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Abstract. The search for non-relativistic deviations from Newtonian gravitation
can lead to new phenomena signalling the unification of gravity with the
other fundamental interactions. Various recent theoretical frameworks indicate a
possible window for non-Newtonian forces with gravitational coupling strength
in the micrometre range. The major expected background in the same range is
attributable to the Casimir force or variants of it if dielectric materials, rather than
conducting ones, are considered. Here we review the measurements of the Casimir
force performed so far in the micrometre range and how they determine constraints
on non-Newtonian gravitation, also discussing the dominant sources of false
signals. We also propose a geometry-independent parameterization of all data
in terms of the measurement of the constant h̄c. Any Casimir force measurement
should lead, once all corrections are taken into account, to a determination of the
constant h̄c which, in order to assess the accuracy of the measurement, can be
compared with its more precise value known through microscopic measurements.
Although the last decade of experiments has resulted in solid demonstrations of
the Casimir force, the situation is not conclusive with respect to being able to
discover new physics. Future experiments and novel phenomenological analysis
will be necessary to discover non-Newtonian forces or to push the window for
their possible existence into regions of the parameter space which theoretically
appear unnatural.
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1. Introduction

The search for deviations of non-relativistic nature from Newton’s universal gravitation has been
a recurrent issue since the initial proposals dating back to more than 30 years ago [1]–[6]. In
the last two decades, further motivation has been added by the possibility to observe deviations
from the equivalence principle due to a force with coupling of order of the gravitational one,
acting on a short range, and coupled to the baryonic number [7]. Although the initial claim for
such a force, also named fifth force, has not been confirmed by subsequent experiments, this has
generated a revival of experiments in gravitation with a diversity of ingenious configurations.
Thanks to these experiments, we now have a deeper knowledge of the gravitational field in the
region from a few millimetres to planetary distances. The hypothetical forces superimposed on
Newtonian gravity are typically parameterized by a Yukawa range λ and a coupling strength α

with respect to gravity, such that the total potential is Vtot = VN + VY, where VN is the Newtonian
potential and VY the Yukawa potential. For a pointlike source of gravitational mass M, the two
contributions respectively are:

VN(r) = −G
M

r
, VY(r) = −αG

M

r
e−r/λ, (1)

where G is the Newtonian constant of gravitation. It is understandable that, due to the exponential
suppression in the distance dependence due to a finite λ, even for a large α the signal contribution
due to the Yukawan term will be masked by the long-range Newtonian term unless experiments
are performed on a scale comparable or smaller than λ. Such Yukawan forces are expected in
many attempts to unify gravity to the other fundamental interactions.While variegate mechanisms
have been proposed so far predicting gravitational-strength Yukawan forces [8], we would like
to remark on the fact that even in minimal scenarios aimed at incorporating gravity into the
standard model one should expect such forces. Indeed, by assuming that spontaneous symmetry
breaking is the way to consider diverse interactions as different manifestations of a unified
picture, the unification should give rise to the presence of new intermediate gauge bosons with
characteristics in between the parent interactions. The successful electroweak unification is a
prototypical example, as it predicts a new gauge boson, the Z0 particle, with features in between
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Figure 1. Limits to the existence of new macroscopic forces parameterized by the
coupling strength α (normalized to Newtonian gravity) and the Yukawa range λ

(in metres), coming from various experiments and astronomical observations. The
shaded regions show the Yukawa couplings excluded by experiments performed
before the corresponding year. The progress made in the knowledge of the
gravitational field in the macroscopic range since the proposal for a ‘fifth force’
has been considerable. Limits are however rather weak at the two extreme
lengthscales, in particular at the interesting submillimetre region for λ from the
viewpoint of extra-dimensional models (courtesy of Coy, Fischbach, Hellings,
Standish and Talmadge, 2003).

the purely electromagnetic sector (it is electrically neutral like photons) and the purely weak sector
(it is massive similarly to the W± bosons). By analogy, if we believe that spontaneous symmetry
breaking is the universal path for unifying fundamental interactions (which will be scrutinized
with the forthcoming experiments at the Large Hadron Collider), we should expect short-range
gauge bosons with intermediate coupling between usual gravity and the other interactions.
Unfortunately, without further assumptions, the mechanism of spontaneous symmetry breaking
does not give quantitative hints on the couplings and range of the interactions. These parameters
can be only determined from experimental inputs through new phenomena, which will be the
counterpart of the discovery of the neutral weak currents (and the consequent measurement of
the Weinberg angle) for the successful electroweak unification. This motivates the search for
non-Newtonian forces in the broadest range of distances and couplings. The current limits in
the α–λ plane, with λ spanning from 1 mm to 1015 m, are shown in figure 1. It is recognizable
that the constraints on extra-gravitational, short-range forces in the submillimetre range, and
in the range above 1015 m, do not match the more stringent limits in the intermediate region.
On the other hand, various models based on supersymmetry predict the existence of forces
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superimposed to gravity in the range between 1 and 100 µm with intensity up to 105 times the
strength of gravity in the same range [9]–[11]. The corresponding limits to their existence in
this range are quite weak. Although in principle a measurement performed at any lengthscale
(for instance a high-accuracy measurement of the gravitational force in the meter range with a
Cavendish experiment) may constrain values of λ at very different lengthscales, the exponential
sensitivity of α to λ in the limit λ → 0 gives rise to very weak bounds for λ smaller than the
lengthscale at which the experiment is performed. Therefore, in order to give significant limits
in the micrometre range, one may opt for designing experiments intrinsically exploring small
distances. In doing so a signal-to-noise issue is soon faced since, as first discussed in [12], the
Newtonian gravitational force signal scales as the fourth power of the size of the experiment,
with FN ∝ M2/r2 � ρ2r4, where M and ρ are mass and density of the test bodies and r their
distance. This implies that background originating from a force having a slower scaling with
distance is going to strongly affect our capability to obtain significant limits. In the range of
�100 µm, limits obtained using Cavendish balances [13] have been recently improved by the
group at the University of Washington using torsion pendula and rotating attractors [14, 15].
Decreasing the explored range of distances below the 100 µm range is challenging due to the
requirements necessary to ensure parallelism between the two surfaces during the rotation. An
alternative technique to explore the range below 100 µm consists in the use of microresonators
and nanoresonators combined to dynamical detection techniques first introduced in [12, 16, 17].
Two groups, at Stanford and Boulder, have performed measurements based on this technique and
limits in the α–λ plane have been reported [18, 19]. The presence of an electromagnetic shield
between the source of the non-Newtonian field and the microresonator used for the detection of
the force limits the minimum explorable distance.

On the other hand, the most promising theoretical predictions appear to be in the range of
1–10 µm, and therefore it is important to design experiments which maximize the chance of
detecting forces acting in this distance range. In order to minimize the background, and taking
into account the huge difference in coupling strength between gravitation and electromagnetism,
it seems compulsory to consider electrically neutral bodies. Then, the strongest expected
background in the micrometre range for forces between electrically neutral bodies is due to the
Casimir force [20]. This also means that any accurate measurement of Casimir forces gives limits
on gravitational-like forces, as remarked in pioneering papers by Mostepanenko and Sokolov [21,
22] two decades ago. Since then, precision studies of Casimir forces in the 200 nm–2 µm range
have allowed us to grasp a better understanding of the background in which novel macroscopic
forces of gravitational origin could be immersed.

