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On the Dirichlet Polynomial of Finite Groups of Lie Type.
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Dedicated to Guido Zappa on his 90th birthday

ABSTRACT - For a given finite group G there exists a uniquely determined Dirichlet
polynomial Pg(s) with the property that for ¢ € N the number Ps(#) coincides
with the probability of generating G by ¢ randomly chosen elements. We discuss
whether the isomorphism type of a simple group G can be determined by the
knowledge of Ps(s).

1. Introduction.

For a given finite group G one may define a sequence of integers
{a,(@)},,cn as follows:

L@ = > uGH).

|G:H|=n

Here y; denotes the Mobius function defined on the subgroup lattice of G.
In particular, one has 1g(G) =1 and ug(H) = — > ugX) for any H < G.
Let H<K

PG(S)ZZ%,G)

s
nelN

be the Dirichlet generating function associated with the sequence
{a,(@)},cn- The Dirichlet polynomial Pg(s) gives a great amount of in-
formation about G. In [13] P.Hall observed that for any ¢ € I\ the series
P;(t) gives the probability that ¢ randomly chosen elements of G generate
G. Moreover (see for example [3]), the complex function Pg(s), and in
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particular its value at -1, can be used to investigate the topological prop-
erties of the poset of proper cosets of G.

A problem that has been tackled from various points of view ([10], [9],
[6]) concerns the study of which properties of Pg(s), as an element of the
ring of Dirichlet polynomials with integer coefficients, reflect on properties
of the group G. Recently [8] we proved that the knowledge of Pq(s) allows
us to decide whether the factor group G /G is a simple group or not: if G is
simple and Pg,(s) = Pg,(s), then G2 /(G2) is simple. We conjecture that a
stronger result is true: if G; is simple and Pg,(s) = Pg(s) then
G2/G2 =2 G1. This has been proved for alternating simple groups [7], so the
aim of this paper is to investigate the case of simple groups of Lie type. The
main result we will obtain is that if we know that G is a simple group of Lie
type over a field of characteristic p, then with the help of the function Pg(s)
we can determine the order of a Sylow p-subgroup of G. This result will be
employed to prove that a sporadic simple group can be identified from its
Dirichlet polynomial, and also to show that if G; and G are non isomorphic
simple groups of Lie type defined in the same characteristic, then
Pg,(s) # Pg,(s).

2. Known results and open questions.

Let G be a finite simple group. We want to discuss about the properties
of G that can be deduced from the knowledge of the Dirichlet polynomial
P (s). The simplest thing to do is to consider the set

W@ = {n € N | a,(G) # 0}.

If n € v(G) then G must have a subgroup of index 7; moreover the smallest
n € v(G) with n > 1 coincides with m(G), the smallest index of a proper
subgroup of G. The main obstacle when we work with v(G) is that even when
we know that G has a subgroup H with index n» we are not sure than
n € v(@); in fact, in order to decide whether a,(G) # 0 we should focus on
the set of subgroups H < G with index » and such that y;(H) # 0, but here

we meet another problem as the sum a,(G) = >  u;(H) can be zero even
|G:H|=n
if the terms are different from zero. A case in which it is easy to deduce that

a,(G) # 0 is when we know that G has a maximal subgroup of index » and
there is no maximal subgroup with index a proper divisor of % (in that case
—a, (@) is precisely the number of maximal subgroups of index 7). One can
expect that the set v(G) is large enough to give good hints concerning the
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order of the group G. Let us formulate two conjectures in this direction.
Define the probabilistic order of G as follows:

po(@) =lem.{n | n € v(G)}

Clearly po(G) divides |G|; our first conjecture is that po(G) = |G|; a weaker
conjecture is that we can deduce from v(G) which are the prime divisors of
|G|, namely: 7(po(G)) = n(G). Both these conjectures are open questions
and it seems a difficult but intriguing task to prove something in this di-
rection without a heavy use of the classification of finite simple groups and
of their maximal subgroups.

In [9] and [7] it is proved that an analysis of v(G) allows to decide
whether G is an alternating group; more precisely we have:

THEOREM 1. Let G be a finite nonabelian simple group. Set n = m(G)
and let p be the minimal prime number which divides n;

@) if n=p then: G = Alt (n) if and only if (n — 2)! € v(G);
Q) if n>p and n¢ {624} then: G=Alt(n) if and only if

a,(G) = —n and <Z) 1s the smallest integer in v(G) which is different

from 1 and not divisible by n;
3) if n =6 then: G = Alt (6) if and only if ag(G) = —12;
4) if n =24 then: G = Alt (24) if and only if 253, T59¢ v(G).

Hence for the rest of the paper we shall restrict our attention to
sporadic simple groups and simple groups of Lie type.

3. Dealing with groups of Lie type.

The problem of recognizing a simple group G from its Dirichlet poly-
nomial Pg(s) is still open. In this section we shall prove a result which turns
out to be useful for the analysis of this problem for groups of Lie type.
Indeed we shall show that if we know that G is a simple group of Lie type
over a field of characteristic p, then we may use the polynomial Pg(s) in
order to determine the order of a Sylow p-subgroup of G.

