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Summary. — In this paper we wish to show how to compute the support of caus-
tics related to geometrical solutions (Lagrangian submanifolds) of the geometri-
cal Cauchy problem for the eikonal equation, a special case of Hamilton-Jacobi
equation. Although the computation is carried out for the simple Hamiltonian
H(q, p) = (1/2)p2 on T ∗

R
2, we can treat cases with arbitrary C2 initial data func-

tions σ : Σ −→ R, assigned on the initial manifold (curve) Σ immersed in R
2. From

the physical point of view, the caustics in such a way generated are closely linked to
the caustics (in the sense of geometrical optics) determined by the curve Σ emitting
light with intensity varying according to the differential of σ.

PACS 41.20.Jb – Electromagnetic wave propagation; radiowave propagation.

1. – Introduction

The Hamilton-Jacobi method is a well-established tool for integrating (at least locally)
the canonical systems of Hamilton equations. In most cases the Hamilton-Jacobi method
is introduced starting from the search of a canonical transformation of coordinates which
transforms the original Hamiltonian in a simpler one. By following the line of thought of
W. M. Tulczyjew, it is now well understood (see [1] and [2]) that, from the geometrical
point of view, this method is completely equivalent to find out a particular foliation
inside the phase space of the dynamical system considered. In fact, it is well known that
given a differentiable function H : T ∗Q −→ R (where T ∗Q is the cotangent bundle over
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a differentiable manifold Q of dimension n), the canonical system

q̇i =
∂H(qj , pj)

∂pi
, ṗi = −∂H(qj , pj)

∂qi

can be solved using a complete solution of the corresponding Hamilton-Jacobi equation
(Jacobi theorem), that is, a family of differentiable functions S(qi, aL) depending on n−1
parameters aL such that

H

(
qi,

∂S(qj , aL)
∂qi

)
= e(1)

and

rk
(
∂2S(q, a)
∂qi∂aL

)
= max = n− 1.(2)

For every a fixed, one can consider the following submanifold of T ∗Q:

Λa :=
{
(q, p) ∈ T ∗Q : pi =

∂S(q, a)
∂qi

}
.

By the condition (1) one has that Λa ⊆ H−1(e); moreover Λa satisfies two important
properties:

1) dimΛa = dimQ = n and

2) ω|Λa
= 0, where ω is the canonical symplectic form on T ∗Q, which in fibered

coordinates (qi, pi) assumes the form ω = dpi ∧ dqi.

Submanifolds of T ∗Q characterized by the two conditions above are called Lagrangian
submanifolds. In view of (2), it is obvious that if a �= b, then Λa ∩ Λb = ∅, that is, the
corresponding Lagrangian submanifolds are disjointed. By using this geometric frame-
work, one can say that the Hamilton-Jacobi method amounts to finding out a Lagrangian
foliation (that is a foliation by Lagrangian submanifolds) inside H−1(e). This geometric
setting is meaningful in that it leads to consider generic Lagrangian submanifolds con-
tained in H−1(e), as geometrical solutions of the Hamilton-Jacobi equation. Indeed, the
submanifolds Λa, previously obtained via the function S(q, a), have the property to be
completely parameterized by the configuration manifold Q, that is, if j : Λa ↪→ T ∗Q is
an embedding, it is always true that

rk [d(πQ ◦ j)] = max = n(3)

on Λa (πQ : T ∗Q −→ Q is the natural cotangent fibration). In this sense, the Lagrangian
submanifolds generated via S(q, a) are not generic. On the other hand, on a generic
Lagrangian submanifold Λ contained in H−1(e) can happen that

rk [d(πQ ◦ j(λ))] < max(4)

at some λ ∈ Λ. (The most simple example of this phenomenology is the phase curve of a
harmonic oscillator, which is obviously a Lagrangian submanifold of T ∗