Many excellent reviews on various aspects of Casimir physics have been available since
two decades [23]–[33], and more recently reviews have also appeared on the experimental
efforts to detect non-Newtonian gravitational forces above the range of 10–100 µm [34]–[37].
Considering the abundance of existing review material on both Casimir forces and the search for
non-Newtonian forces, we will only cover some selected topics lying between the two groups
of reviews.1 In particular, we will discuss limits to non-Newtonian forces in the micrometre
range in which Casimir forces are expected to be the leading background. Obviously, this review
should be considered as a progress report since the situation is evolving quickly due to the
expected flow of new data and more stringent phenomenological and theoretical analysis. The
spirit will be also to keep the formalism to a minimum and to put more emphasis on physical and

1 Topics in between experimental gravitation and microscale physics have been also discussed in [38].
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dimensional grounds, to allow as much as possible for a pedagogical, broad-audience approach.
After a discussion of the Casimir force and its meaning and importance in current physics,
we discuss its experimental evidence and comment on the consequent limits to gravitational
forces. We then discuss the variety of leading systematic effects in the experiment, and propose
a parameterization of the Casimir experiments which allows for a general comparison between
various configurations. Some promising future research directions are then discussed, with more
general remarks in the concluding section.

2. Casimir forces and quantum vacuum

The years 1947 and 1948 were milestones for the development of quantum field theories since
almost simultaneously Lamb shifts in hydrogen were measured in high precision spectroscopy
experiments, renormalization was proposed by Feynman, Schwinger and Tomonaga, and a
macroscopic force originating from quantum vacuum fluctuations was predicted by Casimir.
The following six decades of developments in microscopic physics may be considered as the
refinement of these findings in quantum electrodynamics (QED) and its extension to other
fundamental interactions.

With regard to QED in the macroscopic realm, one may ask if it leads to macroscopically
detectable forces without classical counterpart. Evidently, if quantum vacuum fluctuations are
isotropic, no force should be expected in the simplest case of an infinite mirror as the contributions
due to the virtual photon radiation pressure will be equal on both sides. Such an isotropy is instead
broken considering two indefinite and parallel plates. A simple stationary boundary condition
for the electromagnetic fields on the surfaces, for instance the one typical of an ideal conductor,
gives a drastic change in the density of states of the virtual photons inside the cavity with respect
to that outside the cavity. When the net radiation pressure is evaluated, there is now a partial
cancellation leading to the expression of the attractive2 Casimir force per unit of surface area
PC [20]

PC = Kc

d4
, (2)

where d is the distance between the two plates and Kc is a constant. We want to stress some
qualitative features of this very simple formula.

(1) The Casimir pressure depends on the product h̄c and does not depend on the electric charge
at the leading order. The concrete expression for Kc contains only the two constants of
nature allowed in free quantum field theory, i.e. h̄ and c, being Kc = π2 h̄c/240. Indeed, all
formulae for the Casimir force considered here have in common the dependence on the
product h̄c. In a classical, even if relativistic, setting (no quantum fluctuations, i.e. h̄ → 0)
or in a non-relativistic, even if quantum, realm (by hypothetically imagining an infinite
speed of light, c−1 → 0, in which case however electromagnetism would be quite different)
there are no Casimir forces. This is a distinctive feature with respect to the van der Waals–
London forces in which relativity and the consequent finite speed of light propagation
do not play any direct role. In fact, the Casimir force was initially originated from the

2 Although Casimir forces are not expected to be always attractive, in the following we will consider only attractive
forces and will express, in equations (2)–(5) and (7), the absolute value of the Casimir forces.
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attempt to include the relativistic retardation into the London theory. We will exploit this
feature of the Casimir force later on in discussing a comparison among different geometries.
Also, although we are considering electromagnetic fluctuations, the electric charges which
mediate the mechanical pressure between the virtual photons and the bulk material of the
mirror do not appear explicitly. This apparently paradoxical property of Casimir pressure
is also known as saturation [30, 39]. The combined effects of the value of the electric
charge and the reflectivity of the mirrors are large enough to make the force asymptotically
independent of the same electric properties producing the force. This saturation property
is expected to fail if the reflectivity of the mirrors is not complete, which happens for any
realistic material for electromagnetic frequencies above a finite cutoff frequency. In this
case there is a next-to-leading correction to the Casimir force depending upon the electric
charge and the finite conductivity properties of the material. Apart from the electromagnetic
field, other fundamental interactions do not give significant contributions to the Casimir
pressure. For gravitational quantum fluctuations, apart from the impossibility to identify
a gravitational conductor, the force is too weak to play a role and cannot give a saturated
contribution. Strong and weak fields mediated by gluons and W±, Z0 particles cannot play
a role in the micrometre range since their influence is limited to the subatomic domain.

(2) The Casimir force may be interpreted as due to the interplay between quantum fluctuations
and geometry. The Casimir force has been interpreted in a very general way as emerging
from the finite cancellation between the radiation pressure due to virtual photons present
in quantum vacuum and acting on a macroscopic body. Seen from this perspective, the
Casimir force is a strongly geometry-dependent force and is a macroscopic manifestation
of the effect of boundary conditions on quantum fields, a manifestation of a sort of
quantum electrostatics. In addition, it provides physical insights into the same concept
of renormalization in quantum field theory. In principle, the finite cancellation of radiation
pressure originates from the difference between diverging contributions, although in practice
the high-frequency response of the conductors provides a physical regulator. Alternative
views centred on the role of the sources of the electromagnetic field have been also proposed,
based on the idea that the geometric, field theoretic interpretation of the Casimir result is
more an issue of taste rather than an essential, substantial physical point [40]–[42] and
that quantum fluctuations are actually originating from the sources of the fields. This is
key in the calculation of the same effect by Lifshitz [43], using the fluctuations of the
electric and magnetic fields of the sources in the materials. Therefore there are two distinct
approaches to the same effect described by equation (2), the one adopted by Casimir, more
idealistic, based on global, geometrical properties of quantum fluctuations, and that by
Lifshits, more materialistic, based on local, analytical properties of the sources. This dualism
in the interpretation of the Casimir force still exists today, and the relative contributions of
intrinsic field quantization and nonlinear features of source models have been discussed
(see for instance [44]–[49]). The issue is currently important at the cosmological level,
as the actual presence of quantum fluctuations at the macroscopic level gives rise to the
outstanding problem of their expected large contribution to the cosmological constant [30],
[50]–[52]. The presence of this contribution is instead an ill posed problem if one attributes
no reality at all to intrinsic quantum field fluctuations, as discussed in [39].

We remark on the fact that a force proportional to h̄c seems to naturally support a field
theoretic interpretation in terms of irreducible quantum fluctuations. In fact, in the quantum
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vacuum we pictorially expect a particle-antiparticle pair to appear and disappear on a timescale
τ � h̄/mc2 for massive particles (characterized by an energy-momentum dispersion law
E2 = p2c2 + m2c4), and τ � 1/ω for massless particles characterized by an energy-momentum
dispersion relationship E = pc = h̄ω. The maximum distance the virtual particles may travel
to preserve its virtuality cannot exceed the quantity cτ. Then the product of the virtual energy
transported in space times the travelled distance is limited to values smaller than Ecτ � h̄c,
regardless of the particle mass. From this point of view, if we think of the Casimir force as
originated from quantum vacuum fluctuations, it is not surprising that the only fundamental
quantity appearing is then the product h̄c, for any virtual particle.

Along these qualitative lines, we can in fact understand the Casimir formula by using
dimensional arguments. In a parallel plane situation there is only a finite length available, i.e. the
distance between the two plates d. A pressure is dimensionally equivalent to an energy density,
and we can form an energy from h̄c (energy times length) considering h̄c/d. An energy density
is obtained by further dividing by d3, leading to

PC ∝ energy×length/distance

volume
∝ h̄c/d

d3
,

which gives the proper scaling with the fourth power of the distance. This elementary dimensional
argument is of less unambiguous application in other geometries since more than one finite length
plays a role, for instance the radius of the sphere and the distance between sphere and plane in
the case of a sphere–plane geometry.

