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Abstract.

We revisit the problem of one-dimensional tide propagation in convergent estuaries
considering four limiting cases defined by the relative intensity of dissipation versus
local inertia in the momentum equation and by the role of channel convergence in
the mass balance. In weakly dissipative estuaries, tide propagation is essentially a
weakly nonlinear phenomenon where overtides are generated in a cascade process
such that higher harmonics have increasingly smaller amplitudes. Furthermore,
nonlinearity gives rise to a seaward directed residual current. As channel convergence
increases, the distortion of the tidal wave is enhanced and both tidal wave speed
and wave lenght increase. The solution loses its wavy character when the estuary
reaches its ”critical convergence”; above such convergence the weakly dissipative
limit becomes meaningless. Finally, when channel convergence is strong or moderate,
weakly dissipative estuaries turn out to be ebb dominated. In strongly dissipative
estuaries, tide propagation becomes a strongly nonlinear phenomenon that displays
peaking and sharp distortion of the current profile, and that invariably leads to
flood dominance. As the role of channel convergence is increasingly counteracted
by the diffusive effect of spatial variations of the current velocity on flow continuity,
tidal amplitude experiences a progressively decreasing amplification while tidal
wave speed increases. We develop a nonlinear parabolic approximation of the full de
Saint Venant equations able to describe this behaviour. Finally, strongly convergent
and moderately dissipative estuaries enhance wave peaking as the effect of local
inertia is increased. The full de Saint Venant equations are the appropriate model

to treat this case.

1. Introduction

This paper is focused on tide propagation in conver-
gent estuaries. This subject has attracted the attention
of several investigators owing to its relevance to the un-
derstanding of the behavior of many important real es-
tuaries. Our interest in the problem also arises from the
fact that the availability of a one-dimensional asymp-
totic theory of the hydrodynamics of tide propagation
in convergent channels, extended to more than one di-
mension, can be set as the basis for investigations of
tidal-induced transport of passive tracers or suspended
sediments.

The first clear suggestion that in shallow estuaries
the basic momentum balance differs from that charac-
teristic of weakly dissipative estuaries and dominantly
involves pressure gradient and friction was put forward
by Le Blond [1978], who analyzed one-dimensional tidal
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propagation in a straight channel of uniform depth and
width. Le Blond [1978] showed that as a result of the
negligible role of local inertia, tide propagation in shal-
low estuaries behaves as a diffusive process rather than
a hyperbolic wave. Furthermore, the horizontal length
scale Lj of the tide propagation arising from momen-
tum balance was shown to be much smaller than the
frictionless tidal wavelength \* = T*,/gDf, where T
is the tidal period, Dj is the average flow depth, and g
is gravity (hereafter asterisks denote dimensional quan-
tities). Le Blond’s [1978] estimate for L§ reads

. gD32T*C?
Ly= 220G )
0

where Cp denotes a typical value of the flow conduc-
tance (i.e., the inverse square root of the friction co-
efficient ¢p) while U§ is a characteristic amplitude of
tidal velocity. The estimate (1), applied to two shal-
low estuaries, namely, the St. Lawrence and the Fraser,
reveals that \* exceeds L{ by a factor of 3-5. The veloc-
ity scale Ug in the frictional regime of shallow estuar-

30,793



LANZONI Al

30,794 SEMINARA: T
ies also differs significantly from the typical frictioniess
scale €,/gD}, with € ratio between the characteristic
PR DR RN, LIRS [N R B SR B s I R | ™% ma

tidal ampiitude a” and a typical llow deptn Ogy. 'Lhe
balance imposed by flow continuity in the case of a con-

aetant width ocivec
L* _ ‘3/a*2903

stant width gives
TT* /9)

= L

TV T+ A

Ug = €
The picture changes considerably when the effect of es-
tuary convergence is significant. About 160 years ago,
Green [1837] employed an energy argument to treat tide
propagation in estuaries with slowly varying width and
depth in the absence of friction. The resulting Green’s
law predicts that tidal amplitude increases landward as
B*~/2px-1/4, having denoted by B* and D* the lo-
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the spatial scale of channel convergence is often much
smaller than tidal wavelength while, most often, fric-
tion plays a nonnegligible or even dominant role in tide
propagation. Let us then focus on two contributions
that have recently attempted to remove the latter re-
strictions (but see Jay [1991] and Friedrichs and Aubrey
[1994] for a detailed review of the previous literature).

