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Profinite groups with a rational probabilistic zeta function
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Abstract. We discuss whether finiteness properties of a profinite group G can be deduced from
the probabilistic zeta function Pg(s). In particular we prove that in the prosoluble case, if Pg(s)
is rational then G/Frat(G) is finite.

1 Introduction

Let G be a finitely generated profinite group. As G has only finitely many open
subgroups of a given index, for any ne N we may define the integer a,(G) as
ay(G) = >y ug(H), where the sum is over all open subgroups H of G with
|G : H| =n. Here ug(H) denotes the Mobius function of the poset of open
subgroups of G, which is defined by recursion as follows: u;(G)=1 and
Ug(H) = =3 g ug(K) if H < G. Then we associate to G a formal Dirichlet series
Pg(s), defined as

Pg(s):Z@ where a,(G) := Z Ug(H).

nelN |G:H|=n

When G is finite and ¢ is a positive integer, Pg() is the probability that 7 randomly
chosen elements generate G (see [7]); the inverse 1/Pg(s) is usually called the proba-
bilistic zeta function of G (see Mann [10] and Boston [1]). In the infinite case we do
not know whether the series Pg(s) converges (related questions are discussed in [3],
(8], [9] and [10]); however in this paper we use the name ‘probabilistic zeta function’
to indicate the inverse of Pg(s) in the ring of formal Dirichlet series.

Let {G,},.n be a countable descending series of open normal subgroups with the
properties that G; = G, ﬂneN G, =1 and G,/G, is a chief factor of G for each
n € N. The factor group G/G, is finite, and so the Dirichlet series Pgg, (s) is also
finite and belongs to the ring & of Dirichlet polynomials with integer coefficients. In
fact Pgq,(s) is a divisor of Pg/g,,,(s) in the ring &, that is, there exists a Dirichlet
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polynomial P,(s) such that Pg/q,,,(s) = Pg/,(s)Pa(s). As explained in [3], the Di-
richlet series Pg(s) can be written as an infinite formal product Pg(s) =[], cn Pu(s),
and if we change the series {G),},.n, the factorization remains the same up to re-
ordering the factors.

It is possible that a Dirichlet polynomial can be written as a formal product of in-
finitely many non-trivial elements of & (for example 1 = (1 —27%) [, on(1 +272%)).
So it is not clear whether the formal series Pg(s) = [[,.n Pu(s) is finite only when
P,(s) = 1 for all but finitely many n € IN; more generally we can ask whether one can
deduce finiteness properties of G from the fact that Pg(s) is finite. It is not true that if
P;(s) € 2 then G must be finite; indeed py;(H) # 1 implies that H is an intersection
of maximal subgroups and thus Pg(s) = Pg/Fra(c)(s). For example, if G is a free pro-
p group of rank d then

Pg(s) = P(Z/pz)"(s) = H (1 - pi/Ps)-

0<i<d

However one could conjecture that if Pg(s) € & then G/Frat(G) is finite.

In this paper we mainly deal with prosoluble groups. In this case the poly-
nomials P,(s) are very simple; indeed P,(s) = 1 — ¢,/q; where g, = |G,/ Gy+1], ¢n is
a non-negative integer and ¢, = 0 if and only if G,/G,;; is a Frattini factor, i.e.
G,/ Guy1 < Frat(G/Gy41). In particular, if G is prosoluble (and only in this case,
see [4]) Pg(s) has an Euler factorization as Pg(s) = [], Ps,,(s) over the set of prime
numbers, where

Poyls) = 2D T £y,

S
relN (p’) neQ,

and, for any prime p, Q, is defined as the set of n € N such that G,/G, is non-
Frattini and has p-power order. Therefore, as already noticed by Mann [10], more
general questions arise: what can we say about the structure of G if we know that for
a certain prime p the Dirichlet series Pg ,(s) is a polynomial, and what can we say
when Pg (s) is rational, i.e. Pg ,(s) = A(s)/B(s) with A(s), B(s) € 2?

