GENERAL TOPOLOGY

Kuratowski's Index of a Decomposable Set

by

Arrigo CELLINA and Carlo MARICONDA

Presented by C. OLECH on January 11, 1988

Summary. We prove that Kuratowski's index alpha of a decomposable set is the integral of the diameter of the associated multifunction.

- 1. Introduction. In this paper we consider a decomposable subset S of $\mathcal{L}^1(I)$, or the set of integrable selections of a multifunction. We prove that Kuratowski's index α of the set S is the integral of the diameter of the associated multifunction. In particular, the index α of the decomposable hull of two functions f and g is $||f-g||_1$. This result expresses in a precise way the difference between decomposable hulls and convex hulls. From a further corollary it follows that any decomposable set S has subsets whose α equals $\lambda \alpha(S)$ for any prescribed λ in [0, 1]. This property is common to convex sets.
- 2. Notations and preliminary results. In this paper we consider a measure space (I, \mathcal{M}, μ) , where \mathcal{M} is a σ -algebra of subsets of I and μ a positive measure; E is a separable Banach space with norm $|\ldots|$. By $\mathcal{L}^1(I)$ we mean the space of Bochner integrable functions with values in E and by $||h||_1$ the integral $\int_I |h| d\mu$.

DEFINITION 1. A nonempty subset $S \subset \mathcal{L}^1(I)$ is called decomposable if f and g in S and A in \mathcal{M} imply $f1_A + g1_{I \setminus A} \in S$.

DEFINITION 2. Let f and g in $\mathcal{L}^1(I)$. The decomposable hull of f and g, denoted by S(f,g), is the set of functions $f1_A + g1_{I\setminus A}$ as A ranges in \mathcal{M} .

PROPOSITION 1. The closure of a decomposable set is decomposable. For further properties of decomposable sets we refer to [5].

DEFINITION 3. Let $F: I \to 2^E$ be a multivalued function. F is called measurable if for each closed set C in E, $F^{-1}(C) \in \mathcal{M}$. The set of integrable selections is denoted by S_F .

The relationship between decomposable sets and selections of a multivalued function is clarified by the following statements (see for example [4]):

PROPOSITION 2. Let S be a nonempty closed subset of $\mathcal{L}^1(I)$. Then there exists a measurable multifunction $F\colon I\to 2^E$, F(w) nonempty and closed for every w, such that $S=S_F$, if and only if S is decomposable. Moreover, when S is bounded, there exists $h\in \mathcal{L}^1(I)$ such that, for every w in I, $|F(w)| \leq h(w)$, i.e. is F integrably bounded.

PROPOSITION 3. Let S be a closed, bounded, decomposable set in $\mathcal{L}^1(I)$, and $F: I \to 2^E$ be a measurable multifunction such that $S = S_F$. Then:

- (a) the function $w \rightarrow diam (F(w))$ is measurable;
- (b) $\int_{I} diam \ (F(w)) d\mu = \sup\{\|f g\|_{1} : f, \ g \in S\} = diam(S).$

Proof. Let $(g_n)_{n\in\mathbb{N}}$ be such that, for every w, $F(w) = \operatorname{cl}\{g_n(w)\}_{n\in\mathbb{N}}$ ([4], lemma 1.1).

- (a) For w in I and x in E set $\varphi(w, x) = \sup\{|x-a|: a \in F(w)\}$, i.e. $\varphi(w, x) = \sup\{|x-g_n(w)|: n \in N\}$. We observe that φ is a measurable function in $I \times E$. In fact, for x fixed in E, the function $w \to |x-g_n(w)|$ is measurable, and so is $w \to \sup\{|x-g_n(w)|: n \in N\} = \varphi(w, x)$; for w fixed in I, the function $x \to \varphi(w, x)$ is Lipschitz. The claim follows by (Theorem 6.1 of [3]). Furthermore, diam $(F(w)) = \sup\{\varphi(w, x): x \in F(w)\}$, and by ([4] Lemma 2.1), the function $w \to \dim(F(w))$ is measurable.
- (b) Set I_{φ} to be: $I_{\varphi}(f) = \int_{I} \varphi(w, f(w)) d\mu = \int_{I} \sup\{|g_{n}(w) f(w)| : n \in \mathbb{N}\} d\mu$ and let h in $\mathcal{L}^{1}(I)$ be such that, for every w in I, $|F(w)| \leq h(w)$. Then I_{φ} is defined for every f in S. From ([4] Theorem 2.2) it follows that $\sup\{I_{\varphi}(f) : f \in S\} = \int_{I} \sup\{\varphi(w, x) : x \in F(w)\} d\mu$, i.e. $\sup\{\int_{I} \varphi(w, f(w)) d\mu : f \in S\} = \int_{I} \min\{F(w)\} d\mu$.