R
1 and in which
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the condition (3) fails at the turning points.) The locus on Λ in which the condition
(3) fails is called singular cycle or Maslov cycle Z(Λ) of the Lagrangian embedding
determined by the pair (Λ, j).
The projection on Q of Z(Λ) is called the caustic C(Λ) ≡ πQ(Z(Λ)) related to Λ.
Arnol’d in appendix 12 of [3] has given a complete description of the normal forms

for Lagrangian singularities in the case where dimΛ ≤ 5. However, only rarely explicit
computation of the caustic associated to a Lagrangian embedding has be done, exploiting
simple elements of differential geometry of curves (see for example [4]) or the theory of
Morse family for Lagrangian submanifold (see, for example, [2]). In this paper, by using
the projective duality between P 2(R) and P 2(R)∗, we restrict the computation of the
caustics to a particular (but large enough) class of Lagrangian submanifolds. (For a brief
account of projective duality see the appendix at the end of this paper; more exhaustive
descriptions can be found for example in [5], [6] and [7].) One of our main aims is to give
an explicit use of projective duality in studying unidimensional fronts, as suggested for
example by Arnol’d in [8] and more implicitly in the textbook [9]. This method has also
been developed for investigating other problems such as Legendre singularities (see [10]).
We would like to underline, however, that the computation here presented can equally
well be developed using the framework of Morse families, as showed explicitly for the
case σ = const in [2], p. 301.
Before showing how to do this, it is necessary to recall briefly a geometrical setting

for the Cauchy problem of Hamilton-Jacobi equation. This will be done in the following
section (for a more exhaustive account of the problem see [11]).

2. – Lagrangian submanifolds as geometrical solutions of Hamilton-Jacobi
equation

Let j be an embedding:

j : Σ ↪→ Q
sµ �−→ q̃i(sµ)

of a connected submanifold Σ of codimension 1 in Q (initial manifold). Then let σ :
Σ −→ R be a smooth function on Σ (initial datum). Using these elements we construct
the submanifold of initial data Λ(Σ,σ):

Λ(Σ,σ) := {(q, p) ∈ T ∗Q : 〈v, dσ〉 = 〈Tj(v), p〉,∀v ∈ TΣ, πQ(p) = τQ(v)},

where τQ : TQ −→ Q is the canonical projection associated to the tangent fibration.
Locally, this means that (q, p) ∈ Λ(Σ,σ) iff

∂σ

∂sµ
(s)vµ =

q̃i

∂sµ
(s)vµpi, qi = q̃i(s), ∀s ∈ Σ, ∀v ∈ TΣ(5)

or more explicitly

qi = q̃i(s),
∂σ

∂sµ
(s) =

∂q̃i

∂sµ
(s)pi, ∀s ∈ Σ.(6)

Having built up the submanifold Λ(Σ,σ), we can state the following geometric Cauchy
problem for the Hamilton-Jacobi equation related to a time-independent Hamiltonian
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function H: given Λ(Σ,σ), you have to determine a connected Lagrangian submanifold
Λ ⊂ T ∗Q such that

1) Λ ⊂ H−1(e) and

2) πQ(Λ ∩ Λ(Σ,σ)) is contained in Σ, as an open subset.

Let

Λ(n−1)
0 := H−1(e) ∩ Λ(Σ,σ)

be a submanifold of dimension n− 1 and we assume that it is transversal to the Hamil-
tonian vector field XH , that is

∀x ∈ Λ(n−1)
0 : XH(x) /∈ TxΛ

(n−1)
0 .

Then it is possible to prove (see [12]) that the solution of the geometrical Cauchy problem
is given by

Λ :=
⋃
t∈R

Φt
XH
(Λ(n−1)

0 ),

where Φt
XH
is the Hamiltonian flow corresponding to the Hamiltonian function H.

It is obvious that in a general setting one has to expect that the caustic related to
corresponding geometric solution Λ has to be quite complicate. Moreover, the initial
data Σ and σ play a crucial part in determining certain topological properties of the
corresponding geometric solutions Λ, in particular in controlling singular loci Z(Λ) and
consequently caustics C(Λ). Indeed, even in dynamical systems governed by a very
simple Hamiltonian function, the structure of caustics related to geometrical solutions
changes drastically varying initial data.
For example, if H : T ∗

