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A geometric formulation of the classical principles of D' Alembert and Gauss in analytical
mechanics is given, and their equivalence for possibly non-Riemannian mechanical systems is
shown, in the case of ideal holonomic comstraints, This is done by means of a Gauss' function,
which is defined in a natural way on the bundle of two-jets on the configuration space, and

which gives the “intensity” of the “reaction forces” of the cons

aints. It is originated by a

metric structure on the bundle of semibasic forms on the phase space determined by the
Finslerian kinetic energy functions of the mechanical system.

I. INTRODUCTION

There are several reasons for a revisitation, from a geo-
metrical point of view, of the well known Gauss’ principle of
“least constraint.”

Indeed, it is remarkable that this topic seems to not have
received a great deal of attention in the formulation of analy-
tical mechanics, within the framework of differential geome-
try, that took place in the last decades. For instance, we can
quote, among others, the books by Godbillon,? Libermann
and Marle,” or Abraham and Marsden,* where this principle
is ot treated.

However, Gauss’ principle seems to be of undoubtable
foundational relevance and worthy of interest, especially ina
broad generality of choice for the form of the kinetic energy
function of the mechanical system and for the active forces,
possibly nonconservative and dependent upun the distribu-
tion of the generalized velocities in the phase space.

‘We wish to stress that an accurate study of Gauss’ prin-
ciple is also interesting {rom the point of view of the possible
applications. Indeed, for instance, in a rather recent work by
Lilov and Lorer,” an algorithm for a dynamical investigation
of a multirigid body system is proposed on the basis of
Gauss’ principle. The two authors remark that “the main
advantage of this approach, ..., over the derivation and inves-
tigation of the nenlinear equation of motion, ..., is that, using
Gauss® principle, the accelerations can be found out from the
condition for minimum of a functional, ..., and there is the
possibility to use effectively the mathematical programming
methods, and especially the recent iterative algorithms for
constraint and unconstraint minimization of quadratic func-
tionals.”

Usually, in the analytical mechanics texthooks, Gauss®
principle is stated for mechanical systems composed of a
finite number of material particles under the presence of
ideal constraints. Such a procedure excludes the finite-di-
mensional systems with an infinite number of particles, like
rigid bodies, unless some limiting processes are carried out,
which are sometimes lacking the necessary rigor. About this,
weagree with Wang (Ref. 6, p. vii), when he states that rigid
bodies should be regarded as primitive concepts like mass
points and treated as such.

The present version of Gauss' principle complies with
these ideas, and can be applied as soon as the finite-dimen-
sional mechanical systems are assigned a “free” configura-
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tion manifold and a constraint manifold, together with a
kinetic energy function and an “active force” field, both in-
dependent of the constraints. Mechanical systems composed
of a finite number of mass points and/or rigid bodies are thus
equally treated in a natural way. Indeed, the general form for
the kinetic energy that we adopt gives a generalization of
Gauss’ principle to the case of Finslerian { possibly non-Rie-
mannian) systems.

Inorder to accomplish our goal, a suitable statement of
D’Alembert’s principle is needed. Our approach regarding
the latter is close to that of Vershik and Faddeev.” However,
sinee we focus on the holonomic ideal case, constraints in
this work are treated in a somewhat different way. Here the
point of view and techniques of Ref. 2 are adopted, so that
the present versions of the principles of D'Alembert and
Gauss follow the spirit of the construction in Ref. 2.

A Gauss function is intreduced in a natural way on the
bundle of two-jets on the configuration space, by means of a
“kintetic” metric on the bundle of semibasic forms on the
velocity phase space. This norm measures the *“deviation
forces” that are needed for the mechanical system to un-
dergo the motions associated with @ priori chosen semi-
sprays. They are compared with the only dynamically possi-
ble motion compatible with the constraints, i.e., with the
motion M associated with semisprays determined by
D’Alembert’s equation. The final result, that is, the equiv-
alence of the principles of Gauss and I¥ Alembert, is basical-
ly a characterization of M in terms of either of the following
properties: (a) M is the unique motion along which the devi-
ation forces are of the kind that the ideal constraints are
capable of exerting; and (b) along M the above forces mini-
mize, in a certain sense, the Gaussian function. Local expres-
sions of alf the definitions and results are given.