It is obvious that $\sup\{\|f-g\|_1:f,\,g\in S\}\leqslant\int \operatorname{diam}(F(w))d\mu$. Hence, we have to show that $\sup\{\|f-g\|_1:f,\,g\in S\}\geqslant\sup\{\int\limits_I\varphi(w,f(w))d\mu:f\in S\}$. Fix $\varepsilon>0$, and let f^* in $\mathscr{L}^1(I)$ be such that $\sup\{\int\limits_I\varphi(w,f(w))d\mu:f\in S\}\leqslant\int\limits_I\varphi(w,f^*(w))d\mu+\varepsilon/3$. Let ϱ in $\mathscr{L}^1(I)$ be such that for every w in I, $\varrho(w)\neq 0$ and $\int\limits_I\varrho(w)d\mu\leqslant\varepsilon/3$.

Set A_i in \mathcal{M} to be $A_i = \{ w \in I : |g_i(w) - f^*(w)| \ge \sup\{ |x - f^*(w)| : x \in F(w) \} - \varrho(w) \}$, i.e.

$$A_i = \left\{ w \in I : \varphi(w, f^*(w)) - |g_i(w) - f^*(w)| \le \varrho(w) \right\}, \quad \text{and} \quad$$

$$E_1 = A_1; E_{N+1} = A_{N+1} \setminus (\bigcup_{i=1}^{N} A_i).$$

The family $(E_m)_{m\in\mathbb{N}}$ is a countable partition of I. Let N be such that

ed.

ts :h

re ly

d

١,

1 1

1

21 - Bull. Pol. Ac.: Math.

 $\int h 1_{\cup \{E_i: i \geqslant N+1\}} d\mu \leqslant \varepsilon/6. \operatorname{Set} E_0 = \cup \{E_i: i \geqslant N+1\}, \text{ and let } g^* \text{ to be } g^* = f^* 1_{E_0}$ $+\sum_{i}g_{i}1_{E_{i}}$. Then

$$\int_{I} |g^* - f^*| d\mu = \int_{E_0} |g^* - f^*| d\mu + \int_{\substack{N \\ \cup E_i \\ 1}} |g^* - f^*| d\mu = \int_{\substack{N \\ \cup E_i \\ 1}} |g^* - f^*| d\mu.$$

It is clear that

$$\int_{N} |g^* - f^*| d\mu \geqslant \int_{N} (\varphi(w, f^*(w)) - \varrho(w)) d\mu$$

$$\geqslant \int_{I} \varphi(w, f^*(w)) d\mu - \int_{I} \varrho(w) d\mu - 2 \int_{E_0} h d\mu$$

$$\geqslant \int_{I} \varphi(w, f^*(w)) d\mu - \varepsilon/3 - 2\varepsilon/5$$

$$\geqslant \sup \{ \int_{I} \varphi(w, f(w)) d\mu \colon f \in S \} - \varepsilon/3 - \varepsilon/3 - \varepsilon/3$$

$$= \int_{I} \operatorname{diam}(F(w)) d\mu - \varepsilon.$$

Since diam(S) $\geqslant \|f^* - g^*\|_1$, we have diam(S) $\geqslant \int_{r} \operatorname{diam}(F(w)) d\mu - \varepsilon$. This pro-

We shall need the following corollary to the well-known Liapunov's theorem on the range of a nonatomic vector measure (see for example [2]).