Clearly Pg ,(s) is a polynomial when Q, is finite, i.e. when G is virtually pro-
(p-nilpotent). Surprisingly, the converse is not true: in Proposition 6.2 we produce an
example of a profinite group G such that, for each prime p, the p-local factor is a
polynomial in 1/p* but |Q,| = oo, i.e. G has infinitely many non-Frattini p-chief
factors involved in the factorization of Pg ,(s); in particular G is not virtually pro-
(p-nilpotent).

The fact that Pg ,(s) can be a polynomial even when €, is infinite might lead one
to suspect that there is a counter-example to the conjecture that if Pg(s) € Z then
G/Frat(G) is finite. However, using results from number theory, we prove that if
Pg,,(s) is polynomial then either Q, is finite or, for every prime ¢, there exists n € Q,
such that the dimension of G, /G, as IF,G-module is divisible by ¢; using standard
arguments of modular representation theory one deduces that this is possible only if
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infinitely many primes appear among the divisors of the orders of the finite images of
G; but then Pg ,(s) # 1 for infinitely many primes r and Pg(s) cannot be polynomial.
So Pg(s) can be a polynomial only if Q, is finite for every prime and empty for all but
finitely many, and therefore only if G/Frat(G) is finite. The same argument remains
valid under the weaker hypothesis that Pg(s) is rational and G is merely virtually
prosoluble instead of prosoluble.

Our main result is the following:

Main Result (Theorem 5.4). If G is a virtually prosoluble finitely generated group, then
Pg(s) is rational (or polynomial) only if G has finitely many non-Frattini chief factors,
i.e., if and only if G/Frat(G) is a finite group.

2 Formal Dirichlet series

Let # be the ring of formal Dirichlet series

“a
%:{Zn—manel}.

n=1

Let IT be the set of all prime numbers; to each prime p we associate an indeter-
minate x, and we consider the isomorphism @ between # and the ring of formal

series Z([[Xn]] on the indeterminates Xii = {x,},.; defined by

1/p* — x,.

Then we say that >~ a,/n® is rational if F(X) = ®(>_~, a,/n*) is rational in the

n=1

ring Z[[Xn]]; this means that there exist polynomials S(X), Q(X) € Z[[Xn]] such that
F(X) = S(X)/0(X).
For every prime p we consider the ring homomorphism
¥y : Z[[Xu]] — Z[[x,] = Z[[Xu]]
defined by

Xp = Xp, XxX4— 0 forg#p,

and we denote by ®, the map ¥, o ®.
For a finitely generated profinite group G, let

P p(s) = iaprv((i);

then @ (Pg ,(s)) = D, (Pg(s)).
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Let n(G) be the set of prime divisors of indices of open subgroups of G:

n(G)= () n(G:H|).
\GI:IHg\goo

Proposition 2.1. Let G be a finitely generated profinite group. Assume that Pg(s) is
rational. Then

(1) for each p € n(G), Pg,p(s) is rational in the ring Z[[1/p*]];

(2) if G is prosoluble, then n(G) is finite.

Proof. (1) If Pg(s) is rational then ®(Pgs(s)) = S(X)/Q(X) where S(X), Q(X) are
polynomials in Z[[X7]]. Then

®(Pg ,(5)) = By(Po(s)) = $4

and therefore Pg ,(s) is rational in the ring Z[[1/p"]].

(2) There exists a finite set of primes pi,...,p, such that for every prime
q # p1,--.,pr the polynomials S(X) and Q(X) have zero degree in the indeter-
minate x,. Then ®(Pg ,(s)) = D, (S(X))/P,(Q(X)) is a constant and thus, since
a1(G) =1 by definition, Pg ,(s) = 1. Let G be a prosoluble group. If ¢ € 7(G) then
G has a subgroup M of index a power ¢” of g; when we choose M with n mini-
mal, then M, and every subgroup with the same index, is a maximal subgroup
of G, and thus pu;(M) = —1 and a,(G) # 0, contradicting Pg,4(s) = 1. Therefore

7(G) € {p1,.. pr}.
3 Infinite products
The following result is a corollary of the Skolem—Mahler—Lech Theorem (see [11]).