Il. GCONSTRAINED MECHANICAL SYSTEMS

We begin with a brief summary of some fundamental
netions and results, and an introduction of the notations. We
refer mainly to Refs, 2 and 3 for details.

Let M be a differentiable (C™ Y manifold of dimension
#n, and without boundary: M = & (Ref. 2, pp. 57 and 58).

To any coordinate system (x') on M are canonically
associated natural coordinate systems (x', ')} and (x°, x°,
5x', 8%y on TM and TTM, respectively. Here and in the
sequel, latin indices run from 1 to .
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The canonical tangent projections, 7,,: TM—M and
Tar: TTM - TM, thus have the local expressions

Toai (X, X)X, T (X, &, 8x 8%y s (x4, X)), (2.1)
respectively. The space 7744 is fibered in two ways on TAL:
cither by means of the projection 7,.,: 778 — M intro-
duced above, or by means of 77,,: TT3/ -- TM, whose local
expression is as follows:

Trop (25, %5 8x%, 655 v (x5, 8x5). (2.23
As usual, T denotes the tangent of a mapping /.

The kernel of Tr,, is a canenical subbundle of 7T,
called the vertical tangent bundle to TM, and denoted by
VTM (see Ref. 3, p. 54). The elements of ¥7TM are termed
vertical and have the local expression (x*, 3, 0, 61*). We
denote by ¥: TM — VTM the Liouville vertical vector field
on TM, generating the one-parameter group of positive dila-
tions of TM. In natural coordinates, it has the local expres-
sion

y=x2

23
o' 2

so that, forinstance, F-f = %’ (gf/ax" ) forall fe D( M3, the
algebra of the differentiable functions on 7M.

In a similar way, we will denote by 7,,: T*M— M and
Traes T *TM—TM the cotangent projections. To (x'), the
systems of coordinates (x', p, y and (x', ¥, p,. r,) on T*M
and T*TM, respectively, are canonically associated. In this
way, the above projections 7,, and 7., have the local ex-
pressions
» (X, %),

(2.4)

Following Ref. 2, we introduce the vector bundle
B3 T*M—~TM of semibasic forms on 7M. The total
space 75, T*M can be identified with the subspace
UpearTar (W) "' () of TM X T*M, and the projec-
tion Fis the restriction of the projection of TM x T *M onto
TM (see Ref. 2, p. 166).

By Proposition 2.2 and Remark 2 in Ref. 3, pp. 55 and
56, we will identify the vector bundle 8: 7% 7 *M— TM of
the semibasic forms on 7 with the subbundle of T*TM,
Trar| cvranet (VIM)® = TM, the annihilator of the vertical
bundle FTM.

Hence, for simplicity, we will also use 7, for semibasic
forms, instead of . Of course, in natural coordinates the
elements of (¥TM)® have the expression (x‘, ¥, p,, 0). A
differential one-form & on TA{ is semibasic, if and only if it
has, in natural coordinates, the local expression

Tagt (X ) = XY wp (X, %, p 1)

o= o {x" i")dx! (2.5)
where o; (x*, £ } are given functions on TM (see Ref. 2.p
165 or Ref. 3, pp. 56-38).

The identification of the vector bundles ( ¥TM)? and
{(VTM)* on TM (see Propositions 2.4, 2.5, and 3.11 in Ref.
3, pp. 35-58), allows for the definition of a vector bundle
morphism v*: T'*TM — (FTM)° (also see Proposition 6.9 in
Ref. 3, p. 70), whose local expression is
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v* (x K g, ) — (X X r, 0).

{2.6)

The morphism #* induces an endomorphism, stifl de-
noted by v* and called verrical, of the D{TM)-algebra
A{TM) of the differential forms on TM. It is locally deter-
mined by the conditions (Ref, 2, p. 161}

vf=f, foranyfin D(TM), v*(dx’) =0,
v {dx") = dx" (2.7)
The subalgebra B(TM) of semibasic differential forms
is the range and kernel of v*. Beside the usual cxterior differ-
ential , by means of v* the vertical differeniial d, is also

defined on A(7M). It is uniquely characterized by the rcla-
tions (see Ref. 2, p. 163)

df=vrdf d,(dfy = —d(v*dp,

for any fin D(TM). (2.8)

Locally, d, is determined by

d f= % dx', d,(dx) =0, d (di')y=0, (2.9)
X
and the relation dd, = — d & holds.