We need to define some other Dirichlet polynomials associated with G
and its subgroups.

Let R be the ring of Dirichlet polynomials with integer coefficients; for
any finite set of prime numbers 7 we may define a ring endomorphism of R
as follows:
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7 R — R
ay, - bn

=35 = o=

n=1 n=1

where

b — a, if nis a 7 -number
! 0  otherwise.

We are mainly interested in Pg)(s), with ¢ a prime number.
Moreover, for any subgroup K of G, we may define a Dirichlet poly-
nomial as follows:

Po(K,s) = Zw where  a,(G.K) = 3 ugH).

neN |G:H|=n,
K<H<G

LEmMA 2. Let P be a Sylow p-subgroup of a finite group G, p a prime
number; suppose that each maximal subgroup of G which contains P
contains also Ng(P). Then

PP(s) = Po(P,s — 1) = Pe(Ng(P),s — 1).

Proor. First we claim that u;(H)|Np(P)| = ugH)|Ng(P)| for
each subgroup P < H <G. Indeed, either ug(H)=0 or H can be
written as intersection of maximal subgroups, say Mi,...,M; (see
[14]); as P < H < M;, by hypothesis we get that Ng(P) < M;, which
implies Ng(P) < M;nN---NM; = H and Ng(P) = Ny(P). Now set Q, =
={H<G| |H|p = |G|p}, then

POs = 3 LD

fieo, |G : H|
_ Z Z pg(H) 1 _
QSYL(G) Q=i |G :H|" |H:Ny@Q)|

1N (P)|
|NG(P)| ;{ G:H'

ueH|NeP)|
ING<P)|Z,; G:H'

=y Gqu(fg = Pe(P,s — 1).
P<H
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This proves the first equality in our statement. The other one,
Ps(P,s —1) = Pg(Ng(P),s — 1), is again an immediate consequence of
the previous remark that if u;(H) # 0 and P < H, then Ng(P) < H.

O

THEOREM 3. Suppose that G is a finite group of Lie type defined over a
field of characteristic p and let U € Syl, (G). Then |[PL(0)| = |U.

Proor. A finite group G of Lie type over the field Iy, ¢ = p/, can be
constructed starting from a connected reductive algebraic group X defined
over an algebraically closed field of characteristic p and considering the
subgroup G = X¥ of fixed points under a Frobenius map F. Let B be an F-
stable Borel subgroup of X. The unipotent radical U of BY is a Sylow p-
subgroup of G and N¢(U) = BF. As it is well known, a maximal subgroup
of GF which contains U should contain BY, hence it is a maximal parabolic
subgroup of G, so we can apply the previous lemma in order to deduce that

PP0) = Pg(B",-1) = Y (|G - H|.
BF<H
To the map F' a symmetry p on the Dynkin diagram of X is associated (p is
trivial in the untwisted case). Let I := {Oy, ..., Oy} be the set of the p-or-
bits on the nodes of the Dynkin diagram. If J C I, then J* = U Ojis ap-

stable subset of the set of nodes of the Dynkin diagram and one may as-
sociate an F'-stable parabolic subgroup P of X with J*. Moreover, the map
J n—>PF is an isomorphism between the lattice P(I) of subsets of I ordered by
1nclus,1on and the lattice of subgroups of G containing BY. In particular,
1 (Py) = tpgy ) = (— ¥Vl (see [20], 3.8.3). As described in [4], Ch. 9, to
any subset J of I, a parabolic subgroup W; of the Weyl group W¥ and a
polynomial Py, (x) are associated with the property that Py, (¢) = |PL.|. So
one has

PEO = Y u|G : H| = ug(P})

*

BF<H JCI
= _lk*mG:PF* _ _1k _1J<PW(Q)>

By a theorem of Solomon (see 9.4.5. and Ch. 14 in [4])
(- (M) — U]
¥ Pw,(q)
so we conclude that P(gf)(O) =(- 1)k|U | O
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COROLLARY 4. Let S be a simple group of Lie type defined over a field
K; if we know that the characteristic of K 1is p, then we may determine
from the Dirichlet polynomial Ps(s) the order of a Sylow p-subgroup of S.

PrROOF. Let S = {*F4(2), G2(2),2G2(3), B2(2)'}. If S¢S then there
exists a finite group of Lie type G with S = G/Z(G); moreover p does not
divide |Z(G)| and, by Theorem 3, PX(0) = P¥(0) is the order of a Sylow
p-subgroup of S. On the other hand a direct computation shows that
|ng’>(0)| = p|U| when S € S and U is a Sylow p-subgroup of S. Note that
m(Bz(2)) = 6, m(G2(2)") = 28, m(%G2(3)") = 9, m(*F4(2)") = 1600. Now let
S be a simple group of Lie type defined over a field of characteristic p.
From the series Pgs(s) we recover the value of m(G). If (p,m(S))¢
#{(2,6), (2,28), (2,1600), (3,9)}, then S ¢ S and |[PY’(0)| coincides with the
order of the Sylow p-subgroup of S. If p = 2 and m(S) = 28 then either
S =B3(2) and [PP(0)| =2° or S = Go(2) and [PP(0)| = 28. If p = 2 and
m(S) = 1600 then G = 2F4(2)'; if p = 2 and m(S) = 6 then G = B2(2)'; if
p =3 and m(S) = 9 then G = %G2(3)'. O

