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INTRODUCTION.

The interest in a theory of functions over the non commutative field of quaternions,
H, began with Hamilton [Ha], Tait [Ta], and Joly [J] at the end of the nineteenth Century.
The attempt to adapt the definition of a holomorphic function of a complex variable to the
case of a quaternionic variable faces the fact that the functions of a quaternionic variable
which have quaternionic derivatives are just the constants and linear functions (Proposition
1.1) and that the functions which can be represented by quaternionic power series are all
the analytic functions in four real variables. Fueter [F], in 1938, by means of an analogue
of the Cauchy-Riemann equations, identifies a special class of quaternionic functions that
he calls “regular” and which play the role of holomorphic functions. More precisely, a
function f: Q2 — H (0 open subset of H) is regular if it satisfies the equation
of | .of of
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on all of {2, the variable being ¢ = z¢ + iz, + jz2 + kz3. Equation (0.1) is called the
Cauchy-Fueter equation. Sudbery [Su], in 1978, defines the module ¥ of H-valued dif-
ferential p-forms. The quaternionic exterior calculus enables him to establish rigorously
the fundamental results of this theory, such as the analogue of the Cauchy’s Theorem, the
Cauchy’s integral formula, the Laurent expansion.

A brief account concerning the theory of regular functions is given in Section 1. As
Sudbery [Suj points out, there are some difficulties in this theory, such as, for example, the
fact that the identity map of H is not regular (Proposition 1.5) and that pointwise multipli-
cation and composition of maps do not maintain regularity (Proposition 1.6). Nevertheless,
investigations in this field are carried on: it turns out, for instance, that the Cauchy-Fueter
equations are strictly related to the Dirac operator [Gi]. Recently, Pertici ([P1], [P2]) stud-
ied the theory of regular maps in several quaternionic variables and obtained the analogue
of the Bochner-Martinelli’s formulas, Plemelj’s formulas as well as Hartog’s type Theo-
rems. A generalization of the definition of a holomorphic function in the case of Clifford
Algebras can be found in [B-D-§].

In this paper, we study a generalization of the Cauchy-Fueter equation (0.1) to the
case of a R-Fréchet differentiable map f of a H-Banach space X into a H-Banach space

Y. A quite interesting fact, Which appears clearly in this setting, is that the generalization
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requires that X is a right H-Banach space and Y is a left H-Banach space. Only in this
situation, in fact, the natural extension (2.10) of equation (1.6) acquires its full sense (see

Lemmas 2.4 and 2.5) and leads to a definition of regularity for a map f: X — Y among
H-spaces (Definition 2.6). Consequently, a definition of a regular map in the case of H-

Banach spaces is given. Here, the study of a Cauchy-Fueter equation leads to a natural
decomposition of the Fréchet-differential of a map in four summands, one of which is the
Cauchy-Fueter operator. In the one-dimensional case, a decomposition over the module of
the H-valued differential forms is induced.

With this new point of view, a holomorphic map ¢ from a right H-space X into a
left H-space Y (with respect to the induced right and left C-structures) turns out to be a
regular map (Corollary 3.2).

This result seems quite natural and supports the choice of Definition 2.6: in fact, if
X and Y are both left (or right) H-spaces, then a holomorphic map is not a regular map
in general (Lemma 3.3). This fact is encountered, for example, when X = Y = H is
considered as a left space ([Su], [P1], [P2]).
Still in Section 3, a natural decomposition of the R-differential of a map f: X — Y (X is
a right H-space and Y is a left H-space) is investigated.
The result is that the differential df, decomposes uniquely in four summands

(02) dfz: =50f:: +51fz +52f2: +53fz

in such a wa.y that 8y f is H-antilinear, i.e. Bof=(q) =7, and that 8, f, is “J ,-antilinear”,
for s = 1,2,3 (see (2.14)).
The H-antilinear part of the differential of f, i.e. 8yfz, corresponds to the generalized
Cauchy-Fueter equation and therefore 3, is defined to be the generalized Cauchy-Fueter
operator.

In Section 4, we use the above decomposition of the differential to define four quater-
nionic differential 1-forms, dg,, dg,, dg,, dg; (see (4.3)) which span all of e}y. This leads

to the construction of four homomorphisms (uniquely determined, Theorem 4.1)

(0.3) Ouiely — el (n=0,1;s=0,1,2,3)

preseving the canonical graded submodules associated to the spaces e§;%™*, (4.5), of all

differential (p, ¢,r,s)-forms and such that

(0.4) d=0y+ 0, + 0y + 04
and that
(0.5) 8,00,=0 (s=0,1,2,3).
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Unfortunately, a similar result does not hold for n > 2 (Proposition 4.2). This reduces the
analogy of 8, (s = 0,1,2,3) with the classical complex operators 8 and 3.

The authors are aware of the fact that the definition of a regular map given in this
paper, as well as the results obtained, are not “intrinsic”, all depending on the choice of an
embedding of C into H. On the other hand, this same situation is true for the definitions
and results given by Fueter [F1], [F2], Sudbery {Su], Pertici [P1], [P2] and others in the

same stream of research.