R
n −→ R is given by H = (1/2)p2 and if we choose Σ to be an

(n−1)-dimensional vector subspace of Rn and σ to be a constant, then the corresponding
geometrical solution Λ has no singular locus, so C(Λ) = ∅, as is readily verified. Indeed,
from eq. (6), the impulses pi have to be orthogonal to Σ; then, from the form of the
Hamiltonian function, it is clear that the projection on Q = R

n of the corresponding
phase curves is a family of straight lines orthogonal to Σ, so their envelope is empty.
But the envelope of the projection of the phase curves on the configuration manifold is
exactly the caustic of the related geometrical solution Λ, as is proved in [13].
This simple situation changes drastically if one chooses more complicate initial data:

as far as we know the problem of the computation of the support of C(Λ) is still unsolved
even in the case Σ is a generic 1-codimensional submanifold in R

n and σ is a constant.

3. – Computation of caustics via projective duality

The aim of this section is to determine the support of the caustic corresponding to a
geometric solution Λ of a geometric Cauchy problem for the Hamilton-Jacobi equation,
when

1) H : T ∗
R

2 −→ R is given by H = (1/2)p2;
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2) the plane curve Σ is represented by

Σ
j
↪→ Q ≡ R

2

s �−→ (x(s), y(s)) ,

where s ∈ I = (a, b) ⊆ R and Σ is regular, that is the functions x(s), y(s) are smooth
and

ẋ(s)2 + ẏ(s)2 �= 0 ∀s ∈ I;

3) the initial datum σ is an arbitrary smooth function on Σ, which can be identified
with a function:

σ : I � s �−→ σ(s) ∈ R.

It is already known that in the case σ is constant the corresponding caustic is exactly
the locus determined by the centers of the circles osculating the given curve Σ, that
is the evolute. This result is achieved using simple elements of differential geometry of
plane curves (see, for example, [4]) or the theory of generating functions for Lagrangian
submanifolds (see, for example, [2]). Instead, our construction is essentially based on
projective duality and mainly consists in determining the envelope of a family of straight
lines which intersect Σ at different angles, according to the differential of the initial
datum σ.
Now we can state our main result:
Proposition: Under the hypotheses already described on H, σ, Σ, (above conditions 1,

2 and 3) the homogeneous coordinates (x0, x1, x2) (in P 2(R)) of the caustic associated to
the corresponding geometric solution of Hamilton-Jacobi problem (for a fixed value e of
the Hamiltonian function) are given, respectively, by

x0, =
[
2e(ẋÿ − ẍẏ)sgn(ẋ)(AḂ −BȦ)

]
,(7)

x1, =
[
AB|ẋ|+ 2ex(ẋÿ − ẍẏ)−B2ẏx sgn(ẋ)(AḂ −BȦ)

]
,(8)

x2, =
[
ABẏ + 2ey(ẋÿ − ẍẏ) +B2ẋy sgn(ẋ)(AḂ −BȦ)

]
,(9)

where A and B are given by

A = σ̇,(10)

B =
√
2e(ẋ2 + ẏ2)− σ̇2,(11)

while sgn(ẋ)= ẋ
|ẋ| .

Some comments: In all formulas above, dots denote derivative with respect to s.
From the homogeneous coordinate, the usual coordinates (xcaus(s), ycaus(s)) in R

2 of the
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caustic are given by

xcaus(s) =
x1,(s)
x0,(s)

,(12)

ycaus(s) =
x2,(s)
x0,(s)

(13)

(provided x0,(s) �= 0). The sign in the relations which define the homogeneous coordi-
nates of the caustic is due to the fact that, from eq. (6) we can obtain only the cosine
of the angle between the tangent to Σ and the impulse p, which defines the direction
of the line escaping from Σ. Therefore we have only two possibilities according to the
ambiguity inherent in the cosine.

