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SUMMARY 
It is recalled that negative water pressures are of importance in localisation phenomena of fully saturated 
undrained samples of dilatant geomaterials. A model to simulate cavitation phenomena connected with such pore 
water tractions is developed and implemented in a simplified form in a dynamics code for partially saturated 
porous media. A case of localisation is studied from the onset of the instability up to the full developed shear band. 
The weak mesh dependence of the maximum effective plastic strain, due to the employed physical model, is also 
shown. 
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1. INTRODUCTION 

Dilatant geornaterials, i.e. fissured rocks, dense sands, stiff clays, increase the porosity when subjected 
to sufficiently high deviatoric stresses. If these materials are saturated with a pore fluid and the pore 
volume increases more rapidly than the fluid can flow into it, the pore pressure decreases, This means 
an increase in effective compressive stress which inhibits further inelastic deformation up to a certain 
limit. The phenomenon is called dilatant hardening or strengthening and was first discussed by 
Reynolds in 1885 in his studies on granular materials’. 

Rice’ investigated with a mathematical model the amount of dilatant strengthening in a fully 
saturated dilatant frictional material. This analysis demonstrates that ‘ . . . dilatant hardening is stable 
only in those circumstances for which the underlying drained deformation would be stable: H > 0.’ H 
is the plastic hardening modulus. Rudnicki3 analysed then a fluid saturated rock mass with an 
embedded weakened layer and came to similar conclusions: ‘ . . . solutions to the linearized equations 
become unstable . , .when conditions for localisation of deformation are met in terms of the drained 
response of the embedded layer, but final instability does not occur until these conditions are met in 
terms of the undrained response of the embedded layer.’ Vardoulakis4 adds to the mathematical model 
an inertia term and shows the importance of dynamic stability analysis in case of undrained simple- 
shear deformation of water-saturated granular soil, at least when the material is contractant. He comes 
to the conclusion that: ‘Contractant material becomes unstable (liquefies) at the state of maximum 
shear, whereas dilatant material becomes unstable after the state of maximum stress obliquity is 
reached in the softening regime of the background drained behaviour.’ 

Loret and Prevost’ studied with a numerical model shear band dominated processes in a large fully 
saturated soil mass using dynamic strain localisation theory. A high frequency situation was 
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investigated, where a velocity jump was applied at the boundary of the specimen. They pointed out 
correctly that the presence of pore fluid may delay shear band formation. 

The importance of pore pressure in localisation phenomena was however not appreciated to a full 
extent: in none of the above  paper^^-^ the possibility of negative pore pressure, i.e. pore water tractions, 
are mentioned. Such pore water tractions were however observed experimentally by Mokni6 in 
undrained samples of dense sand. Starting with different backpressures, strain localisation did only 
start when pore water tractions of the order of 80 kPa developed. 

Similar negative pore pressures have been obtained independently by us with a numerical model7 
based on dynamic shear band localisation, applied to a large soil mass as in Reference 5 .  In our case we 
used ramp loading (low frequency situation). At the negative pressures where localisation takes place, 
pore water cavitates, i.e. boils at ambient temperature and a second fluid phase is present. Hence a 
numerical model should include the capability to model this phenomenon. 

We show here a full model for thermohydromechanical analysis of partially saturated porous media 
capable of simulating phase change phenomena connected with cavitation. A numerical solution exists 
for this model,’ but at the moment only in the case of slow phenomena, without inertia effects. 

Since inertia effects are important, certainly for contractant material4 but also for dilatant material, 
given the speed at which the shear band develops after its onset,’ we show a simplified dynamic model 
which incorporates some of the features of the full model. This model is a development of the code 
S ~ a n d y n e ~ , ’ ~  which simulates dynamic partially saturated soil behaviour with gas (air) phase at 
constant (atmospheric) pressure. 

The multiphase material approach adopted in our model has a further advantage.’ In the mass 
balance equations appears a Laplacian, which is known to regularise the solution. The obtained 
maximum effective plastic strain is reasonably well mesh independent as shown by numerical 
experiments. This means that a regularisation is contained in the physics of the problem. Two examples 
will show this and the other above mentioned features of our model. 