The study of the Casimir force is becoming an interdisciplinary subtopic of physics whose
importance is growing in many fields. In cosmology and astrophysics, quantum vacuum is a
candidate to support the dark energy hypothesis [52]–[58] which is considered responsible for
the observed acceleration of the Universe [59]–[61]. In nanotechnology these forces may play
a significant role in many artificial structures built on the nano-to-microscale [62]. Even in
apparently unrelated fields, such as biophysics and chemistry, many of the relevant adhesion
forces may call for a more complete framework than the one available through the van der Waals
force, of which the Casimir/Casimir–Polder forces appear as the relativistic generalization [63].
This interdisciplinary flavour has grown since what was considered a scientific curiosity (a minute
force between macroscopic and electrically neutral surfaces) has been increasingly explored in
the laboratory. The laboratory findings have been complemented by theoretical insights then
converted into further experimental investigations, in a close relationship between theory and
experiment.

3. Experiments on Casimir forces

After the prediction of Casimir, a first generation of experiments was performed in the
following decade. Since a detailed description of these experiments and a critical assessment
of their limitations have been covered in a recent review [29], we will limit attention to
brief considerations of the successful experiments with particular regard to some general
methodological comments. It was soon recognized that the difficulty in the verification of the
Casimir formula was not the expected force signal, which is relatively large at distances of order
of a few micrometres for macroscopic (at least a few mm2) surface areas, but in the achievement
and assessment of the parallelism, as well as in precisely measuring the distance between the
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plates. An experiment in the original conducting parallel plate situation studied by Casimir
was performed by Sparnaay [64], while other experiments were performed on configurations,
different either in the geometry or in the conductivity properties. The sphere–plane geometry was
investigated by van Blokland and Oveerbeek [65] to overcome the difficulty of maintaining the
two plates parallel within the required accuracy to test the Casimir formula. The use of dielectric
surfaces was proposed to have an accurate assessment of the gap distance, for instance by optical
techniques. Obviously both these experimental shortcuts have associated issues with regard to
the experiment–theory comparison. In the case of the sphere–plane geometry, an exact evaluation
has only been obtained for a scalar field very recently [66], and all the experiments had to rely
on an approximation used in classical electrostatics, known as proximity force approximation
(PFA) [67]–[69]. This approximation gives reliable results if the relevant surfaces are separated
by a distance much smaller than their typical local curvatures. This leads to an approximate
expression for the Casimir force

FC(d ) = π3 h̄c

360

R

d3
, (3)

where R is the radius of the sphere and d is its distance from the plane, and its validity holds in the
regime R � d. Since this approximation can be derived in classical electrostatics by relying on
the additivity of the Coulomb force, care has to be taken in the case of forces of quantum nature
which have a strong geometric (and non-additive) character. Likewise, in the case of dielectric
materials the comparison with theory is complicated by the necessity to know the dispersive
properties of the dielectric material. This is taken into account with a formula developed by
Lifshitz and collaborators [43, 70]. The loss of universality intrinsic in the ideal Casimir formula
makes the Lifshitz formula less appealing and complicates the theory-experiment comparison
requiring a detailed knowledge of the dielectric response of the materials. Nevertheless, the
problem was not felt to be important, as the experimental precision was limited in comparison to
the more stringent tests of QED at the microscopic level with Lamb shifts and g − 2 for electron
and muon; no need for refined comparison with theory was then necessary.

The outcomes of the first generation of measurements can be summarized as follows. The
Sparnaay experiment, with accuracy assessed at the 100% level, was considered as inconclusive
in showing the expected scaling of the force with the distance, with also evidence for repulsive
forces indicating a partial control over the electrostatic background.To use Sparnaay’s own words,
the measurement ‘did not contradict Casimir’s theoretical prediction.’ The experiment by van
Blokland and Oveerbeek was more successful from this viewpoint, obtaining agreement with the
Casimir predictions at an estimated accuracy around 50%, and was thus the first uncontroversial
verification of the Casimir force between metallic surfaces. Experiments with dielectric surfaces
were performed using silica lenses [67, 71], crossed cylinders of muscovite mica [72, 73], thin
films of liquid helium absorbed on surfaces of alkaline-earth fluoride crystals [74], flat surfaces
of porosilicate glass [75]. The evidence for a crossover from the non-retarded component of the
molecular force to the retarded component and an overall verification of the Lifshitz theory at the
20–40% accuracy level, apart from the experiment by Sabisky and Anderson reporting accuracy
of order 1%, were the main results of these experiments.

After this burst of experimental activity on Casimir forces there was no further activity for
many years. The spectacular success of QED and its unprecedented accurate verifications at the
microscopic level could not be matched by measurements of (necessarily macroscopic) forces.

New Journal of Physics 8 (2006) 237 (http://www.njp.org/)

http://www.njp.org/


9 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The attention at the macroscopic level was instead shifted on the atomic physics experiments, as
the presence of a cavity with defined boundary conditions was found to affect the spontaneous
emission properties of individual atoms. In this context, the microscopic counterpart of the
Casimir force acting between an atom and a plane surface, also known as Casimir–Polder force
[76], was measured by looking at the deflection induced on an atomic beam by two parallel
plates [77] and comparing this with the theoretical predictions [78]. The new wave of Casimir
force experiments was revamped after remarks by Sparnaay [79] concerning the possibility
of a second generation of measurements at higher accuracy exploiting the emerging subfields
of atomic force microscopy (AFM) [80] and of nanotechnology. Consequently, in partnership
with Carugno at the INFN in Padova, we studied a scheme to measure the Casimir force in
a parallel plate configuration, starting the first tests in the early summer 1993.3 The apparatus
capitalized on a variety of technological improvements not available at the time of the Sparnaay’s
measurement. Most notably, the use of microresonators and of dynamical detection techniques
based on the Fourier analysis of the tunnelling current of a single axis scanning tunnelling
microscope were discussed and a first prototype tested inside a scanning electron microscope.
Also, consideration was given to the capability of measuring the gravitational force in the same
range [16]. Unfortunately the issues of parallelization, dust in the gap, and the large 1/f noise
present in electron tunnelling devices prevented a straightforward measurement of the Casimir
force in the proposed configuration.

An attempt to measure the Casimir force using a torsional balance was initiated by
Lamoreaux at the University of Washington in Seattle. The initial tests with flat plates, in 1994,
also met difficulties in the alignment [81], until the experiment was reconfigured in the sphere–
plane geometry by using a convex lens, and the Casimir force was then measured at distances up
to 6 µm [82] with significant improvement in both range and accuracy with respect to the van
Bockland and Oveerbeek measurement in the same configuration. These improvements were
mainly due to the elimination of mechanical hysteresis in the torsion balance and the use of
piezoelectric actuators for the positioning of the plates.4

Due to the large Volta potential present between the plates even after a nominal external
short-circuit, even at the closest explored distance the Casimir force was evaluated to be
about 20% of the total measured force, and required an ingenious subtraction technique to
be evidenced. Theoretical discussions followed the appearance of the related paper, focusing
on finite conductivity and temperature corrections. Given the large range investigated, this
experiment with the accuracy initially quoted was in principle able to grasp both these corrections.
A deeper analysis showed that the conductivity corrections were less trivial to manage due to the
presence of a copper substrate deposited on the lens prior to the gold coating. Including a better
assessment of the radius of curvature of the lens, found a posteriori to be aspheric [83], did not
solve the conductivity issue. Further discussions of the experiment were carried out regarding
the conductivity corrections [84, 85] and the thermal corrections [86]–[88]. While we suggest
that the reader look at the related interesting exchange of comments, a likely assessment of

