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Abstract. We discuss whether finiteness properties of a profinite group G can be deduced from
the probabilistic zeta function PGðsÞ. In particular we prove that in the prosoluble case, if PGðsÞ
is rational then G=FratðGÞ is finite.

1 Introduction

Let G be a finitely generated profinite group. As G has only finitely many open
subgroups of a given index, for any n A N we may define the integer anðGÞ as
anðGÞ ¼

P
H mGðHÞ, where the sum is over all open subgroups H of G with

jG : Hj ¼ n. Here mGðHÞ denotes the Möbius function of the poset of open
subgroups of G, which is defined by recursion as follows: mGðGÞ ¼ 1 and
mGðHÞ ¼ �

P
H<K mGðKÞ if H < G. Then we associate to G a formal Dirichlet series

PGðsÞ, defined as

PGðsÞ ¼
X
n AN

anðGÞ
ns

where anðGÞ :¼
X

jG:Hj¼n

mGðHÞ:

When G is finite and t is a positive integer, PGðtÞ is the probability that t randomly
chosen elements generate G (see [7]); the inverse 1=PGðsÞ is usually called the proba-
bilistic zeta function of G (see Mann [10] and Boston [1]). In the infinite case we do
not know whether the series PGðsÞ converges (related questions are discussed in [3],
[8], [9] and [10]); however in this paper we use the name ‘probabilistic zeta function’
to indicate the inverse of PGðsÞ in the ring of formal Dirichlet series.

Let fGngn AN be a countable descending series of open normal subgroups with the
properties that G1 ¼ G, 7

n AN Gn ¼ 1 and Gn=Gnþ1 is a chief factor of G for each

n A N. The factor group G=Gn is finite, and so the Dirichlet series PG=Gn
ðsÞ is also

finite and belongs to the ring D of Dirichlet polynomials with integer coe‰cients. In
fact PG=Gn

ðsÞ is a divisor of PG=Gnþ1
ðsÞ in the ring D, that is, there exists a Dirichlet
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polynomial PnðsÞ such that PG=Gnþ1
ðsÞ ¼ PG=Gn

ðsÞPnðsÞ. As explained in [3], the Di-
richlet series PGðsÞ can be written as an infinite formal product PGðsÞ ¼

Q
n AN PnðsÞ,

and if we change the series fGngn AN, the factorization remains the same up to re-
ordering the factors.

It is possible that a Dirichlet polynomial can be written as a formal product of in-
finitely many non-trivial elements of D (for example 1 ¼ ð1 � 2�sÞ

Q
n ANð1 þ 2�2nsÞ).

So it is not clear whether the formal series PGðsÞ ¼
Q

n AN PnðsÞ is finite only when
PnðsÞ ¼ 1 for all but finitely many n A N; more generally we can ask whether one can
deduce finiteness properties of G from the fact that PGðsÞ is finite. It is not true that if
PGðsÞ A D then G must be finite; indeed mGðHÞ0 1 implies that H is an intersection
of maximal subgroups and thus PGðsÞ ¼ PG=FratðGÞðsÞ. For example, if G is a free pro-
p group of rank d then

PGðsÞ ¼ PðZ=pZÞd ðsÞ ¼
Y

0ci<d

ð1 � pi=psÞ:

However one could conjecture that if PGðsÞ A D then G=FratðGÞ is finite.
In this paper we mainly deal with prosoluble groups. In this case the poly-

nomials PnðsÞ are very simple; indeed PnðsÞ ¼ 1 � cn=qs
n where qn ¼ jGn=Gnþ1j, cn is

a non-negative integer and cn ¼ 0 if and only if Gn=Gnþ1 is a Frattini factor, i.e.
Gn=Gnþ1 cFratðG=Gnþ1Þ. In particular, if G is prosoluble (and only in this case,
see [4]) PGðsÞ has an Euler factorization as PGðsÞ ¼

Q
p PG;pðsÞ over the set of prime

numbers, where

PG;pðsÞ ¼
X
r AN

ap rðGÞ
ðprÞs ¼

Y
n AWp

PnðsÞ;

and, for any prime p, Wp is defined as the set of n A N such that Gn=Gnþ1 is non-
Frattini and has p-power order. Therefore, as already noticed by Mann [10], more
general questions arise: what can we say about the structure of G if we know that for
a certain prime p the Dirichlet series PG;pðsÞ is a polynomial, and what can we say
when PG;pðsÞ is rational, i.e. PG;pðsÞ ¼ AðsÞ=BðsÞ with AðsÞ;BðsÞ A D?