We now recall the following:

Definition (Ref. 2, p. 169); A mechanical system . 4 is a
triple (M, K, &) where (a) M is a diffcrentiable manifold of
dimension n, the configuration space; (b) K is a differentia-
ble function on TM, the kinctic energy; and (c) @ is 2 semi-
basic differential one-form on TM, the force field.

The differential two-form dd, K on TM is called the fun-
damental form of the mechanical system .4, which is called
regular if dd K s symplectic on TM. This happens if and
only if locally we have (Ref. 2, p. 169)

aK
det ( ) 0.

ax' 3 7
Now, the space 7°M of two-jets of M can be defined by (see
Ref. 3, p. 372)

(2.10)

T°M = {weTTM: 1y, (0} = Tr,, () }, (2.11)
and the canonical submersion %, : T2M — TM can be identi-
fied with 71, i 5o OF Tryy | gy

Since 774 and Ty, have the local expressions (2.1) and
(2.2), the elements of T°M are given locally by
(x*, %%, %%, 85%). As usual, they will be denoted by
(x¥, &%, %*), with ¥* written for %% . In this way, the local
expression for the canonical submersion r2,: T2M — TM is

Tt (05 55 55— (4, 55). (2.12)

A semispray Y is a section of 7%,,. Of course, ¥ can be
seen as a vector field ¥: TM — T'TM, satisfying the condition

(2.13)

In other words, a semispray ¥ is a vector field on TM, which
is at the same time a section of 7, and T'r;. Locally, such a
Yis given by

Ty 0¥ = T oY

L d ; . a
Y:x'—+b'(xk,xk)+, (2.14)
ox’ gz
with &' (x*, X*) given functions on TM. From this, it is im-

F. Cardin and G. Zanzotio 1474



mediately seen that the integral curves of ¥:-TM — 720 are
velocity curves of the curves on M of which ¥ [or
B (x*, £*)] is the acceleration at each point. Thess base
curves on M are also called the selutions of ¥, because they
locally satisfy the system of equations

IX g (= “’i) .

dt- dr
For this reason, semisprays are also called second-order dif-
ferential equations.

The following proposition holds (Ref. 2, p. 170). Let .4
be a regular mechanioal system. Then there exists a unique
vector field X on TA, such that

(2.15)

iydd K =d(K — V-K) + . (2.16)

Here, the symbol iy denotes as usual the interior prod-
uct of a differential form by a vector field. The vector field X
is called the dynamical spstem associated with ..

Furthermore, it can be proved that the dynamical sys-
tem X associated with a regular mechanical system ..# is a
semispray (see Ref. 2, p. 170).

Let the local expression of the semibasic one-form @ be
@ = D, (x*, ¥* Jdx'; then it can be proved that the solutions
of the dynamical systcm X associated with .4 = (M, K, &)
locally salisfy the Lagrange equations (Ref. 2, p. 171),

i(ﬁ)—a—"{:@‘. (2.17)
de \gx*)  Ax*

We now give the following:

Definition: A mechanical system with bilateral holono-
mic constraints is a quintuplet, .#, = (M, K, P, @, %),
where (a) M, K, and & are as above; (b) Q, the constraint, is
an m-dimensional (/m<#) imbedded submanifold of M, with
imbedding denoted by y: Q—M and such that d(cly, Q)
= (c) #HC(VTM)Y| 1 15 the total space of a subbundle
Tyar|st #—TQ of the vector bundle w,,, | oty
(VTM)*| 7o — TQ of the semibasic forms restricted to 70.

Here and in the sequel, we of cougse identify Q with its
image in M under y, as well as T'Q with its image in TM
under Ty, and so on. Also, for simplicity, in the sequel we
will drop the restriction symbol from s ,.,, since no confu-
sion arises.