The non commutative field of quaternions H will be endowed with the standard basis
io = 1,14, = 1,143 = j, i3 = k and the bilinear product defined by 2 =32 =k* = -1,
ij=—ji=k,jk=—kj=1,ki=—ik=7j. [G]
Each quaternion g will be expressed in the form ¢ = z¢ + z11 + 227 + z3k (z, € R;s =
0,1,2,3). A normed left (right) module over H, complete with respect to the distance
induced by the norm, is called a left (right) H-Banach space, or simply a left (right) H-
space. If @ C H is an open set, then C () will denote the H-module of all the C*°
functions (simply called differentiable) from {2 into H.

1. Preliminaries: Regular functions of a quaternionic variable.
Let 0 C H be an open set, and let
f:8-H

be a function. A first attemp to extend the definition of a holomorphic function in the
case of quaternions is requiring the function f to be H-Fréchet differentiable at every point

g € 0, i.e. requiring that Vg € Q there exists a H-linear function ¢: H — H such that

flg+h) = f(q) = ¢(h) + o(|A)-

It turns out that this request is too strong:

Proposition 1.1. [Su] Let @ C H be open and connected. If f: 1 — H is H-Fréchet
differentiable, then f is an affine function on 1.




A second attemp is to consider the class of functions which can be expanded as
quaternionic power series at any point ¢ € 2. That is. to require that, for example, in a
neighborhood of 0 € £, f is a sum of terms of the type agqa,q---a,_19a,, with ¢ the
quaternionic variable and ag,---,a, € H the coefficients. For ¢ = z¢ + iz, + jz; + k23, it
turns out that z¢,z,,z,,z3 are polynomials in ¢q. For example z¢ = %(q—iqi —jq7 — kqk).
Therefore the space of H-analytic functions coincides with the space of real analytic func-
tions from R* to R*.

In the case of a complex function f: 2 — C one has that the fact of being holomorphic
can be expressed in one of the two equivalent ways:

)0f=0 1inQ

1) d(fdz)=0 in Q.

Equation ii) leads (via the Stokes’s Theorem) to the Cauchy’s representation Formula.

A quaternion-valued p-form ¢ in 2 C H is defined by:

¢ =do+id1 + 5oz + ks

where the ¢; are real-valued p-forms with C* coefficients.

A p-form ¢ can be expressed as

¢ = E a,,-o...,-pd:z:,-l A A d:l:,'p
05i1<"'<iy53

where the a;,...;, are quaternionic valued C* functions.

Let €§;(Q) be the H left module of the quaternion-valued p-forms. Notice that, by defini-
tion, €34 (f?) coincides with the space Cg(f) of all differentiable quaternion-valued func-
tions on 2, and that €% (Q) is actually a left-Cg () module.

We define an exterior product A in a natural way
+
An:egg(Q) x e5(Q) — el *(©)

and a differential:

d: el (Q) — EI;IH(Q)

such that

(1.1} =0
(1.2)  d(w” Aw?) =dw? Aw? + (1)’ w? Adw? for WP €efy(Q) and w? € ey (R).
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A quaternion-valued p-form can be regarded as a mapping from H to the space of alter-
nating R-multilinear maps from H x --- x H (p times) to H.
Notice that €3 (Q) can be defined, in a completely analogous way, as a right module (instead

of a left-module) over CgP(). In this case formula (1.2) becomes:
(1.2) d(wP Aw?) = wP Adw? + (—1)7dw? A T,

Since the differential of the identity function is dg = dz¢ + idz, + jdzy + kdzz, we have
that
dq ANdq # 0.

IT 6 is the canonical volume form of R*, define Dq as the 3-form which satisfies
< hliDq(hZ’hfhh‘i) >= 0(h17h27h37h4)

for all by, ha, hs, hy € H, where <, > stands for the usual scalar product of R%.
Geometrically, Dg(a,b, c) is a quaternion which is perpendicular to a,b,c and has magni-
tude equal to the volume of the 3-dimensional parallepiped whose edges are a,b,c. If f is
a differentiable function from an open subset of H into H then, if we set

of .of .of of

of ' + +k
of _ Ly
93 Ozo  Oz1 2 0zy | Bz4

(1.4 jo_of L of, of. 9f,

66 3.’1:0 3.1:1 8132 62:3
we obtain
) fo of
[ = —90 d(D = —4.
( d(fDq) e (Dqf) o

it e preceding considerations lead to the following

Definition 1.2, Let @ ¢ H be an open set and f:Q — H be a R-differentiable
Juncvionan Q00 The function f 1s left (resp. right)-reqular in Q if

df aof . of Cadf af )
ly dry 1 1(7.7:1 " iy “ Oy B
fo af af . o . of

L g :

55  dry Oz, (91'2] ! Jusq

fresp.