2. Mathematical model 

2. I. Physical model, thermodynamic relations and constitutive equations 

The full thermohydromechanical model necessary to simulate phase change in hlly and partially 
saturated porous media was developed’ using averaging theories following Hassanizadeh and 
G~-ay.’~-’~ The underlying physical model and the most important equations are briefly summarized in 
what follows. 

The partially saturated porous medium is treated as multiphase system where the voids of the 
skeleton are filled partly with liquid and partly with gas assumed to behave as an ideal mixture of dry 
air and water vapour. The state of the medium is described by water pressure p“, capillary pressure pc,  
temperature Tand displacement vector of the solid matrix u. Small displacements are assumed for the 
development of the equations. Thermal equilibrium between solid matrix, gas and liquid phases is 
assumed so the temperature is the same for the three constituents. 

The saturation of liquid water S, is an experimentally determined function of capillary pressure pc  
and temperature T: 

S, = SWW, T ) ,  (2.1) 

p w  = pg - P c ,  

while its pressure pw can be expressed at equilibrium state15 as 

(2.2) 

where p g  is the moist air (gas) pressure (mixture of dry air and vapour). 
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The equation of state of perfect gases and Dalton's law, applied to dry air (ga), vapour (gw) and 
moist air (8) give 

(2.3) 

(2.4) 

pga = pgaRT/Ma, pg = pga -+ p", 

p w  = p gw RTIM,, pg = pga + p g w ,  

Due to the curvature of the meniscus separating the liquid (water) phase from the gas phase inside the 
pores of the medium (considered as a capillary porous body), the equilibrium vapour pressure can be 
obtained from the Kelvin relationship which gives the relative humidity (RH) of the moist air inside the 
pores 

where the water vapour saturation pressure pws,  which depends only upon temperature T, can be 
obtained from the Clausiusxlapeyron equation or from empirical correlations, see, for example, 
Reference 16. The constitutive law for the solid phase is introduced through the concept of modified 
effective stress d (Bishop stress) 

u' = I3 +PI,  (2.6) 
where a is the total Cauchy stress tensor, I is the unit second-order tensor and p is an average pressure 
of the mixture of fluids surrounding the grains, which in the case of small dependence of Helmholtz 
free energies on void fraction is given" by the commonly employed relation 

P = Swpw + (1 - Sw)pg -Pam- (2.7) 

The last term in (2.7) has been added because we use here absolute pressures; pure atmospheric 
pressure does not cause deformation of the medium. 

The constitutive relationship for the solid skeleton has the form 

du' = CT(d& - deT - dao), (2 .8)  

where CT is a tangent constitutive tensor, def = IB,dT is the strain increment caused by thermoelastic 
expansion, /Js means the cubic thermal expansion coefficient of the solid and dE0 represents the 
autogeneous strain increments and the irreversible part of the thermal strains tensor." 

For a binary gas mixture (dry air and water vapour), Fick's law gives the following relative average 
velocities vt of the diffusing species 

because in this case we have 

grad r:) = -grad t;) (2.10) 

In (2.9) D, is the effective difisivity tensor and M is the molar mass of the gas mixture. 

2.2. Balance equations 

The balance equations are obtained starting from the appropriate local equations expressing the laws 
of continuum physics (see, for example, Reference 1 l), specifically the mass balance equation for each 
species considered, the linear momentum balance equation and the energy balance equation (enthalpy 
balance) with viscous dissipation and reversible work neglected. In general such equations cannot be 
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solved at the microscopic level because of the complex geometry of the porous medium, but using 
spatial averaging techniques,' 2-14 the macroscopic balance equations averaged over a representative 
elementary volume (REV) of the porous medium are obtained. The following balance equations 
contain already the constitutive equations of the previous section. 

The linear momentum balance equation for fluids after neglecting several  term^'^-'^ gives the 
generalized Darcy equation 

where n=ga, gw, w, g, vss is the intrinsic mass averaged relative velocity to the solid, ax' is the 
acceleration relative to the solid and kkrn/pn expresses the fluid-solid exchange of momentum. The 
relative permeability I(" is a function of the degree of saturation and of temperature, k is the intrinsic 
permeability tensor and p is the dynamic viscosity. 