We explicitly notice that in (b), the condition
d(ely Q) = @ expresses the notion that the constraints are
“bilateral.” The subbundle introduced in {¢) describes the
forces that the constraints are capable of exerting, which are
called the admissible constraint reaction forces.

For brevity, .# . will be referred to as the constrained
mechanical spstem; it will be called regular when both the
systems .# = (M, K, D) and & = (Q, K, ®) are such,
where

K= (Iy)*K = KoTy, ® = (Ty)*d.

(2.18)

Since y is an imbedding and the fibers in T are linear, it is
easily verified that if..# is regular, 2 is also regular.

We will consider the case of idea! constraints, in which
2 is specified as follows:
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& =TT (2.19)

An explicit equivalent description of 2 is the following:

B ={retVIM)®: 7,0, (7} = ueTQC TM,

Kerr=T7T,TQCT,,,.,TM}.

(2.20)

The above definitions of holonomic constraints and ad-
missible constraint reaction forces strongly rely on the intro-
duction of ore assigned constraint submanifold @ of M. In
Ref. 7, where anholonomic constraints are treated in a very
general setting, holonemic constraints possibly emerge as
foliations of M, introduced by suitable repeated integrations
of distributions on 7M. The simpler procedure we follow,
which is closer to the classical treatments, seems more natu-
ral from a physical point of view.

A characterization of the sections of 7, | o = TQ,
which is important in the sequel, is given by the following:

Lemma: Let p be a differential semibasic one-form, i.e.,
a section of 7, | cvrane: (FTM)o—TM. Then poTy is a
section of rye | . 1 5 — TQ, if and only if

{iy)*p=0. {2.21)

Progf Indeed, denoting by f: TQ— T*TQ the differen-
tial one-form (7} *p, it 18 o = 0, if and only if, for any arbi-
trarily fixed €7@, it results that

ip{u) =0, forany z=7,7Q. (2.22)
But this is true, if and only if
iy P(Ty{w)) =90, forany z27,7TQ, (2.23)

that is, if and only if p{Ty (13} for all ueTQ, or, if and
only if poTy is a section of 7, |1 R-TQ.

The focal expressiens will be useful, and we give them in
detail. Let (x') and (g*) be local coordinate systems on
M and @, respectively (here greek indices run from 1 to m).
Furthermore, let 7 = p, (x", " )dx' be a semibasic differen-
tial one-form, and let & = (g, 4°) be a fixed arbitrary ele-
ment of 70, so that ze7,7Q has coordinates
(g™, ¢%, d¢”, 5¢™ ) and

TTyiz) = (v"(¢"), Dy (¢)i", Dy (¢ 8¢,
DD x"(g")4°8q" + D,x"(¢")6¢"). (2.24)

As usual, D denotes the partial derivative in B"™. Then,
since

p°Ty = p{y"(g7), D ¥/ (g* 3¢ )dx’
and

(2.25)

{Ty) % =p,Y" (¢, D, ¥ (") 1D, x'(g")dg", (2.26)
(2.23)-(2.25) yield
2@, Doy (gD, x ()84 =0,

for all 5g“cR, (2.27)
which of course is true if and only if
Py (™), Dy D, x (g7 = 0,
for all (g%, &"). (2.28)

By (2.26), we see that (2.28) is equivalent to (2.21),
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Remark I: The characterization of the constraint reac-
tion forces given by {2.21) or (2.28), easily leads to the
following, which will also be used in the sequel.

Let p be a semibasic differential one-form. Then po Ty is
a section of 7y | ., : # —TQ, if and only if

(Ty)*(iyp) =0, (2.29)
for all fields ¥: TAf - TTM, such that there exists a field Z:
TQ—-TITQ for which the relation

YoTy = TTyoZ
holds.

We will call the vector fields Yon TM, and Zon T, Ty-
related, when they satisfy (2.30). In this way, ¥is an exten-
sion to TM of a vector field Z on 7Q.

To prove the assertion of Remnark 1, let us recall that we
can write, for any veTQ,

(2.30)

(Ty)y*(i,p)() = iy['r,((u)) {P(TX(U})]

= irryo [Py (0)]] = 0. (2.31)

Hence the first term in (2.31) is zero for any ¥, if and
only if p{ T’y (v))e57 for any veTQ.