3 The results of the calibrations and the proposal description were initially submitted to Physical Review Letters
(manuscript number LN5333 Onofrio and Carugno) on January 24, 1994, and thereafter rejected on July 20, 1994.
4 It may be worth noting that this experiment started as an undergraduate project, cannibalizing parts from existing
equipment in storage spaces, with an estimated $300 of material construction [81], and without the delays usually
related to external funding through peer reviewers/panels/committees. As is noticeable in the acknowledgment
section of the papers reporting the recent six measurements on the Casimir force, minimal dedicated external
support was received in all of them.
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the situation can be summarized as follows: the initially quoted accuracy of 5% was probably
reliable at the smallest explored distances, but it was worse at the largest distances. Lamoreaux
himself pointed out the spirit of his measurements in one of the abovementioned replies [85]:
‘I offer the caveat that my experiment was intended as a demonstration to show that, with modern
experimental techniques, one could do a really accurate measurement of the Casimir force. As a
demonstration, only minimal tests for possible systematic errors were performed: furthermore,
I was satisfied with the agreement between my experimental result and my inaccurate calculation.’
This remark by the pioneer of the modern generation of measurements on Casimir forces, as
we will see in the following sections, is key for understanding the spirit with which the current
generation of measurements on Casimir force has been carried out: they have to be considered
more as demonstrations than experiments.5

The successful use of AFM techniques combined with the sphere–plane geometry was
accomplished by Mohideen and Roy at Riverside in 1998 [89], after attempts started one year
earlier. In their experiment, a metallized polysterene sphere was mounted on the tip of the AFM
cantilever, and the deflection of the cantilever measured as a function of the distance between the
sphere and a metallized flat surface. The metal deposited on the sphere was initially aluminum but
a second version of the experiment instead used gold [90] which was predicted to provide a cleaner
situation [91]. In both cases, the experiment–theory comparison took a number of corrections into
account, namely the finite conductivity, the roughness, and the finite temperature, unobserved in
the Lamoreaux measurement. Due to the small range of distances investigated, down to 100 nm,
and the smaller Volta potential, of order 30 mV, the Casimir force dominated the electrostatic
contribution over a wide range of distances, with the latter contributing to the bare force only in
an amount evaluated as less than 3%.

A third successful attempt was performed by Ederth [92]. This work is remarkable for
a number of reasons. The force was measured in the novel geometry of crossed cylinders
(previously only used by Tabor and Winterton [72] for dielectric surfaces), and in the very
short range of 20–100 nm. The expected Casimir force in such a configuration can be written as:

FC(d) = π2 h̄c

360

(R1R2)
1/2

d3
(4)

5 Although the difference between demonstrations and experiments is known to scientists, it may be worth, for
the more general audience reached by the New Journal of Physics, discussing this point in some detail. In a
demonstration, scientists are aiming to validate an effect which is already expected, most likely with no surprises
once the sought effect is found, apart from sources of discrepancy due to the approximations in schematizing
the phenomenon. In fact, in a demonstration the theoretical comparison occurs by using the well-known theory
describing the phenomenon. Its relevance is measured by the potential for enabling a new technology, opening a novel
subfield of engineering, with the consequent social impact. In an experiment, scientists are looking for new, often
unpredictable phenomena, not yet fully described by an existing, consolidated theory or model. Indeed, typically
there is no theory at all, or there may be a large variety of different theories, all a priori possible descriptions of the
phenomenon, which will be eventually confronted with the experimental outcome. Very rarely has an experiment
immediate social impact as it is mainly driven by pure curiosity. Its relevance comes from ruling out many possible
theories potentially describing the phenomenon, or by showing that an existing theory is falsified in a novel frontier,
sometimes leading to a major scientific breakthrough. There is a natural crosstalk between demonstrations and
experiments. The sensitivity of any apparatus used in experiments is assessed by means of a demonstration of a well
established phenomenon, also called calibration. Likewise, experiments opening new frontiers allow for building
models that will eventually lead to new technology. The complementary relationship between demonstrations and
experiments reflects at the operative level the symbiotic relationship between technology and science.

New Journal of Physics 8 (2006) 237 (http://www.njp.org/)

http://www.njp.org/


11 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

where R1 and R2 are the radii of curvature of the two cylinders. Also, extreme care was put into
polishing and chemically treating the surfaces, as well as assessing their roughness. Finally, a
critical reanalysis of the precision was performed both with reference to the acquired data, and
with respect to previous experiments in which the experimental precision was obtained with
reference to theoretical predictions, in the spirit of a demonstration of an a priori known law.
A further issue raised from Ederth was that the Casimir force is of such a nonlinear nature
and spanning such a large range of values that it makes it difficult for an analysis with the
rms error approach. He also noticed that an average, arbitrarily extended over a large region in
which the force is small, will artificially decrease the rms error (see figure 6 in [92]). Moreover,
the author discussed the effect of an unwanted oversight on the determination of the absolute
distance between the two test bodies, concluding that if the separation between the surfaces is
not measured directly with high precision, the induced uncertainty will make the relative error
large (see figure 7 in [92]). While these may appear as details in the framework of demonstrating
the Casimir force, they are actually critical if one wants to assess limits to new physics.

One variant of the sphere-plate measurement was performed at Bell Laboratories by a team
led by Capasso and co-workers [93]. The force was measured between a sphere (similarly to
the Mohideen set-up) but using a micro-electromechanical (MEM) resonator as the flat surface.
The torque exerted by the sphere on the resonator unbalanced the capacitive bridge which used a
second set of plates under the MEM. The rms deviation between theory and experiment was less
than 0.5%, but the authors were more conservative and considered this quite accidental in the light
of the presence of various factors not controllable at the same level of accuracy, most notably the
spread in the optical properties of gold films. The main goal of this measurement was to show that
Casimir forces are of relevance in micromechanics and (at least until they do not correspond to
non-retarded components) in nanomechanics, and the interesting nonlinear dynamics predict-
ed in [62] including Casimir switching was also demonstrated [94]. This experimental effort
continues at Harvard, focusing on the influence on Casimir forces of materials with modulable
reflectivity properties [95], torque induced by vacuum fluctuations [96], and effect of the finite
thickness of the metallic deposit [97] (see also [98, 99] for reviews of these efforts). Previous
claims of a possible role of the Casimir force in MEMs can also be found in [100, 101], but the
related experiments found a discrepancy of a factor six with respect to the Casimir prediction. It
has been suggested by the same authors that this discrepancy arose from source roughness or an
adsorbed layer between the two surfaces, but regrettably no further investigations were carried
out to solve this puzzle. An alternative and more conservative explanation was suggested in the
conclusions of [94] as due to the electrostatic forces estimated to be 106 times larger than the
expected Casimir force.

The initial attempts started in Padova to perform a measurement in the parallel plane
configuration became successful in the late Spring 2001 [102]. The key upgrades with respect to
earlier efforts, as described in detail in [103, 104], were the use of a fibre optic interferometer as
a displacement detector [105], the monitoring and cleaning of the two surfaces from dust with an
in situ tool, the implementation of frequency-shift techniques. The frequency-shift technique was
already well-known in the field of AFM [106] and its use in Casimir force experiments was first
reported in [107]. The measurement was performed in the 0.6–3 µm range, with the lower limit
approaching the expected Casimir stiction between the two surfaces considering the stiffness of
the cantilever, and the upper limit due to the sensitivity of the fibre optic interferometer. The
data were analysed using the plain Casimir formula without corrections, and the accuracy in the
measurement of the Casimir coefficient (which can be directly translated into a measurement of
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Figure 2. Pictures from the six Casimir force experiments of the second
generation. In chronological order, from top-left to bottom-right, some views
of the apparatus used in Seattle, Riverside, Stockholm, Murray Hill, Padova and
Indianapolis are depicted.

h̄c) was 15%. Major limitations to the accuracy were the precision in determining the absolute
distance from the electrostatic calibration, the finite amount of parallelism, and the piezoelectric
actuator with 10% deviation from the expected specifics, which was overcome with independent
calibrations. Attempts to introduce the finite conductivity in the data fit led to better accuracy
estimated to be around 5% [108]. However, in a conservative approach, no effort was made on
a more sophisticated data analysis mainly since the better fitting involved points at the smallest
distances which were taken close to the snapping critical point (estimated, given the stiffness
of the resonator, to be around 0.4 µm) potentially inducing anharmonicity and instability in
the resonator motion. Furthermore, the experiment was felt to be less accurate than previous
sphere–plane experiments. Nevertheless, the result of this experiment represents a significant
improvement over the pioneering but ambiguous result obtained by Sparnaay in the original
plane–plane geometry studied by Casimir. Further motivations to study this geometry have been
discussed in [109].