The linear momentum balance equation for the multiphase medium is 
d v  u + p ( g  - as) - nSwpwaWs - nSgpgags = 0, (2.12) 

where p is the averaged density of the multiphase medium 

(2.13) 

The dry air mass balance equation, after introduction of Darcy's law and Fick's law and neglecting 
acceleration terms is 

- [nsgpga] + SRpgadiv vs - div pg ) + div ( pg MaMw - M2 Dggrad r;)) = 0. (2.14) 
a 
at 

The vapour mass balance equation and the water mass balance equation are summed, to obtain the 
mass balance equation for all water species. Darcy's law and Fick's law are introduced as above, 
yielding 

- a [ n S g p p ]  + Sgpwdiv vs - div ( pgw -grad y: pg ) - div ( pg ML7Dggrad - f;)) (2.15) at 

( ","." a 
at 

= - - (nSwpw) + Swpwdiv vs + div p w  __ (grad p g  - grad p c  - p w ( g  - as - awS)) 

The macroscopic mass balance equation for the solid has already been summed with the above mass 
balance equations, to eliminate the time derivative of porosity n. The energy conservation equation 
(enthalpy balance) is 

aT 
pC - - div (ieR grad T )  

p at 

kkrg P g  1 kk" 
- [ C:pw (grad pg - grad pc  - p w ( g  - as - aWS)) + CEpg -grad p g  grad T (2.16) 

= Ah,,, - (nSwpW) + Swpwdiv vs - div (grad pg - grad pc - p w ( g  - as - aws)) [ aat 
where 

pCp = nSwpwC: + n S g p T F  + ( I  - n)pSCF (2.17) 
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is the heat capacity of the multiphase medium at constant pressure, A e ~  is the effective thermal 
conductivity and Ah,,, the latent heat of evaporation. 

2.3. Initial and boundary conditions 

The initial conditions specify the full fields of gas pressure, capillary or water pressure, temperature 

(2.18) 

The boundary conditions can be imposed values on r, or fluxes on r:, where the boundary is 
r=T, U r: . The imposed values on the boundary for gas pressure, capillary or water pressure, 
temperature and displacements are as follows: 

pc  =$ on Tc, pw =jw on Tw, 
(2.19) 

The volume average flux boundary conditions for water species and dry air conservation equations and 
the energy equation, to be imposed at the interface between the porous media and the surrounding fluid 
are the following 

(pgavg - pgvp)n = qga  on ri, (2.20a) 

and displacements 

p g  = p:, pc = p; ,  pw  = p:, T = To, u = uo at t = to. 

pg =j3’ on rg, 
T = T o n r T ,  u = f i o n r ,  fort  2 to. 

(ppvg + pwvw + pWW)n = & ( p p  - pg) + qgw + qw on rz (2.20b) 

-(pwvwAhvaP - R,,VT)n = a,( T - T,) + qT on l-;, (2.20c) 

where n is the unit vector, perpendicular to the surface of the porous medium, pointing toward the 
surrounding gas, pg and T, are, respectively, the mass concentration of water vapour and temperature 
in the undisturbed gas phase distant from the interface, a, and pc  are convective heat and mass transfer 
coefficients, while qsa, qw, qw and qT are the imposed dry air flux, imposed vapour flux, imposed 
liquid flux and imposed heat flux respectively. 

Equations (2.20) are the natural boundary conditions, respectively, for the dry air conservation 
equation (2.20a), water species conservation equation (2.20b) and energy conservation equation 
(2.20c), when the solution of these equations is obtained through a weak formulation of the problem, 
as usually done with the finite element method. 

The traction boundary conditions for the displacement field are 

on = t o n  I-; fort  2 to* (2.2 1) 

where t is the imposed traction. 

2.4. Siniplified model for cavitation simulation: isothermal monospecies approach 

We consider unchained situations, where cavitation has been experimentally observed. In this 
situation, with exception of airbubbles in water, which may be observed in fully saturated specimens at 
low pressures, only two fluid phases are present after cavitation: liquid water and water vapour. An 
isothermal monospecies approach with two phases is here adopted, where the following balance 
equations are neglected: the air mass balance equation (2.14) and the energy balance equation (2.16). 
An isothermal approach means physically that heat can be supplied and taken away with infinite 
velocity (this implies infinite heat capacity) and that there is no energetic restriction for phase change. 