Since i,p obvicusly has the meaning of “power” of a
force along a “‘path,” Remark 1 shows that constraint forces
are characterized by the fact that they do no work on vector
fields on TM that extend vector fields tangent to TQ.

Remark 2: Before concluding this section, we mention
without details that Remark 1 implies a further characteri-
zation of the admissible constraint forces.

Let p be a differential semibasic form. Then poTy is a
section of #yy, | 1 % — T, if and only if

(TH=(i,p)=0, (2.32)
for all fields ¥: M— TM that are y-related to some vector
field Z: Q—TQ. In (2.32), ¥ indicates the complete lift to
TM of a vector field ¥ on M [see Yano and Ishihara (Ref. 8,
p. 14 I Y=»5(x*)d/3x') locally, it is ¥°
=b(x")(d/9x) + D.b'(x*)11"(d /3x"). By Remark 1, to
prove the assertion of Remark 2, we just need to notice that

Yoy =TyoZ < YTy = TTyoZ"

whichk we give without proof.

Remark 2 is interesting because it clarifies the “physical
meaning” of the constraint forces. Indeed, it shows that to
characterize them, it is enough that they do no work just on
complete lifts to TAf of vector fields on M that extend fields

" an Q. The above tocal expression of the complete lift clearly
shows that the latter condition basically amounts to the clas-
sical one requiring that, in the ideal case, admissible reaction
forces do no work on “displacements™ tangent to the con-
straint Q.

lll. ’ALEMBERT'S PRINCIPLE

We introduce, in connection with a given mechanical
system .# = (M, K, &) and with a given, arbitrary, semi-
spray ¥: M — T7M, the following deviazion differential onc-
formp,:
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pr=i,dd K —d(K—-VK)—~ (3.1)
These forms p, have the meaning of “forces to be added” to
the given force field €, in order that a semispray ¥, chosen a
priori, be the dynamical system associated with the mechani-
cal system (M, X, @ + py). In fact, the following holds:

Lemma: The deviation differential one-forms are semi-
basic.

Proaf2If ¥ = % (3/3x') + b (x*, 3% (3 /8% } locally,,
with & {x*, %*) given functions, it is not difficult to show
that the local expression for p, is as follows:

K
= b*t
oy (556" i

K o 9K _ <D,.) dx'. (3.2)
It '

Definition: Two semisprays ¥ and ¥’ are said 1o be
equivalent, Y= ¥, when their restrictions to 7Q are equal,
i.e, when YoTy = Y'oTy.

Now, our goal is the construction of a dynamics for the
constrained mechanical system .#, = (M, K, ¢, @, %). In
order to do this, a twefold result must be obtained. Basically,
we first need to select the semisprays X that (besides defining
adynamical system on the overall manifold M, alse) define a
dynamical system on the constraint manifold ¢, meaning
that the sofutions of X must be all on Q when the initial data
arein 7Q.

Furthermore, the deviation differential one-forms py,
that is, the forces necessary to “maintain® the system on the
constraint, must be of the kind that the constraints are capa-
ble of exerting, i.e., p, Ty must be a section of the bundle
Trar | .+ 5 — TQ of admissible constraint forces, introdueed
in Sec. T1.

We now show that, in the case of regular systems, the
two properties above characterize X in a unique way on the
constraint. In fact, the following theorem holds.

D’Alemberr’s principle: Let 4 . be a regular constrained
mechanical system. Then, up to equivalence, there is a
unique semispray X: TM — T°M, such that the following
D’ Alembert’s equation holds:

iydd, K —d(K — V-K)=® 4 py, (33)

withp, o Ty asection of m,., | o :+# = TQ. The solutions of X
have the property that their image is all on ¢ as soon as the
initial values are in 7.