4. Connection between Theorem 3 and the Solomon-Tits Theorem.

In the previous section we proved Theorem 3 by computing directly
P(BF, —1), which is possible as we can compute the index and the Mébius
function of any parabolic subgroup of G. We would like now to present a
different proof for the same result; this is less immediate and direct, but it
makes evident the connection between the study of the Dirichlet polynomial
P4 (s) and some topological properties of the poset of proper cosets in G.

We first revise and generalize a well-known result of K. S. Brown [3].

Let K be a proper subgroup of a finite group G. We define two posets:
the first one, C = C(G, K), consists of the proper cosets Hx (K < H <
< G,z € G) ordered by inclusion. The second C* = C*(G, K) is the subposet
of C consisting of the cosets Hx where H satisfies the additional property of
being intersection of maximal subgroups of G. As it is well known, we can
apply topological concepts to a poset P by using the simplicial complex A(P)
(the order complex of P) whose simplices are the finite chains in P.

LEmMMA 5. The complexes AC) and AC*) are homotopy equivalent.

Proor. We recall the following criterion due to Quillen ([18] Proposi-
tion 1.6): if there exists an order preserving map f : X — Y between two
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posets, with the property that for any y € Y the lower fiber f/y =
={x € X | f(x) < y} is contractible, then the complexes A(X) and A(Y) are
equivalent. In our case we may define an order preserving map f : C — C*
by sending Ux to Ux, being U the intersection of the maximal sub-
groups of G containing U. For any Vi € C* the lower fiber f/Vx =
={Uy |y € Vxand K < U <V} is contractible as Vx is a least upper
bound for f/V. O

If I' is an n-dimensional complex, the Euler-Poincare characteristic of

I' is the integer (I = > (- l)qaq, where a, is the number of g-sim-
0<g<n

plices of I". The reducedq Euler-Poincaré characteristic is defined as:

A7) =) — 1.

Generalizing a result due to Brown in the particular case K =1, we
prove that the Euler-Poincaré characteristic of the complexes 4(C) and
A(C*) can be computed with the help of the function Pg(K,s). Indeed one
has:

PROPOSITION 6. Pg(K, —1) = —(A(C(G, K))) = —3(A(C* (G, K))).

Proor. Since A(C(G, K)) and A(C*(G, K)) are equivalent, it suffices to
prove the first equality. Let C be the poset obtained by adding to C(G, K) a
greatest element (which we may well take as G) and a least element (that we
denote by 0). Recall that the Mobius function x, associated to a poset P has
the property that if @ < b then up(a,b) is the number of chains of even
length in the interval (a,b) = {c € P | a < ¢ < b} minus the number of
chains of odd length (here we include the empty chain, which we agree to
consider of length -1); this implies that up(a,d) = j(4(a,b)). In our parti-
cular case we obtain 1;(0,G) = 7(A(C(G, K)). Now let Hx € C(G, K); the
interval [H, G] in the subgroup lattice of G is isomorphic to the interval
[Hzx,G] in C via the map U — Uw; thus te(He,G) = ug(H) and

PoK,-D= > ue|G:H =ug@+ > pueHr,G)=

K<H<G HuxeC(G,K)
=G, G+ > ue(Hr,G) = —11e(0, @) = = ACG, K)).
HieC(G,K)
This concludes our proof. |

We shall assume for the remaining part of this section that G is a finite
group of Lie type of rank =; as it is well known G admits a (B, N)-pair with
B aBorel subgroup of G. Let {My, ..., M,} be the set of maximal parabolic



58 Erika Damian - Andrea Lucchini

subgroups of G containing B. The Tits building 7(G;B,N) of G is the
simplicial complex whose vertices are the cosets M;x with x € G and
1 <1 <n and whose simplices are collections of vertices with nonempty
intersection. If p is the characteristic of the underlying field of G, then
U = 0,(B) is a Sylow p-subgroup of G, and the following holds.

PRrROPOSITION 7. The complexes A(C(G,U)) and T(G; B, N) are homo-
topy equivalent.

ProoF. Reecall that if B is a complex, then one can consider the faced
poset P(B), consisting of the simplices of B ordered by inclusion; the order
complex A(P(B)) (the first barycentric subdivision of B) is homotopy
equivalent to B. Moreover if P is a poset, then 4(P) = A(P?), being PP the
dual poset of P. These remarks together with Lemma 5, implies that our
statement is proved if we can show that A(P(7(G; B, N))) and A4(C*(G, U)*?)
are equivalent. By definition an element of P(7(G;B,N)) is a set
{Mx,...,M;x} with 1 <4; <--- <14, <mu; on the other hand the ele-
ments of C*(G, U) are cosets Hx where H is intersection of maximal sub-
groups containing U; since such an H can be written in a unique way as
intersection of maximal parabolic subgroups in {Mj,...,M,} we obtain
that the map {M;x, ..., M; x}— (M, N--- N M; ) in an order preserving
bijection between the posets P(7(G; B, N)) and C*(G, U)*. O

COROLLARY 8. Pg(U,—-1) = —3(T(G; B, N)).