Clearly PG;pðsÞ is a polynomial when Wp is finite, i.e. when G is virtually pro-
(p-nilpotent). Surprisingly, the converse is not true: in Proposition 6.2 we produce an
example of a profinite group G such that, for each prime p, the p-local factor is a
polynomial in 1=ps but jWpj ¼ y, i.e. G has infinitely many non-Frattini p-chief
factors involved in the factorization of PG;pðsÞ; in particular G is not virtually pro-
(p-nilpotent).

The fact that PG;pðsÞ can be a polynomial even when Wp is infinite might lead one
to suspect that there is a counter-example to the conjecture that if PGðsÞ A D then
G=FratðGÞ is finite. However, using results from number theory, we prove that if
PG;pðsÞ is polynomial then either Wp is finite or, for every prime q, there exists n A Wp

such that the dimension of Gn=Gnþ1 as FpG-module is divisible by q; using standard
arguments of modular representation theory one deduces that this is possible only if
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infinitely many primes appear among the divisors of the orders of the finite images of
G; but then PG; rðsÞ0 1 for infinitely many primes r and PGðsÞ cannot be polynomial.
So PGðsÞ can be a polynomial only if Wp is finite for every prime and empty for all but
finitely many, and therefore only if G=FratðGÞ is finite. The same argument remains
valid under the weaker hypothesis that PGðsÞ is rational and G is merely virtually
prosoluble instead of prosoluble.

Our main result is the following:

Main Result (Theorem 5.4). If G is a virtually prosoluble finitely generated group, then

PGðsÞ is rational (or polynomial ) only if G has finitely many non-Frattini chief factors,
i.e., if and only if G=FratðGÞ is a finite group.

2 Formal Dirichlet series

Let R be the ring of formal Dirichlet series

R ¼
�Xy

n¼1

an

ns
j an A Z

�
:

Let P be the set of all prime numbers; to each prime p we associate an indeter-
minate xp and we consider the isomorphism F between R and the ring of formal
series Z½½XP�� on the indeterminates XP ¼ fxpgp AP defined by

1=ps 7! xp:

Then we say that
Py

n¼1 an=ns is rational if F ðX Þ ¼ Fð
Py

n¼1 an=nsÞ is rational in the
ring Z½½XP��; this means that there exist polynomials SðXÞ;QðXÞ A Z½½XP�� such that
F ðXÞ ¼ SðXÞ=QðX Þ.

For every prime p we consider the ring homomorphism

Cp : Z½½XP�� ! Z½½xp��JZ½½XP��

defined by

xp 7! xp; xq 7! 0 for q0 p;

and we denote by Fp the map Cp �F.
For a finitely generated profinite group G, let

PG;pðsÞ ¼
Xy
r¼0

ap rðGÞ
ðprÞs ;

then FðPG;pðsÞÞ ¼ FpðPGðsÞÞ.
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Let pðGÞ be the set of prime divisors of indices of open subgroups of G:

pðGÞ ¼ 6
HcG

jG:Hj<y

pðjG : HjÞ:

Proposition 2.1. Let G be a finitely generated profinite group. Assume that PGðsÞ is

rational. Then

(1) for each p A pðGÞ, PG;pðsÞ is rational in the ring Z½½1=ps��;

(2) if G is prosoluble, then pðGÞ is finite.