Progf: Let us set for brevity o =dd K, and
o=d(K — ¥K), and let us consider the following pull-
backs of e, o, and &

B={Ty)%w, &=(TP)i*o, P=(Ty)*d, (34)
Since K is a function (a zero-form), both 4 and 4, commute
with the pull-back, so that it is & :a’a’,.f( [see (2.18)];
hence the hypothesis that .# . is regular implies that & is
symplectic on 7. Then, Theorems 1.4 and 1.6 in Ref. 1 (p.
1703, applied to the mechanical system 2 = (@, K, &),
guarantee the unigueness of the semispray X: Q- T2Q,
such that the following equation holds:

iyd — o =®. (3.5
Now, let us consider an arbitrary semispray

X: TM - T*M, Ty-related to X
F. Cardin and G. Zanzotto 1476



XoTy = ITyoX. (3.6)

Then, considering the deviation one-form g, we have [see
(3.1} and (3.3)]

iydd K — d(K — V-K) = ®, (3.7
where py is such that

(TyYax = (TY)¥iyw — o — D) {3.8a)

= (TP*iw)—7—® (3.8b)

=iy — & — P (3.8¢)

=0. (3.8d)

Equality (3.8¢) holds because of (3.6) and example 1.8 (iii)
in Ref. 2, p. 89, whereas (3.8d) isjust (3.5). By the lemma in
Sec. II, (3.8) shows that pyeTy is a section of admissible
reaction forces.

The uniqueness of X, up to equivalence, is a consequence
of (3.6) and of the uniqueness of .X. Finally, the last assertion
in the statement is true because, again by (3.6), TQ is an
integral manifold of the semispray X.

We will say that any of the cquivalent semisprays X
above is a dynamical systern associated with the constrained
mechanical system .# .. Here it is worth noticing that the
class of semisprays X, Ty-related to X, is not empty.

We also remark that the theorem above shows that, for
fixed .#, the deviation forms p connected with a semispray
Y, are not, in general, forces that the constraints are capable
of exerting. Indeed, they are such, only when Y is a dynami-
cal system associated with . .. This is the reason why we
refrained altogether from ¢alling the py ““constraint reaction
forms,”

The local expressions will be useful in Sec. IV, If, locally,
the field ¥, uniquely determined by Eq. (3.5), is given by

g 2
G°

Y o
X=4"—
let us consider a semispray

q
X =i g ity 9
Ew EX

such that Eq. (3.6) holds, that is, such that
a{y*(g™), DY (7)) = & (g*, ) Dy’ (g™

+ D, Dy g, (3.9)
Then, writing o, = py (x", 2% )dx’, with
pr= 9K gy K o K (3.10)
© ik o ax* ax' ax’
[see (3.2) ], by (3.3), we conclude that the equation
P ), Doy (614 IDsx (%) = 0 (3.11)

holds, if and only if the functions &' (x*, " ) satisfy {3.9).

It is worth noticing explicitly that the semispray
¥. TQ - T2, intreduced in the proof of 1Y Alemberts prin-
ciple, is such that

iydd K—d(E-V-K)=0, (3.12)
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where ¥ is the canonical Liouville field on 7Q. Hence, by
(3.12), the solutions of X locally satisfy the equations of
Lagrange relative to the mechanical system & = (Q,K,®),

9(E) R g,
dt \3g"

i (313

Equation (3.12) is easily seen to hold because
@ = da’,,]? (see above) and (Ty)*(V'K) = - K. The latter
equality is a consequence of the fact that the fields ¥ and ¥
are Ty-rclated. Thus {3.12) is immediately derived from
(3.5).

We conclude this section with a statemnent of the classi-
cal “energy theorem.”

Let X: TM — T*M beasemispray solving the equation of
D'Alembert (3.3} and let X be the Ty-related semispray
TQ- T2, solving Eq. (3.12). Let : [a,b] — F'Q be an inte-
gral curve of X, so that Tyoy is an integral curve of X, Then

Tpfnta)r

Jr
j W*O(TX)*CI’ — [V'K— K ]Tvlmb)]

=[(FK-K))ne, (3.14)
Toprove that Eq. (3.14) hoelds, we recall that, being the

Semisprays X and X, Ty-related, Remark | of Sec. I gives

(Ty)*(iypy) =0, (3.15)
I'hen, since X solves [Y Alembert’s equation (3.3), and tak-
ing into account that dd, K is symplectic, evaluation on X of
the forms appearing in (3.3}, gives

(T[N (VK - K)] = (Ty)y (i, ®). (3.16)

Equation (3.16) immediately yields (3.14).