So we may compute Pg(U, —1) with the help of the celebrated Borel-
Tits Theorem [19], which asserts that the Tits building 7 (G; B, N) has the
homotopy type of a wedge of |U| spheres, each one of dimension (n — 1).
Since the reduced Euler-Poincare characteristic of a wedge of ¢ r-dimen-
sional spheres is ( — 1)t we get:

COROLLARY 9. PP(0) = Po(U, —1) = (— 1)"|U].

5. Consequences of Theorem 3.

PropPoSITION 10.  If G is a finite simple group of Lie type over a field of
characteristic p, then p € n(po(G)).

ProoOF. By Theorem 3, we have that P(gf)(O) # 0, while, by the definition

of the Mobius function, Pg(0) = > ug(H) =0. This implies Pg(s) #
H<G
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+ Pg)(s), which is possible only when there exists a positive integer »n di-
visible by p with a,(G) # 0. |

It is useful to define the following set:

(@) is the set of n € N with the following property: G contains a
maximal subgroup M of index » but it does not contain any
proper subgroup H such that |G : H| is a proper divisor of n.

In this section we will make a large use of the following fact (already
recalled in section 2): 0(G) C v(G).

THEOREM 11. Let G be a sporadic simple group; if H is a finite simple
group with Pg(s) = Py(s), then G = H.

Proor. By Theorem 1, H cannot be an alternating group. Suppose that
H = L,(q) is a group of Lie type of rank » over a field I, of characteristic p;
we know that m(G) = m(H), and the possible values for m(G) and m(H) are
listed in Table 1; for any family L of groups of Lie type, this table provides a
function f(L,n,q) such that m(L,(q)) =f(,n,q). So we have to check
whether there are some choices of L, n, ¢ for which f(L., n,q) = m(G). The
key tool here is that the p-adic expansion of f(L, n, q) is of a very particular
and recognizable shape (for example the first and last digits are equal to 1 and
the second is 0 or 1); moreover by Proposition 10, p € n(po(H)) = n(po(@)),
hence p must be a prime divisor of |G|; so what we have to do is to write the p-
adic expansion of m(G) for any prime divisor p of |G| and check whether for
some choice of L, n, q, with q a p-power, the p-adic expansions of 7(G) and of
f(L,n,q) are the same. This is almost never the case; in fact there are only two
possibilities: (G, H) € {(Mi1, A1(11)), (Mgy, A1(23))}. In the first case one
can check that sy, (1) # 0, so [My1| = 7920 € v(My;), while 7920 ¢ v(A;(11))
(as 7920 does not divide |A;(11)| = 660): this is enough to conclude that
Py, (8) # Pa,an(s). Inthe second case, one can notice that 1771 € 5(Mg4) and
does not divide |A;(23)| = 6072. To conclude our proof it remains to consider
the case when G and H are both sporadic simple groups. From Table 1, we
have that if G and H are non isomorphic sporadic simple groups with
m(G) = m(H), then {G,H} = {J2, HS}. But we can conclude that Py, (s) #
= Pyg(s) as 176 € o(HS) and 176 does not divide |J2|. O

For the remaining part of this paper our attention will be restricted to
finite simple groups of Lie type. It is well known, see [1], [16], that if G and
H are non isomorphic simple groups of the same order, then G and H ei-
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TABLE 1. Minimal index for sporadic and Lie groups.

G m(G) G m(G)
My 11 My 12
Mse 22 Mss 23
Moy 3.23 J4 112.29-81-37-43
J 2252 J3 22.34.19
Ji 2.7-19 Coy 23.3%.5.7-13
Cop 22.52.93 Cos 22.3.23
Fis» 2.33.5.13 Fios 34.17.23
Fiy, 23.3%.72.29 Ly 22.31.11-37-67
McL 5 .11 He 22.3.73
Ru 22.5.7.29 ON 23.32.5.11-81
Suz 2.3.11 B 23.34.51.23.31.-47
HS 22. 52 Th 2%.35.5%.19-31
HN 2.3.5419 M 37.144.55.652 29415971
G2(3) 33.13 AT 7
Go(4) 2 .13 A;(11) 11
Ag(2) 8 7y (2) 26 52
Ba(3) 217 A5 (5) 50

qn+1 -1 1 1o
A —_— B,(3), (n >3) 53" @E" -1

q—1 2
2n 2n

B,() T @) =
B,©2) an-1(2n _ 1) 20,@2), Gn+1) 2" %
Ax(g) ¢ +1 ZA3(9) @+D@+1D)

w [q71+1 _ ( _ 1)77.+l][q71, _ ( _ l)n]