Proof. (1) If PGðsÞ is rational then FðPGðsÞÞ ¼ SðX Þ=QðX Þ where SðXÞ, QðXÞ are
polynomials in Z½½XP��. Then

FðPG;pðsÞÞ ¼ FpðPGðsÞÞ ¼
FpðSðXÞÞ
FpðQðXÞÞ ;

and therefore PG;pðsÞ is rational in the ring Z½½1=ps��.
(2) There exists a finite set of primes p1; . . . ; pr such that for every prime

q0 p1; . . . ; pr the polynomials SðXÞ and QðXÞ have zero degree in the indeter-
minate xq. Then FðPG;qðsÞÞ ¼ FqðSðXÞÞ=FqðQðX ÞÞ is a constant and thus, since
a1ðGÞ ¼ 1 by definition, PG;qðsÞ ¼ 1. Let G be a prosoluble group. If q A pðGÞ then
G has a subgroup M of index a power qn of q; when we choose M with n mini-
mal, then M, and every subgroup with the same index, is a maximal subgroup
of G, and thus mGðMÞ ¼ �1 and aqnðGÞ0 0, contradicting PG;qðsÞ ¼ 1. Therefore
pðGÞJ fp1; . . . ; prg.

3 Infinite products

The following result is a corollary of the Skolem–Mahler–Lech Theorem (see [11]).

Proposition 3.1. Let c1; . . . ; cr, l1; . . . ; lr be algebraic numbers with the property that

no quotient li=lj is a non-trivial root of unity. Then the exponential polynomial

cðmÞ ¼ c1l
m
1 þ � � � þ crl

m
r

vanishes for infinitely many integers m only if cðmÞ is identically zero.

Proposition 3.2. Let I JN and let fgigi A I , fnigi A I be positive integers such that

(i) for every n A N, the set In ¼ fi A I j ni divides ng is finite, and

(ii) there exists a prime q such that q does not divide ni for any i A I .

If
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FðxÞ ¼
Y
i A I

ð1 � gix
niÞ

is rational in Z½½x��, then I ¼ 6
n AN In is finite.

Proof. Hypothesis (i) assures us that FðxÞ is well defined as a formal power series.
Now we study logðF ðxÞÞ; by formal Taylor expansion of logð1 � xÞ we get

logðF ðxÞÞ ¼ log

�Y
i A I

ð1 � gix
niÞ
�
¼

X
i A I

logð1 � gix
niÞ

¼ �
X
i A I

Xy
j¼1

g
j
i ðxniÞ j

j
:

Multiplying the formal derivative of logðFðxÞÞ by ð�xÞ we have

�xðlogðF ðxÞÞÞ0 ¼
X
i A I

Xy
j¼1

nig
j
i ðxniÞ j ¼

X
n

wðnÞxn;

where

wðnÞ ¼
X
i A In

nig
n=ni

i : ð3:1Þ

Since F ðxÞ is rational, there are polynomials SðxÞ, QðxÞ in Z½x� such that
F ðxÞ ¼ SðxÞ=QðxÞ. Let

SðxÞ ¼ ð1 � a1xÞ . . . ð1 � asxÞ and QðxÞ ¼ ð1 � b1xÞ . . . ð1 � brxÞ

for complex numbers ai; bj, i ¼ 1; . . . ; s, j ¼ 1; . . . ; r. Hence

logðF ðxÞÞ ¼ log
ð1 � a1xÞ . . . ð1 � asxÞ
ð1 � b1xÞ . . . ð1 � brxÞ

� �

¼
Xs

i¼1

logð1 � aixÞ �
Xr

l¼1

logð1 � blxÞ

¼ �
X
i; j

a
j
i x j

j
þ
X
l; j

b
j
l x j

j

and

�xðlogðFðxÞÞÞ0 ¼
X
i; j

a
j
i x j �

X
l; j

b
j
l x j ¼

X
n

wðnÞxn;
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where

wðnÞ ¼ an
1 þ � � � þ an

s � b n
1 � � � � � bn

r : ð3:2Þ

Comparing (3.1) and (3.2), we obtain, for every n A N, the following identity:

an
1 þ � � � þ an

s � b n
1 � � � � � b n

r ¼
X
i A In

nig
n=ni

i : ð3:3Þ

Replacing in (3.3) n by mn, we have

Xs

i¼1

ðan
i Þ

m �
Xr

i¼1

ðbn
i Þ

m �
X
i A In

niðgn=ni

i Þm ¼
X

i A InmnIn

nig
nm=ni

i : ð3:4Þ

Thus the exponential polynomial

cnðmÞ ¼
Xs

i¼1

ðan
i Þ

m �
Xr

i¼1

ðb n
i Þ

m �
X
i A In

niðgn=ni

i Þm ð3:5Þ

can be written, by (3.4), as

cnðmÞ ¼
X

i A InmnIn

nig
nm=ni

i : ð3:6Þ

Let

Ln ¼ fan
1 ; . . . ; a

n
s ; b

n
1 ; . . . ; b

n
r ; g

n=ni

i j i A Ing:

To apply Proposition 3.1 to the exponential polynomial cnðmÞ we have to
choose an integer n such that no ratio of two elements in Ln is a non-trivial
root of unity. So define W to be the set of roots of unity of the form o ¼ x=y

with x; y A fa1; . . . ; as; b1; . . . ; brg and let e be the order of the group generated by
W. Then a ratio of elements of Le ¼ fae

1; . . . ; a
e
s ; b

e
1; . . . ; b

e
r ; g

e=ni

i j i A Ieg is a non-trivial
root of unity only if it is ae

j =g
e=ni

i or be
k=g

e=ni

i for some i A Ie. As each gi is a positive
integer, we can choose an integer d > 0 such that for every x A Le the following
holds:

if ðxdÞm A N for some m 2 N then xd A N:

Hence, for n ¼ ed, the set Ln contains no pair of elements whose ratio is a non-trivial
root of unity.

By (ii) there exists a prime q such that q does not divide ni for every i A I ; this
implies that
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Inq c ¼ In for every c A N:

Therefore, by equation (3.6),

cnðqrÞ ¼ 0 for every r A N;

and so the exponential polynomial cnðmÞ vanishes for infinitely many integers. Hence
cnðmÞ satisfies the hypothesis of Proposition 3.1 and thus

cnðmÞ ¼ 0 for every m A N:

Then, by the identity (3.4), we obtain that

X
i A InmnIn

nig
nm=ni

i ¼ 0 for every m A N;

and, since each gi is a positive integer, we have

Inm ¼ In for every m A N:

Since every i A I belongs to Inni
, it follows that I ¼ In. Then, by (i), I is finite and this

completes the proof.

An infinite product of non-trivial polynomials may be rational. We give the fol-
lowing known example (see e.g. [12, Chapter 4, Example 4]) which will be used in the
last section.

Lemma 3.3. There exists a sequence ðtiÞi AN of positive integers such that

(i) 1 � 2x ¼
Qy

i¼1ð1 � xiÞ ti , and

(ii) 0c ti c 2 i.

Proof. Applying the function log to the equation ð1 � 2xÞ ¼
Qy

i¼1ð1 � xiÞ ti we obtain
that

logð1 � 2xÞ ¼
Xy
i¼1

ti logð1 � xiÞ

and, by a formal power series expansion of logð1 � xÞ, we have

�
X

n

2n xn

n
¼ �

X
i

ti

X
j

xij

j
: ð3:7Þ

Taking formal derivatives of the two sides of (3.7) we see that
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�
X

n

2nxn�1 ¼ �
X

i

ti

X
j

i � xij�1

and multiplying this equation by ð�xÞ, we obtain that

X
n

2nxn ¼
X

i

X
j

tii � xij ¼
X

n

X
i divides n

tii � xn:

Comparing the coe‰cients of xn we have

2n ¼
X

i divides n

tii: ð3:8Þ

Applying the Möbius inversion formula, we deduce that

tn ¼ 1

n

X
djn

m
n

d

� �
2d ;

it is well known that tn is the number of irreducible polynomials in F2½x� of degree n,
and so it is an integer and is at most 2n.