IV. GAUSS’ PRINCIPLE

Asin the preceding sections, we do not necessarily con-
sider K to be quadratic on the fibers 7,, ' (x) of TM. This is
the case, for instance, of Newtonian classical mechanics.
Rather, we have in mind certain generalizations, such as
Finslerian mechanics (see, for example, Ref. 2, p. 130, and
also Rund,” Ruiz,'” and Eringen''); we do not require here
that K be a Riemannian metric.

Let .# . be a regular constrained mechanical system.
Following Ref. 7, we introduce the (2,0)-tensor field II on
TM, defined by means of the relation

dd K[We), H] =i,0, (4.1)
which is to hold for cvery differential one-form o, and vector
field H, on TM. Also, a new (2,0)-tensor field I on TH is
defined, such that

I'ia, vy = M(a, v¥y), (4.2)

for any differential one-forms « and » on TM. Of course, we
denote as usual with the same symbol both the morphism
and the bilinear form induced by the (2,0)-tensor field I1.
A straightforward calculation shows that, setting for
brevity,
d°K

K (x, %) = ——,
! ax dx’

(4.3
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the local expression of I' is

T=Kx", x )% & d ) (4.4
ax x
where
K, K*=8" (4.5)

Hence I is connected to the Hessian of the funcition K along
the fibers of T (see Spivak, Ref. 12, Vol, 2, pp. 206 and
207).

From now on, we assume that X is the “energy” of a
Finslerian structure on A, explicitly, we suppese that there
exists a function F on TM such that K = F?, with the fol-
lowing propertics: {a} F{r}=0, F = |4 |F(v), if vs£0,
veTM, and AcR; (b) the functions K, (x", ") define a posi-
tive-definite quadratic form on T TM, at every point
= {x", &) of TM with x* #£0.

It is clear that the (2,0}-tensor field I' introduced in
(4.2)-(4.5} is but the dual to the tensor K ;{x", X")
X dx' & dx on TM, canonically associated with the Finsler-
ian metric Fon M (see Ref. 12, Vol. 2, p. 208).

Owing to its structure, I generates a metric for the guo-
tient bundle F*7M /{ VIM}", which we will continue te in-
dicate by I'. Indeed, in natural local coordinates, letting
[a] = [x7, X%, r;, p; ] be the equivalence class in T*¥M /
(VTM)" ofan clement @ = {x7, X°, r,. P )ET*TM, we have

Ci[a],[e]) =TCla,a) =K {x"3)pp, (4.6)

The number T{[el,[a]) =K (x", %" )p,p; does not
depend on the coordinates r, of the element @, that is, it does
not depend on the particular representative chosen for the
equivalence class [« ], so that the function I is well defined
on equivalence classes.

By means of v* (see Sec. I1), we now coastruct the vec-
tor bundle isomorphism »: T*TM /(VTM)"— (VTM)",
suchthat ~* = ~opr, wherepr: T*TM - T*TM /(VTM)%is
the usual quotient projection. As mentioned in Sec. II,
(VTAMN® is identified with the vector bundle of semibasic
forms on TM by means of the results of Proposition 2.2 in
Ref. 3 (p. 55).

Using natural coordinates, -

~ ! has the local expression

Tl X, 1 p, 0) [x. %, r.p: ], (4.7)
where the r; are arbitrarily fixed real numbers that label the
elements in an equivalence class.

1t is now clear that, through »~', T determines a well-
defined metric on the bundle ( ¥7M}" of semibasic forms on
TM. Letw = (x*, ¥*, ¥*) be a given element of T2M, with
T (0} = v = {x*, ¥*)eTM. In correspondence with 1, let
us consider the foltowing element of (¥, TM)®:

o =i, [dd K(r)] —d(K — F-K)(v) — P(v). (4.8)

The coordinates of r,, are easily seen to be {(x*, %%, 5,, 03,

see (3.2), with

_K . K . K
a5 ax'

(4.9)

— @,

¢

axt gxt dx

Then the following Gauss [unction:
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G: T*M--R
w3 Te "'r, ), « 7 (r,) ],
is well defined on T'2M.