The most recent reports on Casimir force measurements are from Decca and collaborators
at Indiana University. The Casimir force was initially measured in a configuration similar to
the one studied at Bell Labs but using different metals [110, 111]. Apart from the use of differ-
ent metals, gold and copper, the experiment makes use of a two-colour fibre optic interferometer to
maintain the fibre-platform separation constant. The same dynamical frequency-shift technique
previously used in [94, 102, 107] was implemented. The authors also claimed that the dynamical
technique was equivalent to determining the Casimir pressure between two parallel plates, but
this formal equivalency relies upon the validity of the PFA, similarly to all previous sphere–plane
measurements, and therefore this is a way to restate the same physics. This group has made a
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Table 1. Status of the experimental studies of Casimir forces between metallic
surfaces. For each experiment, listed in chronological order, the investigated
geometry, the explored range of distances, the claimed accuracy, and the first
author and reference are reported. The claimed accuracy is the one quoted by
each group, however it often corresponds to different definitions with different
statistical meanings. In the experiment by Sparnaay repulsive forces were
observed between aluminum surfaces, while the quoted accuracies for the van
Blokland and the Lamoreaux experiments have to be considered as reliable only
at the smallest distances. Whenever there was a sequel of experiments by the same
group, the quoted reference is for the first reported data set.

Year Geometry Range (µm) Accuracy (%) Reference

1958 Plane–plane 0.3 ÷ 2.5 100 Sparnaay [64]
1978 Plane–sphere 0.13 ÷ 0.67 25 van Blokland and Oveerbeek [65]
1997 Plane–sphere 0.6 ÷ 12.3 5 Lamoreaux [82]
1998 Plane–sphere 0.1 ÷ 0.9 1 Mohideen and Roy [89]
2000 Crossed cylinders 0.02 ÷ 0.1 1 Ederth [92]
2001 Plane–sphere 0.08 ÷ 1.0 1 Chan et al [93]
2002 Plane–plane 0.5 ÷ 3.0 15 Bressi et al [102]
2003 Plane–sphere 0.2 ÷ 2.0 1 Decca et al [110]

well focused effort to constrain non-Newtonian forces using a variety of schemes, with particular
regard to the cancellation of the Casimir force using the so-called isoelectronic technique [112].
In this approach, the differential force between a gold-coated sphere and flat surfaces of gold and
germanium coated with a shared layer of gold was measured, leading to a fractional difference in
the Casimir force estimated to be �10−6, below the experimental sensitivity [113]. The presence
of a force signal should be due to a non-Casimir like interaction. A nonzero force was evidenced,
but it was attributed to the residual Casimir force due to the different height difference between the
two flat surfaces, not controllable to better than �0.1 nm. The experiment is planned to run using
different isotopes of nickel to further reduce the fractional difference in the electronic properties.
The more recent results have been questioned with regard to the claimed precision [114] in some
of the parameters involved in the data analysis [115]. This issue seems still controversial and in
the next section we will discuss some tests which could be possible smoking guns in assessing
the sensitivity and the precision of all the Casimir force apparatuses.

We show in figure 2 pictures from the six recent experiments on Casimir forces, while in
table 1 the current knowledge of Casimir forces between metallic surfaces is summarized. In
figure 3 the corresponding reported limits in the α–λ plane are presented.

This succinct overview of the recent experiments on the Casimir forces needs to be
complemented by the parallel developments in the measurement of the Casimir–Polder force,
the long distance forces acting between atoms and macroscopic surfaces [76]. Casimir–Polder
forces establish the link between the macroscopic Casimir forces and the microscopic atom-
atom interactions (like the van der Waals forces). This force has been measured by looking at the
deflection induced on an atomic beam of sodium atoms by the presence of a metallic surface [77].
The accuracy of this measurement was around 12% limited by the control of the distance between
the atomic beam and the surface, but it was enough to confirm that the Casimir–Polder force, and
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Figure 3. Experimental constraints and predictions for a hypothetical Yukawa
force in the α–λ plane, with λ expressed in micrometres. The plot may be
considered a prolongation of the α–λ plot of figure 1 on the upper left corner. The
excluded region is delimited by curves compatible with noYukawian-signal in the
measured data within two standard deviations. From left to right, limits coming
from three experiments on Casimir forces performed in the 100 nm–10 µm
range at room temperature [82, 90, 113], two experiments with microresonators
operating in the 100 µm distance range [18, 19], and one experiment using a
torsion pendulum with rotating attractor [15], are shown.

not the van der Waals force, was acting in the configuration investigated. More detailed studies of
Casimir–Polder force are necessary for a variety of reasons. It has been recently conjectured that
their study at larger distance can more easily provide information on the thermal contribution
to the force [116]. Interesting studies on non-equilibrium statistical mechanics are also possible
[117], and their role in the formation of weakly bound macromolecular states of biological interest
has yet to be explored. The technological interest in these studies is motivated by the manipulation
of cold atoms on chips for the possible implementation of quantum information schemes or for
characterization of surfaces. Quantum operations can be performed only by preserving quantum
coherence, so it is important to evaluate the effect of surfaces in close proximity of cold atoms
[118]–[123]. In a recent experiment, the Boulder group at JILA led by Cornell succeeded in
measuring the Casimir–Polder force [124]. The dipole oscillation frequency of an elongated,
cigar-shaped, condensate of rubidium atoms was determined versus the distance between the
condensate and a conducting surface. This experiment could also soon lead to the observation
of the thermal corrections to the Casimir–Polder force. In this case, the information could be

New Journal of Physics 8 (2006) 237 (http://www.njp.org/)

http://www.njp.org/


15 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

used to infer the thermal corrections to the purely Casimir force, especially if the investigations
will be extended to dielectric surfaces. Another potentially fruitful technique is the use of atomic
interferometry, with the first measurement of the van der Waals force reported in [125].

4. Precision and accuracy in Casimir force experiments

To gain more insight into the reliability of the limits on non-Newtonian forces, we briefly review
some elementary notions of data analysis [126]. The precision of an experiment is commonly
defined as the measure of how exactly the result is determined, regardless to what that result
means in the framework of a specific model or theory. Any experimental set-up has a source
of intrinsic uncertainties leading to different results for the repeated measurement of the same
observable and the precision is a measure of how reproducible the result is in itself. If the random
errors result from instrumental uncertainties, the precision is increased by using more precise
instruments. If instead the random errors result from statistical fluctuations of counting finite
sequences of events, the precision will be increased by counting more events. In an optimized
experiment, both instrumental and statistical errors are minimized and made approximately
equal to each other. The precision of the experiments, in the case of apparatuses aimed at
measuring Casimir forces, should be expressed in terms of the spreading of the result in the
observable directly measured, which can be the compensating voltage in the closed-loop actuation
scheme for the Lamoreaux’s torsion balance, the electric signal from the quadrant photodiode for
the Mohideen configuration, the bridge unbalance voltage in the Bell Labs measurement, or the
frequency shift in the Padova and Indiana measurement schemes. These primary observables
are then indirectly translated into a measurement of force through the physics of the detection
system and a proper calibration with a controllable force. At this point, although the force is
always an indirectly measured quantity, it may be convenient, for the sake of standardization
among different measurement techniques, to express the precision in terms of error bars for the
force measurement.