Jay [1991] considered tide propagation in estuaries
characterized by channel convergence, accounting for
the presence of a steady river flow and for the retarding
effect of tidal flats adjacent to the main channel treated
as storage areas. Some finite amplitude effects were also
accounted for, but the effect of overtides was not con-
sidered. As a result, the treatment of nonlinear terms
of the momentum equation led to linear contributions
and, not surprisingly, the resulting wave equation was
indeed linear. Jay [1991] was then able to derive two
analytical solutions: the former applies to weakly dis-
sipative estuaries either strongly or weakly convergent,
the latter concerns strongly dissipative estuaries. By
analyzing the main features of his results, Jay [1991]
was able to clarify how the classical picture associated
with Green’s solution is modified.

Jay’s [1991] discussion centered on how the compet-
ing effects of local inertia, friction, and topography act
to control the real and imaginary parts of the tidal
wavenumber, hence of the wave speed and the rate of
spatial growth or decay of tidal amplitude. In particu-
lar, it turned out that the topographic funneling effect
predicted by Green may be significantly reduced or even
overcome by damping associated with friction and us-
ing Jay’s [1991] terminology, with “topography”. (In
our formulation we distinguish between the effects of
“channel convergence”, i.e., topographic funneling and
the effect of along-channel gradients of tidal velocity,
which is one of the actual sources of damping for the
tidal wave).

A second interesting observation from Jay’s [1991] re-
sults concerns the behavior of the tidal wave speed a,
which was shown to depend strongly on the degree of
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channel convergence and on the intensity of friction. In
particular, Jay [1991] defined a “critical convergence”
such that the effects of local inertia and topography bal-
anced exactly in his expression for the tidal wavenum-

ber.
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convergent” estuaries the wave speed was found to be
linearly proportional to the ratio between convergence
and friction and might attain very large values, while a
phase difference between flow discharge and free surface
elevation up to 90° was obtained.

Recently, Friedrichs and Aubrey [1994] reconsidered
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the case of strongly convergent shallow estuaries, sug-

gesting that they are dynamically dominated by fric-

tion and kinematically controlled by convergence. In

other words, in the context of Fmedmchs and Aubrey’s
[1994] formulation, at the leading order of approxima-
tion, friction and gravity balance in the momentum
equation, while, in the continuity equation, the net flux
associated with channel convergence is required to bal-
ance the volumetric effect of temporal oscillations of
free surface elevation. With the further help of the lin-
earization of the frictional term, Friedrichs and Aubrey
[1994], at the lowest order of approximation, derived
a linearized kinematic wave equation, which they as-
sumed to be the leading order approximation of the full
de Saint Venant equations. The solution obtained in the
context of such approximation has features that resem-
ble those obtained in the classical theory of cooscillat-
ing tides, namely, negligible amplification of the tidal
wave and relative phase between cross sectionally av-
eraged velocity and free surface elevation of 90°. The
latter similarities are in striking contrast with the fun-
damentally different nature of the two solutions, the for-
mer displaying the behavior of a frictionally dominated
progressive wave, the latter consisting of a frictionless
standing wave.