PROPOSITION 4. In (I, \mathcal{M}, μ) let be nonatomic and let $f_1, ..., f_N$ be in $\mathcal{L}^1(I)$. Then there exists a family $(A(\alpha))_{\alpha\in[0,1]}$, $A(\alpha)\in\mathcal{M}$, with the properties:

(a) $A(0) = \emptyset$, A(1) = I and $A(\alpha) \subset A(\beta)$ when $\alpha \leq \beta$;

(b) for every α : $\int |f_i| d\mu = \alpha \int |f_i| d\mu$, for every i in $\{1, ..., N\}$.

We also recall the definition to Kuratowski's index α:

DEFINITION 4. Let X be a metric space, $S \subset X$ be bounded. We set

$$\alpha(S) = \inf\{\varepsilon > 0 \colon S = \bigcup_{i=1}^{N} S_{i} \text{ and diam } (S_{i}) \leq \varepsilon\}.$$

following by S^n we will denote the set defined by $S^n = \{x \in \mathbb{R}^{n+1} : \sum |x_i| = 1\}$. About S^n we have the following result of Lusternik-Schnirelman-Borsuk.

THEOREM 1 [1]. In any covering M_1, \ldots, M_{n+1} of S^n by (n+1) closed sets, at least one set M_i must contain a pair of antipodal points.

3. Main results. Our purpose is to prove the following:

Theorem 2. Let S be a bounded decomposable subset of $\mathcal{L}^1(I)$. Then

$$\alpha(S) = diam(S).$$

Proof. It is clear that $\alpha(S) \leq \operatorname{diam}(S)$. To prove the opposite inequality, fix $\varepsilon > 0$. Let f and g in S be such that $||f-g||_1 \geq \operatorname{diam}(S) - \varepsilon$. Since S(f, g) is contained in S, it is enough to prove that $\alpha(S(f, g)) \geq ||f-g||_1$.

(i) Consider the map

$$T: S(f, g) \rightarrow S(f, g)$$
 to be $T(f1_A + g1_{I \setminus A}) = f1_{I \setminus A} + g1_A$.

To prove that T is well defined, we need to show that whenever $f1_A + g1_{I \setminus A} = f1_B + g1_{I \setminus B}$ for some A and B in \mathcal{M} , then $f1_{I \setminus A} + g1_A = f1_{I \setminus B} + g1_B$.

Set C to be $\{x \in I : f(x) = g(x)\}$. Remark that, for x in C, the last equality holds. Hence consider $x \notin C$. Then either $x \in A$ or $x \notin A$. In the first case, when $x \notin B$, we have f(x) = g(x), which is a contradiction. So x is in B, and the claim follows. Analogously for the second case. As it is evident, the map T has the following property:

(1) for every
$$h = f 1_A + g 1_{I \setminus A}$$
 $||h - T(h)||_1 = ||f - g||_1$.

- (ii) We wish to define a sequence of maps φ_n from S^n to S(f, g) satisfying:
- (a) $\varphi_n(-x) = T(\varphi_n(x));$
- (b) φ_n is continuous.

For this purpose consider a family $(A(\alpha))_{\alpha\in[0,1]}$ in \mathcal{M} (existing by Propositiv n 4) such that

$$A(0) = \emptyset; \ A(1) = I; \quad A(\alpha) \subset A(\beta)$$

if $\alpha \leqslant \beta$ and for every

$$\alpha\!\in\![0,\,1]\!:\textstyle\int\limits_{A(\alpha)}|f|d\mu=\alpha\int\limits_{I}|f|d\mu;\qquad\int\limits_{A(\alpha)}|g|d\mu=\alpha\int\limits_{I}|g|d\mu.$$

For $j \in \{0, 1, ..., n\}$ and $z \in S^n$, set $p_j(z) = |z_0| + ... + |z_j|$. Given $x = (x_0, ..., x_n)$ in S^n , set

$$N_0(x) = A(|x_0|)$$
 and $N_i(x) = A(p_i(x)) \setminus A(p_{i-1}(x))$ for $i \ge 1$.