Proof: It is based on projective duality in the following sense. (See the appendix for
definitions, basic results and their proof.) Suppose we have to determine in P 2(R) a
curve C (the caustic) and of this curve we know only the family of straight lines tangent
to C; that is, we assume that a set of three functions is given

f(s) = (f0(s), f1(s), f2(s))(14)

depending on the parameter s of the curve C in such a way that, for s̄ fixed the ex-
pression (14) gives the Plückerian coordinates of the line τQ tangent to the curve C at
the point Q = [x0(s̄), x1(s̄), x2(s̄)]. As showed in the appendix, it is possible to think
of these Plückerian coordinates as homogeneous coordinates of points belonging to the
dual projective plane P 2(R)∗: as Q varies in C, the Plückerian coordinates of τQ, seen
as homogeneous coordinates, define a new curve C∗ in P 2(R)∗, called the dual curve. By
hypothesis, we know the support of this new curve C∗, since the homogeneous coordi-
nates of its points are simply given by the Plückerian coordinates of the tangent lines
to C, thought as homogeneous coordinates, and so they are given by [f0(s), f1(s), f2(s)].
Hence it is easy to determine the Plückerian coordinates of the tangent lines to C∗ at
each of its points (this time in the dual projective plane): see the procedure described in
the appendix and compare the following expression to eq. (A.8):

(
f1(s)ḟ2(s)− f2(s)ḟ1(s), f2(s)ḟ0(s)− f0(s)ḟ2(s), f0(s)ḟ1(s)− f1(s)ḟ0(s)

)
.(15)

Due to projective duality, we can think of expression (15) not only as Plückerian coordi-
nates of the family of straight lines tangent to C∗, but also as homogeneous coordinates
of points in the ordinary projective plane P 2(R). These points in P 2(R) define a curve,
which, due to projective duality, is exactly the unknown curve C, as shown in the ap-
pendix. By using simple elements of projective geometry, it is then possible to determine
the homogeneous coordinates of a curve C (expression (15), interpreted as homogeneous
coordinates), starting from the Plückerian coordinates of its tangent straight lines (ex-
pression (14)), that is to reconstruct a curve as the envelope of its tangent lines.
Now we come back to our original problem. We fix a positive value e for the energy

and we consider the submanifold determined by H−1(e) in T ∗
R

2. Associating to each
point of the curve Σ = {(x(s), y(s))}s∈I the tangent vector:

(ẋ(s), ẏ(s)),
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from the equations which describe Λ(Σ,σ) (in particular from (6)), we obtain that it has
to be satisfied the following equation:

ẋpx + ẏpy = σ̇.(16)

Equation (16) means that the differential of σ is equal to the scalar product between the
tangent vector and p. Obviously, because of the fact that it has to be Λ(Σ,σ)∩H−1(e) �= ∅,
it has to be true that p2 = 2e and so it has to be satisfied not only (16), but at the same
time the equation

p2
x + p2

y = 2e.(17)

To determine the direction between the straight line escaping from Σ in the point P (this
line is the projection on Q = R

2 of the corresponding phase curve) and the tangent τP

to Σ in P we use eqs. (16) and (17). Notice that it is useless to determine the angle
between the unit tangent vector and p, in that we are interested only in the homogeneous
coordinates (0, px, py) which gives the direction of the straight line escaping from Σ.
Indeed, solving (16) with respect to px and substituting in (17), we find the following
equation for py:

p2
y(ẋ

2 + ẏ2)− 2σ̇ẏpy + σ̇2 − 2eẋ2 = 0 .(18)

Thus, by using definitions (10) and (11), we find immediately the following expressions:

px =
A− ẏpy

ẋ
(19)

and

py =
Aẏ|ẋ|B
ẋ2 + ẏ2

.(20)

It is interesting to observe that it is necessary that

−
√
2e(ẋ2 + ẏ2) ≤ σ̇ ≤

√
2e(ẋ2 + ẏ2)

and so only some parts of Σ are involved in generating a Lagrangian submanifold con-
tained inH−1(e) (those parts for which the derivative of σ satisfy the previous inequality).
Let us also observe that this does not happen when the initial datum σ is constant.
To exploit the projective duality we immerse the plane R

2, as the configuration man-
ifold, in the projective plane P 2(R) in the ordinary way: that is, if (x(s), y(s)) are the
parametrical equations of Σ in R

2, then the corresponding homogeneous coordinates will
be

(x0(s), x1(s), x2(s)) = (1, x(s), y(s)),

while the homogeneous coordinates which define the direction of the straight line escaping
from Σ in the point (1, x(s), y(s)) are given by (see eqs. (20) and (19) and assume ẋ �= 0)

(0, A− ẏpy, ẋpy),(21)
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or more explicitly