The remaining equations are the linear momentum balance equations (2.1 1) and (2.12) and the mass 



1 00 B. A. SCHREFLER E T A L .  

balance equation for water species (2.15). Further we need the perfect gas law for vapour (2.4), 
Kelvin’s equation (2.5), the saturation-capillary pressure relationship (2.1) and the definition of 
capillary pressure (2.2). Because of the assumption of isothermal behaviour, the Clausius-Clapeyron 
equation is not needed: ppws in Kelvin’s law is then constant and equal to the cavitation pressure. 

The following M e r  simplifications are introduced. Because of the absence of dry air flux, the 
diffusion tensor D, is set zero. We neglect the resistance to vapour flux, i.e. K g  = 0, while the variable 
relative permeability of water K“ is taken into account (see Figure 1). Also the density of vapour is set 
to zero in this first approach. These assumptions mean that the left-hand side of (2.1 5 )  is equal to zero 
and that we end up with the balance equation for water in partially saturated regime: 

a 
0 = - (nSwpW) + Swpwdiv v” + div (grad p g  - grad p c  - pw(g - as - a”’)) 

at 

already taken into account in Swandyne Zero left-hand side means also that vapour flux is 
neglected, which at low degrees of saturation is justified by the low permeability k‘, shown in Figure 1. 
Because of the assumption of zero density for vapour, (2.4) yields zero vapour pressure. Hence (2.2) 
reads: 

pc = -pw. (2.23) 

We have cavitation if absolute pressure of water is equal to the saturated vapour pressure. For instance 
at 20”C, pWs is equal to 2.889 @a, while the atmospheric pressure is 101.325 kPa. The relative water 
pressure at cavitation is equal to - 101.325 + 2.889 = - 98.436 kPa. 

Because of the simplifying assumption that vapour pressure is negligible (justified by the above 
indicated values) we have cavitation at a relative pressure of -pah. Swandyne code works with 
relative pressures hence from the above assumptions follows that the average pressure, (2.7), in the 
modified effective stress is: 

p = swpw. (2.24) 

The common employed capillary pressure-saturation relationship is modified accordingly, where a 
This and all the following pressure terms are to be considered relative pressures. 

shift of the reference system is necessary, as shown in Figure 2. 
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Figure 1 .  Relative permeabilities for water and gas versus saturation. Values for water taken From Safai and Pinde?’ 
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Water pressure (negative) 

Figure 2. Saturation-water pressure relationship used for modelling cavitation 

This rather simple model allows us, however, to take into account the desaturation due to cavitation 
and the reduced water flux because of the diminishing relative permeability with decreasing degree of 
saturation. The first example below is solved with this procedure for cavitation. 

A more sophisticated approach would require to solve the full equation (2.15) with the fourth term 
on the left-hand side equal to zero, together with Kelvin's law and the perfect gas law. This possibility 
is currently investigated. No modification of (2.1) and (2.7) is then needed. 

3. DISCRETIZATION AND SOLUTION 

With the above simplifications the two remaining balance equations are now the linear momentum 
balance equation (2.12), where also the relative fluid accelerations are neglected" and the mass 
balance equation (2.22). By ignoring the relative component of the fluid accelerations the primary 
variables may be reduced to solid displacements and fluid pressure." Further the dynamic seepage 
forcing term, connected with the solid acceleration is neglected in the mass balance equation because 
its contribution to the equation system is very small when compared with other terms.' The balance 
equations to be solved, with all the simplified assumptions taken into account, are 

div u + p ( g  - as) = 0, (3.la) 

a 
at 

0 = - - (nSwp") + Swpwdiv vs + div p g  - p",)) . (3.lb) 

Together with the balance equations we need (2.24), the saturation relationships 
sw = SJpC), K" = k"(S") (3 4 

and the appropriate initial and boundary conditions of section 2.3. A weak form of the balance 
equations is obtained by means of the weighted residual approach as in Reference 10. 

