Non smooth Lagrangian sets and estimations of micro-support

By Andrea D'AGNOLO, Corrado MARASTONI and Giuseppe ZAMPIERI

> (Received May 25, 1992) (Revised May 19, 1994)

1. Notation and review.

Let X be a real C^1 manifold and let $Y \subset X$ be a closed submanifold. One denotes by $\pi: T^*X \to X$ the cotangent bundle to X and by T^*_YX the conormal bundle to Y in X.

One denotes by $D^b(X)$ the derived category of the category of bounded complexes of sheaves of *C*-vector spaces on *X*. For *F* an object of $D^b(X)$, one denotes by SS(F) its micro-support, a closed, conic, involutive subset of T^*X .

Let $A \subset X$ be a closed C^1 -convex subset at $x_0 \in A$ (i.e., A is convex for a choice of local C^1 coordinates at x_0). One denotes by C_A the sheaf which is zero on $X \setminus A$ and the constant sheaf with fiber C on A. In order to describe $SS(C_A)$ fix a local system of coordinates (x)=(x', x'') at x_0 so that A is convex and $Y = \{x \in X ; x'' = 0\}$ is its linear hull. Denote by $j: Y \to X$ the embedding and by ${}^tj': Y \times_X T^*X \to T^*Y$ the associated projection. One has

$$SS(\boldsymbol{C}_{\boldsymbol{A}}) = {}^{t}j'(N_{\boldsymbol{Y}}^{*}(\boldsymbol{A})),$$

where $N_{Y}^{*}(A)$ denotes the conormal cone to A in Y. In other words, $(x; \xi) \in SS(C_A)$ if and only if $x \in A$ and the half space $\{y \in X; \langle y - x, \xi \rangle \ge 0\}$ contains A. By analogy with the smooth case, we set $T_A^*X = SS(C_A)$.

For $p \in T^*X$, $D^b(X; p)$ denotes the localization of $D^b(X)$ with respect to the null system $\{F \in D^b(X); p \notin SS(F)\}$. One also considers the microlocalization bifunctor $\mu hom(\cdot, \cdot)$ which is defined in **[K-S]**.

REMARK 1.1. In [**K-S**] the bifunctor μ hom is considered only for C^2 manifolds but it is clear that its definition is possible for a C^1 manifold as well. Roughly speaking, this functor is the composition of the specialization functor (which is defined as long as the normal deformation is defined, i.e., for C^1 manifolds) and the Fourier-Sato transform which is defined for vector bundles over any locally compact space.

If X is of class C^2 one has the following estimate:

(1.1) $SS(\mu hom(F, G)) \subset C(SS(F), SS(G)),$

where $C(\cdot, \cdot) \subset TT^*X \cong T^*T^*X$ denotes the strict normal cone.

Assume X of class C^2 and let $\chi: T^*X \to T^*X$ be a germ of homogeneous contact transformation at $p \in T^*X$, i.e., a diffeomorphism at p preserving the canonical one-form. Set $\Lambda_X^a = \{(x, y; \xi, \eta); \chi(x; \xi) = (y; -\eta)\}$, the antipodal of the graph of χ . It is possible to consider "quantizations" of χ in order to make contact transformations operate on sheaves.

THEOREM 1.2 (cf. [K-S, Chapter 7]). There exists $K \in D^b(X \times X)$ with SS(K) $\subset \Lambda_{\mathfrak{X}}^a$ in a neighborhood of $(p, \mathfrak{X}(p)^a)$, which induces an equivalence of categories $\varPhi_K : D^b(X; p) \rightarrow D^b(X; \mathfrak{X}(p))$ defined by $\varPhi_K(F) = \operatorname{Rq}_{2*}(K \otimes q_1^{-1}F)$ where q_i is the *i*-th projection from $X \times X$ to X. Moreover one has the relations

(1.2)
$$SS(\Phi_K(F)) = \chi(SS(F)),$$

(1.3)
$$\chi_*\mu hom(F, G) \cong \mu hom(\Phi_K(F), \Phi_K(G)) \quad near \ \chi(p).$$

2. The main theorem.

The characterization of those sheaves whose microsupport is contained in a smooth Lagrangian is given by the following theorem.

THEOREM 2.1 (cf. [K-S, Theorem 6.6.1]). Let X be a real C^2 manifold, let $Y \subset X$ be a closed submanifold and take $p \in T \notin X$. Let F be an object of $D^b(X)$ such that

 $SS(F) \subset T_Y^*X$ in a neighborhood of p.

Then one has $F \cong M_Y$ in $D^b(X; p)$ for a complex M of C-vector spaces.

REMARK 2.2. The extension from the C^2 to the C^1 frame has already been given in the paper [**D'A-Z**]. Concerning this extension, we point out the following fact. Let $Y \subset X$ be a hypersurface of regularity $C^1 \setminus C^2$ and let Y^+ be the closed half space with boundary Y such that $p \in SS(A_{Y+})$. The crucial point here is that, even though $T_Y^*X + T_Y^*X \supset \pi^{-1}\pi(p)$, nevertheless $N^*(Y^+) + N^*(Y^+) \subset$ $N^*(Y^+)$.

Here we give the following extension of this result.

THEOREM 2.3. Let X be a real C^1 manifold, let $A \subset X$ be a closed C^1 -convex subset at x_0 and take $p \in (T_A^*X)_{x_0}$. Let F and G be objects of $D^b(X)$ such that

SS(F), $SS(G) \subset T^*_A X$ in a neighborhood of p.