2
D,(@) e Au(q), (0> 4) T
n 1 n—1 __ 1
R = R @+ D@+ g+ D)
¢ -1 @+ D¢ -D@= -1
Gal@) - Es(g) s
2 @+ D@+ (g2 -1
"B2(q) ¢ +1 "Ee(q) @G- D
4 1 12 1 .
Fi(@) “”q’(fql) %,(0) (q+ D@ + D@ + 1)
(@ = 1@ — D@ 1)
341 E
G @+ 7(Q) (¢° —1)(g* —D@—-1)
10 16 1y 24
D, 212 - 1) Fx(g) @ +Dg —Uq_ -1

(@ -Dg-1)
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ther are Ay(4) and A3(2) or are B,,(¢) and C,(q) for some n > 3 and some
odd q. So our task of recognizing a simple group G from its Dirichlet
polynomial would be nearly completed if we could determine |G| from
P (s); however, as we mentioned in Section 2, this is not an easy problem,
and it can be tackled only with an intensive use of results on the maximal
subgroups of Lie groups. However the following remark is useful and easy
to prove.

LeEmMA 12.  Let G be a simple group of Lie type and let B be a Borel
subgroup. If |G : B| = u, then u € v(G).

Proor. Aswe noticed in the proof of Theorem 3, y(B) = (— 1)! wherel
is the Lie rank in the untwisted case and the number of p-orbits on the nodes
of the Dynkin diagram in the twisted case. Now suppose |H| = |B| and
Ua(H) # 0;as |G : H| = wis coprime with p, the subgroup H contains a Sylow
p-subgroup P of G; the normalizer B = N (P) is again a Borel subgroup and
is contained in each maximal subgroup of G which contains P; as H is an
intersection of maximal subgroups, B < H,but |G : B| = |G : H| = u, hence
H = B; as the Borel subgroups in G are all conjugated and self-normalizing,
we conclude that a,(G) = |G : Ng(B)|ug(B) = (— Dlu. O

The previous lemma tells us that the p’-part of po(G) cannot be too
different from |G|, ; indeed |G|, = |G : B||H|, being H a Cartan subgroup
of the Borel subgroup B, hence (|G|/po(&)),, divides |H|. What is more
difficult to understand is how much smaller can (po(G)), be compared to
|G|, However, if we already know that p is the characteristic of the Lie
group G, then, by Corollary 4, with the help of the Dirichlet polynomial
Pi(s) we may compute the number po(G) = 1.c.m.(|G\p,po(G)), and use
this number as a good approximation for |G|. For some groups of low rank
(A1(g),2B2(q), %A2(q)), we will need a more accurate estimate of po(G).
Before starting the analysis of these particular cases, let us recall some
definitions and results concerning Zsigmondy primes. A prime number u is
called a primitive prime divisor of a® — 1 if it divides a® — 1 but it does not
divide a® — 1 for any integer 1 < e < b — 1. It was proved by Zsigmondy
[22] that if @ and b are integers greater than 1 and (a, b) # (2, 6), then there
exists a primitive prime divisor of a® — 1 except when @ =2 and b is a
Mersenne prime.

LemMa 13.  The following hold:
1) If G = A1(q) then q(q — 1)/2 divides po(G);
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() if G =2B3(q) then q — 1 divides po(G);
(3) if G =2As(q) with ¢ = 3" and r > 1, then (q + l)Z(q — 1) divides
po(G).

Proor. (1) If G = Ai(g), then looking at the list of its maximal sub-
groups (see for example [15], Satz 8.27, pag. 213) one can notice the fol-
lowing: if ¢ #7, 9, 11, then G = A1(q9) has a maximal subgroup D iso-
morphic to the dihedral group of order 2(q + 1)/(2,q — 1) and |M| = |D| for
each M maximal subgroup of G with index dividing |G : D| (more precisely
either M is conjugate to D or ¢ = 59 and M = Alt (5));soifq # 7, 9, 11, then
|G :D| =q(q—1)/2 € 5(G). Finally a direct computation shows that
po(G) = |G| when G € A;(7), A1(9), A;(11).

(2) If G = 2By(q) then q = 2¢ with e > 3 odd; |G| = ¢*(¢> + 1)(¢ — 1) and
the maximal subgroups of G are the following [21]:

(a) B (the parabolic subgroup) with |B| = ¢?(q — 1);
(b) X, with |X,| =4(q +a\/2¢+1) and a € {-1,1};
(C) D~ Dg(q,l) with |D| = 2(q — 1),

(d) 2Ba(qo) where ¢ = g and a is a prime divisor of e.

Notice that (q+ \/ﬂ +1)(q — \/IE +1)=¢*+1 so there exists
a € {—1,1} such that | X, |is divisible by a primitive prime divisor » of 24 — 1.
A maximal subgroup M has order divisible by % only when M = X,,, hence
G : Xu| = ¢*(q — a\/2q + 1)(q — 1)/4 € (G), and q — 1 divides po(G).