In the present contribution we revisit the subject
of tide propagation in convergent channels considering
four limit regimes identified by the degree of channel
convergence and by the relative importance of friction
as compared with local inertia. The results arising from
our analysis add some interesting features to the previ-
ous picture. The first distinct feature, which does not
seem to have been fully appreciated in the previous liter-
ature, is the conceptual and practical difference between
the role of finite amplitude effects in weakly dissipative
as opposed to strongly dissipative estuaries. In the for-
mer case, provided tidal amplitude is small compared
with the mean flow depth, tide propagation is essen-
tially a weakly nonlinear phenomenon; in other words,
overtides of increasing order are generated in a cascade
process such that their effect is decreasingly significant
as their order increases. We are able to derive two
perturbative weakly nonlinear solutions for tide prop-
agation in weakly dissipative estuaries, either weakly
or strongly convergent. Indeed, perturbation expan-
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sions for the solution can be formally set up in terms
of a small-amplitude parameter which allows a formally
justified linearization of the frictional term. The re-
sulting sequence of linear differential problems are then
amenable to analytical treatment.

On the contrary, in strongly dissipative estuaries,
tide propagation is a strongly nonlinear phenomenon;
in other words, linearization of the frictional term is
not justified even though a perturbation expansion can
be still set up in terms of the small-amplitude parame-
ter. We clarify this point by reexamining the kinematic
wave approach appropriate to strongly convergent and
strongly dissipative estuaries. In particular, we show
that the solution of the fully nonlinear kinematic wave
equation develops a discontinuity as a result of conver-
gence of the characteristic lines arising when the nonlin-
ear nature of the equation is preserved. We show that
such discontinuity may be simply removed by keeping,
at the leading order of approximation, the convective
contribution in the continuity equation. The pertur-
bation expansion set up for the solution allows us, at
the leading order, to derive a nonlinear parabolic equa-
tion somewhat similar to that classically found in the
context of the theory of flood propagation in rivers. By
comparing the solution of the nonlinear parabolic model
with the numerical solution of the complete de Saint
Venant equations we find that, as expected, for given
channel convergence measured by the dimensionless pa-
rameter K, the parabolic model is a good approxima-
tion of the full problem when the effect of local inertia in
the momentum equation, measured by the dimension-
less parameter S, is small enough. The two dimension-
less parameters, S and K, are defined and discussed in
section 2. As the role of local inertia increases, the dif-
fusive effect introduced by the “parabolic” correction
is counteracted; as a result, tide propagation experi-
ences amplification and an enhanced tendency to wave
peaking similar to that emerging in the context of the
kinematic wave approximation.

A second feature arising from our work concerns
the important question of flood versus ebb dominance.
Weakly dissipative, moderately /strongly convergent es-
tuaries are found to be ebb dominated as both the peak
of ebb velocity and the duration of the ebb phase exceed
the corresponding values for the flood phase. Further-
more, ebb dominance is increasingly displayed as chan-
nel convergence increases. However, notice that flood
dominance is displayed by the temporal development
of flow discharge. Furthermore, tidal propagation in
weakly dissipative convergent estuaries gives rise to the
generation of a seaward directed residual current super-
imposed on an otherwise symmetrical current profile.

On the contrary, strongly dissipative estuaries are in-
variably found to be flood dominated, a feature which
will be seen to be associated with the process of peak-
ing of the current profile that characterizes tide propa-
gation in such estuaries. This latter feature also arose
in the work of Friedrichs and Aubrey [1994]. However,
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we point out that our analysis does not cover the ef-
fect of the possible presence of tidal flats, which has
been shown to be a cause of ebb dominance [Speer and
Aubrey, 1985; Friedrichs and Madsen, 1992; Shetye and
Gouveia, 1992].

Further features already emerged from the linearized
treatment of Jay [1991] are confirmed by our analysis,
as discussed in the next sections. The procedure fol-
lowed in the rest of the paper is as follows. In the
next section we formulate the mathematical problem
of tide propagation in convergent estuaries. Section 3
is devoted to the limit behavior of weakly dissipative
and weakly convergent estuaries. Section 4 treats the
weakly dissipative and moderately or strongly conver-
gent case. Highly dissipative estuaries are treated in
section 5 for the weakly convergent case while, the ef-
fects of strong convergence are discussed in sections 6
and 7. Finally, section 8 is devoted a brief analysis of
the important case of estuaries where the effects of lo-
cal inertia are comparable with those of friction. Some
discussion (section 9) concludes the paper.

