COROLLARY 3.3. Let S c M be real analytic submanifolds of a complex 
analytic manifold X with c o d i m E ~  = 1. Let p E S X M  ?&x and assume 
(2.3). Then there exists a germ of complex contact transformation x near 
p which interchanges (T*X, TGX, T:X, p) and (T*Y, TkY, T;Y, q) where N 
and Z are hypersurfaces of Y satisfying: 

LEMMA 3.4. (Cf. [D'A-2, Prop. 2.11) With the same notations of Corollary 
3.3, one has theestimates: 

PROOF: Let f be a real analytic function vanishing on M with p =df (x,). 
By Proposition 1.1 one has that sf (*) (for * = M,S) are the numbers of 
positive and negative eigenvalues for the Hermitian form on TE (*) of matrix 
(@, f (x,))~,, (here one sets Tg(*)  = T,,(*) n i T,, (*)). One has 

d i m C ~ z  1~ = n - codim M $ y(M, P), 

and hence codim gg M T z  S = 1 + 7(M, p) - y(S,p). The estimates follow. 
Q.E.D. 

3.2. We give now a proof of our main theorem. 

PROOF OF THEOREM 2.2: We use the notations of 52. Let R' be the other 
connected component of M \ S near x, so that M \ S = R U R'. 
From the exact sequence 
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one gets the distinguished triangle 

Assuming (2.3),  by Theorem 2.1 (i), one has 

(3.6) 
H j P M ( O x ) ,  = 0 for j @ [ I  + s - ( M )  - y ( M ) , n  - s + ( M )  + y ( ~ ) ] ,  

H j p ~ ( O ~ ) p  = 0 for j 4 [1+ 1 + S - ( S )  - y ( S ) , n  - s + ( S )  + y ( S ) ] .  

We divide the proof of (i) in two steps: 

a) We first show that 

(3.7) H ' ~ ~ ( O X ) ~  = 0 for j > n - s + ( M )  + y ( M ) .  

By Lemma 3.4 one has: 

so that (3.7) follows from (3.5), (3.6). 

b) Finally, we prove that 

(3.8) ~ j l . ~ n ( ~ x ) ,  = 0 for j < 1 + s - ( M )  - $ M ) .  

By Lemma 3.4 one has: 

If the inequality in (3.9) is strict, then (3.8) follows from (3.5), (3.6). 
Assume 1 + s - ( M )  - y ( M )  = 1 + 1 + s-(5') - y ( S ) .  By (3.5),  (3.6), it is 
enough to prove that the natural morphism: 

is injective. 

Arguing as in the proof of Theorem 11.3.1 of [K-S 11, by Corollary 3.3 we 
may find a complex contact transformation x in a neighborhood of p which 
interchanges ( T * X ,  T G X ,  T:X, p )  and ( T * Y ,  T;Y, T;Y, q )  and such that N 
and Z are hypersurfaces of Y satisfying: 
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(Of course y(N) = y(Z) = 0 since these are real hypersurfaces.) Moreover 
one can quantize this contact transformation by a kernel K E D ~ ( X  x Y) 
and get isomorphisms in Db(Y; q): 

(cf. [K-S 2, ch. 111 as for quantized contact transformations). By (3.11) one 
gets isomorphisms: 

and (3.10) induces a morphism: 

It then remains to prove that (3.15) is injective. 

Denote by N +  (resp. Z+) the closed half spaces of Y with boundary N (resp. 
2)  such that q E TG+Y (resp. q E TZ+Y). 

By [K-S 2, Prop. 4.4.21, one has: 

since w(q) 4 Int (N+). From the distinguished triangle: 

By (3.12), (3.16), one has: 
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996 D'AGNOLO AND ZAMPIERI 

Since HO(phom(CM, C S ) ) ~  ZZ C ,  taking the zeroth cohomology in (3.17) we 
get the isomorphism: rN+ (Cz+),(*) E C.  

It follows that N +  > Z+ on a system of open neighborhoods V of ~ ( q )  in 
Y, and that H O ~ ~ ~ ( ~ ; ~ ) ( C ~ + ,  C z + )  is generated by the natural morphism 
C A ~ + ~ V  + C Z + ~ V -  

Then (3.15) is represented by the natural morphism: 

(3.18) lim 
UY(V \ N + )  

~ Y ( V )  
V3n(!7) V 3 ~ ( 9 )  

UY ( V )  

which is clearly injective. This complete the proof of (i). 

As for (ii), one proceeds as above, noticing moreover that, due to hypotheses 
(2.3), one can apply [K-S 1, Prop. 11.3.51 and get: 

H J ~ ~ ( O X ) ,  = 0 for j # 1 + s-(M) - y(M),  

HJps(OX)p = 0 for j # 1 + 1 + S-(S) - y(S). 

Q.E.D. 

$4. AN APPLICATION 

4.1. We first review here results of [Z] concerning the representation of sec- 
tions of pn(Ox). 

Let M be a real analytic submanifold of codimension 1 of a complex analytic 
manifold X of dimension n, let C2 C M be an open subset with real analytic 
boundary S and let x, E S. Let T : T X  + X denote the tangent bundle and 
consider the projection a : .I1 x x  T X  -t TMX. For A', A" subsets of X one 
denotes by C(A1, A") C TX the Whitney normal cone of A' along A". For 
y conic subset of TX one denotes by yo" c T'X its polar antipodal. 