Proposition 3.1. Let ¢y, ..., ¢, A1, ..., be algebraic numbers with the property that
no quotient ;/J; is a non-trivial root of unity. Then the exponential polynomial

y(m) =i + -+ A"
vanishes for infinitely many integers m only if y(m) is identically zero.

Proposition 3.2. Let I = N and let {y;},.;, {ni};c; be positive integers such that
(i) for every n € N, the set I, = {i € I | n; divides n} is finite, and
(ii) there exists a prime q such that q does not divide n; for any i € I.

If
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F(x) =[]0 =9

iel

is rational in Z[[x]], then I = | ), _x In is finite.

Proof. Hypothesis (i) assures us that F(x) is well defined as a formal power series.
Now we study log(F(x)); by formal Taylor expansion of log(1 — x) we get

toe((x)) = tog( [(1 - v ) S log(1 - v

iel iel

Zzl’z

iel j=
Multiplying the formal derivative of log(F(x)) by (—x) we have

—x(log(F ZZW, "= wn)x”,

iel j=

where

= ng. (3.1)

iel,

Since F(x) is rational, there are polynomials S(x), Q(x) in Z[x] such that
F(x) = S(x)/0(x). Let

Sx)=(1-ox)...(1 —aex) and Q(x)=(1-px)...(1 -p.x)
for complex numbers o;,f;, i =1,...,s, j=1,...,r. Hence

(I—oyx)...(1— ocsx)>
(T=F). (1= )

= ZIOg(l —o;x) — > _log(1 — f1x)
i=1 =1
lj j ﬁ.ij
==Y
1] 1,./

log(F(x)) = log(

and

—x(log(F Za x/ — Zﬂ’x’ Z n)x",
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where
wn) =of +---+of = = — B (3.2)

Comparing (3.1) and (3.2), we obtain, for every n € N, the following identity:

afl =By = — ’{1:Zniy;l/ni, (3.3)

iel,
Replacing in (3.3) n by mn, we have

S r

Z(a?)m o Z(ﬂ?)m _ Zni(y?/n,-)m _ Z nl_y;mz/n,-. (34)

i=1 i=1 iel, i€ Lun\ I
Thus the exponential polynomial

S r

Po(m) = 3@ =S80 =3 m(™)" (3.5)

i=1 i=1 iel,

can be written, by (3.4), as

Yo(m) = > ny™, (3.6)

i€ Ly \I,

Let
Aw={of, ol Bl B i e 1)

To apply Proposition 3.1 to the exponential polynomial ,(m) we have to
choose an integer n such that no ratio of two elements in A, is a non-trivial
root of unity. So define Q to be the set of roots of unity of the form w = x/y
with x,y € {o,...,a5p0;,...,0,} and let e be the order of the group generated by
Q. Then a ratio of elements of A, = {a<, ..., 2% B5,..., B, yf/"’ |ie I} is a non-trivial
root of unity only if it is «f /y; /M o Bi/yi™ for some i € I,. As each y; is a positive
integer, we can choose an integer d > 0 such that for every x € A, the following

holds:
if (x?)" e N for some m € N then x? € N.

Hence, for n = ed, the set A, contains no pair of elements whose ratio is a non-trivial
root of unity.

By (ii) there exists a prime ¢ such that g does not divide n; for every i € I; this
implies that
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lye =1, forevery ceN.
Therefore, by equation (3.6),
V,(¢") =0 forevery reNN,

and so the exponential polynomial y,(m) vanishes for infinitely many integers. Hence
W, (m) satisfies the hypothesis of Proposition 3.1 and thus

W,(m) =0 forevery me N.