2. Formulation of the Problem

We consider a straight channel closed at one end and
connected at some initial cross section with a tidal sea.
The channel is assumed to have length L}, rectangu-
lar cross section with mean depth D§ and width 2B*
slowly varying in the longitudinal direction in the form
(Figure 1)

B* = Bj exp <—%> (3)
b

where z* is longitudinal axis positive in the landward
direction, Bg is half width of the channel at the entrance
section where we set the origin of the z* axis, and L;
is convergence length.

In the following we ignore the possible presence of
tidal flats adjacent to the main channel and a mean
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Figure 1. Sketch of the estuary.
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depth variation along the estuary. In real estuaries the
rate of channel convergence varies significantly. In fact,
a measure of channel convergence is the quantity

aB*| B*
dz* |~ L

(4)

Such ratio decreases in the longitudinal direction. For
example in the case of the Delaware estuary it ranges
about unity at the entrance but is reduced by 2 orders of
magnitude at the inner end of the estuary and similarly
for the Thames, where it is roughly reduced from 0.2 to
0.005.

Let af be a scale for the amplitude of free surface
oscillations about the mean level, defined by the eleva-
tion H{, and let D denote a scale for flow depth. We
assume that, as is typical of many tidal environments,
we can write

agy *
= 1 =—>1 5
€ D3<< I5} D > (5)

Notice that € typically keeps small along the whole es-
tuary while § varies by orders of magnitude attaining
values that may range from thousands at the mouth of
the estuary to tenths at the inner end. The relevant
physical quantities are then made dimensionless as fol-
lows:

D* = DD ot =Lz
Ur=UU C = cCo 6)

where w* is the angular frequency of the tidal wave, L
is the length scale describing the typical spatial varia-
tions of the flow characteristics, Cy is the characteristic
value of flow conductance (inverse square root of friction
coefficient) in the estuary, and Ug is the typical value
of the cross sectionally averaged speed in the estuary.

It should be noted that the choice of any scaling quan-
tity may not be uniformly valid either in space or in
time. In particular, it will appear that the solution may
tend to develop discontinuities, i.e., fairly sharp fronts;
in a neighborhood of such fronts, spatial (or temporal)
variations are obviously faster than those typically ex-
perienced by the tidal wave.

The appropriate choice for L§ and U in any specific
context arises from the physical balances imposed by
the equations of conservation of mass and momentum
which, in dimensional form, read

U*D*
D*at* + U*.D*aw* +D*U*7z* - L* = O (7)
b
* * * * U*lU*| /
Uy + UU" 3+ +9D% e + oD =0 (8)

where bed slope is taken as negligibly small.
Using the dimensionless variables defined by (6) and
expanding D* in the form

D* = D[l + ed(t, z) + O(e?)] (9)

with d an O(1) quantity, the governing equations (7)
(8) become

)
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F2
dy + ’s% (eUd,; +DU,;) — KUD =0 (10)
F? ulul _
SU,t + “‘G—UUM’: +daI +RC2D4/3 =0 (11)
where we have set:
S = w*Lé 502_ — _Fﬁi
Us e’ € CgDS ’
Ur k
K = 0 _ fs *1/6
ew Ly’ Co \/§DO (12)

and Fy denotes the typical Froude number Uy / V9Dg,
while k,; denotes Strickler coefficient, and Strickler’s for-
mula has been used to estimate the scale for conduc-
tance. Notice that the factor ¢ is included to account for
possible variations of flow conductance either in space
(due to spatial variations of roughness) or in time (due
to temporal variations possibly related to the presence
of bed forms of varying amplitude). In the following,
for the sake of simplicity, we will assume ¢ = 1.