To the element w in T2M (deseribing the configuration
and the distribution of velocities and accelerations of the
systemn ), G associates the " norm of the deviation force #,,
“excited” by w. We recalt that, by D’Alembert’s principle,
r.€%, if and only if w = X(v), with X a semispray associat-
ed with.# .

In the case of a system of N mass points, & has the
classical expression

{4.10)

G i 12, — F (X Xy ¥y Ty 30 !
T m,
with a clear meaning of the symbaols.
Let us now fix an arbitrary element # in 7, and let us
introduce the following restricted pull-back of Gauss’ func-
tion (4.103:

G, = [{I*y)*Gl|

(4.11)

rigr (4.12)
where I”yisthemap T 'Q— T'?M, cunonically induced by y,
and T5,0= (77) ‘() is the fiber in 7°Q over u. Let us
notice that, when natural local coordinates are used in 7@,
associated with a local coordinate system (¢” ) in @, then the
elements of the m-dimensional vector space 7. Q have the
expression (g%, ¢, &), where (g% §°) are the (fixed) co-
ordinates of #=TQ.

The following proposition holds.

Gauss’ principle: The semispray X, associated with the
mechanical system 2 = (@, K, ®), is characterized by the
following property for any fixed ue7'Q:

G, [ X(u)] <G, (z}, forallzeT2Q {F(w)}. (4.13)

Proof: Let an arbitrary element zeT2Q be chosen; in
natural local coordinates, we have z = (g%, §%, g%}, so that

(2 =" @ D & DD G 8
+ DGO (4.14)

{4.9), the
TM) 1

Hence, by local

P €0V

expression  of

yluy
e = WHES Doy (@7 &7, 2., 0),
where, for brevity we have set

2. =K, D, Dy"a ¢ ¢ + D,y (§)§)

(4.15)

+EuD.x' @) ¢ —K, -, (4.16)
with [see (4.4)]
K, =K. x"Gg) Dy @) &), {(4.17)
Ri=-2E @, by ¢ (4.18)
M axkaxl T ’ '

=  IK - i

K, =—=W"a), DY@ ¢) (4.19)
ax’

B, = d,(y5, D,V (F) &) (4.20)
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Then, from (4.12), (4.10), (4.4)-(4.7), and (4.15), we ex-
plicitly get, for G,

G, (% 4" §™) =LK "p,(§")p, (§°). (4.21)

From this we see that G, is trivially differentiable, and, by
(4.16) and (4.21), that it is indeed a quadratic polynomial in
¢“. Hence we only need to prove that its differential dG,
vanishes at X (), and only there. It is sufficient to show this
locally. A direct calculation yields the local expression for
the differential 4G, at the point z = (g%, ¢% §“)eT 20, as
follows:

dG,(z) =K “K,p,(4")D, y"(§°)d§" (4.22a)

=p,(§*) D,y (§")dg°, (4.22b)
where (4.22b)yholds because of (4.5).

Now, let X = §*(d /d¢") +@"(¢", ¢°} (9 /34" be the
local expression for the dynamical system X: TQ-—-Z‘ZQ,
associated with 2 = (Q, K, ®), so that X(u)
= (7% ¢", a"(g", ¢"))-

The local expressions (3.10)-(3.12) of D’Alembert’s
principle show that, for the deviation semibasic form LS
[see (4.16)],

PgIDx' (@) =0
holds, if and only if §° = a*(3", ¢), i.e., if and only if
z=(g% ¢",@"(§" ¢")) = X(u). Hence, by (4.22b) and
(4.23),dG, (z) =0, if and only if z = X(u).

To conclude that X («) is indeed a minimizing point for

G, , werecall that, as already noticed above, G, is a quadrat-
ic polynomial in g, whose leading term is

(4.23)

KD, ¥ (@) Dy (@) i"", (4.24)
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which is positive-definite because of condition (b) following
(4.5) and because y is an imbedding.

Remark: Gauss’ principle can be stated, in an equivalent
way, directly in terms of Gauss’ function G above, rather
than in terms of its pull-back G. In this case, the wording
turns out to be closer to the classical statements of the princi-
ple that can be found in the literature. Nevertheless, the
statement itself becomes more involved and we omit the de-
tails here.
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