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Summary. We prove that Kuratowski’s index alpha of a decomposable set is the integral of the
diameter of the associated multifunction.

1. Introduction. In this paper we consider a decomposable subset S of £*(I),
or the set of integrable selections of a multifunction. We prove that Kuratow-
ski’s index o of the set S is the integral of the diameter of the associated

“multifunction. In particular, the index « of the decomposable hull of two
functions fdnd g is || f—g||,. This result expresses in a precise way the difference
between decomposable hulls and convex hulls. From a further corollary it
follows that any decomposable set S has subsets whose a equals Ax(S) for any
prescribed A in [0, 1]. This property is common to convex sets.

2. Notations and preliminary results. In this paper we consider a measure
space (I, .4, ), where .# is a cg-algebra of subsets of I and u — a positive
measure; E is a separable Banach space with norm |...|. By #!(I) we mean the
space of Bochner integrable functions with values in E and by |k||, — the
integral [ |h|dp.

T

DEeFINITION 1. A nonempty subset S < #(I) is called decomposable if f and
ginSand A in & imply f1,+gln4€S.

DerFINITION 2. Let f and g in £'(I). The decomposable hull of f and g,
denoted by S(f, g), is the set of functions f1,+g1,, as A4 ranges in /4.

ProprosITION 1. The closure of a decomposable set is decomposable.
For further properties of decomposable sets we refer to [5].

DermnitioNn 3. Let F: I—2F be a multivalued function. F is called
measurable if for each closed set C in E, F~}{C)e.#. The set of integrable
selections is denoted by S;.
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The relationship between decomposable sets and selections of a multivalued
function is clarified by the following statements {see for example [4]):

PRrOPOSITION 2. Let S be a nonempty closed subset of ¥ ' (I). Then there exists
a measurable multifunction F: I — 25, F(w) nonempty and closed for every w, such
that S = Sy, if and only if § is decomposable. Moreover, when S is bounded, there
exists he LI} such that, for every w in I, |[F(w)l < h{w), ie. is F integrably
bounded.

PROPOSITION 3. Let S be a closed, bounded, decomposable set in ¥*(I), and
F:1-2F be a measurable multifunction such that S = Sp. Then:
(a) the function w—diam (F(w)) is measurable;
(b) [diam (F(w)du = sup{llf—gll;: f, g€ S} = diam(S).
1

Proof Let (g )nn be suca that, for every w, F(w) = cl{g,(W)}.en ([4],
lemma 1.1).

(@) For w in I and x in E set ¢(w, x)=sup{lx—a|: aeF(w)}, ie.
o(w, x) = sup{|x—g,(w)|: ne N}. We observe that ¢ is a measurable function
in I x E. In fact, for x fixed in E, the function w—|x —g,(w)| is measurable, and
so is wosup{lx—g,W): neN} = ¢(w, x); for w fixed in I, the function
x— @(w, x) is Lipschitz. The claim follows by {Theorem 6.1 of [3]). Further-
more, diam (F(w)) = sup{p(w, x): xe F(w)}, and by ([4] Lemma 2.1), the
function w—diam (F(w)) is measurable. ,

(b) Set I, to be: I,(f) = [o{w, f(w)du = {sup{lg,(w)—f (w)|: ne N}du and

I I

let h in £*(I) be such that, for every w in I, |[F(W)| < h(w). Then I,
is defined for every f in S. From {[4] Theorem 2.2) it follows that

Csup{I(f):feS} = fsup{cp(w x): xe F(w)}dy, ie. sup{}w(w fw)du: feS}
= [diam(F(w))dpu.

IIt is obvious that sup{|i f—gll,: f, g€ S} < [diam({F(w))du. Hence, we have
to show that sup{{f—gll,: f, geS} > sup{fm(*,«lz S(w))du: feS}. Fix e > 0, and
let f* in #(I) be such that suplfgo(w f(w) Jdu:feS} < Jfgo , SEw))dp+¢/3.
Let ¢ in #!(I) be such that f0r every w in I, g(w) # 0 and jg(yv)du &/3.

Set 4; in .# to be A {wel:|g; (w)—f*(w)| = sup(]x-—j*(w)!: xe F(w)}—
—o(w)}, ie.

