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Abstract. Let G be a finite group; there exists a uniquely determined Dirichlet
polynomial PG(s) such that if t ∈ �, then PG(t) gives the probability of generating G
with t randomly chosen elements. We show that if PG(s) = PAlt(n)(s), then G/Frat G ∼=
Alt(n).
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1. Introduction. For any finite group G we may define a complex function

PG(s) =
∑
H≤G

µG(H)
|G : H|s .

Here µG(H) is the Möbius function defined on the subgroup lattice of G as µG(G) = 1
and µG(H) = −∑

H<K µG(K) for any H < G. (The multiplicative inverse of PG(s) was
called the probabilistic zeta function in [2] and [11].) Note that PG(s) may be rewritten
as

PG(s) =
∑
n∈�

an(G)
ns

, where an(G) =
∑

|G:H|=n

µG(H).

Hence PG(s) belongs to the ring of Dirichlet polynomials

R :=
{ ∞∑

n=1

an

ns

∣∣∣∣∣ an ∈ �, |{n : an �= 0}| < ∞
}

.

In [7] Hall observed that for any t ∈ �, PG(t) is the probability that t randomly chosen
elements of G generate the group G.

It is quite natural to investigate what may be recovered about the group G from
the complex function PG(s). Let us first observe that PG(s) = PG/ Frat G(s) so that the
knowledge of the Dirichlet polynomial PG(s) may give information only about the
structure of the factor group G/ Frat G. In particular, given two finite groups G1 and G2

such that PG1 (s) = PG2 (s), we are interested in comparing G1/ Frat G1 and G2/ Frat G2.
As was already noted by Gaschütz [6], we cannot infer that G1/ Frat G1 � G2/ Frat G2.
However in the known counterexamples it turns out that G1 and G2 have the same non
Frattini chief factors. Thus it seems that a promising conjecture could be the following:
let G1 be a finite simple group and G2 a finite group such that PG1 (s) = PG2 (s); then
G2/ Frat G2 � G1. In this paper we prove this conjecture when G1 = Alt(n). The case of
alternating groups of prime degree was considered in [4]; moreover it has been proved
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that the polynomial PAlt(n)(s) is irreducible when n is a prime number. It is still an open
question whether this result holds for any n.

2. The main theorem. The ring R of Dirichlet polynomials is a factorial domain
and an important role in the factorization of PG(s) in R is played by the normal sub-
groups of G. We recall a result in this direction that has been employed already in [4].

LEMMA 1. Let G be a finite group and N a normal subgroup of G. Then PG/N(s)
divides PG(s). Moreover, PG/N(s) = PG(s) if and only if N ≤ Frat G.

In order to prove our main theorem we need to state as a lemma a result obtained
by Berkovich in [1, Theorem 1].

LEMMA 2. Let Y be a permutation group of degree n. Assume that n is the minimal
index of a proper subgroup of Y. Then Y is a simple group.

THEOREM 3. Let G be a finite group. Assume that PG(s) = PAlt(n)(s) for some n ≥ 5.
Then G/ Frat G � Alt(n).

Proof. In [4] we showed that if n is a prime number, then PAlt(n)(s) is irreducible
and G/ Frat G � Alt(n). Hence we shall assume that n is not a prime number. Note
that n is the minimal index of a subgroup of Alt(n). Thus an(G) = an(Alt(n)) �= 0 and if
ak(G) = ak(Alt(n)) �= 0, then k ≥ n. It follows that n is the minimal index of a subgroup
of G; hence if |G : H| = n, then H is a maximal subgroup, µG(H) = −1 and −an(G) is
the number of these subgroups. Set Y = G/ CoreG(H), where H ≤ G is a subgroup of
index n.

Note that Y is a primitive permutation group of degree n that satisfies the
hypothesis of Lemma 2; hence Y is a simple group. Moreover Y cannot be an abelian
simple group, as in this case n is a prime number.

Thus Y is a nonabelian simple group with the following properties:

(P1) n is the minimal index of a proper subgroup of Y ;
(P2) PY (s) divides PAlt(n)(s).

The target now is to show that Y � Alt(n). In fact this implies that PG/ CoreG(H)(s) =
PAlt(n)(s) = PG(s). Hence, by Lemma 1, we get CoreG(H) = Frat G and G/ Frat G �
Alt(n).