(f is left (resp. right)-anti regular if

of _of .of .of L 9f _. . o
8q Oz 131:1_'732:2 k@:ca—O in
f@_af_afi_af

( I . of
TP §q ~ Bz Ozi  Ozz°  Ozs

k=0) in .)

Clearly, the theory of left-regular functions will be entirely equivalent to the theory of right-

regular functions. For the sake of simplicity, we will only consider left-regular functions,

which we will call simply regular. The operator 8 is called the Cauchy-Fueter operator.
The main property of the regular functions is the fact that the Cauchy-Fueter repre-

sentation formula holds.

Proposition 1.3. [Su] If f:Q — H is left-regular in Q, then for go € R and r > 0
such that dist(go, Q) > r

=L Dqf(q).

272 JoB(g0,r) 19— 0 [*

(1.7) f(20) = = /8

Here G(q) = T!EF = % is called the Cauchy-Fueter kernel, and corresponds to a funda-
mental solution of the Cauchy-Fueter operator.

Regular functions are harmonic (since IA =089 = 80), therefore one can easily
generalize to the space of regular functions the Lionville theorem, the identity principle,
the maximum modulus principle. The Weirstrass theorem and the Morera theorem hold.

Instead the open map theorem does not hold.

Proposition 1.4. [P2] Let f:Q C H = C + jC — C be an R-differentiable function.
Then f is regular if and only if f is holomorphic.
If f and ¢: Q2 — H are two differentiable functions, the following equalities hold:

(1.8) of+g) _0f 99

8(fg) _ Of Z’ 09
1.9 ATE Lo .
(1.9) o7 o7’ 2B
Hence, if a is a quaternion then
d(ga) _ g
1.10 = —a
(o o7 %
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and if f is a real valued function then

- 6(fg) _of .oy
1.1 oUg) _9of . 99
Let R(f) be the set of all regular functions in Q. It is clear, from (1.8) and (1.10) that
R(Q) is a H-right module. We deduce from (1.9), that R(R) is not an algebra.

Moreover, non trivial affine functions are not regular. Precisely:

Proposition 1.5. [P2] The only H-linear regular function is the zero function.

In particular, the identity map of H is not regular. Remark that in the case of complex
functions, one chooses to call holomorphic the functions f which satisfy the equation
0f =0, instead of those, having similar properties, which satisfy 0f = 0.

The choice of one of the two operators corresponds to the choice of one point in the unit
imaginary sphere of C. The situation in the case of H is similar, but there are many more
possibilities: for every choice of a point in the imaginary sphere S3 one can define a class
of “regular functions” for the corresponding operator. Of course these classes are strictly

related. In particular one of the choices corresponds to the operator

5 3+i6_.6+k6
Oz Oz, ]Bmz Oz

for which the class of “regular functions” contains the identity.
The following proposition shows that the composition of regular functions is not regular,

in general.

Proposition 1.6. [P1] Let Q be an open subset of H, and f:Q — H be a differentiable
function in Q. The following conditions are equivalent:

i) f(q) = ag + b, for some a,b € H;

u) for any regular function g defined in a neighborhood of f(1), go f is regular in Q.

. as usual, 49 = 1,4, = 4,1, = j, 13 = k, then, analogously to what happens for
holomorphic functions, regular functions can be expanded is series with respect to the

hiomogeneous regular polynomials

'
1

P.(q) = m! Z (zotx, —za,) - (=otn,, — Ty, )
D VIRTHS W
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where v = [m;,m3, m3], m! = m;!my!ms! and the summation is made over all terms for
which the number of A;’s equal to h (h = 1,2,3) is my. In fact if we set

om = {v = [m1,my,m3]: m; > 0,m; + my + m3 = m}

am: +ma+ms
0,

= ™ML ..ma q..m3
Oz]*' 0z * Oz

we have

Proposition 1.7. [Su] Let f: Q — H be a regular function in an open set } C H. Let
p € Q and let 0 < § < dist(p,IN). Then if |p — q| < b, one has

(1.12) fly=>_ Y Pla-pa

m=0vEo,

where

a=(-)"0,f(p) =55 | (8.6(a=p)Daf(a)

lg—p|=6
the convergence of (1.12) being normal.
Examples of regular functions can be obtained as follows: a) consider an entire function
f:€C-C
o0
z — Z a,z".
n=0
Set

f(z,y) = u(z,y) + w(z,y)

for z = z + 1y, with u, v real valued functions.

Define

la) = ulReq, |mal) + Tpsro( Reg, mal).

It follows that f + g = ng, fg= m for any other entire function ¢:C — C. In

particular z* = ¢* and

Proposition 1.8. [Su] If f is as above, then Aj? is a regular function.
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b) Let Q;, Q2, Q3 be open sets in C and let f,g,h be holomorphic functions

;0 -C , f=fo+ih
g:Q2— C y 9=4got1g2
hZQ3—-)C ) h:ho+1h3

where fo, f1,90, 92, ho, ha are real-valued functions. Let Q be the open subset of H defined
by

N ={g==z¢+1iz; + jg + kzy € Hizg + 124 € Ny, zq + 125 € Qy,T0 +123 e Q3}.