The balance equations are then discretized in space using a Galerkin's procedure and in time by 
Newmark's scheme.20 The unknown field variables are expressed in the whole domain by global shape 
function matrices, N and N,, and nodal value vectors U and p" 

Once the coupling matrix Q, the mass matrix M, the strain operator B and the external load vector f" 
are introduced (see appendix), the linear momentum balance equation can be written as: 

u = NUC, pw = N,p". (3.3) 

] BTa'dn - Qp" + MU = f". (3-4) 
n 
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The mass balance equation becomes 

HpW + Q’U + SP” = fp, (3.5) 

where H is the permeability matrix, S the compressibility matrix and f the flow vector (see appendix). 
The coupled system at time is 

where P,+] is the equivalent nodal force vector. The Newmark scheme adopted for time integration, 
with the lowest allowable order for each variable, permits to write the variables and their derivatives at 

Un+] = in + ;,,At + plA:,At = 6:+, i- P,AU,At, 

as function of their values at tn 

;,At2 /3,A6,At2 p2 AunAt2 
2 ’  = ii:+, + 

+ 2  
in+] = ii, + ;,At + - 

2 (3.7) 

in+, = p, 3- &,AC + OA.~,AI = + O A ~ , A ~ ,  

where u:+ , ii:+ I and pt+ are predicted values from known parameters at time t,  and PI ,  Pz and 0 are 
the Newmark’s parameters. 

Insertion of (3.7) into (3.6) allows the coupled system to be written as: 

Yx+, = M , + l A ~ ,  + Pn+] - Q,+lOAtAp, - F,”,, = 0, 

(3.8) 
= Q;F,,p,AtA;, + H , + l O A t A ~ ,  + Sn+lAFn - Ft+, = 0. 

At the beginning of each time step Pn+l must be evaluated by integration of the constitutive law, being 
known the stress field at the previous step. 

The non-linear coupled system (3.8) is solved by an iterative procedure. If a Newton-Raphson 
scheme is adopted to linearize the problem (3.8), i.e. 

the Jacobian matrix of transformation, J, at the ith iteration is 

ayU ayU -- 
(3.10) 

J=E/ = [  %A:) q A p )  : ) = (  M + K,&A? -QOAt 

ax x=x, -- a v  a v  QTpl At HOAt + S 
a(A;) a(Ap) 

where KT is the tangent stiffness matrix. 
Substituting (3.10) in (3.9), the system to be solved can then be written in the following form: 

M + 4 KTB2A? -QOAt -9“ 

-QTOAt - - 0 (HOAt + S) )(::) = (-!p). (3.1 1) 

PI 
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It has been made symmetric by a simple scalar multiplication of the second set of equations with the 
term -O//?, . Since the Newton-Raphson method requires the Jacobian matrix to be evaluated and 
inverted at each iteration, also other modified schemes are used to achieve convergence with less 
computational effort. In particular, the use of secant updates, like Davidon’s and Broyden-Fletcher- 
GoldfarbShanno’s (BFGS) methods is found advantageous in non-linear analyses.’ 

4. NUMERICAL RESULTS 

As first example we consider the same cross-section as in References 5 and 7 with impervious 
boundary conditions. Vertical and horizontal displacements are constrained at the bottom surface. 
Ramp loading is applied at the top, as indicated in Figure 3. The self weight is taken into account as 
well as hydrostatic pressure distribution as initial condition. The permeability in saturated condition is 
0.25 x m/s, while once cavitation starts and two phase flow develops, the relationship between 
degree of saturation and relative permeability of Safai and Pinde?’ has been assumed, see Figure 1. 
Also the capillary pressure-saturation relationship is that given in Reference 21 but shifted as shown in 
Figure 2. A Mohr-Coulomb yield criterion with softening is used within the framework of associative 
plasticity and the material parameters are the following: Young’s modulus, E = 285 MPa; Poisson’s 
ratio, v = 0.4285; solid grain density, ps = 2000 kg/m3; liquid density, pw = 1000 mg/m3; apparent 
cohesion, co = 1.84 MPa; hardening modulus, H = - 40 MPa; angle of internal fnction, cp = 20”; 
initial porosity, n = 0.20; solid grain bulk modulus, K, = 6.78 GPa; liquid phase bulk modulus, 
K ,  = 0.20 GPa. 