We start by observing that there are only two simple groups with maximal
subgroups of index 6, namely Alt(6) and Alt(5); by using (P1) we obtain that for
n = 6, Y � Alt(6). Moreover, for n = 8 we get that Alt(8) and PSL(2, 7) are the simple
groups with maximal subgroups of index 8; since PSL(2, 7) has maximal subgroups of
index 7, we get that Y � Alt(8).

Thus we shall consider n ≥ 9 and n not a prime number.
Let us first note that by using (P1) we get that −an(Y ) is the number of subgroups

of index n in G containing CoreG(H). Hence 0 < −an(Y ) ≤ −an(G). As a consequence,
we get −n = an(Alt(n)) = an(G) ≤ an(Y ) < 0. Furthermore, since Y is a nonabelian
simple group, any subgroup of (minimal) index n in Y is self-normalizing. Hence n
divides an(Y ) and an(Y ) = an(G) = −n. It follows that

(P3) Y has a unique equivalence class of transitive representations of degree n.

The subgroups of small index in Alt(n) are known. See Theorem 5.2A of [5]. Namely,
if n ≥ 9, r < n/2 and 1 < | Alt(n) : K| < ( n

r ), then we have three possible cases:



ALTERNATING GROUPS 597

(1) Alt(n)(�) ≤ K ≤ Alt(n){�} with � ⊆ {1, . . . , n} and |�| < r;
(2) n is even, n = 2m, and | Alt(n) : K| = 1

2 ( n
m );

(3) (n, r, K, | Alt(n) : K|) = (9, 4, P�L(2, 8), 120).

Let p be the minimal prime number which divides n. If 1 < | Alt(n) : K| < ( n
p ), then K

is contained in a stabilizer of a k-set, with 1 ≤ k < p. Indeed if n > 9 is even, then p = 2
and ( n

2 ) < 1
2 ( n

n/2 ). Hence case (2) does not occur; moreover since ( 9
3 ) < 120 case (3) does

not occur either. Furthermore if K is contained in a stabilizer of a k-set, with 1 ≤ k < p,
then n divides | Alt(n) : K| whereas n does not divide ( n

p ). Hence the subgroups of index
( n

p ) (in particular the stabilizers of p-sets) are maximal subgroups of Alt(n). Hence
we get that a( n

p )(Alt(n)) < 0. Furthermore n divides k whenever ak(Alt(n)) �= 0 and
1 < k < ( n

p ). As a consequence, since Y is a quotient of G, it follows that if K < Y is
a subgroup of index m > 1 not divisible by n, then there exists h > 1 dividing m such
that 0 �= ah(G) = ah(Alt(n)); hence m ≥ h ≥ ( n

p ). We have the result (P4).

(P4) If K < Y has index m > 1 not divisible by n, then m ≥ ( n
p ), p being the

minimal prime number dividing n.

We show that Y is a 2-transitive nonabelian simple group. Assume that this is
not the case. Let � be the set of p-subsets of {1, . . . , n}, where p is the minimal prime
number dividing n. Note that the action of Y on � is not transitive; that is to say Y is
not p-homogeneous. Indeed, by a theorem due to Livingstone and Wagner (1965) and
Kantor (1972), (see [5, Theorem 9.4B]), a p-homogeneous nonabelian simple group is
2-transitive. As a consequence, there exists an orbit of Y on �, say �, with 1 < |�| < ( n

p )
not divisible by n, but this is in contradiction to (P4).

In order to show that Y � Alt(n) we shall proceed with a case-by-case analysis of
the 2-transitive nonabelian simple groups of degree n ≥ 9 with a unique equivalence
class of representations of degree n, where n is not a prime number. Assume that
Y �� Alt(n); then Y is in the following list. See [5, Section 7.7] as a reference.

n Condition Y No. of actions

qd−1
q−1 d = 2 PSL(d, q) 2 if d > 2

(d, q) �= (2, 2), (2, 3) 1 otherwise
22d−1 + 2d−1 d ≥ 3 Sp(2d, 2) 1
22d−1 − 2d−1 d ≥ 3 Sp(2d, 2) 1
q3 + 1 q ≥ 3 PSU(3, q) 1
q2 + 1 q = 22d+1 > 2 Sz(q) 1
q3 + 1 q = 32d+1 > 3 R(q) 1
11 PSL(2, 11) 2
11 M11 1
12 M11 1
12 M12 2
15 Alt(7) 2
22 M22 1
23 M23 1
24 M24 1
176 HS 2
276 Co3 1
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Recall that Y is a 2-transitive non abelian simple group of degree n, where n ≥ 9
is not a prime number and it is the minimal degree of a 2-transitive action of Y .
Moreover Y has a unique equivalence class of representations of degree n. As a
consequence we may drop from the list the following set of groups: {PSL(2, 11),
M11 (both actions), M12, Alt(7), M23, HS}. We shall show that the remaining groups
in this list, except for M24, have a subgroup of index m not divisible by n such that
m < ( n