4 The main theorem for prosoluble groups

In order to make our exposition clearer we shall now prove our main theorem for
prosoluble groups. We defer to the next section the small changes needed for the
proof in the virtually prosoluble case.

Lemma 4.1. Let n be the degree of an irreducible linear representation over a finite field

F of a finite p-soluble group G, where p ¼ charðF Þ. Then n divides jGjjðexpðGÞÞ. In

particular, if q is a prime divisor of n, then qcmaxfpðGÞg.

Proof. By a result of Brauer (see e.g. [5, (A 5.21)]) there exists a field extension L of F

such that L is a splitting field for G and all of its subgroups, and the degree jL : F j
divides jðexpðGÞÞ. Let V ¼ F n be an irreducible FG-module of dimension n and let
W be an irreducible constituent of VL ¼ V nF L. Then dimF ðVÞ ¼ n ¼ r � dimLðWÞ
where r divides jL : F j and hence jðexpðGÞÞ (see e.g. [5, (A 5.15)]).

Moreover, since G is p-soluble and L is a splitting field for G, by a result of Fong,
Swang and Rukolaine (see e.g. [5, (A 7.14)]) the dimension of the irreducible LG-
module W divides jGj. This implies that n divides jGjjðexpðGÞÞ.

Finally, if pðGÞ ¼ fp1; . . . ; prg and expðGÞ ¼ pa1

1 . . . par
r , then

jðexpðGÞÞ ¼
Y
ai00

ðpi � 1Þpai�1
i :
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Therefore each prime divisor of n divides jGjjðexpðGÞÞ and so is bounded by
maxfpðGÞg.

A finitely generated profinite group has a countable chief series, that is, a
countable descending series fGngn AN of open normal subgroups such that G1 ¼ G,
7

n AN Gn ¼ 1 and Gn=Gnþ1 is a chief factor of G for each n A N.

Proposition 4.2. Let G be a finitely generated prosoluble group and let p A pðGÞ. If

(1) PG;pðsÞ is rational in Z½½1=ps��, and

(2) pðGÞ is finite,

then in each chief series of G there are only finitely many non-Frattini chief factors of

p-power order.

Proof. Let fVigi A I be the set of all non-Frattini p-chief factors in a chief series of G

and let ni ¼ dimFp
ðViÞ, where Fp is the field with p elements. By a result of Gaschütz

(see [6]),

PG;pðsÞ ¼
Y
i A I

ð1 � ci=pnisÞ

for some positive integers ci A N, and moreover the set In ¼ fi A I j ni divides ng is
finite for every integer n.

Since each ni is in fact the degree of an irreducible linear representation of a finite
soluble homomorphic image of G, we deduce by Proposition 4.1 that the prime di-
visors of the numbers ni are bounded by the largest prime in pðGÞ.

Then the formal product

FðPG;pðsÞÞ ¼
Y
i A I

ð1 � cix
ni
p Þ

is rational in Z½½xp�� and there exists a prime q > maxfpðGÞg such that q does
not divide ni for any i A I . Thus by Proposition 3.2 it follows that I is finite and this
completes the proof.

Theorem 4.3. Let G be a finitely generated prosoluble group and let FratðGÞ be its

Frattini subgroup. Then the following are equivalent:

(1) there exists an integer n such that anðGÞ ¼ 0 for every n > n;

(2) PGðsÞ is polynomial;

(3) PGðsÞ is rational;

(4) G=FratðGÞ is finite.
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Proof. The only non-trivial implication is ð3Þ ) ð4Þ. So let PGðsÞ be rational; by
Proposition 2.1 it follows that pðGÞ is finite and that PG;pðsÞ is a rational function
for every prime p A pðGÞ. Then by Proposition 4.2 we deduce that each chief series
of G has only finitely many non-Frattini chief factors. Thus there exists a normal
subgroup N of finite index in G such that every chief factor of G contained in N is
Frattini. Hence N cFratðGÞ: indeed in every finite homomorphic image G of G,
each G-chief factor of N is Frattini and this implies that N cFratðGÞ. Therefore
FratðGÞ has finite index in G and this completes the proof.