Then the following result holds [Ma).

Proposition 1.9. The function F: 1 - H defined by

F(mo +izy + jz2 + kma) =
= fo(:vo,zl) + go(-'l?o,:vz) + ho(zo,ms) + if1(2o,-'l=1) + jgz(mo,:vz) + kha(mo,ma)

is regular in Q.

2. The generalized Cauchy-Fueter Equation.

Let X and Y be complex Banach spaces. If A: X — Y is any R-linear map, then A

can be uniquely decomposed as the sum of a C-linear map L and a C-antilinear map 4,

(2.1) A=L+A

where

(2.2) L(z) = é{A(m) _ iA(iz)}
and

(2.3) Az) = %{A(z) +iA(iz)}.

The equation

(2.4) A(z) = %{A(z) LiM(z)} =0 (Vz € X)
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states that A = L, i.e. that A is a C-linear map.
A direct computation shows that the set of all ¢ € X satisfaying equation (2.4) is a complex
subspace of X. Therefore

Lemma 2.1. If equation (2.4) holds for all the elements of a complex basis (if any)
of X, then it holds for all the elements of X.

Now, if U C X is an open set and if f:U — Y is a Fréchet R-differentiable map at
zg € U, then the differential df(zo) is a R-linear map from X into Y. Equation (2.4)

becomes the “generalized Cauchy-Riemann” equation
(2.5) df(zo)(h) + idf(zo)(ih) =0 (Vh € X)

which states that df(zg) is C-linear, (see also [Mu], [F-V]).

When df(z¢) is C-linear, then f is said to be C-differentiable at z¢. If f is C-differentiable
at every point of U, then f is said to be C-differentiable (on U). A classical result states
that ([Mu, Theorem 13.16])

Theorem 2.2. Let X and Y be Banach spaces, and let U C X be an open set. Then
a map f:U — Y is C-differentiable if, and only if, it is holomorphic.

Therefore

Corollary 2.3. Equation (2.5) (the generalized Cauchy-Riemann equation) holds at
every point zq € U if, and only if, f is holomorphic on U.

In the case X = Y = C, since {1} is a complex basis of C, Lemma 2.1 implies that
equation (2.5) is equivalent to the classical Cauchy-Riemann equation
of

(zo) +1—=—(z0) = 0.

dy

af

2.6)
(2:6) Oz

In general, equation (2.1) gives the classical decomposition of the real differential of f at

Ty as

(2.7) df (zo) = 8f(z0) + 8f(20)



when df(z¢) = A, 8f(zo) = L and 8f(zo) = A. Condition

(2.8) Ef(a:o) =0 forall zo€eU

is equivalent to the fact that f is holomorphic on U.

In the case in which X and Y are H-Banach spaces, U C X is an open set and
f:U — Y is a Fréchet R-differentiable map on U, the requirement that df(z,) is H-linear
is too strong as we noticed in Proposition 1.1. The classical Cauchy-Fueter equation (1.6)
can be generalized in the sense of equation (2.5) in two different ways, namely, in the case

of left- regularity, i.e. for a left H-space Y, as
(29)  df(za)(h) + idf (s0)(ih) + i (20)(jh) + kdf(z0)(kh) =0 Vh € X

or as

(2.10)  df(zo)(h) + idf(zo)(hi) + jdf (zo)(h7) + kdf (zo)(hk) =0 Vh € X

being X a bilateral H-space.

The choice of one of the above generalizations will be the main step to obtain, in the
quaternionic case, a decomposition of the differential df (z,) analogous to the decomposition
obtained in (2.7) in the complex case.

Let us consider a R-linear map A: X — Y, and define
3

(2.11) S(x) =Y iuA(i,z)

w=0

3

(2.12). R(z) =) iuA(zi,)

u=0

The maps R and S are additive and

Lemma 2.4. The map R is H-antilinear (i.e., for allq € H and z € X, R(zq) =
qR(z)) and ker R is a right H-subspace of X.

Proof.
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If ¢ =Y o¢"i (¢ € R), then

As a consequence of the above equality and of the additivity of A, it turns out that the
kernel of R, ker R, is a right H-subspace of X.
QED

It is of interest to remark that, in general, ker R is not a left H-subspace of X and
that ' ’

Lemma 2.5. If § is as defined in (2.11), then ker S is neither a left nor a right
H-subspace of X.