The accuracy of an experiment is instead a measure of how close the result comes to the true
value, and then is a measure of how much a test of a physical theory is stringent. The accuracy
of an experiment is therefore dependent on how well the experimenter can skilfully control,
compensate for or take into account in the data analysis for systematic errors. Improvement of
the accuracy requires first of all high precision data, since a given targeted accuracy needs a
precision at least as good. However, on the top of the precise data, one also needs to control
sources of discrepancy with respect to a theory to be tested. Therefore a targeted accuracy relies
on precise data plus auxiliary information about the modelization of the experiment in a given
theoretical framework. In other words, while the precision of a measurement is a concept intrinsic
to the apparatus and the protocol used to take data, the accuracy is a model-dependent concept
and gets better and better as we refine the factors which take into account the sources for the
so-called systematic errors. Once all known factors determining the accuracy are well assessed,
a systematic error left over may be the manifestation of new physics.

It is evident that this logical procedure has to be taken with great care before making strong
claims on new physics, and all possible conceivable sources of discrepancy must be scrutinized
prior to a positive claim.All fields of physics (especially in recent times mostly due to sociological
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reasons6) have examples of claims for evidence of new physics which were then withdrawn after
closer scrutiny of the data and/or the running of independent experiments in similar conditions
and under less hasty circumstances. These considerations, when applied to the experiments
measuring the Casimir force, are translated into a long list of systematics which may mimic new
effects. With respect to the bare Casimir formulae obtained in idealized geometries for perfect
conductors electrically neutral at zero temperature and in ideal vacuum, there are indeed many
possible systematic effects to be taken into account.

4.1. Non-ideal geometries

There are several deviations from ideal geometries, such as ideal spheres and infinite parallel
plates. In practice, all surfaces manifest a finite roughness, have finite size which always implies
consideration of border effects, finite parallelism, and the geometrical parameters are determined
with finite precision. Here is a list of considerations:

(1) Roughness of the surface. The exact formula is derived, whenever a first principle derivation
is available, assuming that there is ideal reflection on the walls of the cavity. Any realistic
surface will have roughness and therefore the scattering of the photons will be more
adequately schematized in terms of diffusion, rather than pure reflection.

(2) Finite size of the test objects and border effects. Planar surfaces of finite size are always
considered in realistic experiments. Therefore the predictions for infinite planes have to be
corrected. This is particularly important in the parallel plane configuration as the quantum
field lines, using an electrostatic analogue, are expected to manifest deviations from the
symmetrical geometry. This effect may become relevant at large distances between the test
bodies. Recently, Gies and collaborators have numerically evaluated border effects for a
scalar field in the parallel plane configuration. In this case, one may introduce an effective
surface area Seff related to the geometrical area of the flat surfaces S, its perimeter C, as the
distance between the plates d as Seff = S + 0.36Cd, with a correction to the Casimir force
linear, at leading order, in the distance d [128, 129].

(3) Finite parallelism whenever applicable. The deviation from ideal parallelism, for instance
in the case of a parallel plane geometry, must be kept under control to aim at high accuracy.
The effect is relatively more important at small distances between the test bodies. The
correction due to finite parallelism in the PFA has been discussed within the PFA scheme
in [130].

(4) Measurement of the size of the test objects, for instance the radius of the sphere, the
size of the plates, and the distance between the two objects. The use of electron scanning
microscopy allows one to obtain precise measurements of some geometric parameters, for
instance the diameter of the spheres used in the AFM-MEMS experiments by the Riverside,
Bell Labs and Indiana groups. One critical issue still awaiting a definitive solution is the
precise determination of the distance between the two objects. Indeed, the relative distance
between two different configurations corresponding to different distances can be accurately
obtained by calibrating the displacement actuators, but the absolute distance is not, and

6 The complex relationships among scientific communities, research funding agencies, peer-reviewed journals, and
mass media in generating, propagating, and scrutinizing false claims of scientific discoveries have been recently the
focus of many essays, papers, and books on sociology of science, see for instance [127].
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this is important for forces strongly dependent on the distance. While in experiments using
dielectric surfaces this problem was addressed by using optical interferometric techniques,
in various experiments performed so far with metallic surfaces the absolute distance was
determined as a fitting parameter. When using fibre optic interferometry, two-colour fibre
optic displacement transducers like those of the Indiana group will be a standard solution for
determining the absolute distance with an accuracy comparable to the determination of the
two wavelengths. Other solutions could include the use of calibrated wires of small diameters
(available down to 2–5 µm) as high precision spacers to assess for few experimental points
the absolute distance. All these solutions have limitations. The more conceptual one is that,
at the atomic level, the distance between two bodies is an ill-posed concept as surfaces
are far from being accurately schematized as planes. It is then hard to assess the distance
with a precision better than the surface roughness evaluated as the rms deviation over the
considered surfaces. The same definition of distance may depend also on the probe used to
assess the distance. In case of electrostatic calibrations, non locality in the electric properties
of the surfaces may be a source of systematic errors. In the case of the use of fibre optic
interferometry, light is not just reflected by the first atomic layer, and the procedure of
obtaining the zero distance reference by touching the surfaces has to be taken with great
care, due to potential uncertainties inherent to this somewhat subjective, not necessarily
reproducible, procedure.

4.2. Electrical properties

Ideally one needs materials which are perfect reflectors for photons at any wavelength, and which
are electrically neutral. None of these conditions is obtained in practice:

(1) There is no perfect conductor at all frequencies, so at frequencies large enough the photons
will leak out from the cavity and will not contribute to the radiation pressure.

(2) The presence of residual electric charges will spoil the neutrality and will give a direct
Coulomb contribution. We can identify at least two distinct sources of residual electric
charges, respectively due to the so-called patch effects, and the Volta potentials. The former
are intrinsic to the same metal, while the latter refer to the differences in the mean electric
potential between two connected metals.

The physical origin of the surface potential and charge on a metal is due to the presence of
a finite surface dipole moment. This depends on the separation of the lattice planes parallel to
the surface. If there are different crystallographic directions on the surface of a polycrystalline
metal, there will be variations of the surface potential. The effect of such forces in the Casimir
experiments has been discussed in detail, using analytical and numerical methods, in [131].
The mapping of the surface voltage can be obtained by using Kelvin probes (see [132] for
a review), and measurements on various conductors, including gold, copper and aluminum,
have been performed with a spatial and potential resolution of 1.5 mm and 1 mV, respectively
[133]. The same authors have tried to contain the surface potentials by focusing on treatment of
nonreactive materials like gold and graphite [134]. In particular, sublimation of fullerene films
on metallic substrates has shown that there are no surface potential variations within the Kelvin
probe resolution of 1 mV [135].
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The presence of contacts between different metals allows also for different mean voltages.
For instance, in the Lamoreaux experiment the two plates were externally shorted through a loop
of 40 separate electrical connections, leading to an overall Volta potential of 430 mV [82]. This
results in an electrostatic force which overwhelmed the Casimir force. Even more important, the
combination of this electrostatic attraction between the two plates and the finite retaining force of
all experimental configurations results in stiction of the surfaces at relatively large distances, thus
preventing the achievement of the smaller gaps at which the Casimir force is expected to prevail
over the electrostatic contribution. Provided that the drift in time of the effective Volta potential
is minimal, the solution adopted consists in the application of a counterbias voltage cancelling,
at least at the leading order, the Volta potential contribution. This allows for the achievement
of smaller gaps to the point where the stiction will result from the Casimir force itself. The
residual voltage difference due to the incomplete cancellation can be taken into account in the
off-line data analysis through a simultaneous fitting with the expected Casimir and Coulomb
forces.

4.3. Environmental properties

The measurement of the Casimir force is also affected by environmental factors. The leading ones
are due to the real photons present in the blackbody radiation at finite temperature, the presence
of residual gas in the gap, and the acoustic noise in the laboratory. So far, all experiments have
been performed in conditions such that magnetic fields should have no effect, although at the
microscopic level this requires a control over magnetic properties of the test masses or magnetic
impurities present in them which eventually could be relevant for accurate measurements.