Remark that the $N_i(x)$ are a partition of I and that the following properties hold:

for every
$$i$$
, $\int\limits_{N_i(x)} |f| d\mu = |x_i| \int\limits_{I} |f| d\mu$, $\int\limits_{N_i(x)} |g| d\mu = |x_i| \int\limits_{I} |g| d\mu$.

For the same x consider also the index sets $I_x^+ = \{i: x_i > 0\}$ and $I_x^- = \{i: x_i < 0\}$. Set

$$\varphi_n: S^n \to S(f, g) \text{ to be } \varphi_n(x) = \sum_{i \in I_x^+} f 1_{N_i(x)} + \sum_{i \in I_x^-} g 1_{N_i}(x).$$

(iii) We claim that (a) and (b) above hold.

(a). Since $I_{-x}^+ = I_x^-$ and $I_{-x}^- = I_x^+$, it is clear that

$$\varphi_n(-x) = \sum_{i \in I_x^-} f 1_{N_i(x)} + \sum_{i \in I_x^+} g 1_{N_i(x)} = T \left(\sum_{i \in I_x^+} f 1_{N_i(x)} + \sum_{i \in I_x^-} g 1_{N_i(x)} \right) = T \left(\varphi_n(x) \right).$$

(b). Fix x in S^n and $\varepsilon > 0$. Set ϱ , ε' and δ to be

$$\varrho = \min\{|x_i|: x_i \neq 0\}, \quad \varepsilon' = \min\{\varrho, \varepsilon/(\|f\|_1 + \|g\|_1)\}, \quad \delta = \varepsilon'/2(n+1)^2.$$

Let y in Sⁿ be such that $|x_i - y_i| \le \delta$ for every i. Remark then that $x_i \ne 0$ implies $sgn(y_i) = sgn(x_i)$; hence

$$(2) |x_i - y_i| = ||x_i| - |y_i||$$

for every i. Set

$$J^+ = \{i: x_i = 0 \text{ and } y_i > 0\}; \quad J^- = \{i: x_i = 0 \text{ and } y_i < 0\}.$$

From (2), $I_y^+ = I_x^+ \cup J^+$ and $I_y^- = I_x^- \cup J^-$. Hence

$$\begin{split} \varphi_n(y) - \varphi_n(x) &= \sum_{i \in I_x^+} (f 1_{N_i(y)} - f 1_{N_i(x)}) + \\ &+ \sum_{i \in I_x^-} (g 1_{N_i(y)} - g 1_{N_i(x)}) + \sum_{i \in J^+} f 1_{N_i(y)} + \sum_{i \in J^-} g 1_{N_i(y)}. \end{split}$$

Let i be any index in $\{1, ..., n\}$. As a consequence of (2) and of the choice of δ we have:

$$p_{i-1}(x) - \varepsilon'/2(n+1) \le p_{i-1}(y)$$
 and $p_i(y) \le p_i(x) + \varepsilon'/2(n+1)$.

It follows that

$$N_i(y) = A(p_i(y)) \setminus A(p_{i-1}(y)) \subset A(p_i(x) + \varepsilon'/2(n+1)) \setminus A(p_{i-1}(x) - \varepsilon'/2(n+1)).$$

Hence

$$||f 1_{N_i(y)} - f 1_{N_i(x)}||_1 \le 2\varepsilon' ||f||_1/2(n+1) = \varepsilon' ||f||_1/(n+1).$$

Similarly

$$||g1_{N_i(y)}-g1_{N_i(x)}||_1 \leq ||g||_1 \varepsilon'/(n+1).$$

Furthermore, it is clear that, if $x_i = 0$,

$$||f1_{N_i(y)}||_1 = |y_i| ||f||_1 \le \delta ||f||_1 = ||f||_1 \varepsilon'/2(n+1)^2 \le ||f||_1 \varepsilon'/(n+1),$$
and $||g1_{N_i(y)}||_1 \le ||g||_1 \varepsilon'/(n+1).$

From these inequalities it follows that

$$\|\varphi_{n}(y) - \varphi_{n}(x)\|_{1} \leq [(n+1)\|f\|_{1} \varepsilon'/(n+1)] + [(n+1)\|g\|_{1} \varepsilon'/(n+1)]$$

$$= \varepsilon'(\|f\|_{1} + \|g\|_{1}) \leq \varepsilon,$$

hence our claim is proved.