Then, by the identity (3.4), we obtain that

E n,»yfm/"" =0 forevery meN,
iEI,,,,,\I,,

and, since each y; is a positive integer, we have
L, =1, foreverymeN.

Since every i € I belongs to I, it follows that I = I,. Then, by (i), / is finite and this
completes the proof.

An infinite product of non-trivial polynomials may be rational. We give the fol-
lowing known example (see e.g. [12, Chapter 4, Example 4]) which will be used in the

last section.

Lemma 3.3. There exists a sequence (t;);. of positive integers such that
(i) 1=2x=T[%,(1 —x"", and

(i) 0 < <20

Proof. Applying the function log to the equation (1 — 2x) = [, (1 — x/)" we obtain
that

log(1 —2x) = Z tilog(1 — x")
pm

and, by a formal power series expansion of log(1 — x), we have
n ij
Sy rooyy o
n i J

Taking formal derivatives of the two sides of (3.7) we see that
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—2:2")&171 = —ZtiZi-x"j*
n 7

i

and multiplying this equation by (—Xx), we obtain that

22}1 n:ZZtﬂ'.xij:Z Z t,~i~x”.
n J

i n idivides n

Comparing the coefficients of x” we have

2" = Y i (3.8)

i divides n

Applying the M&bius inversion formula, we deduce that

1 N 5a.
tn—nZﬂ<d>2 ;

d|n

it is well known that ¢, is the number of irreducible polynomials in IF;[x] of degree n,
and so it is an integer and is at most 2”.

4 The main theorem for prosoluble groups

In order to make our exposition clearer we shall now prove our main theorem for
prosoluble groups. We defer to the next section the small changes needed for the
proof in the virtually prosoluble case.

Lemma 4.1. Let n be the degree of an irreducible linear representation over a finite field
F of a finite p-soluble group G, where p = char(F). Then n divides |G|p(exp(G)). In
particular, if q is a prime divisor of n, then ¢ < max{zn(G)}.

Proof. By a result of Brauer (see e.g. [5, (A 5.21)]) there exists a field extension L of F
such that L is a splitting field for G and all of its subgroups, and the degree |L : F|
divides p(exp(G)). Let V' = F" be an irreducible FG-module of dimension n and let
W be an irreducible constituent of V, = V ®g L. Then dimp(V) =n = r-dimg (W)
where r divides |L : F| and hence p(exp(G)) (see e.g. [5, (A 5.15)]).

Moreover, since G is p-soluble and L is a splitting field for G, by a result of Fong,
Swang and Rukolaine (see e.g. [5, (A 7.14)]) the dimension of the irreducible LG-
module W divides |G|. This implies that » divides |G|p(exp(G)).

Finally, if 7(G) = {p1,..., p} and exp(G) = p{" ... p}, then

p(exp(G)) = [T (i = 1)p7".

o; #0
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Therefore each prime divisor of n divides |G|p(exp(G)) and so is bounded by
max{n(G)}.

A finitely generated profinite group has a countable chief series, that is, a
countable descending series {G,},.n of open normal subgroups such that G| = G,
ﬂnE]N G, =1 and G, /G, is a chief factor of G for each n e N.

Proposition 4.2. Let G be a finitely generated prosoluble group and let p € n(G). If
(1) Pg,p(s) is rational in Z[[1/p*]], and
(2) =n(G) is finite,

then in each chief series of G there are only finitely many non-Frattini chief factors of
p-power order.

Proof. Let {V;},., be the set of all non-Frattini p-chief factors in a chief series of G
and let n; = dimg, (V;), where TF, is the field with p elements. By a result of Gaschiitz
(see [6]),

Pg p(s) = H(l —ai/p™)

iel

for some positive integers ¢; € N, and moreover the set I, = {i € I | n; divides n} is
finite for every integer n.