Shear band formation starts from the bottom surface when the first crest of loading wave hits the 
boundary. The development of the shear band is shown in Figures 4, 5 and 6, where the equivalent 
plastic strain contours at 0.18, 0.215 and 0.235 s are respectively depicted. The pore water traction 
(which means capillary pressure, equation (2.23)) distribution at 0.235 s is shown in Figure 7 (the code 
used for these simulation assumes pore pressure positive in traction). The flow rate with and without 
modelling cavitation are shown in Figure 8 and 9 respectively. lt should be noted that without 

35 I m 

impervious r I impervious 

r 
,-impewious 

--5m--------1 

Figure 3. Geometrical characteristics and load function of the first example 
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EQUIVALENT PLASTIC STRAIN 
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Figure 4 Effective plastic strain at t= 0.18 s 
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Figure 5. Effective plastic swain at r=0.215 s 
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Figure 6 .  Effective plastic strain at r = 0.235 s 
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Figure 7. Pore water tractions (Pa) at 0 235 s 
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Figure 8. Flow rate of fluid phase at f = 0.235 s with cavitation modelling 
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Figure 9. Flow rate of fluid phase at t = 0.235 s without modelling cavitation 
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WATER SATURATION 

Distribution of degree of water saturation 
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Figure 12. Displacement vectors at t=0 .235  s 
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cavitation the flow rate is approximately doubled. The distribution of the degree of saturation can be 
seen in Figure 10 and the permeability kK" distribution is drawn in Figure 1 1. The displacement of the 
solid phase after the full development of the shear band is depicted in Figure 12. Pore water pressure, 
which is to be considered capillary pressure in the traction range, and vertical total strain versus time at 
a nodal point and at a gauss point inside and outside the shear band (at the same level below the centre) 
can be seen in Figures 13 and 14. 

The weak mesh dependence of the maximum effective plastic strain is shown on a second example. 
The case studied in Reference 7 has been used for this purpose. The same cross-section as above is 
investigated but with lateral surfaces open to flow. The sample is further subject to axial compression 
by means of uniform ramp loading both on the upper and lower surfaces. Initial stress state and initial 
pressure are zero. The material parameters as the same as above, with apparent cohesion 
c,= 1.42 Mpa instead of 1.84 MPa. Meshes made of 18 x 22 (396 f.e.), 24 x 30 (720 f.e.), 
30 x 36 (1080 f.e.) and 36 x 44 ( 1  584 fe.) rectangular four node elements where used. For the mesh 
of 396 elements in Figures 15 and 16 the equivalent plastic strain contours at 0.35 and 0.50 s are 
shown respectively. Shear band formation starts from the centre of the .sample (Figure 15) because of 
the loading condition chosen. Pore water traction at 0.50 s is shown in Figure 17. 

The resulting effective plastic strains after full development of the shear band along two vertical 
cross-sections at the centre and at the quarter of the model are drawn in Figures 18 and 19. Without 
regularization these maxima would severely change for the four meshes considered (compare e.g. for a 
single phase material Reference 22). These figures confirm hence that a diffusion (flow) governed 
model contains a natural regularization procedure. 

We are currently investigating the model parameters which control this regularization and the 
associated internal length scale. 

This second example, which has been solved without considering phase change, shows that at least 
numerically, cavitation is not strictly necessary for the shear band to develop. In this case the shear 
band develops from the centre when significant pore water tractions appear.' 
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Figure 13. Total vertical strains at two gauss points slightly below the centre, one inside, the other outside the shear band 
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WAIER PRESSURE 
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Figure 14. Water pressure at two nodals points slightiy below the centre, one inside, the other outside the shear band 
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Figure 15. Effective plastic strain at I =0.35 s 
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Figure 17. Pore water tractions (pa) at 0.50 s 
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Figure 18. Equivalent plastic strain for different meshes along a vertical cross section through the centre 
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Figure 19. Equivalent plastic strain for different meshes along a vertical cross section at a quarter of the base 
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4.1. Shear band inclination 

Shear band inclination in a single phase material depends on many parameters such as friction angle, 
dilatancy angle, Poisson's ratio and hardening modulus.23 In a multiphase material the influence of the 
liquid phase is fundamental: shear band inclination depends also on permeability values and on the 
boundary conditions of fluid phase. 

In classical plasticity, Mohr-Coulomb theory and von Mises theory give two typical values for the 
shear band inclination. 

In drained conditions, the influence of volumetric strain is important; Mohr-Coulomb theory states 
that the shear band is parallel to the surface which is subject to the stress (a, T) of the Mohrr-Coulomb 
failure envelope. The shear band makes hence the following angle 6 with the major principal stress 
direction 

where 4 is the hction angle. Using = 20", this theory gives 0 = 35" . This theory does not take into 
account fluid phase as done in the numerical model. With a permeability value of 25 m/s (unrealistic 
value which should simulate drained conditions restricting water contribution), in Figure 20 an 
inclination angle of 6 = 38" is shown. In this case the boundary conditions adopted are: impermeable 
top and bottom surface, lateral surface open to flow. 