5 Virtually prosoluble groups

To deal with virtually prosoluble groups we need to recall some more properties of
the series PGðsÞ (see also [2], [3]). Let G be a profinite group and let N be a normal
open subgroup of G. Then PGðsÞ has a factorization in the ring of formal Dirichlet
series as

PGðsÞ ¼ PG=NðsÞPG;NðsÞ

where

PG;NðsÞ ¼
X
n AN

bnðG;NÞ
ns

for bnðG;NÞ :¼
X

jG:Hj¼n;
HN¼G

mGðHÞ:

By taking a chief series fGigi AN of G, we obtain a factorization of PGðsÞ as a
formal product of Dirichlet polynomials PiðsÞ ¼ PG=Giþ1;Gi=Giþ1

ðsÞ corresponding to
non-Frattini chief factors Gi=Giþ1:

PGðsÞ ¼
Y
i AN

PiðsÞ ¼
Y
i AN

PG=Giþ1;Gi=Giþ1
ðsÞ: ð5:1Þ

As this factorization does not depend on the chief series, we can assume that
N ¼ Gm for some integer m and thus we obtain a factorization of PG;NðsÞ. If the
chief factor Gn=Gnþ1 is soluble, then the polynomial PnðsÞ has a simple expression:
PnðsÞ ¼ 1 � cn=qs

n where qn ¼ jGn=Gnþ1j, cn is a non-negative integer and cn ¼ 0 if
and only if Gn=Gnþ1 is a Frattini factor. In particular, if N is prosoluble PG;NðsÞ has
an Euler factorization as PG;NðsÞ ¼

Q
p PG;N;pðsÞ for primes p where

PG;N;pðsÞ ¼
X
r AN

bp rðG;NÞ
ðprÞs ¼

Y
n AWN; p

PnðsÞ ð5:2Þ

and WN;p is defined as the set of n A N such that Gn=Gnþ1 is a non-Frattini p-chief
factor contained in N.

Eloisa Detomi and Andrea Lucchini212



Proposition 5.1. Let G be a virtually prosoluble finitely generated group and N a pro-

soluble open normal subgroup. Assume that PGðsÞ is rational. Then

(1) PG;N;pðsÞ is rational in the ring Z½½1=ps��, for p prime;

(2) pðGÞ is finite.

Proof. Since G=N is finite, PG=NðsÞ is a polynomial and the formal series
PG;NðsÞ ¼ PGðsÞ=PG=NðsÞ is rational; say FðPG;NðsÞÞ ¼ SðXÞ=QðX Þ where SðXÞ and
QðXÞ are polynomials. As in the proof of Proposition 2.1, it follows that PG;N;pðsÞ
is rational in the ring Z½½1=ps�� and, if p1; . . . ; pr are the primes such that the only
indeterminates appearing in SðXÞ and QðXÞ with positive exponent are xp1

; . . . ; xpr
,

then for q0 p1; . . . ; pr we have PG;N;qðsÞ ¼ 1.
Let fGngn AN be a chief series of G. We can assume that N ¼ Gm for an integer m.

Let q A pðGÞ be a prime such that q does not divides G=N; then q divides the order of
a chief factor Gn=Gnþ1 for some ndm, and thus Gn cN. Let n be the minimal in-
teger such that q divides jGn=Gnþ1j. Since N is soluble, Gn=Gnþ1 is an elementary
abelian q-group and, by minimality of n, its order is prime to its index in G; therefore
by the Schur–Zassenhaus theorem there exists a complement to Gn=Gnþ1 in G=Gnþ1.
This implies that the set W of subgroups with q-power index in G and supplementing
N is non-empty. Let qa be the minimal index of a subgroup in W; then every sub-
group M in W with index qa is a maximal subgroup and therefore

bq aðG;NÞ ¼
X

M AW

mGðMÞ0 0:

Hence PG;N;qðsÞ0 1 and thus q A fp1; . . . ; prg. Then we conclude that

pðGÞJ fp1; . . . ; prgU pðjG=NjÞ:

Lemma 5.2. Let N be a soluble normal subgroup of index a in a finite group G and let n

be the degree of an irreducible linear representation of G over a finite field F. If q is a

prime divisor of n, then qcmaxfp; a j p A pðGÞg.