Since each #; is in fact the degree of an irreducible linear representation of a finite
soluble homomorphic image of G, we deduce by Proposition 4.1 that the prime di-
visors of the numbers #; are bounded by the largest prime in 7(G).

Then the formal product

O(Pg,p(s)) = [T (1 = ey

iel

is rational in Z[[x,]] and there exists a prime ¢ > max{zn(G)} such that ¢ does
not divide »; for any i € I. Thus by Proposition 3.2 it follows that 7 is finite and this
completes the proof.

Theorem 4.3. Let G be a finitely generated prosoluble group and let Frat(G) be its
Frattini subgroup. Then the following are equivalent:

(1) there exists an integer i such that a,(G) = 0 for every n > n;

(2
(3
(4) G/Frat(G) is finite.

(s) is polynomial,

) P
) Pg(s) is rational,
)
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Proof. The only non-trivial implication is (3) = (4). So let Pg(s) be rational; by
Proposition 2.1 it follows that n(G) is finite and that Pg ,(s) is a rational function
for every prime p € n(G). Then by Proposition 4.2 we deduce that each chief series
of G has only finitely many non-Frattini chief factors. Thus there exists a normal
subgroup N of finite index in G such that every chief factor of G contained in N is
Frattini. Hence N < Frat(G): indeed in every finite homomorphic image G of G,
each G-chief factor of N is Frattini and this implies that N < Frat(G). Therefore
Frat(G) has finite index in G and this completes the proof.

5 Virtually prosoluble groups

To deal with virtually prosoluble groups we need to recall some more properties of
the series Pg(s) (see also [2], [3]). Let G be a profinite group and let N be a normal
open subgroup of G. Then Pg(s) has a factorization in the ring of formal Dirichlet
series as

Ps(s) = Pg/n(s)Pa,n(s)

where

b.(G, N
PG n(s) = Z% for b,(G,N) == > uc(H).
et

By taking a chief series {G;},. of G, we obtain a factorization of Pg(s) as a
formal product of Dirichlet polynomials Pi(s) = Pg/c,,,c,/G., () corresponding to
non-Frattini chief factors G;/Gj.:

Po(s) = [] Pits) = 11 Pos6ir. i (5): (5.1)

ieN ieN

As this factorization does not depend on the chief series, we can assume that
N = G,, for some integer m and thus we obtain a factorization of Pg y(s). If the
chief factor G,/G, is soluble, then the polynomial P,(s) has a simple expression:
P,(s) =1 —¢y/qs where q, = |G,/Gu11|, ¢ is @ non-negative integer and ¢, = 0 if
and only if G,/G,4; is a Frattini factor. In particular, if N is prosoluble Pg y(s) has
an Euler factorization as P,y (s) = [[, P6,~,p(s) for primes p where

Ponp(s) = 2N T gy (5.2)

\)
reN (pr) neQy,

and Qy , is defined as the set of n € N such that G, /G, is a non-Frattini p-chief
factor contained in N.
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Proposition 5.1. Let G be a virtually prosoluble finitely generated group and N a pro-
soluble open normal subgroup. Assume that Pg(s) is rational. Then

(1) Pg, n,p(s) is rational in the ring Z[[1/p°]], for p prime;
(2) =n(G) is finite.

Proof. Since G/N is finite, Pg/y(s) is a polynomial and the formal series
PG n(s) = Pg(s)/Pg/n(s) is rational; say ®(Pg, n(s)) = S(X)/Q(X) where S(X) and
Q(X) are polynomials. As in the proof of Proposition 2.1, it follows that Pg v ,(s)
is rational in the ring Z[[1/p°]] and, if pi,..., p, are the primes such that the only
indeterminates appearing in S(X) and Q(X) with positive exponent are x,, ..., X,,,
then for ¢ # p1,..., p- we have Pg y 4(s) = 1.