(0, Aẋ2 ∓ |ẋ|ẏB, ẋẏAẋ|ẋ|B).(22)

(To obtain relation (22) we have multiplied by ẋ2+ ẏ2 which is never zero by hypothesis.)
Now we can find the Plückerian coordinates of the corresponding straight lines (in the
ordinary projective plane) which define the wanted caustic as their envelope. Following
the method previously described in this proof and in more detail in the appendix (com-
putation of the Plückerian coordinates corresponding to a straight line through two given
points in P 2(R), whose homogeneous coordinates are given in this case by [1, x, y] and
by expression (22)) we find

(
(Aẋ2 ∓ |ẋ|ẏB)y − x(ẋẏAẋ|ẋ|B), ẋẏAẋ|ẋ|B, |ẋ|ẏB −Aẋ2

)
.(23)

Now to prove eqs. (7), (8) (9) we have simply to identify (23) with (14) and then to
apply relation (15), which gives the homogeneous coordinates in P 2(R) of the envelope
curve (which is the caustic in our case). Computations are rather lengthy, but trivial in
substance.

Remark 1: There is a common factor ẋ2 in the homogeneous coordinates of the caustic
computed in this way. The coordinates given by relations (7), (8) and (9) are obtained
by dividing by the common factor, assuming it different from zero. There is also the
common factor ẋ2 + ẏ2 which is never zero by hypothesis, so that we can divide by this
factor without any further assumption.

Remark 2: From the physical point of view, the problem solved by the previous
proposition is exactly equivalent to determine the caustic (in the sense of geometric
optics) produced by a plane curve, which gives out light with intensity varying from
point to point.

Remark 3: In the case the initial datum σ is constant, from eqs. (7), (8) and (9) we
can find out immediately the already known expressions of the coordinates (in R

2) for
the wanted caustic:

xcaus = x+
ẏ(ẋ2 + ẏ2)
ẍẏ − ÿẋ

,(24)

ycaus = y − ẋ(ẏ2 + ẋ2)
ẍẏ − ẋÿ

.(25)

Equations (24) and (25) describe exactly the locus given by the centers of the circles
osculating Σ (see [4]).

Remark 4: It is worthwhile to observe that the “high-energy limit” is related to the
case σ = const. In fact, no matter what the initial datum σ is, as long as it is bounded
on I � s, it is very easy to see that

lim
e→+∞

x1,

x0,
= x+

ẏ(ẋ)2 + (ẏ)3

ẍẏ − ÿẋ
,(26)

lim
e→+∞

x2,

x0,
= y − (ẋ)

3 + ẋ(ÿ)2

ẍẏ − ẋÿ
.(27)
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Equations (26) and (27) prove that in the limit of high-energy caustics “tend” to the
evolute of Σ. This means that tha case σ = constant is exactly equivalent to the high
energy limit.

Appendix A.

Projective duality and Plückerian coordinates

Let us review for completeness some basic facts about projective geometry. We recall
that P 2(R) can be identified with (R3 − 0)/ ∼, where the equivalence relation ∼ means
that (x, y, z) ∼ (x′, y′, z′) iff ∃λ ∈ R

∗ such that (x′, y′, z′) = (λx, λy, λz). Under this
relation, a point Q in P 2(R) is identified with a straight line through the origin in R

3.
Given two points Q and Q′ in P 2(R) (Q �= Q′), which correspond to the lines l and

l′ in R
3, we construct the line πQQ′ in P 2(R), joining Q and Q′. Obviously, πQQ′ is the

image under ∼ of the lines in R
3, which are contained in the plane through the origin

generated by l and l′. More explicitely, the lines l = (x̄, ȳ, z̄) = (λx0, λx1, λx2) and
l′ = (x′, y′, z′) = (µx′

0, µx
′
1, µx

′
2) correspond to Q = [x0, x1, x2] and Q′ = [x′

0, x
′
1, x

′
2];

then the equation of the plane Π in R
3 containing l and l′ is of the form

ax+ by + cz = 0,

where the coefficients (a, b, c) are obtained imposing l ⊂ Π and l′ ⊂ Π. This implies that