Proof. Let V ¼ F n be an irreducible FG-module of dimension n and let W be
an irreducible constituent of VN . By Cli¤ord’s Theorem, VN is the direct sum
of r irreducible N-modules F -isomorphic to W , where rc jG : Nj ¼ a. Thus
dimF ðVÞ ¼ n ¼ r dimF ðWÞ, and a prime divisor q of n divides either dimF ðWÞ or r.
If q divides r, then qc a. Otherwise q divides dimF ðWÞ: as N is soluble and W is
irreducible, Lemma 4.1 gives that q is bounded by maxfpðNÞgcmaxfpðGÞg, and
the lemma is proved.

Using the last lemma and arguing as in Proposition 4.2, we obtain the following:

Proposition 5.3. Let N be a prosoluble open normal subgroup of a profinite group G
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and let p A pðGÞ. If PG;N;pðsÞ is rational in Z½½1=ps�� and pðGÞ is finite then in every

chief series of G there are only finitely many non-Frattini chief factors of p-power

order.

Combining Propositions 5.1 and 5.3, we obtain the extension of Theorem 4.3 to
virtually prosoluble groups:

Theorem 5.4. Let G be a finitely generated virtually prosoluble group. Then the fol-

lowing are equivalent:

(1) there exists an integer n such that anðGÞ ¼ 0 for every n > n;

(2) PGðsÞ is polynomial;

(3) PGðsÞ is rational;

(4) G=FratðGÞ is finite.

6 A rational PG , p(s)

Generalizing a property of nilpotent groups, Mann [10] proved the following result.

Proposition 6.1 ([10]). If G is a finitely generated prosoluble virtually p-nilpotent group,
then PG;pðsÞ is a polynomial in the indeterminate 1=ps.

Whether the converse holds was left open (see [9]). Using Lemma 3.3, we can give
a counter-example which also shows that if pðGÞ is not finite, then the conclusion of
Proposition 4.2 no longer holds; indeed PG;pðsÞ can be rational with ‘infinitely many
non-trivial factors’.

To construct such a group we need to state explicitly the already cited result of
Gaschütz [6]. Let A ¼ Gi=Giþ1 be an abelian non-Frattini chief factor of a profin-
ite group G. Then the Dirichlet polynomial that appears in the product 5.1 is pre-
cisely

PiðsÞ ¼ PG=Giþ1;Gi=Giþ1
ðsÞ ¼ 1 � jEndGðAÞjdG=Giþ1

ðAÞ�1jAjyGðAÞ

jAjs ð6:1Þ

where dG=Giþ1
ðAÞ is the number of non-Frattini chief factors of G=Giþ1 that are G-

isomorphic to A, and yGðAÞ ¼ 1 if A is a non-trivial G-module, and 0 otherwise.

Proposition 6.2. There exists a finitely generated prosoluble group G such that for every

prime p

(1) PG;pðsÞ is a polynomial, and

(2) G has infinitely many non-Frattini chief factors that are p-groups.

Proof. Let H ¼ ẐZð2Þ be the profinite completion of Z� Z. Then
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PHðsÞ ¼ zðsÞzðs � 1Þ ¼
Y
p AP

ð1 � 1=psÞð1 � p=psÞ;

where zðsÞ is the Riemann zeta function (see e.g. [8, Chapter 11]).
Let us fix a prime p. For every integer n, the multiplicative group of the finite field

Fq with q ¼ pn elements acts by right multiplication on the additive group ðFq;þÞ,
which can be viewed as a vector space of dimension n over Fp; hence the cyclic group
Cp n�1 has an irreducible representation of degree n over Fp. Since H has at least
pn � 1 normal subgroups Ki with H=Ki GCp n�1, there are at least pn � 1 irreducible
H-modules, say Mp;n; i, with 1c i c pn�1, obtained by extending to H the action of
F�

q on Fn
p via the isomorphism ci : H=Ki ! F�

q ; note that the H-modules Mp;n; i are
pairwise inequivalent, since they have distinct centralizers Ki in H.