The proof of the above Lemma is a straightforward computation. For example,

S(gz) =) ¢" Z i, A((i,3,)z) =

= Zq 1, Z A((Zi,)z) =
(2.13) =¢"S(z) — ¢"i1 {i1A(G12) + ioA(Goz) — 13A(i3z) — 2 A(i22) }+

— g2 {12 A(i2z) — i3A(isz) + i0A(d0z) — i) A(iyz) }+

- q3i3{z3A(z3m) ~ 1A (122) — 11 A(i12) + oA (dez)} =

g
-
o
~
o
[ aal
oo g
o
IS
]
S."
5
<
e,
=
fagt
o]
=
7
Q‘a

m
v, (v =0,1,2,3) are defined by
= —1,qt, (for v=1,2,3;9q € H)

Q
~—
I

(
2.14
( ) Y0(q) =7 (conjugation)
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and, therefore, are such that

-1, if v=up

(2.15) 9,(1,) = (v=1,2,3)
i1, otherwise

and that

(216) 190 :191 01920193.

Thus, in general, S(z) = 0 does not imply that S(qz) = 0 (nor that S(zq) = 0).

Now Lemmas 2.4 and 2.5 point out (see Corollary 2.3 in the complex case, and Lemma
2.1) that the right generalization of the Cauchy-Fueter equation is (2.10), when Y is a left
H-space. Thus we set the following

Definition 2.6. Let X be a right H-Banach space and Y be a left H-Banach space.
Let U C X be an open set, and f:U — Y a R-differentiable map on U. Equation (2.10).

l.€.

3
(2.17) Y iudf(z)(hiy) =0 (Vh€ X,z €U)
: =~
is called the generalized Cauchy-Fueter equation. If the map f satisfies the generalized
Cauchy-Fueter equation for all z € U, then f is called regular (on U).

Remark 2.7. The generalized Cauchy-Fueter equation makes full sense when Y is a
left H-space and X is a right H-space.

As it happens in the complex case (Lemma 2.1) we have that, by Lemma 2.4, the
following result holds:

Corollary 2.8. If equation (2.17) holds for the elements of an H-basz:s (if any) of X,
then it holds for all the elements of X.

In the case X = ¥ = H, since {1} is a quaternionic basis of H, equation (2.17)
hecomes

3

(2.18) > iudf(2)(i,) =0 (z€U)

p=0
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i.e. the usual Cauchy-Fueter equation

9 .8 8 9
(2.19) %(z)ﬂa—i(z)ﬂ-@—m’% z) +k-a—£ 2) = 0.

3. Quaternionic decomposition of the differential of a map and the general-

ized Cauchy-Fueter operator.

~

Both the left H-space Y and the right H-space X inherit, respectively, a left and a
right C-structure from the R-linear inclusion of C into H defined by z + iy — = + ;7.
If A: X — Y is R-linear, then, it can be decomposed in a sum (see (2.1), (2.2), (2.3)),

(3.1) A=L+A4

where L is C-linear

(3.2) L(z) = 3 {A(z) ~ i1 A(zin)}
and A is C-antilinear
(3.3) x A(z) = Q;-{A(:c) + iy A(ziy)}

It is worthwhile noticing that, since X is a right space and Y is a left space, the fact
of being C-linear for a map A: X — Y is not as natural as one may think: for example
if X is the right H-space H and Y is the left H-space H, then the identity map is not a
C-linear map.

Now, by Definition of L, A and R (see (3.2), (3.3) and (2.12)) we have that

R(z) = (L + A)(zi,) = L(z) + A(z)+

+u{L(zn) + A(z11)} + 12 {L(z12) + A(zi2)}+
+13{L(z13) + A(zi3)} = L(z) + A(z)+

(3.4) + u{iuL(z) — 2 A(2)} + 12 L(ziz) + 12 A(2i2)+
+13{—L(z1211) — A(zi21,)} =
= 2A(z) + i3 L(z1,) + 12 A(ziq)+
— 431y L(213) + 138, A(z1,) =
= 2A(z) + 212 A(=z1,).
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T herefore

Lemma 3.1. If X is a right H-space, Y s a left H-space and A: X — Y is a R-
lincar map, then the generalized Cauchy-Fueter equation for A is ezpressed in terms of its

C-antilinear part only. Namely

(3 5] R(z) = 2(A(z) + 12 A(z12)) (Vz € X).

Since, as we stated in (2.7), A = 0f when A = df, the following result holds:

Corollary 3.2. If X is a right H-space, Y is a left H-space, U C X is open, and if

FU" Y s a holomorphic map, then f is a regular map on U.

Sudbery iSu!, Pertici {P2] and other authors ([B-D-S|), do not obtain the result stated
in Corollary 3.2. This is due to the fact that they consider the case in which X =Y =H
{oor H™) are both viewed as left H-spaces. According to us, the definition of (left)-regularity
for a map f: ! + Y has to require that X is a right space and Y a left space. The reasons
appear in Lemmas 2.1, 2.4, and 2.5, and in the fact that, otherwise, a holomorphic map is

nod reguiar in general, as the following lemma explains.