= {wel: o(w, f*(W)—lg:w)—f*W)| < o)}, and

‘h‘f

E,=A,; Exys, = AN+1\(UA¢‘)-
1
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The family (E,)mey is @ countable partition of I. Let N be such that

(Ml gz ns ydi < 8/6. SetEy = U{E; i = N+1}, and let g* to be g* = f* 1y,
I

N
+Y g;1g,. Then
1

[lg* —f*dp = § lg*—f*dp+ § lg*=f*1dun= | lg*=/"ldp.
! o gEi :Ei
It is clear that ! !
[ lg*=r*ldu = | (e, f*w)—eWw)du
UE; ;E,—

> [o(w, f*W)dp— § o(wW)dp—2 Ey hdp

> [o(w, f*(W)dp—e/3—24/

I

P éup{fqo(w,f(w))d;z: feS}—¢/3—¢/3—¢/3
I .
= [ diam(F (w))dp—s.
I
Since diam(S) > || f*—g*|,, we have diam(S) > { diafn (F (w))dp—e. This pro-
. I

ves (b). - O
We shall need the following corollary to the well-known Liapunov’s

theorem on the range of a nonatomic vector measure (see for example [2]).

PROPOSITION 4. In (I, 4, p) let be nonatomic and let fy, ... fy be in F1(I).
Then there exists a family (A(oc))aem,n, A(a)e . #, with the properties:

(a) A0)=9, A(1)=1 and A (@) < A() when a < J;

(b) for every o { | fildu = af| fldp, for every iin {1,..., N}

Afx) I
We also recall the definition to Kuratowski's index o

DEFINITION 4. Let X be a metric space, S © X be bounded. We set

N .
«(S) = inf{e >0: S={JS; and diam (S) < ¢}.
1

In the following by S" we will denote the set defined by
§"={xeR"*: Y lx]| = 1}. About §" we have the following result of Luster-
nik-Schnirelman-Borsuk.

TreoreM 1 [1]. In any covering My,..., My+y of 8" by (n+1) closed sets, at
least one set M, must contain a pair of antipodal points.

21 - Bull. Pol. Ac.: Math,
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3. Main results. Our purpose is to prove the following:

THEOREM 2. Let S be a bounded decomposable subset of #'(I). Then
a(S) = diam(S).

Proof. It is clear that a(S) < diam(S). To prove the opposite inequality, fix
¢>0. Let fand g in S be such that || f—g|, > diam (S)—e. Since S (f, g) is
contained in S, it is enough to prove that «(S(f, g)) = || f—gl,.

(1) Consider the map

T:5(f, 9)>S(f. 9) to be T(f1,+glna) = fln,+gl,.

To prove that T is well defined, we need to show that whenever f1,+g1,,
= flg+glpp for some A and B in .#, then Slna+gly= fl5+9gl,.

Set C to be {xel:f(x)=g(x)}. Remark that, for x in C, the last equality
holds. Hence consider x ¢ C. Then sither xe 4 or x¢ A. In the first case, when
x ¢ B, we have f(x) = g(x), which is a cont-adiction. So x is in B, and the claim
follows. Analogously for the second case. As it is evident, the map T has the
following property:

(1) for every h = fl,+glna |h=TWI, = | f—gl;.

(i) We wish to define a sequence of maps ¢, from S" to S(f, g) satisfying:

@) @u(—x) = T(0,); |

(b) @, is continuous.

For this purpose consider a family (4(«))sepo,1; in # (existing by Proposi-
ty n 4) such that

AO) =@; Al)=1; A@ < A
if « < f and for every |

a0, 11: | Iflde=caflfldy; | lgldp = «flgldp.
Aa) I A(a) I
Forje{0,1,..., n} and ze S", set p,(z) = lzol+ ... +lzl. Given x = (x,,..., X,)
in S", set
No(x) = A(lxol) and Ny(x) = A(p;(\A(p;- (x)) for i>1.