(1) Finite temperature. An obvious effect of finite temperature, at the instrumental level, is the
presence of thermal drifts in the apparatus, which may limit the effectiveness of taking
long integration times. The use of Peltier coolers with active feedback and materials with
low expansion coefficients mitigates this effect. Moreover, at any finite temperature one also
expects a blackbody background of photons. Most of these photons are blocked by the cavity
as the condition of stationarity for the electromagnetic field implies that no electromagnetic
waves with wavelength exceeding twice the length of the cavity can be sustained. The
thermal correction for a given temperature is particularly important at large distances. This
effect is included in the realistic approach pioneered by Lifshitz, but complications arise
due to the necessary inclusion of the reflectivity coefficients. In the Lifshitz formula for the
force between two parallel surfaces [43]:

FC = S

πβd3

∞′∑
m=0

∫ ∞

mγ

dy y2

[
r−2

TMe−2y

1 − r−2
TMe−2y

+
r−2

TE e−2y

1 − r−2
TE e−2y

]
(5)

both finite temperature (with β = 1/kBT the inverse temperature, and γ = 2πd/β h̄c), and
finite conductivity effects (expressed through the reflection coefficients rTE and rTM for
the two independent polarizations, the transverse electric (TE) and transverse magnetic
(TM) modes, computed at imaginary frequencies ωm = iξm, where ξm = 2πm/βh̄ are the
Matsubara frequencies) are taken into account. The m = 0 term is counted with half weight,
as denoted by the prime on the summation sign. The reflection coefficients are expressed in
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terms of the dielectric permittivity ε(ω) as

r−2
TM =

[
ε(iξm)pm + sm

ε(iξm)pm − sm

]2

, r−2
TE =

[
sm + pm

sm − pm

]2

, (6)

where pm = y/mγ and sm = √
ε(iξm) − 1 + p2

m. Using tabulated optical data for different
metals in the bulk, it is possible to compute the dielectric permittivity along the imaginary
frequency axis. To calculate the m = 0 contribution, the available data have to be
extrapolated in the static limit. There is no unique prescription to do this. Different choices
have led to controversial predictions for the Casimir force between parallel plates (see for
instance [115], [136]–[147] and the in-depth discussion in [32]). The definitive control
over the thermal fluctuations will be required to give limits to other forces. Detailed data
analysis such as the one proposed in [111] cannot be used to simultaneously constrain two
physically different effects as the thermal contribution and the presence of gravitational
forces of Yukawan origin in absence of other experimental inputs.

(2) Residual gases can influence the measurement both by giving additional random forces
acting on the test bodies, by changing in time the properties of the surfaces, and by favouring
the migration of contaminants, oxide layers, dust particles, and residual charges.

(3) Acoustic and seismic noise. The experiments should be shielded from mechanical noise
originating either by natural sources, as seismic noise, for instance using air tables and
damping systems, and from artificial sources including vacuum pumps. In some cases, this
can limit the measurement time as the vacuum chamber must be disconnected from the
vacuum line, as described in [114]. In the Padova experiment, the demand for vacuum also
comes from the use of a scanning electron microscope evacuated through a diffusion pump,
which was in turn periodically fed by a (quite noisy) roughing pump. In the case of the
extremely sensitive torsional balance set-up, Lamoreaux reported that his own presence in
the laboratory during the measurement, and the consequent tilting of the floor due to the
additional weight in the room, was a factor initially affecting the data [81].

Furthermore, even for idealized physical and geometrical conditions, one often has to deal
with the PFA formula in the case of sphere–plane or cylinder–plane geometries, and with data
analysis where often unambiguous choices cannot be made. The use of the PFA has generated
a wide debate, since it is used in the sphere–plane configuration for which an exact formula
does not exist and, due to this reason, it is then hard to assess its validity. Under idealized
conditions for all the other possible sources of systematics, it is generally believed that the PFA
is valid within 0.1% for large radii of curvature [29]. Recently, progress has been made by
various groups towards understanding the limitations of the PFA and its interplay with some of
the abovementioned effects. The Paris group led by Lambrecht and Reynaud has discussed
the interplay between roughness corrections, assuming the plasma model for conductivity
corrections, and the PFA, showing that the roughness correction is underestimated in the PFA
framework [148]. The Casimir energy between a cylinder and a plate has been evaluated exactly
[149, 150], allowing for a comparison with the corresponding PFA formula previously evaluated
in [151]. The worldline numerics approach pioneered by Gies et al [152] has been applied to both
sphere-plate and cylinder-plate geometries for a scalar field with Dirichlet boundary conditions,
showing significant deviations from PFA if the ratio between the gap and the radius of curvature
of the surfaces is too large [153].
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The systematic factors listed above do not contribute with equal weights in the entire range
of explored distances. Finite roughness, finite parallelism, finite conductivity, vacuum pressure,
and Volta potentials more strongly affect the measurement at small distances. The finite size and
border effects, the finite temperature contribution, and the PFA (whenever applied) are corrections
expected to play a major role at larger distances.

Another issue to be experimentally assessed is the sensitivity to the minimum detectable
force using physical measurements. For larger scale experiments (like torsional balances) this is
better assessed for instance in terms of the maximum distance at which the gravitational force
is still detectable. For smaller scale experiments (like AFM-based ones) the sensitivity should
be naturally expressed in terms of the minimum detectable electric field. There are also other
physical effects to be exploited to assess the precision and the sensitivity of the measurements
in the short range. In particular, the conducting properties of the substrate can be used, for
instance using semiconducting surfaces with modulated conductivity. The sensitivity could then
be expressed in terms of the minimum charged carrier modulation detectable through the Casimir
force measurement. Even simpler, the Casimir force is expected to depend on the thickness of
the substrate due to the finite skin depth, as evidenced in [97]. The claimed accuracy of the
measurement could be checked with a blind test, by providing two surfaces having a thickness
unknown to the same Casimir force experimenter. If the claimed accuracy is real, he/she should
be able to infer, from the Casimir force measurements, the difference between the thickness with
a corresponding confidence level, to be compared with actual measurements of the thickness
of the substrates performed by a third party. This unbiased benchmark could be the ultimate
test of the reliability of the accuracy claimed in each experiment. Similar benchmarks are also
available by detecting the effect of external fields, like the presence of a magnetic field [154],
in a controllable way. In principle, also effects like the so-called lateral Casimir force [155]
could help to assess the sensitivity, however the control over the related theoretical predictions
based upon the PFA seems to be an issue [156].

A further potential concern for the assessment of the limits to non-Newtonian forces also
arises from the use of electrostatic calibrations at larger distances. For instance, in all the
experiments determining the absolute distance through a fitting to the purely electrostatic data,
one cannot logically expect strong and meaningful limits to non-Newtonian forces. In doing
this, one first insulates a region of parameters, at a large distance where a purely electrostatic
contribution is expected. In this regime, all groups do not consider any of the usual corrections
included in the evaluation of the Casimir force, something which may limit the accuracy of the
calibrations in the first place. For some corrections (like for instance roughness) this is partially
justified since the electrostatic calibrations are performed at such large distances that they are
negligible. From this analysis in a partial region one extract some parameters, for instance the
absolute distance and the Volta potential, and then this determination is used in a region where
the Casimir force is expected to give a significant contribution. This works fine for the latter
force due to the sharp dependence on distance, but the expected Yukawan contribution may fall
off slowly at large distance depending on the value of the Yukawa range λ, so to first neglect this
term in the fitting of the electrostatic calibrations and then to look at it in the residuals of the
Casimir force has a somewhat tautological flavour. In particular, a Yukawan force of relatively
large intensity and long range could be hidden in the electrostatic calibration. Its presence would
be evidenced by a less accurate fit of the data in the long distance with the Coulomb contribution
alone. However if the fitting parameters are then used for obtaining information on the Casimir
force it will be very hard to infer from the residuals the presence of this Yukawan force. To
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avoid such loopholes, a combination of improvements should be implemented, first of all a
precise determination of the distance between the test objects independent on the electrostatic
calibrations, and thereafter a fitting procedure in the widest range of distances with the Casimir
force, the residual electrostatic force, and the hypothetical Yukawan force all considered at the
same time.