(B)Forq =3",7#1,G = ?As(q) = PSU(S, q) has order ¢*(¢® + 1)(¢*> — 1)
and contains the following maximal subgroups [2] (here 7, denotes the cyclic
group of order n):

(@) B=[¢*]: Zgp_1;

(b) GU@, @)

© (Zgr1)*.Sym(3);

(d) Zgp_g41-3;

(e) PSU(, qo) with ¢ = ¢fj and a prime;
® SOG, 9.

Let now u be a primitive prime divisor of 3" — 1. If M is a maximal
subgroup of G with order divisible by « then M is of the kind described in
(d), hence |G|/B(¢2 — g+ 1)) = ¢3(g + 1)*(q — 1)/3 € ¥(G). O

Now we are ready to start with the proof of our main result.

THEOREM 14. Let Gy and Gz be two simple groups of Lie type defined
over fields with the same characteristic; if Pg,(s) = Pg,(s), then G; = Go.
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The proof is quite long and will be splitted in consecutive steps. The
main ingredient is an analysis performed in [16], which explains how one
can recognize a finite simple group of Lie type from its order. For the
convenience of the reader we recall some definitions introduced in [16]. Let
n > 1Dbe a natural number, the contribution of a prime p to » is the highest
power of p dividing »; the following invariants can be defined:

pn): is called the dominant prime in n and it is the prime number
whose contribution to » is maximal.

{(n): is the exponent of p(n) so that p(n
dividing 7.

w(n): is the largest order of p(n) modulo a prime divisor p; of
n/pn)"™; such a prime number is called a prominent prime.

w(n): is the largest order of p(n) modulo a non-prominent prime; one
puts y(n) = 0 in case » has no non-prominent prime divisor other than p(n).

)™ is the largest power of p(n)

If G is a group of order n than the numbers p(G) = p(n), (G) =
=Ilmn), (@) = wmn) and y(G) = w(n) are called the Artin invariants of
|G|. In [16] the authors prove that apart from few exceptions, there is a
unique simple group of Lie type with given values of the Artin invariants.
Our first task will be to prove that we can obtain the Artin invariants by
looking at the Dirichlet polynomial of the group. From now on, G will be a
finite group of Lie type over a field of characteristic p. In general p(G)
coincides with the characteristic p of our group of Lie type; indeed we have
the following (see [16, Theorem 3.3]):

STEP 1. Assume that G is a group of Lie type over a field of char-
acteristic p with G # 2As(3), ?A3(2); then p(G) # p if and only if m(G) is a
prime-power with m(G) > |G|,. Moreover one of the following occurs:

1) m(G) is a 2-power, i which case p = m(G) — 1 is a Mersenne
prime and G = A;(p);

2) m(G) s a Fermat prime, in which case p=2 and G =
= A1 (m(G) - 1);

3) m(G) =9, in which case p = 2 and G = A;(8).

This has the following consequence:

STEP 2. Let G be a simple group of Lie type defined over a field F; if
we know that the characteristic of F is p, then we may determine from the
Dirichlet polynomial Pg(s) whether p(G) = p or not, and when p(G) # p
we may determine G up to isomorphism.



64 Erika Damian - Andrea Lucchini

PROOF. First notice that G = 2A»(3) is the unique simple group of Lie
type with m(G) = 27; on the other hand P(?A3(2)) = 28 and G = ?A3(2) is the
unique group of Lie type with m(G) = 28 and characteristic 2. First notice
that G = ?A3(2) ~ Bs(3) is the unique group of Lie type with n(G) = 27 (see
for example the list of primitive groups of small degree in [11]) so we may
recognize G from its Dirichlet polynomial. Next let us consider G = ?A5(3),
here we get m(G) = 28 and p(G) = 2 # 3 = p; if H is a group of Lie type
with m(H) = 28, then H € {?Ax(3), A1(27), B3(2)}. It can be checked (see
Lemma 13 and [5]) that 13 - 27 € 5(A;(27)) and 5 - 24 € B(B3(2)) but neither
of these numbers divides |G| so if H # G, then Pg(s) # Pr(s).

When G ¢ {?A3(2), 2A2(3)} we proceed as follows: we determine m(G)
and |G|, with the help of the Dirichlet polynomial P(s); if m(G) is not a
prime-power or n(G) < |G|p), then p = p(G); otherwise we are in one of the
three cases described in step 1 and in each of them the knowledge of 7.(G)
suffices to determine G up to isomorphism. O

So our theorem is proved when p(G) # p, and for the rest of the proof
our attention will be restricted on groups of Lie type satisfying p(G) = p.
Clearly, in this case we can obtain also [(G) from the knowledge of Pg(s) as
p"@ = |G|,. Now we start to discuss the other two Artin invariants, (G)
and y(G). Let us first recall other results from [16]. The order of G = L(q)
has a standard factorization:

_l h
\L(g)| = 77 P(q),

where d, k and P(q) are given in [16, Table L1]. In particular (see [16]) this
order has the cyclotomic factorization in terms of p:

1 l Em
L@l = g0 L] ontor,

where @,,(x) is the m-th cyclotomic polynomial. Let a(G) be the largest
value of m for which e,, # 0 and define f(G) as the next largest value of m
for which e,, # 0; as it is explained in [16], a consequence of Zsigmondy’s
Theorem is that, apart from the few exceptional cases listed in [16] Lemma
4.6, a(G) and B(G) coincides with w(G) and w(G) (and the precise values are
reported in [16] Table A.1).