Let ftigi AN be the set of integers defined in Lemma 3.3. Since tn c 2n c pn � 1 if p

is odd and tn c 22n � 1, for every integer n and each prime p we can consider the
following tn pairwise non-isomorphic irreducible H-modules:

Mp;n;1; . . . ;Mp;n; tn
; for p0 2;

M2;2n;1; . . . ;M2;2n; tn
; for p ¼ 2:

Note that jMp;n; ij ¼ pn for p0 2 and jM2;2n; ij ¼ 4n.
We form the H-module obtained as the Cartesian product

M ¼
Y

n AN;
i¼1;...; tn

M2;2n; i �
Y

p prime02;
n AN;

i¼1;...; tn

Mp;n; i

of the H-modules Mp;n; i and M2;2n; i for every prime p, every positive integer n

and 1c ic tn; we define G to be the semidirect product of H acting on the H-
module M:

G ¼ H yM:

For a given prime p and a fixed chief series of G, we look for the non-Frattini
factors whose order is a p-power. There are two central factors of order p in
G=M ¼ H; moreover for any n A N there are exactly tn non-central factors whose
order is pn if p0 2 and 4n otherwise, corresponding to Mp;n; i and M2;2n; i, respec-
tively. The non-central factors are pairwise non-isomorphic as G-modules, and so
from (6.1) we deduce that if Gi=Giþ1 is one of the tn non-Frattini chief factors G-
isomorphic to Mp;n; i, or M2;2n; i, then

PG=Giþ1;Gi=Giþ1
ðsÞ ¼

1 � p n

p ns for p0 2;

1 � 4n

4 ns for p ¼ 2:

(
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It follows that the factorization of PG;pðsÞ corresponding to a chief series is the
following:

PG;pðsÞ ¼
ð1 � 1=psÞð1 � p=psÞ

Q
n>0 1 � pn

ð pnÞ s

� �tn

for p0 2;

ð1 � 1=2sÞð1 � 2=2sÞ
Q

n>0 1 � 4n

ð4nÞ s

� �tn

for p ¼ 2:

8><
>: ð6:2Þ

Then, by Lemma 3.3, we obtain that PG;pðsÞ is a polynomial for every prime p:

PG;pðsÞ ¼
ð1 � 1=psÞð1 � p=psÞð1 � 2p=psÞ for p0 2;

ð1 � 1=2sÞð1 � 2=2sÞð1 � 8=4sÞ for p ¼ 2:

(

Note that G is 2-generated. Indeed if N is an open normal subgroup of G then
PG=N;pðsÞ is the product of finitely many of the factors involved in (6.2), and hence

PG=Nð2Þ ¼
Y

p A pðG=NÞ
PG=N;pð2Þ > 0

and G=N is 2-generated.
Thus G has the desired properties and the proof of the theorem is complete.

For the sake of completeness we notice that in the case when pðGÞ is finite and G is
soluble there is a converse to Proposition 6.1:

Proposition 6.3. Let G be a profinite pro-(p-soluble) finitely generated group such that

there exists a prime q which is not a prime divisor of ð1 � rÞr for any prime r A pðGÞ.
If PG;pðsÞ is rational, then G is virtually p-nilpotent.

Proof. By the same argument as in Proposition 4.2 we have that a chief series of G

contains only a finite number of non-Frattini p-factors. The centralizer of all of these
p-chief factors is of finite index in G and is p-nilpotent.
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Brescia, Italy
E-mail: lucchini@ing.unibs.it

Eloisa Detomi, Dipartimento di Matematica Pura ed Applicata, Università di Padova, via
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