As should be clear from previous discussions, it is very important to analyse the data for
extracting information about the windows of opportunity for non-Newtonian forces. A possible
approach to data analysis which should help comparison of various experiments and assessments
on non-Newtonian limits is based on the following argument. As remarked earlier, Casimir
physics is intrinsically ruled, at the leading order, by the presence of the two fundamental
constants present in relativistic quantum field theory, namely h̄ and c. In all formulae for the
Casimir effects the two constants appear in a multiplicative way. All the experiments on Casimir
forces can then be rephrased as macroscopic determinations of the product h̄c. This has the
advantage that it allows for a direct comparison of experiments performed in a variety of
geometries. Moreover, since high precision measurements of h̄ (c being now exactly determined)
are independently available, deviations of h̄c obtained from Casimir experiments with respect
to the more precisely known value of h̄c allow for a unified discussion of the accuracy of
each experiment. The accuracy of the measurement can be expressed in terms of the relative
difference between the central value for h̄c obtained from the data fitting of the Casimir
measurements and its true value (i.e. with much smaller error) as available from CODATA,
h̄c = (3.16152636 ± 0.00000054) × 10−26 J m. Deviations of statistical significance from the
CODATA value obtained from the data analysis of the experiments on Casimir force should
signal either a not well controlled background or new physics in the micrometre range. The latter
hypothesis could become stronger if confirmed by similar pattern of deviations in independent
and quite different experimental set-ups.

5. Future experimental directions

In this section we summarize some directions currently pursued to understand the long-distance
behaviour of the Casimir force which are relevant for limits to non-Newtonian forces. The
current status and future directions of short-distance Casimir physics, for instance the interplay
of quantum fluctuations with surface collective excitations [157, 158], will be more adequately
discussed in other review papers of this Focus issue.

Among the directions to be explored, there is the possibility of improving theAFM sensitivity
to detect the Casimir force in the 1–2 µm range or to use differential techniques to measure
the force at smaller distances at different temperatures [159], as proposed by Mohideen and
collaborators. At large distances, the 1/d3 scaling of the sphere–plane Casimir force is more
favourable than the 1/d4 scaling of the force between parallel plates, and the expected thermal
corrections are more pronounced [151]. In particular, high precision AFM apparatuses can be
developed to reach sensitivity in the 10−18 N/

√
Hz range by using cryogenic techniques. Apart

from the broader technological benefits of developing high precision AFM apparatuses, this
direction can lead to better limits on non-Newtonian forces without the cross-talk with the still
not completely understood thermal correction as lower temperatures correspond to longer thermal
effective lengths ∝ h̄c/kBT . Pursuing this direction will require a well focused effort with the
need to adapt a Casimir force apparatus in a cryogenic environment.
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Figure 4. Image of the experimental set-up for the study of the cylinder-
plane configuration, with (from top to bottom) the optical fibre for the
displacement measurement, the silicon rectangular cantilever, and the cylindrical
lens. Cantilever and cylindrical lens, coated with (144 ± 20) nm of Au, have
respectively width and radius of curvature equal to 1 cm. Notice the mirror image
of the optical fibre on the cantilever, which allows to estimate the fibre to cantilever
distance. With proper illumination and the use of an optical microscope by looking
at the mirror image of the cylinder on the cantilever, it is likewise possible to
estimate the cylinder–cantilever distance at large (above �10 µm) gaps, which
allows for consistency checks with the electrostatic calibrations.

A second direction to be pursued is an improved version of the experiment using a torsional
balance. This direction is under development both at Los Alamos for the sphere–plane geometry
[160, 161] and in Grenoble for the parallel plate geometry [162]. Lamoreaux has discussed a series
of improvements to his original set-up. The continuation of his efforts seems quite natural and
this could clarify open issues related to the original measurements reported in 1997. Meanwhile,
a torsion balance for a measurement of the Casimir force between large surface parallel plates has
been built in at ILL in Grenoble and electrostatic calibrations are currently being performed. The
experiment will also make use of already developed inclinometer technology used to measure the
quantum states of neutrons in the gravitational field [163] to deal with issues of parallelization
and absolute measurement of the gap distance. Even in this case an improvement of the sensitivity
is expected, at the price of a longer development stage, using cryogenic techniques [164].

A third direction actively pursued is the study of the Casimir force in a cylinder-plane
geometry. This configuration has advantages and disadvantages in between the sphere–plane and
the parallel plates geometries. The Casimir force in the cylinder–plane configuration, evaluated
in the PFA, is [151]

FC(d) = π3 h̄c

384
√

2

La1/2

d7/2
, (7)

where L is the length of the cylinder, and a its radius of curvature. This configuration looks
particularly promising to detect the thermal effect and allows for an easy procedure to obtain
accurate parallelization. An exact solution for the Casimir force has been found recently [149],
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and thus this configuration is also a candidate to test the validity of the PFA in case the cylinder is
made of small (around few µm diameter) wires.An experiment in this configuration is now under
development at Dartmouth with electrostatic calibrations having shown that the measurement
should be feasible [165]. As of this writing the first data acquisition with an upgraded apparatus
aimed at measuring the Casimir force in the 2–5 µm range is underway (see figure 4).

6. Conclusions

We have reviewed past experiments which have successfully measured the Casimir force, and
from which limits on the existence of non-Newtonian forces have been derived. We have also
discussed some of the future directions which are being explored with the aim of better mastering
the systematics of the corrections to the Casimir force, in particular the urgent issue of the finite
temperature correction. Without a solid understanding of this effect, limits to non-Newtonian
forces appear very weak and prone to criticism. This in turn demands reliable assessments of
the precision and sensitivity of the experimental set-up, for instance also by means of blind tests
as proposed in section 4. It will be also necessary, in order to avoid unintentional bias in the
data analysis and to collect diverse feedbacks, to allow for a broad data sharing among various
experimental groups and phenomenologists interested in independent analysis. This is possible
at zero cost through internet resources and simply adopting what is already implemented in other
subfields of physics, most notably in astronomy and high-energy physics, with data archives
available to all interested astronomers and physicists.

All the demonstrations of the Casimir force performed so far have not provided evidence,
within their claimed accuracy, for any residual signalling non-Newtonian physics.We have briefly
discussed a proposal to parameterize the data collected in the six Casimir force experiments, or
future experiments, in terms of a measurement of the constant h̄c. Due to the long list of systematic
effects, it is also clear that an extremely careful and conservative analysis has to be carried out
prior to any claim of new physics. This could be evidenced as a significant deviation between
the central value of the h̄c value determined from the Casimir data and the h̄c CODATA value.
The repetition of experiments in dissimilar conditions and aimed at observing the same signal
will help disentangle a possible positive claim from false signals. We believe however that a
definitive confirmation of a claimed effect will most likely happen by collecting complementary
evidences based upon radically different classes of experiments from the one described here and
operating at different lengthscales. For instance, relevant informations could also be acquired by
exploiting techniques close to the ones developed for detecting light neutral particles coupled
to photons by Zavattini et al [166], by accurate measurements of neutron’s states in the Earth’s
gravitational field [167], by observing surface excitations in superfluid helium [168, 169], by
measuring the dynamics of intrinsically nanotechnological structures like nanotubes [170], or
significantly improving the sensitivity of existing dynamical detection schemes for rotating [171]
or vibrating masses [172, 173].

The message of this review in a nutshell is that, in spite of the recent progress which brought
solid demonstrations of the Casimir force, the challenge of discovering new gravitational-like
phenomena in the micrometre range with table-top experiments is still an issue more open
than ever. A third generation of Casimir force experiments combining creativity, hard work,
metrological accuracy, and substantial support both in intensity and duration will be necessary
to further pursue non-Newtonian gravitation at the microscale.
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