STEP 3. If p(G) = p, then ((@), (@) = (w(po*(R)), w(po*(@))).

PrOOF. Aswe noticed after the proof of Lemma 12, |G|/po*(G) divides
the order of a Cartan subgroup H of G. For most cases, in order to prove our
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statement it will suffice to check that the prime numbers dividing |H| are
not relevant when one wants to compute w(G) and w(G), which is equivalent
to verify the following condition:

(*) there exist at least two primes u; and ug which divide |G|/|H|
such that the following holds: for any prime u dividing |H|, the
order of p modulo u is not grater than the order of p modulo u;
and us.

So before starting with a case by case analysis we recall the value of |H|
for the different classes of groups of Lie type. If G = L, (q) is of untwisted
type, then |H| = (g — 1)"/d (see Section 8.6 in [4]); if G = L,,(q) is a twisted
Lie group and all the roots have the same length, then |[H| = [] (¢! — 1)/d;

J

where J runs on the set of the p-orbits on the nodes of the Dynkin diagram
(see Section 14.1in [4]);if G € {ZB2(q), G2(q), 2F4(¢)} (i.e. when G has roots
of different length), then |H| = (¢ — 1)°, with ¢ € {1, 2}. Now we start with
the analysis of the different possibilities; according to [16] Lemma 4.6,
there are three cases:

a) (w(G), y(@) = (@), B(G)).

In this case the values of (w(G), w(G)) are given in [16] Table A.1.
Assume that G is a Lie group over the field I, with ¢ = p”; if G is of
untwisted type, then any prime « which divides |H|, also divides ¢ — 1,
hence p has order at most » modulo %; this means that condition (x) is
certainly verified when w(G) > w(G) > » and, by [16] Table A.1, this is
true with the only exception of G = A;(q); in this last case we can easily
conclude with the help of Lemma 13. Now assume that G is a twisted
Lie group. First consider the cases when all the roots have the same
length. If « is a prime divisor of |H|, then the order of p modulo » di-
vides 7-s, with s=3 when G =3D4(g), and s =2 otherwise. If
G # ?As(q), then (G) > w(G) > r-s and () is satisfied. If G = ?Ax(q),
then (w(G), w(@)) = (6r,2r); this information may be recovered from the
index of the Borel subgroup B as |G:B|=¢+1 is divisible by
D (p) Do, (p). If G € {Ma(q),Ga(q),%F2(q)}, then p has order at most
modulo any prime divisor of |[H| = ¢ — 1 and condition (*) is certainly
satisfied except for G = 2B2(2") with » = +1mod 6. In this last case one
can apply Lemma 13 (2).

b) p =2, a(G) = 6 or (G) = 6.

The pairs (w(G), w(@)) and (a(G), f(G)) does not coincide when p =2
and either a(G@) =6 or f(G) = 6; there are precisely 18 groups of Lie
type in this situation, and the values (w(G), w(G)) for them are given in
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[16, Table A.2(a)]; for most of them a direct and easy computation shows
that the exist at least two primes u; and ug dividing the index of the
Borel subgroup and such that p has order w(G) modulo %; and w(G)
modulo ug; only two of these groups require more attention. The first of
them is G = Ax(8): in this case |G| =27 - 32 - 72 - 73, w(G) = 9 is the order
of 2 modulo 73 and w(G) = 3 is the order of 2 modulo 7; but the Borel
subgroup B has index 3% - 73, not divisible by 7, so we need to check
more carefully whether 7 divides po*(G) : this can be deduced by looking
at the indices of the maximal subgroups, indeed it turns out that
29.3.72 ¢ (@). A similar situation occurs when G = 2A5(8): in this case
|G| =2%-3%.7-19, and o(G) = 18, yw(G) = 3 are the orders of 2 modulo
19 and 7; 7 does not divide the index of the Borel subgroup but
28.7.19 ¢ i(G).

¢) p is Mersenne, f(G) =2, w(G) =1 and G = A;(p?), Ax(p), B2(p) or
As(p).

This case does not give us particular problems; same argument which
has been applied in case (a) tells us that w(G) = a(G) is the order of p
modulo a prime divisor of the index of the Borel subgroup B (see [16, Table
A3]). Moreover |G : B| is an even number and w(G) = 1 is the order of p
modulo 2. O

In [16] the authors prove that the are only few pairs of non-isomorphic
simple groups of Lie type with the same Artin invariants (the possibilities
are listed in [16], Table 5.2). In particular we have:

STEP 4. Suppose that G and Ga are two non isomorphic simple
groups of Lie type with the same Artin invariants; if m(Gy) = m(Gsz) then
one of the following occurs:

1) G1 =7AxQ), G2 = Ga2(g);

@) Gy =%A2(¢?), G2 = "Ba(¢?);

3) Gi = A1(2%), Gz =Ax(4);

4) Gy = B,(q), Gz = C,(q) with q odd and n > 3.