(a, b, c) = (x0, x1, x2) ∧ (x′
0, x

′
1, x

′
2),(A.1)

where ∧ means vector product (compare eq. (15)). Thus a vector v = (x̄, ȳ, z̄) ∈ (R3 −0)
belongs to Π iff ax̄+bȳ+cz̄ = 0. This equation can be read also as an equation in P 2(R),
remembering that v identifies a unique line l through the origin, and so a unique point
Q in P 2(R). Under this identification we have that a point S = [x̃0, x̃1, x̃2] ∈ P 2(R)
belongs to πQQ′ iff

ax̃0 + bx̃1 + cx̃2 = 0 , (a, b, c)
(A.1)
= (x1x

′
2 − x2x

′
1, x2x

′
0 − x0x

′
2, x0x

′
1 − x1x

′
0).(A.2)

In the literature (see [5], [6] and [7], for example) the coefficients (a, b, c) are called
Plückerian coordinates of the line πQQ′ . By construction these coordinates are defined
up to multiplication by a common nonzero constant, that is (a, b, c) and (µa, µb, µc)
identify, as Plückerian coordinates the same line in P 2(R). In this way the coordinates
(a, b, c) can be thought as homogeneous coordinates [a, b, c] on a different projective space:
under the identification between lines and their Plückerian coordinates, we obtain that
lines in P 2(R) become the elements (points) of a two-dimensional projective space, called
dual projective space P 2(R)∗. Therefore, associated to P 2(R), there is P 2(R)∗, whose
points are lines (hyperplanes) of P 2(R).
It is natural to ask what are the lines of P 2(R)∗ (points in the double dual P 2(R)∗∗).

Projective duality states that P 2(R)∗∗ ≡ P 2(R), so that lines in P 2(R)∗ can be identified
with points in P 2(R), in the following sense. In complete analogy with P 2(R), we have
that a line π∗ ∈ P 2(R)∗ can be described by an equation of the form

αx∗
0 + βx∗

1 + γx∗
2 = 0 ,(A.3)

where [x∗
0, x

∗
1, x

∗
2] are homogeneous coordinates of points in P 2(R)∗. So P = [x∗

0, x
∗
1, x

∗
2] ∈

π∗ iff (A.3) is satisfied. But now observe that the homogeneous coordinates of P =
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[x∗
0, x

∗
1, x

∗
2] can be thought also as Plückerian coordinates of the corresponding line πP in

P 2(R), whose equation is

x∗
0x0 + x∗

1x1 + x∗
2x2 = 0.

Now we compute

⋂
P∈π∗

πP ⊂ P 2(R)

and prove that this intersection corresponds to a unique pointQπ∗ ∈ P 2(R) (the subscript
π∗ in Q means that this point is uniquely identified by the line π∗). Computing the
previous intersection is the same as solving simultaneously the equations

x∗
0x0 + x∗

1x1 + x∗
2x2 = 0 ,(A.4)

x̄∗
0x0 + x̄∗

1x1 + x̄∗
2x2 = 0(A.5)

for two distinct points P = [x∗
0, x

∗
1, x

∗
2] and P ′ = [x̄∗

0, x̄
∗
1, x̄

∗
2] belonging to π∗. Simple

linear algebra shows that (x0, x1, x2) is a solution of (A.4) and (A.5) iff [x0, x1, x2] =
[α, β, γ]. So the Plückerian coordinates (α, β, γ) of the line π∗ in P 2(R)∗ correspond to
the homogeneous coordinates [α, β, γ] of the point Qπ∗ ∈ P 2(R). So we have proved
that P 2(R)∗∗ ≡ P 2(R). Thus Plückerian coordinates of lines can always be identified
with homogeneous coordinates of points in the dual. The situation is summarized in the
following table:

P 2(R) P 2(R)∗

points lines

lines points

Suppose it is given a parametric curve C in P 2(R), whose homogeneous coordinates
are described by [x0(s), x1(s), x2(s)] ∈ P 2(R). Fix Q = [x0(s̄), x1(s̄), x2(s̄)] in C: we
want to compute the equation of the tangent line τQ to C in Q. Let Q′ be a different
point belonging to C. By the previous results developed in this appendix we know how
to compute the equation in P 2(R) of the line πQQ′ through Q and Q′:

πQQ′ : h(x0, x1, x2) := x0(x1(s̄)x2(s′)− x2(s̄)x1(s′))+

+x1(x2(s̄)x0(s′)− x0(s̄)x2(s′)) + x2(x0(s̄)x1(s′)− x1(s̄)x0(s′)) = 0.