Let {G,},.n be a chief series of G. We can assume that N = G,, for an integer m.
Let ¢ € 2(G) be a prime such that ¢ does not divides G/N; then ¢ divides the order of
a chief factor G,/G,1 for some n > m, and thus G, < N. Let n be the minimal in-
teger such that ¢ divides |G,/G,+1|. Since N is soluble, G,/G,. is an elementary
abelian ¢g-group and, by minimality of r, its order is prime to its index in G; therefore
by the Schur—Zassenhaus theorem there exists a complement to G,/ G, in G/G,4 .
This implies that the set Q of subgroups with g-power index in G and supplementing
N is non-empty. Let ¢* be the minimal index of a subgroup in ; then every sub-
group M in Q with index ¢* is a maximal subgroup and therefore

by:(G,N) = > pg(M) #0.

MeQ

Hence Pg, n 4(s) # 1 and thus ¢ € {p1,..., p,}. Then we conclude that

n(G) = {p1;-.., prt Un(|G/N]).

Lemma 5.2. Let N be a soluble normal subgroup of index a in a finite group G and let n
be the degree of an irreducible linear representation of G over a finite field F. If q is a
prime divisor of n, then ¢ < max{p,a| p € n(G)}.

Proof. Let V = F" be an irreducible FG-module of dimension n and let W be
an irreducible constituent of Vy. By Clifford’s Theorem, FVy is the direct sum
of r irreducible N-modules F-isomorphic to W, where r <|G: N|=a. Thus
dimg (V) =n = rdimp(W), and a prime divisor ¢ of n divides either dimz(W) or r.
If ¢ divides r, then ¢ < a. Otherwise ¢ divides dimg(W): as N is soluble and W is
irreducible, Lemma 4.1 gives that ¢ is bounded by max{zn(N)} < max{z(G)}, and
the lemma is proved.

Using the last lemma and arguing as in Proposition 4.2, we obtain the following:

Proposition 5.3. Let N be a prosoluble open normal subgroup of a profinite group G
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and let p € n(G). If Pg n p(s) is rational in Z[[1/p°]] and n(G) is finite then in every
chief series of G there are only finitely many non-Frattini chief factors of p-power
order.

Combining Propositions 5.1 and 5.3, we obtain the extension of Theorem 4.3 to
virtually prosoluble groups:

Theorem 5.4. Let G be a finitely generated virtually prosoluble group. Then the fol-
lowing are equivalent:

(1) there exists an integer i such that a,(G) = 0 for every n > ;

2)

3) Pg(s) is rational,
4) G/Frat(G) is finite.

Pg(s) is polynomial,
G

(
(
(

6 A rational Pg ,(s)

Generalizing a property of nilpotent groups, Mann [10] proved the following result.

Proposition 6.1 ([10]). If G is a finitely generated prosoluble virtually p-nilpotent group,
then Pg ,(s) is a polynomial in the indeterminate 1/p*.

Whether the converse holds was left open (see [9]). Using Lemma 3.3, we can give
a counter-example which also shows that if z(G) is not finite, then the conclusion of
Proposition 4.2 no longer holds; indeed Pg ,(s) can be rational with ‘infinitely many
non-trivial factors’.

To construct such a group we need to state explicitly the already cited result of
Gaschiitz [6]. Let 4 = G;/G;;; be an abelian non-Frattini chief factor of a profin-
ite group G. Then the Dirichlet polynomial that appears in the product 5.1 is pre-
cisely

|E1’ld6(A) |JG/Gi+1 (4)-1 |A|0G(A)
|4]*

Pi(s) = Pg/6,,,,G,/Gi, (8) = 1 — (6.1)

where g/, (A) is the number of non-Frattini chief factors of G/Gj;; that are G-
isomorphic to 4, and 0g(A4) = 1 if 4 is a non-trivial G-module, and 0 otherwise.

Proposition 6.2. There exists a finitely generated prosoluble group G such that for every
prime p
(1) Pg,p(s) is a polynomial, and

(2) G has infinitely many non-Frattini chief factors that are p-groups.