Lemma 3.3, If X and Y are both left H-spaces, and if A: X — Y is a R-linear map,

thern

S(z) = 2{A(z) + i2 L(iz2)}.

v




Proof. We have

z (tuz) = Zz# + A)(iuz) =

= L(:x:) + A(z)+
44, L(i1z) + 0 A(i z)+
+ i3 L(izz) + iz A(iaz)+
3.6) + i3 L(11122) + 13 A(d1722) =
= L(z) + A(z)+
— L(z) + A(z)+
+iaL(iaz) + i2A(i22)+
+igiy L(izz) — i3ty A(i2z) =
= 2A(z) + 2, L(izz).
QED

If, in fact, S instead of R is chosen to generalize the Cauchy-Fueter equation, then,
5y the above lemma, the fact that the complex Cauchy-Riemann equation is satisfied does

10t imply that S is zero.
Let ¥, (g =0,1,2,3) be the anti-involutions defined in (2.14). It is easy to prove

that they commute pairwise, i.e. that

(3.7) d,09, =9,09, (g,v =0,1,2,3)
and that

3 .
1 1 if p=v
3.8 - E F,(1:)0,(2k) =
(3:8) 4= wis) ) {0 otherwise

Moreover, for all ¢,p € H and any p = 1,2,3,

(3.9) 19#(‘11’) = —i#qpi“ = —i#qi#(—i#)pi“ =

ie 9, (£ =0,1,2,3) is an automorphism of H.
Definition 3.4. Let X and Y be, respectively, a right H-space and a left H-space. A
map T: X — Y is called 9,-quaternionic antilinear (for p =0,1,2,3,) if

(3.10) I(zq) = 9,(q)T(z) (Vz € X,Vq€ H).
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Notice that the natural H-morphisms of a right H-space into a left H-space are antilinear

and that ¥#¢-quaternionic antilinearity coincides with the usual antilinearity over H.

Proposition 3.5. Let A: X — Y be a R-linear map from a right H-space X into a

left H-space Y. Then A can be decomposed in a unique way in a sum
3
(3.11) A=A,

where, for every p = 0,1,2,3, the map A, is ¥,-quaternionic antilinear. Furthermore, for
allr ¢ X,

3
(3.12) A(z) :%Zﬂ“(ik)lx(xik) (4 =0,1,2,3).

Proof. Suppose (3.11) holds with A, a ¥,-quaternionic antilinear map. Then, by

using reiation (3.8) we get

= ( P (16) 3 (1)) A (2) = 4A ().

Furthermore, the maps A, (p = 0,1,2,3) defined in (3.12) is ¥ ,-quaternionic antilinear.

fn fact. since 9, is an automorphism of H (see (3.9)) we have

Au(zi,) = % Zsﬂ(ik)/\(r(iuik)) =




= 9u(i)3 3. TulinIA(zix) = u(i)A().
QED

It is easy to verify that Ay and A; are C-antilinear and that Ay, A; are C-linear.

Moreover, if L and A are the C-linear and the C-antilinear part of A, respectively, (see

(3.1)) then A =L+ A and

A=A+ M\

(3.13) .
L = A2 + A3

Proposition 3.5 directly implies the following

Theorem 3.6. Let X and Y be, respectively, a right and a left H-space, U C X an
open set, and f:U — Y a R-differentiable map on U. Then, at every point z¢ € U, the

differential of f can be uniquely decomposed in a sum

(3.14) - df(ze) = Bof(zo) + 81 f(za) + B2f(z0) + B3 f(=0)

where for every p =0,1,2,3,, E#f(:co) is the ¥,-quaternionic antilinear map ezpressed by

Bof(zo)(h) =  (df (0)(k) + irdf (o) (hir) + 2 (2a) (i) + iadf (o) iz )
B f(za)(h) = 3 {(dF(20)(h) + irdf(mo)(hir) — i (za) (hia) — isdf{zo) (i)}
B2 f(z0)(h) = %{df(%)(h) — i1df (o) (hi1) + i2df (zo)(hiz) — isdf(zo)(his)}

83 f(zo)(h) = %{df(%)(h) — iydf (20 )(hir) — i2df (z0)(hiz) + tadf(wo)(his)}

(3.15)

With the same notations introduced in (2.7) we have that
(3.16) df(z0) = 8f(z0) + 0f(z0)

and hence, after Proposition 3.5 and Theorem 3.6

8f(20) = 8o f(20) + 01 f(20)

+ _O-If
(3.17) -
A f(zo) = 02 f(z0) + 03 f(z0).
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The (Jq-)quaternionic antilinear part, 8, f, of the differential of f corresponds to R (see
(2.12)). Precisely we have that
(318) Eof(il:o): —'R

when A = df(zy). Therefore

Corollary 3.7. The map f is regular on U if, and only if, the (Jq-)quaternionic
antilinear part 8, f(zo) of the differential df (zo) vanishes for all zo € U.

The differential operator 8, defined in (3.15) is called the generalized Cauchy-Fueter

apcralor.

4. Quaternionic d operators and right-forms.

In this section  will be an open subset of the right H-space H, and
Q9 —H
will be a differentiable function with valuesin the left H-space H. If ¢ = z, +zy1t+zo) sk,
then set
aO :a:Il?o —'1:1i—122j—133k
g, = —i1qt = Tg — 11 + T3] + T3k
q; = —J9] = To + 11 — T2] + T3k
(_13 = ——kalc = Tg + 33_17: + 1:2j - mgk.