Then the tangent line τQ can be thought as obtained “by letting Q′ going to Q”, so that

τQ : lim
s′→s̄

h(x0, x1, x2)
s′ − s̄

,(A.6)

that is

τQ : x0(x1(s̄)ẋ2(s̄)− x2(s̄)ẋ1(s̄)) + x1(x2(s̄)ẋ0(s̄)− x0(s̄)ẋ2(s̄))+(A.7)
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+x2(x0(s̄)ẋ1(s̄)− x1(s̄)ẋ0(s̄)) = 0.

By (A.7), we have obtained that the Plückerian coordinates (a, b, c)τQ
of the tangent

line to a curve C to a point Q = [x0(s̄), x1(s̄), x2(s̄)] are simply given by (compare with
eq. (15))

(a, b, c)τQ
:= (x0(s̄), x1(s̄), x2(s̄)) ∧ (ẋ0(s̄), ẋ1(s̄), ẋ2(s̄)).(A.8)

As we already observed, these Plückerian coordinates define homogeneous coordinates
in the dual projective space; repeating this construction for every point of the curve C,
we construct a new curve C∗ in P 2(R)∗, called the dual curve to C. The homogeneous
coordinates of points belonging to C∗ are exactly Plückerian coordinates of tangent lines
to C, so the homogeneous parametric equations of C∗ are

[x∗
0(s), x

∗
1(s), x

∗
2(s)] = [(x0(s), x1(s), x2(s)) ∧ (ẋ0(s), ẋ1(s), ẋ2(s))].

As expected, if now we compute the dual curve to C∗, we come back to our original curve
C, as a straightforward calculation can prove. In fact, the homogeneous coordinates of
points of C∗ are collectively given by an expression like

[x∗(s)] = [x(s) ∧ ẋ(s)],(A.9)

thus the homogeneous coordinates of points of C∗∗ are given by

[x∗∗(s)] = [x∗(s) ∧ ẋ∗(s)]
(A.9)
= [(x(s) ∧ ẋ(s)) ∧ d

ds
(x(s) ∧ ẋ(s))].(A.10)

Now, exploiting the properties of vector product, it follows from eq. (A.10) that

[x∗∗(s)] = [
(
x(s) ∧ ẋ(s)

∣∣ẍ(s))x(s)] = [g(s)x(s)],(A.11)

where (.|.) denotes the standard scalar product in R
3 and g(s) is the scalar function

(x(s) ∧ ẋ(s)|ẍ(s)). Thus, the homogeneous coordinates of points of C∗∗ are exactly the
homogeneous coordinates of points of C, provided g(s) is never vanishing (or at most
vanishing at some isolated points). In fact, in our framework, starting from a regular
curve C in R

2 and embedding it in P 2(R), we can think that the curve C is sitting on
the plane x0 = 1 in R

3 as a plane curve (the embedding of R
2 in P 2(R) is equivalent

to identify R
2 to the plane x0 = 1 in R

3). Under this representation it is obvious that
x(s) ∧ ẋ(s) is never vanishing. Moreover, if we assume that C is not a line, then also
ẍ(s) is generically different from zero (except eventually at the inflection points). So in
our case we have that

g(s) =
(
(1, x1(s), x2(s)) ∧ (0, ẋ1(s), ẋ2(s))

∣∣∣∣(0, ẍ1(s), ẍ2(s))
)
,

and then

g(s) = ẋ1(s)ẍ2(s)− ẍ1(s)ẋ2(s).

The last expression of g(s) is nothing else that the scalar product in R
2 of the vectors

v = (−ẋ2(s), ẋ1(s)) and w = (ẍ1(s), ẍ2(s)). Then we have that g(s) is never vanishing
(except eventually at the inflection points) because v and w are never orthogonal, since
v spans the direction orthogonal to the curve C (thought in R

2), and w represents the
acceleration vector.
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