Proof. Let H = Z'® be the profinite completion of Z x Z. Then
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Pp(s) = (s)(s = 1) = [T = 1/p) (1 = p/p*),

pell

where {(s) is the Riemann zeta function (see e.g. [8, Chapter 11]).

Let us fix a prime p. For every integer n, the multiplicative group of the finite field
IF, with ¢ = p” elements acts by right multiplication on the additive group (IF,,+),
which can be viewed as a vector space of dimension n over IF,; hence the cyclic group
C,n—1 has an irreducible representation of degree n over IF,. Since H has at least
p" — 1 normal subgroups K; with H/K; =~ C,._;, there are at least p” — 1 irreducible
H-modules, say M, , ;, with 1 <7< p"~!, obtained by extending to H the action of
]Fq* on ]F; via the isomorphism ¢, : H/K; — IFq* ; note that the H-modules M, , ; are
pairwise inequivalent, since they have distinct centralizers K; in H.

Let {¢;},. be the set of integers defined in Lemma 3.3. Since ¢, < 2" < p" — 1 if p
is odd and 7, < 2% — 1, for every integer n and each prime p we can consider the
following ¢, pairwise non-isomorphic irreducible H-modules:

Myui,...,Mp ., forp#2,
Mg’znﬁ],...,Mzﬁz,L,”, forp:2.

Note that M, , ;| = p" for p # 2 and |M> 5, ;| = 4".
We form the H-module obtained as the Cartesian product

M = H M o, X H My i

nelN, p prime #2,

of the H-modules M, ,, and M;»,; for every prime p, every positive integer n
and 1 <i <1, we define G to be the semidirect product of H acting on the H-
module M:

G=HXM.

For a given prime p and a fixed chief series of G, we look for the non-Frattini
factors whose order is a p-power. There are two central factors of order p in
G/M = H; moreover for any n € N there are exactly 7, non-central factors whose
order is p" if p # 2 and 4" otherwise, corresponding to M, ,; and M> 5, ;, respec-
tively. The non-central factors are pairwise non-isomorphic as G-modules, and so
from (6.1) we deduce that if G;/G;;; is one of the ¢, non-Frattini chief factors G-
isomorphic to M, , ;, or M> 5, ;, then

v for p # 2,

1_
PGG,.1,6/G (5) = »e
/Gutt, Gof Gonr —45 forp=2.
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It follows that the factorization of Pg ,(s) corresponding to a chief series is the
following:

n [VI
(1= 1/p*)(1 = p/p*) L (1~ o) forp #2,

Pa=g T L
(1-1/2%)(1 2/2)Hn>0<1 (4,,)\) for p = 2.

(6.2)

Then, by Lemma 3.3, we obtain that Pg ,(s) is a polynomial for every prime p:

Pe o (s) = 4 (L= 1/P) (L =p/p") (1 =2p/p*) for p #2,
” (1—1/2)(1—2/25)(1 —8/4%)  for p =2.

Note that G is 2-generated. Indeed if N is an open normal subgroup of G then
Pg/n p(s) is the product of finitely many of the factors involved in (6.2), and hence

Py = [ Pon,(2)>0
pen(G/N)

and G/N is 2-generated.
Thus G has the desired properties and the proof of the theorem is complete.

For the sake of completeness we notice that in the case when 7(G) is finite and G is
soluble there is a converse to Proposition 6.1:

Proposition 6.3. Let G be a profinite pro-(p-soluble) finitely generated group such that
there exists a prime q which is not a prime divisor of (1 — r)r for any prime r € n(G).
If Pg,p(s) is rational, then G is virtually p-nilpotent.

Proof. By the same argument as in Proposition 4.2 we have that a chief series of G
contains only a finite number of non-Frattini p-factors. The centralizer of all of these
p-chief factors is of finite index in G and is p-nilpotent.
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