Then

(i) $\mu hom(F, G) \cong N_{T^*_{AX}}$ for a complex N of C-vector spaces;

- (ii) $F \cong M_A$ in $D^b(X; p)$ for a complex M of C-vector spaces;
- (iii) for M as in (ii), one has $M \cong \mu hom(C_A, F)_p$.

REMARK 2.4. Let X be a real C^2 manifold and $Y \subset X$ a closed submanifold. In this context, the assertion (ii) already appears in [U-Z] for any closed subset $A \subset Y$ satisfying $N_{T}^{*}(A)_{x_0} \neq T_{x_0}^{*}Y$ (which holds true, in particular, for C^1 convex subsets at x_0), but only for $p \in T_T^*X \cap T_A^*X$.

PROOF OF THEOREM 2.3. The problem being local, fix a system of local coordinates at x_0 so that A is convex in $X \subset \mathbb{R}^n$ with coordinates $(x)=(x_1, \dots, x_n)$. Let $(x; \xi)$ be the associated symplectic coordinates of T^*X and consider the contact transformation

$$\begin{aligned} \chi: T^*X \longrightarrow T^*X \\ (x;\xi) \longmapsto \left(x - \varepsilon \frac{\xi}{|\xi|};\xi\right). \end{aligned}$$

The set $A_{\varepsilon} = \{x \in X ; \operatorname{dist}(x, A) \leq \varepsilon\}$ has a C^1 boundary for $0 < \varepsilon \ll 1$ and one has $\mathfrak{X}(T_A^*X) = T_{A_\varepsilon}^*X$ near $\mathfrak{X}(p)$. It is also easy to verify that, setting

$$S = \{(x, y) \in X \times X ; \operatorname{dist}(x, y) \leq \varepsilon\},\$$

the complex $K=C_s$ verifies the hypothesis of Theorem 1.2 for such a χ .

Let $\phi: X \to X$ be a C^1 diffeomorphism so that $\phi(A_{\epsilon}) = \{x \in X ; x_1 \leq 0\}$ and set $Z = \{x \in X ; x_1 = 0\}$. By (1.2) one has that $SS(\phi_*(\Phi_K(\cdot))) \subset T_Z^*X$ near $\phi'(\mathcal{X}(p))$ for $(\cdot = F, G)$ and hence, by (1.1),

$$SS(\mu hom(\phi_*(\Phi_K(F)), \phi_*(\Phi_K(G)))) \subset C(T_Z^*X, T_Z^*X)$$
$$\cong T_{T_Z^*X}^*T^*X.$$

By Theorem 2.1 one then has

$$\mu hom(\phi_*(\Phi_K(F)), \phi_*(\Phi_K(G))) \cong N_{T^*_{TX}}$$

for a complex N of C-vector spaces. It follows by (1.3) that

$$\mu hom(F, G) \cong {}^{t}\phi'{}^{-1}(\chi{}^{-1}(N_{T^{*}_{Z}X})) \cong N_{T^{*}_{A}X},$$

which proves (i).

For any complex M of C-vector spaces let us now compute $\Phi_K(M_A)$. There is an isomorphism $(\operatorname{Rq}_{2!}M_{S\cap(A\times X)})_x \cong \operatorname{R}\Gamma_c(q_2^{-1}(x); M_{S\cap(A\times X)})$. Since $q_2^{-1}(x)\cap S\cap$ $(A\times X)$ is either empty if $x \notin A_{\varepsilon}$ or compact convex if $x \in A_{\varepsilon}$, one has:

(2.1)
$$\Phi_K(M_A) \cong M_{A_s}.$$

Moreover notice that

A. D'AGNOLO, C. MARASTONI and G. ZAMPIERI

$$\begin{split} \phi_*(\varPhi_K(F)) &\cong M_Z \\ &\cong \phi_*(M_{A_{\epsilon}}) \\ &\cong \phi_*(\varPhi_K(M_A)), \end{split}$$

where the first isomorphism follows from Theorem 2.1 and the third from (2.1). Since $\phi_* \circ \Phi_K$ is an equivalence of categories, assertion (ii) follows.

As for (iii), one has the chain of isomorphisms:

$$\mu hom (C_A, F)_p \cong \mu hom (C_Z, M_Z)_{t\phi'(\chi(p))}$$
$$\cong \mu hom (C_{\{x_1 \le 0\}}, M_{\{x_1 \le 0\}})_{t\phi'(\chi(p))}$$
$$\cong R \Gamma_{\{x_1 \le 0\}} (M_{\{x_1 \le 0\}})_{\pi(t\phi'(\chi(p)))}$$
$$\cong M.$$

ACKNOWLEDGEMENTS. The authors wish to thank Jean-Pierre Schneiders for useful discussions.

References

- [D'A-Z] A. D'Agnolo and G. Zampieri, A propagation theorem for a class of microfunctions, Rend. Mat. Acc. Lincei, s. 9, 1 (1990), 53-58.
- [K-S] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren Math. Wiss., Springer-Verlag, 292, 1990.
- [U-Z] M. Uchida and G. Zampieri, Second microfunctions at the boundary and microhyperbolicity, Publ. Res. Inst. Math. Sci., Kyoto Univ., **26** (1990), 205-219.

Andrea D'AGNOLO	Corrado MARASTONI
Institut de Mathématiques	Dipartimento di Matematica
Université Pierre et Marie Curie	via Belzoni 7
4, place Jussieu	I-35131 Padova
F-75252 Paris Cedex 05	Italy
France	

Giuseppe ZAMPIERI Dipartimento di Matematica

Università di Padova via Belzoni 7 I-35131 Padova Italy

258