Remark that the N;(x) are a partition of I and that the following properties
hold:

for every i, | |fldu=Ix|[Ifldu, | lgldu = Ix|[lgldu.
Ni(x) I Ni(x) I

For the same x consider also the index sets I} = {i: x; >0} and
I7 = {i: x; < 0}. Set

Pn: "= 8(f, g) to be @,(x)= Y flywm+ Y, gly,().

iel ; iel;
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(i) We claim that (a) and (b) above hold.
(a). Since [T, =17 and IZ, =17, it is clear that

P (—x) = Z F v+ z gy = T( Z flyw+ Z QlN;(x}) = T{{Pn(x))-

iel el el el
(b). Fix x in S" and &> 0. Set ¢, ¢ and & to be
o =min{jx): x; 0}, & =min{o, /(I /1, +lgl)}, O =¢/2(a+1)

Let y in $" be such that |x; — y,| < J for every i. Remark then that x; # 0 implies
- sgn(y,) = sgn(x,); hence

2 . ' ei—yil = lIxd =1yl
for every i. Set |

J*={irx;=0and y,>0}; J ={irx;=0 and y, <0}.
From (2), I =I7uJ" and I} =1I;v./". Hence

0N =)= Y, (flniny—fIyaw) +

iel}

+ ) Gy —9lve)+ 2 Slvm+ 2 91w

el £ ieJ* ieJ
Let i be any index in {1,..., n}. As a consequence of (2) and of the choice of
0 we have: '

pi-1(0)—&2(n+1) < p;_ (v)  and pi(y) < pi(x)+&/2(n+1).
It follows that | '
N:y) = A(p:ONAPi-1 () © A(pi(x)+/2(n+ DNA(p;— () —€//2(n + 1))
Hence
1f vy = Ly lls < 2811 11/2(0+1) = €| f ] /(n+1).
Similarly
191y —9lnuwlly < lgli&/n+1).
Furthermore, it is clear that, if x; =0,
If Tl = LSl < 8IS0 = W1 e20+ 1 < U fIe/n+ 1),
and llglyml, < gl g/n+1).

From these inequalities it follows that

10, —= @I, < [+ DI f I/ + D]+ [+ Dllglh&/n+1)]
=e(Ifll+lgl) <e

hence our claim is proved. ]
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(iv) To conclude the proof, suppose that there exists a finite covering of
S(f, g} by sets (that we can assume to be closed) M,..., M,,,, having
diameter strictly less than ||[f—gll;. Consider ¢,. We have: :

"= (p;l(S(f, g)) = (P»:I(Mz)U”-U(Pr:l(}“[n+1)-

Since @, is continuous, each ¢, '(M,) is a closed subset of S". By Theorem 1,
there exist x and i such that

xee; Y (M) and —xe@, '(M) ie ¢,(x)eM; and ¢,(—x)eM,.

By (a) of (iii), ¢,(—x) = T(@,(x)) so that ¢,(x)eM; and T(p,(x))e M;. Final-
1y, from (1), ||@.(x)— T (9, ()|l = I /—gll,, thus contradicting the assumptions
on M,. O

CoRrOLLARY 1. Let F: I—2F be a nonempty valued integrably bounded
measurable multifunction with closed values. Let Sp in £'(I) be the ::t of
integrable selection of F. Then '

«(Sy) = | diam(F (w))dpu.
I

CORGLLARY 2. Let S « £'(I) be a bounded decomposable set. Then there
exists a family (S (A})Ae[g,u of bounded decomposable subsets of £'(I) such that

(a) S0 = {f*}, S(1) =S and S(z) = S(B) when a < f

(b) for every Ae[0, 1]: a(S(2)) = ia(S).

Proof. Let F be such that ¢l S=S; and let (A(1)),, so that (a) and
(b) of Proposition 4 hold with f; = diam F. Consider the set of restrictions to
A(), denoted by S|, a subset of Z'(4(4)). We claim that «(S] ) = Aa(S).
In fact, it is easy to see that cl(S] ) = (C1(S)am- Hence a(S|au) = a(cl(Slaw))
= cx(cl(S)l agy) = f dlam{F(w)Sdu A2(S). Fix f* in S. Let S(4) be S(4)

= Slany+/*Lnaw- Clearly, S(4) is a decomposable subset of S so that (a) and
(b) hold. U
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A. Yemmna, K. Mapuxonga, Fingexe KypaToBckoro pasiaraeMoro MHOKecTsa

B Hacresimell craTee JOKA3biBAETCH, UTO MHAEKC anbda pasjaraeMoro MHOKECTBA
KypaToBCKOTO SBJIAETCS UHTErpPajioM AMAMETPA acCOUMPOBAHHON MYIbTUGYHKIMH.