By Theorem 3.6, we can decompose the differential of f at z €  as

df(z) = 8o f(z) + 0\ f(z) + B2 f(z) + B3 f(z)
where @, f(z) (1= 0, 1,2,3), in the case of H = X =Y, are defined by
- of of 1,8f .of .8f of
(] g — T m——— T —/ - - k‘
Of 53, 83 4‘9ze 8z, "3z, T “ou,
- df 1,0f Of . 8f of
A + - —k
M w1 e Ve T 0m Moy
_ of 1. 8f L Of . of of
). —_— L o= —k
“f o G o T o
By ()_f 1 af LOf L Of ok of

p B O A — ] TRT .
dg, 4 dzy i, Oz, Jrs

i




In the following we will consider €§(Q) as a right-module over CF(2) (see Section 1,
and (1.2)"). With this choice the subspace of €5 (1) whose elements are the p-forms with
regular coeflicients is a right H-module.

Let us consider, now, the following quaternion-valued 1-forms (see Section 1):

dﬁo = da = dl‘o - dxli - d.’l)gj - d$3k

(43) dq, = dzg — dzy1 + dz2j + dzsk
4.
(ﬁ?z = d:l:() + (11:11. - d.’l}zj -+ d.’Egk

dq; = dzgy + dzy1 + dzyg — dzsk

whose linear combinations with coefficients in CgP(f2) span all of e;(Q2). With the above

notations, following formula (4.2), the quaternionic 1-form defined on

4. 9 a5

of of
Ao g+ 4

+ dg, dq,
+qa_

(1.1) df = ECr

1s naturally associated to the differential of the map f.
'+ p.g,r,s be non-negative integers, n = p + ¢+ 7 + s, and let e}37"*(Q) be the CF(N)-
submodule of e (§1) spanned by the n-forms

i\l'r)l) - d?j.“ /\daiz/\"'/\d_in
where +. ¢ {0,1,2,3} for j = 1,---,n and where the number of j's such that i; = 0 is
p.- . the number of j’s such that 1; = 3 1s s.

Formula {(4.4) yields the decomposition
\4(' E}—[(Q) - 6;{0 ,0, O(Q) @ E(I).[l ,0. O(Q) ®e 2{0,1,0(0) @ ;){0 ,0, I(Q)

[ he R linear homomorphisms

Tdo:(lf{’(ﬂ) N EIH,U,O,O(Q)
- 0,:C(0) - e9M00()
—(ﬁzCﬁo(Q) — Ell){.u,l,u(n)
By: CR(Q) = e ()
defined l)_\'
- 5 |
Elx 01([) o (mi% \f( .T{’(Q),l = (), 1,2,3)



are uniquely determined by the identity
(4.9) d:50+51+52 +53

This result can be extended for d: eu() — €3(Q). More precisely

Theorem 4.1. There ezist four R-linear homomorphisms
Biien(R) - e4(Q)  (i=0,1,2,3)
uniquely determined by the following properties:

Al) Ifp,q,r,s are non negative integers such that p+ q+r + s = 1, then

(el (Q)) C ()
91 (e (Q)) C eI
52(€¥I’q'r"(ﬂ)) C Eil'q'rﬂ ,a(Q)
Bs(e5"™ () C "™ ()

(4.10)

A2) d=108y+8, +8,+0;

A3) 8;08;=0 (i=0,1,2,3).

Furthermore, fori,j =0, 1,2,3, we have
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]

- 0 1 0
(411) 0u(dt; ) = (d7; A da;sL) - 3(d; 0 g, + g 1 ) O

The proof of the above result is based on the fact that, for every fixed i € {0, 1,2,3},

the set of 2-forms
(4.12) {dg; A dg,,dg, Ndg;:a # i, € {0,1,2,3}}
is a O (2)-basis of the right-module e#(Q), and on the identities

(4.13) d‘?i/\dﬁiZ—E (dq, A dq; + dg; A dg,)
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(4.14) d(dg;) = 0.

Notice that the following property

A4)  For any CF(Q)-submodule E of €5 (1), the subspace B:(E) of ei1(Q) is con-
tained in d(E), for alli =0,1,2,3.

is fulfilled in the cases n = 0 and n = 1. It seems to us that a reasonable definition of

8o, ..,0s should always involve property A4). This leads to the following

Proposition 4.2. There do not ezist four R-linear homomorphisms Bo,0y,02,03
from e4(R) into e} (), in such a way that properties A1), A2), A3) and A4) are satisfied
(forp+q+r+s=2)

The proof is by contradiction and is based on several technical Lemmas, which can be
stated after having assumed the existence of 8o, 01,0,, 05 satisfying Al), A2), A3), Ad).