2 ) ≤ ( n
p ), where p is the minimal prime number dividing n. Then we may use (P4)

in order to exclude the possibility that Y is one of these.
Indeed, PSL(2, q) has a subgroup of index m = (n − 1)(n − 2)/2. See Satz 8.4 of

[8, p. 192]. Sz(q) has a subgroup of index m = 1
4 (q − r + 1), where r2 = 2q. (See [12].)

R(q) has a subgroup of index m = q2(q2 − q + 1). (See [9].) M22 has a maximal
subgroup of index m = 77 and Co3 has a maximal subgroup of index m = 11178.
(See [3].) Moreover, the minimal degree of a 2-transitive representation of Sp(2d, 2)
is n = 2d−1(2d − 1). The other 2-transitive representation of Sp(2d, 2) gives a sub-
group of index m = 2d−1(2d + 1). Finally PSU(3, q) = PGU(3, q) ∩ PSL(3, q2) and so
PSU(3, q) has an action on �, the set of points of the projective space PG2(q2), of
degree t = q4 + q2 + 1 and this action is fixed-point-free. Since n = 1 + q3 does not
divide t, it follows that � has an orbit of size 1 < k ≤ t not divisible by n; hence
m = k.

In order to prove that Y �� M24 we shall show that PM24 (s) does not divide
PAlt(24)(s). Then we may conclude by using (P2). Assume that PM24 (s) divides PAlt(24)(s).
Let us define for any prime number p an endomorphism αp in the ring of Dirichlet
polynomials R as follows:

αp

(∑
n

an

ns

)
=

∑
n

bn

ns
, where bn =

{
0 if p divides n,

an otherwise.

Since αp is an endomorphism, for any prime number p we get that αp(PM24 (s))
divides αp(PAlt(24)(s)); we shall reach a contradiction by showing that this is not the
case.

Let us first note that there exist two Dirichlet polynomials P1(s), P2(s) ∈ R with
α19(P1(s)) = P1(s) and α19(P2(s)) = P2(s) such that

PAlt(24)(s) = P1(s) + 1
19s

P2(s).

Furthermore, since 19 does not divide the order of M24, then α19(PM24 (s)) = PM24 (s)
and it divides α19(PAlt(24)(s)) = P1(s). Moreover α2(PM24 (s)) divides α2(P1(s)). Note
that contributions to α2(P1(s)) are given by subgroups of Alt(24) that contain both
a Sylow 2-subgroup and a Sylow 19-subgroup. We claim that Alt(24) does not have
proper subgroups containing both a Sylow 2-subgroup and a Sylow 19-subgroup.
Indeed let K be such a group. Let P ≤ K be a Sylow 2-subgroup of Alt(24); then it
contains x = x1x2 ∈ Alt(24), where x1 and x2 are two disjoint cycles of length 8 and 16
respectively. Moreover K contains a cycle of length 19. Thus K is a primitive subgroup
of Alt(24) and, by Theorem 3.3E in [5] we get that K = Alt(24). We conclude that
α2(P1(s)) = 1. Hence α2(PM24 (s)) = 1. This contradicts the fact that M24 contains a
maximal subgroup of odd index. �



ALTERNATING GROUPS 599

REFERENCES

1. Yakov Berkovich, The degree and index of a finite group, J. Algebra 214 (1999), 740–761.
2. Nigel Boston, A probabilistic generalization of the Riemann zeta function, in Analytic

number theory, Vol. 1 (Allerton Park, IL, 1995) Progr. Math. No. 138 (Birhhauser, 1996),
155–162.

3. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite
groups (Oxford University Press, 1985).

4. Erika Damian, Andrea Lucchini and Fiorenza Morini, Some properties of the
probabilistic zeta function of finite simple groups, Pacific J. Math., 251 (2004), 3–14.

5. John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in
Mathematics, Vol. 163 (Springer-Verlag, 1996).
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