In perfectly undrained conditions, von Mises yield criterion may be used to obtain a reference value 
because no volumetric strains apped4 .  This criterion states that inclination angle in plane strain case 
is2' 

( 1  - v)s, - vsz 
vs, - ( 1  - v)s2 ' 

6 =  

where s1 and s2 are the principal deviatoric stresses. 
Using a Poisson's ratio v=O.4285, this equation gives 8=45.8". A numerical experiment with 

plane strain elements and von Mises yield criterion gave this theoretical value. In Figure 6 an 
inclination angle of 42" can be seen; in that case there is internal flow and a Mohr-Coulomb law has 
been used hence the above limit does not apply exactly. 
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Figure 20. Effective plastic strain at t = 0.36 s 
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Figure 21. Effective plastic strain at f = 0.22 s 

It is also observed that with four node elements it is not easy to capture the correct value of shear 
band inclination, especially using a large element, as shown in Figure 16, where a drained sample with 
lateral surfaces open to flow is analysed and a value of 8 = 42" is observed. 

The influence of fluid boundary conditions on shear band inclination can be seen from the following 
numerical test. In a first sample upper and bottom surfaces are open to flow, while lateral surfaces are 
impervious. With a permeability value of 0.25 d s ,  inclination angle 8 = 36" is obtained as shown in 
Figure 21. Using impervious upper and bottom surfaces and lateral surfaces open to flow, an 
inclination angle of 8 = 41.5" is obtained.' 

CONCLUSION 

It has been shown that not only experimentally but also numerically negative pore pressures may be 
obtained in localisation phenomena in fully saturated undrained samples of dilatant geomaterials. In 
the numerically investigated case a Mohr-Coulomb constitutive relationship with a softening branch 
has been used within the framework of associative plasticity. 

The rapidly decreasing pore pressure in the process of shear band formation reaches the point where 
cavitation is of importance. A facility to model this situation based on simplified balance equations has 
been developed and implemented in the code Swandyne for partially saturated soil dynamics. This 
allows to follow more closely the phenomena which take place after the onset of the instability, as 
shown in an example. 

The model, being diffusion (flow) governed, contains hrther a natural regularization procedure 
which allows to obtain shear bands with substantially mesh size independent maximum effective 
plastic strain. This has been demonstrated on a hrther example. 
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coupling matrix 

mass matrix 

permeability matrix 

compressibility matrix 

external load vector 

flow vector 

equivalent force vector 
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APPENDIX 

BTSwmNwdR with m = (1,  1, 1, 0, 0, O)T ? = 5 ,  
Nf[Ps(l - n) + pwnSw]N,dR M=S,  

H = (VN,)TkVNwdR 
n 

s = N ; ~ N , ~ R  1 

fp = 1, (VNw)TkpwgdR - 1 NlqTndT 
r w  
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solid phase 
gaseous phase 
liquid phase 
generic phase 
acceleration of IZ phase 
acceleration relative to the solid 
strain operator 
specific capacity 
tangential constitutive tensor 
effective difisivity tensor 
flow vector 
external load vector 
gravity acceleration 
permeability matrix 
unit tensor 
liquid phase relative permeability 
absolute or intrinsic permeability tensor 
permeability value [L/t] 
solid grain bulk modulus 
liquid phase bulk modulus 
tangential stiffness tensor 
molar mass of constituent n 
mass matrix 
porosity 
unit normal vector 
macroscopic pressure of the x phase 
equivalent force vector 
coupling matrix 
universal gas constant 
water saturation 
gas saturation 
compressibility matrix 
time variable 
surface traction tensor 
temperature 
solid displacements 
velocity of the a-phase with respect to the x phase 
velocity of the IZ phase 
Biot's coefficient 
Newmark's parameters 
effective thermal conductivity 
liquid dynamic viscosity 
porous medium density 
intrinsic phase averaged density of the x phase 
Cauchy stress tensor 
effective stress tensor 

Variables with overbar refer to the nodal values. 
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