As already pointed out by several authors, besides
the tidal amplitude parameter ¢ and the Froude num-
ber Fp, three major dimensionless parameters are found
to play a fundamental role in tide propagation along a
convergent estuary. The parameters S and R in the mo-
mentum equation denote, respectively, a measure of the
effect of local inertia and friction relative to that of grav-
ity, while the parameter K occurring in the continuity
equation measures the kinematic effect of topography
(channel convergence) relative to the effect of temporal
oscillations of free surface elevation.

On the basis of the values attained by the above
parameters, we may then classify estuaries as weakly
(strongly) convergent if K <« 1(K ~ O(1)) and weakly
(strongly) dissipative if R/S <« 1(R/S > 1). Notice
that the ratio R/S reads Ug/w*C2Dg, hence it is in-
dependent of the spatial scale L§j and may be readily
estimated for the estuaries reported in Table 1. The
values of the dimensionless parameters €, K, and R/S
reported in Table 2 show that a wide variety of estuary
types is indeed found in nature. Basically, one may rec-
ognize the following four limiting behaviors of tide prop-
agation: (1) weakly dissipative and weakly convergent
(WD-WC), (2) weakly dissipative and strongly con-
vergent (WD-SC), (3) strongly dissipative and weakly
convergent (SD-WC), and (4) strongly dissipative and
strongly convergent (SD-SC). In the following we at-
tempt to formulate appropriate nonlinear models for
each of these limiting behaviors.

It was suggested by D.A. Jay that it might be help-
ful to rescale (10) and (11) by referring to the classical
scaling employed in the context of inviscid tide propa-
gation in constant width channels. This can be done by
expressing the length scale L and the velocity scale Ug
in the form

D*
Ly =YI970, Ug = ey/gD3¢

w*

(13)
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Table 1. Observed tidal and geometric properties of various tidal estuaries

Estuary ag,m T* hours L;,Km Lj,Km Dgm Us,m/s Co source
Bristol Channel 2.60 12.4 80 65 45.0 1.0 20.0 1
Columbia® 1.00 12.4 240 25 10.0 1.0 18.0 2
Conwy 2.40 12.5 22 6.3 3.0 0.5 14.0 3
Delaware 0.64 12.5 215 40 5.8 0.6 21.8 4
Elbe* 2.00 124 7 42 10.0 1.0 20.0 5
Fleet 0.60 12.5 12.5 - 1.5 04 22.4 6
Fraser® 1.50 124 108 215 9.0 1.0 144 7
Outer Bay of Fundy 2.10 12.4 190 230 60.0 1.0 21.0 8
Gironde® 2.30 124 77 44 10.0 1.0 18.0 9
Hoogly 2.10 12.0 72 25.5 5.9 - - 10
Hudson 0.69 12.4 245 140 9.2 0.7 30.9 11
Irrawaddy 1.00 12.0 124 35 12.4 - - 10
Khor® 1.30 12.0 90 20.6 6.7 - - 10
Ord 2.50 12.0 65 15.2 4.0 2.0 20.0 10
Potomac 0.65 12.4 184 54 6.0 0.9 24.0 11
Rotterdam Waterway  1.00 12.4 37 56 11.5 0.7 21.0 12
Scheldt 1.90 12.4 7 54 8.0 0.5 16.5 13
Severn 3.00 124 110 41 15.0 1.5 20.0 1
Soirap 1.30 12.0 95 34 7.9 - - 10
St. Lawrence® 2.50 12.4 330 183 7.0 1.0 28.8 14
Tamar 2.60 12.5 21 4.6 2.9 0.5 25.0 4
Tees 1.50 12.0 14 5.5 7.5 04 16.0 15
Thames 2.00 12.3 95 25 8.5 0.6 14.1 4

Sources: 1, Uncles [1981], [1991]; 2, Giese and Jay [1989]; 3, Wallis and Knight [1984], Knight
(1981]; 4, Friedrichs and Aubrey [1994]; 5, Duwe and Sundermann [1986]; 6, Robinson et al. [1983),
Shetye and Gouveia [1992]; 7, Ages and Woollard [1976), Le Blond [1978]; 8, Greenberg [1979]; 9, Allen
et al. [1980]; 10, Wright et al. [1973]; 11, Thatcher and Harleman [1972]; 12, Abraham et al. [1986];
13, de Jong and Gerritsen [1984]; 14, Prandle and Crookshank [1974], Le Blond [1978]; 15, Lewis and

Lewis [1987]. Parameters are defined in the text.

aFluvially influenced estuaries.

b Extreme annual variability of the freshwater discharge.

where 1 and ¢ are parameters which keep O(1) only in
the weakly dissipative and weakly convergent case.