Lemma 4.3. a) The three forms dg, A dg; A dq,, dg, A dg, A dg,, dg, A dgy A dg,

are a basis of the module egl’l’o(ﬂ).

b) The three forms dg, A dg, A dgs, dg; A dgs A dgy, dga A dg, A dg; are a basis of the
module ey ().

c) The four forms dg, A dq, A dq,, dg, A dg, A dgy, 4§, Adgy A dq,, dq, Adg; A dg, are
a basis of the module e%().

d) The two forms dg, A dg; A dg,, dgp A dg, A dg, + dg, A dg; A dg, are a basis of the

module e®*° ().

For ay, - - -,y elements of e () , (n = 2,3), let us denote by < a3,--+,ax > the C(Q)-

module spanned by ay,:--,ap.
Lemma 4.4. The following facts hold:
d(< dg, A dg, >) C< dgy A dg; A dga,dg, A G, A dg, — dg, A dgy Ndg,+

+dgqy Adgy Adgy > .
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b) d(< dgy A dg, >) < dgy A dg; Adg, >.

d(< dg, A dgy >) C< dg, A dgy A dgy,dg, A dgy A dg, — dg, A dGs A dg,+
—dg, Adg, ANdg; > .

As a consequence of Lemmas 4.3 and 4.4 we have

(4.15) e () NeY Q) Nd(< dgy A dF, >) =< dg, A dg; A dg, >
and

(4.16) d(< dg, Adgy >)N < dg, A dg, Adg, >= {0}.
Furthermore

e " (Q) =< dg, A dg, A dG,,dg, A G, A dg, + dg, A dg, A dg, +

(4.17)
- dq, Adg; Adg, >
and hence
(4.18) 5%{'1'0'0(9) Nd(< dgy A dg, >) =< dgy Adg; Adg, > .

The proof of Proposition 4.2 proceeds as follows.
Formula (4.11) and A3) imply that

~ f , 1 of
(4-19) 6l(dao A dqlgél_) - 231[(d‘—1o A d‘h +d§1 A dqo)a-qo]

for all f € CF(N).
Furthemore, the following identity holds

(4.20) dqy A dq, +dq, A dg, =—(d§z/\d63 +d§3/\d§2)-
As a consequence, we have

o - ] -
(1.21) 81 (dg, A dm;qf) Eey () Ney Q) (Vf e CR(N))
1

and now A4) implies that

— o oo
(122 Bi(dl, N d7y 32 € di< dgg N7, >). (VF € CR()
1



Hence (4.15) yields
_ af
(4.23) 91(dgo A dﬁr‘—aq ) €< dgp A dq, Adg, >
1

for all f € CF(N).
Since for every g € C(Q) there exists f € C(62) such that 7%-7: = f (see [P1], [P2]) it

turns out that,
(4.24) B1(dge Adg, f) €< dqo Adq AdT, > (Vf € CH(D)-
From (4.19) it follows that

= 0
(4.25) 91(dq, A dgo f

ﬁ)€51(<d§o/\d§1 >) C< dgy Adg, Adgy >
0

for every f € CF(€Q). Now A4) and (4.16) imply that

(4.26)  9.(dg, A dao—g_g;) € d(< dg, A dg, >)N < dgy A dq; A dg, >= {0}
It follows that

(4.27) : 81(dg, Adgof) = 0.

Now, by definition of d, we have
d(dg, A dg, f) =
of of
— dg, A dgy A dgo=— + dGo Adgy A dgy 7=+
(4.28) Qo q, Qo 5, 0 1 1 57,

a 0
+d‘_10/\d§1/\d62‘5-q_f‘+d§o/\d§1/\daaa_—qf—-
2 3

By applying (4.27) to (4.19) we obtain

— 0 1< 0
(4.29) By(dio 1, o) = 301 A1, 5)
0

for all f € CE(Q). Then (4.28) yields

(4.30) 51(@0/\“1}7&{‘)5< dg, A dgy Ndgg >
1

and therefore (same argument leading {rom (4.23) to (4.24))

(4.31) 51(@0/\@1f)6<d50/\d51/\d‘_10>-
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In a similar way we obtain that

(4.32) El(d‘ioAdqlf) €< dg, Adg, Adg, > .
Since < dg, A dg; A dg, >N < dg, Adg, Adg, >= 0 then
(4.33) 91(dgy Adg, f) =0

for all f € C(N).
Similarly, we get

(4°34) El(dqa A dqlf) = —a-l(dql A daa) =0

forall f € CF(Q) and @ = 0, 1,2, 3. Therefore (see (4.12)), 8, is identically zero. Similarly
it turns out that 8,,8; are identically zero, and, by A2), that

(4.35) d=Bo.
Then
(4.36) d(< dgy A dg, >) C Bo(< dgy A dg, >) C e5"°(Q).

Now, formula (4.18) implies that
(437)  d<dgo Adg, >) C e "(Q) Nd(< dgy AdFy >) =< dgy A dg, A dgy >

and this contradicts Lemma 4.4, b).
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