PROPOSITION 4.1. (Cf. [Z, Theorem 2.11) Let y be an open convex cone in - 
R x~ TMX such that ~ ( y )  > D in a neighborhood of zo.  Then: 

where B c X ranges through the family of open neighborhoods of x, and 
U c X ranges through the family of open subsets such that 

(This is a classical result for R = M, cf. e.g. [K-S 2, Theorem 4.3.21.) 

DEFIKITION 4.2. An open set U C X satisfying (4.1) is called R-tuboid with 
profile y . 
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REMARK 4.3. Let us discuss the meaning of (4.1). 

(i) If X is a vector space, one has that 8 E (TX \ C ( X  \ u , ~ ) ) , ,  iff there 
exist a neighborhood B of x o  and an open cone G c X containing 6' 
such that ((Gn B) + G) n B c U .  

(ii) Assume M be a hypersurface of X. In this case TMX \ M has two 
connected components and we denote by y+ the one such that Int yo" 3 
p. Choose complex analytic local coordinates z  = x + i y  on X at xo 
with M defined by the equation y, = f ( z )  (for a real analytic function 
f with df (x,) = 0) and assume 0 given by yg = 0. Then the condition 
(4.1) is equivalent to the existence of a neighborhood B of x, such that 

4.2. Assume M  is generic (i.e. T M  + M  iTM = M x x  T X )  and denote by 
MC a cornplexification of M. A complexification of X is given by X x 5?, 
where x denotes the complex conjugate of X .  Let $ : M~ -+ X be the 
composite of the immersion M C  r X x x (induced by the embedding 
M  v X )  with the projection X x J? --+ X. By the hypothesis of genericity, 
$ is smooth. The coherent DMc-module ab = 4*(Dx) (here $* denotes 
the inverse image in the category of 2)-modules) is called induced Cauchy- 
Riemann system on M. Let or./. denote the relative orientation sheaf and 
(for * = M ,  0) set 

(Notice that CM is the sheaf of Sato's microfunctions and Cn is the complex of 
microfunctions at the boundary of Schapira [S 21.) One has the isomorphisms 

(For * = M  we refer to [K-K]. Results related to the case * = fi are ob- 
tained in [D'A-D'A-Z].) This means that the complex CMIX (resp. Cnlx) is 
isomorphic to the complex of CR-microfunctions on M (resp. to the complex 
of Cn-solutions to J b ) .  

LEMMA 4.4. The complex (Cnlx)rLx is concentrated in degree 2 0. 

PROOF: The result is an immediate consequence of Theorem 2.2 (i) recalling 
that, since M is generic, y(M,p)  = 0 for every p E T ~ X .  Q.E .D.  

4.3. Let p E ( T ~ x ) , ~  and assume that 
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998 D'AGNOLO AND ZAMPIERI 

Under this hypothesis, it is well known that the complex (CMIX)p = 0 is 
concentrated in degree > 0. Representing the sections of CMIX as boundary 
values of holomorphic functions, one can rephrase this result as a criterion of 
holomorphic extension for functions defined in tuboids along M (cf. Defini- 
tion 4.2 with R = M as for tuboids along M )  with profile y verifying yo" 3 p. 
In the case of M being a hypersurface, if one denotes by M+ the connected 
component of X \ M at x, which has p as exterior conormal, this simply 
means that any holomorphic function on M+ holomorphically extends to a 
full neighborhood of x, (i.e. holomorphic functions cross the boundary of 
pseudo-concave domains). 

Similarly, under the hypothesis (4.2) it follows from Theorem 2.2 (i) that 
the complex (Cnlx)p is concentrated in degree > 0. By Proposition 4.1, the 
sections of Cnlx may also be represented as boundary values of holomorphic 
functions and hence, once again, this result may be rephrased in terms of 
holomorphic extension. Proposition 4.5 below states this fact, and we refer 
to Remark 4.3 for a description of the geometry of the involved sets. 

PROPOSITION 4.5. Assume s-(M,p) 2 1. Then there exists an open neigh- 
borhood A c TGX of p such that 

lim r ( U  n B, Ox)  
+ 

UEU,W€W,B3zo 
r(w n B, o x )  = O 7  

where B c X ranges through an open neighborhood system of xo and U 
(resp. W) is the family of St-tuboids with a profile y such that yoa c A (resp. 
with profile 9 x M TM X). 

PROOF: One may find an open conic neighborhood A c T&X of p such that 
s-(M,pl) 2 1 for every p' E A. 
We already noticed that, by Theorem 2.2, the complex (Cnlx),j is con- 
centrated in degree > 0. Denoting by G the family of open convex cones 
7 C XM TMX such that r(y) > in a neighborhood of z, and yo" C V, 
it then follows from the injective morphism: 

that the limit on the left hand side of (4.2) vanishes. 

Applying the functor HORI'(B; .) to the distinguished triangle 

one gets an injection 
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and hence, taking injective limit: 

The result then follows from Proposition 4.1. Q.E.D. 

The authors wish to express their gratitude to Pierre Schapira for useful 
discussions. 
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