(iv) To conclude the proof, suppose that there exists a finite covering of S(f, g) by sets (that we can assume to be closed) M_1, \ldots, M_{n+1} , having diameter strictly less than $||f-g||_1$. Consider φ_n . We have:

$$S^n = \varphi_n^{-1}(S(f, g)) = \varphi_n^{-1}(M_1) \cup \ldots \cup \varphi_n^{-1}(M_{n+1}).$$

Since φ_n is continuous, each $\varphi_n^{-1}(M_i)$ is a closed subset of S^n . By Theorem 1, there exist x and i such that

$$x \in \varphi_n^{-1}(M_i)$$
 and $-x \in \varphi_n^{-1}(M_i)$ i.e. $\varphi_n(x) \in M_i$ and $\varphi_n(-x) \in M_i$.

By (a) of (iii), $\varphi_n(-x) = T(\varphi_n(x))$ so that $\varphi_n(x) \in M_i$ and $T(\varphi_n(x)) \in M_i$. Finally, from (1), $\|\varphi_n(x) - T(\varphi_n(x))\|_1 = \|f - g\|_1$, thus contradicting the assumptions on M_i .

COROLLARY 1. Let $F: I \to 2^E$ be a nonempty valued integrably bounded measurable multifunction with closed values. Let S_F in $\mathcal{L}^1(I)$ be the $\mathcal{L}^1(I)$ of integrable selection of F. Then

$$\alpha(S_F) = \int_I diam(F(w))d\mu.$$

COROLLARY 2. Let $S \subset \mathcal{L}^1(I)$ be a bounded decomposable set. Then there exists a family $(S(\lambda))_{\lambda \in [0,1]}$ of bounded decomposable subsets of $\mathcal{L}^1(I)$ such that

- (a) $S(0) = \{f^*\}, S(1) = S \text{ and } S(\alpha) \subset S(\beta) \text{ when } \alpha \leq \beta$
- (b) for every $\lambda \in [0, 1]$: $\alpha(S(\lambda)) = \lambda \alpha(S)$.

Proof. Let F be such that $\operatorname{cl} S = S_F$ and let $(A(\lambda))_{\lambda}$, so that (a) and (b) of Proposition 4 hold with $f_i = \operatorname{diam} F$. Consider the set of restrictions to $A(\lambda)$, denoted by $S|_{A(\lambda)}$, a subset of $\mathscr{L}^1(A(\lambda))$. We claim that $\alpha(S|_{A(\lambda)}) = \lambda\alpha(S)$. In fact, it is easy to see that $\operatorname{cl}(S|_{A(\lambda)}) = (\operatorname{cl}(S))|_{A(\lambda)}$. Hence $\alpha(S|_{A(\lambda)}) = \alpha(\operatorname{cl}(S|_{A(\lambda)})) = \alpha(\operatorname{cl}(S)|_{A(\lambda)}) = \alpha(\operatorname{cl}(S)|_$

INTERNATIONAL SCHOOL FOR ADVANCED STUDIES (SISSA), STR. COSTIERA 11, 34014 TRIESTE, ITALY

REFERENCES

[1] J. Dugundji, A. Granas, Fixed point theory, Vol. 1, Monografie Matematyczne 61, PWN, Warszawa, 1982.

[2] A. Fryszkowski, Continuous selections for a class of non convex multivalued maps, Studia Math., 76 (1983), 163-174.

[3] C. J. Himmelberg, Measurable relations, Fundamenta Mathematicae, 87 (1975), 53-72.

- [4] F. Hiai, H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal., 7 (1977), 149–182.
- [5] C. Olech, Decomposability as a substitute for convexity, Lecture Notes in Math., Vol. 1091, Springer-Verlag, Berlin, (1984), 193-205.

А. Челлина, К. Мариконда, Индекс Куратовского разлагаемого множества

В настоящей статье доказывается, что индекс альфа разлагаемого множества Куратовского является интегралом диаметра ассоцированной мультифункции.