STEP 5. Py, )(8) # Pagy)(@)-

ProOOF. Assume, by contradiction, that PZAZ<q)(S) P?GZ@(S) This
would imply po(As(g)) = po(3G2(q)); since, by Lemma 13, (¢ + 1)* divides
po(®As(q)), we would get that (¢ + 1)* divides |%G2(q)] = ¢3(¢® + 1)(g — 1),
which is false. O
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STEP 6. PZAz(qZ)(S) 7& PZBg(qS)(S)'

Proor. Assume, by contradiction, that P%Z(qZ)(S) = Psz(qg)(s). This
would imply po(®Bz2(¢*)) = po(Az(¢?)); since, by Lemma 13, ¢* — 1 divides
po(*Bz(q?)), we would get that ¢ — 1 divides |A2(¢®)| = ¢°(¢® + 1)(¢* — 1),
which is false. O

STEP 7. PA1(26>(8) 7é P2A2(4)(8)-

Proor. Assume by contradiction that Py s)(s) = Pua,u4)(s). Thus
po(A;1(2%) = po(Az(4)). By Lemma 13 we get that 7 € po(A;(2°%)), but
PAp(4)] = 26 - 3. 52 - 13 is not divisible by 7. O

STEP 8. If q ts odd and n > 3. then Pg ) (s) # Pc, ().

ProoF. Recall that [B,(q)| :|Cn(q)|:q”2< I (q22’—1)) /2. As-
1<i<n

sume that ¢ = p” with p an odd prime, and let = be the union of the
sets my and np, where n; is the set of the primitive prime divisors of
p? —1 and my the set of the primitive prime divisors of p®*—2" —1.
Our aim is to prove that Pg:(q)(s) # P(") »(8). We will apply a theorem
of Feit ([12, Theorem A]) which asserts that if 2n,q) ¢{(6,3),(6,5)},
then there exists @ € m; such that either % > 2nr+1 or %% divides

p?"" —1 = ¢*" — 1. By definition, the non trivial contributions to the
computatlon of the Dirichlet polynomial P((’;)(s) come only from the
subgroups containing a Sylow u-subgroup of G for each prime u € 7.
The maximal subgroups of C,(q) = PSp (2n, q) whose order is divisible
by at least a prime u; € 7; and a prime uy € np are described in [13]
and [17, Table 2.5]. In particular we deduce that if C,(¢) = PSp(2n,q)
contains a maximal subgroup M with this property, then
2n,q)¢{(6,3),(6,5)}, r=1, u; =2n + 1 and |M| is not divisible by u?;
as a consequence we get that # = u; and %? divides |C,(q)| whereas @
does not divide |M|. This implies that there is no maximal subgroup of

C,(@) containing a Sylow wu-subgroup for each w €mn, hence
Pg)(q)(s) = 1. The situation is different for B, (q) = Qq,.1(q). Indeed if
W is a non-singular 1-dimensional subspace of the orthogonal space
Vo I[“?]"+1 with the property that W+ has type O,,, then the stabilizer
M = Stabg,, (W) is a maximal subgroup of Q,,1(q) with
|92n+1(q) M| = ¢"(¢" —1)/2, a 7-number. This implies P\? (&) #1 =

: B.(
= PEp®)- =
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6. An example.

The following is the Dirichlet polynomial associated with a finite simple
group G; we want to use the results established in the paper in order to
identify G up to isomorphism.

62 186 5 3100
3 2-3.31  (G2-31) (25231
3875 4000 4650
C(5%-31° (2°-5%)° (2-3-5%-31)F°
11625 15500 18600
tE 53y @ 5.3 @35 -31)
31000 186000 124000
+(23.53.31)8_(23.3.53.31)8+(25.53.31)8

Pe(s)(S) =1 -

First we notice that m(G) = 31; as a3;(G) = —62, from Theorem 1 we de-
duce that G is not of alternating type; moreover by Table 1, there is no
sporadie simple group H with m(H) = 31; hence G is a simple group of Lie
type. Now we compute P(Cf)(O) for any prime p € n(po(®@)) = {2,3,5,31}; we
get the following values:

P 2 3 5 31
PP) | 2¢.23% | 3-31-1723 | 5P ~3.31-43

Only for p = 5 the number |P(C’;)(O)| is a p-power, hence by Theorem 3
the Lie group G is defined over a field of characteristic 5, and 5% is the
order of a Sylow 5-subgroup of G. Moreover m(G) = 31 < |G|5 = 5° so by
the argument in Step 1 of the proof of Theorem 14, p(G) = 5 and I(G) = 3.
The orders of 5 modulo 2,3,31 are, respectively, 1,2,3 so w(G) =3 and
w(G) = 2: G has Artin invarians (p(G), (@), (@), w(G)) = (5,3,3,2); this
allows us to conclude G =2 Ay(5) = (3,5).
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