Simple algebraic manipulations then lead to the fol-
lowing structure of the continuity and momentum equa-
tions:

d,¢ +% (eUd,; +DU,; ) — Ko9pUD =0 (14)

U\v|

(B4)U,x +(e6) UV +do +(e*Ro) s = 0 (15)

where

Ko = VIO Ry =

=Y,
w*Ly

v 9Dq (16)

Cwr2Dt

This formulation unambiguously clarifies that only
three parameters control tide propagation in estuaries.
Indeed, the forms of ¢ and v appropriate to each of the
limiting behaviors discussed in this paper depend on
the three parameters, €, Ko, and Ry. In the following,
however, we will keep the formulation (10) and (11)
which we feel to be less cumbersome for the reader,
but we will point out the equivalent choices for ¢ and 9
appropriate to each of the limiting case examined below.

Furthermore, we restrict our attention to the case of
a simple harmonic tidal wave by assuming at the outlet
of the estuary:

d|yz=0 = cost (17)

At the upstream end of the estuary we may either as-
sume that the tidal wave decays asymptotically as z in-
creases (river channels) or that complete reflection (i.e.,
Ulz=z, = 0) occurs at some tidal barrier (closed chan-
nel). Herein, for the sake of simplicity we adopt the
former condition in the analytic treatment of the first
two cases (WD-WC and WD-SC), while the condition
Ulz=z, = 0 has been adopted in the numerical calcu-
lations pertinent to the latter two cases (SD-WC and
SD-SC). Notice that the tidal barrier condition would
be easily applied in the former case as well. On the other
hand, the numerical calculations carried out by Parker
[1991] have shown that the effects of an increasingly
high river discharge (i.e., Ulz=;, < 0) remain localized
(at least as far as the fundamental M, tide is concerned)
within the upper reach of the estuary. Therefore the
choice of the boundary conditions herein pursued is not
likely to affect substantially the results presented in the
following sections.
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Table 2. Dimensionless parameters characterizing the
tidal estuaries of Table 1

Estuary € K R/S Type
Bristol Channel 0.07 1.68 0.44 SC - WD
Columbia, 0.10 2.84 2.19 SC - SD
Conwy 0.80 0.71 6.09 MC - SD
Delaware 0.11 097 1.55 SC - MD
Elbe 0.20 0.85 1.78 MC - SD
Fleet 0.40 0.02 381 WC-SD
Fraser 0.17 0.20 3.81 WC - SD
Outer Bay of Fundy 0.04 088 030 MC-WD
Gironde 0.23 0.70 2.19 MC - SD
Hoogly * 0.36 0.76 2.91 MC - SD
Hudson 0.08 0.50 0.60 MC - MD
Irrawaddy ® 0.08 244 1.39 SC - MD
Khor # 0.19 1.73 2.55 SC - SD
Ord * 0.62 145 8.59 SC - SD
Potomac 0.11 1.09 185 SC - MD
Rotterdam Waterway 0.09 1.02 0.98 SC - MD
Scheldt 024 028 163 WC-MD
Severn 0.15 173 1.33 SC - MD
Soirap ? 0.16 1.23 2.18 SC - SD
StLawrence 0.36 0.11 122 WC-MD
Tamar 0.90 0.87 1.98 MC - SD
Tees 0.20 2.50 1.43 SC - MD
Thames 0.24 078 271 MC - SD

Abbreviations: SC, strongly convergent; MC, moder-
ately convergent; WC, weakly convergent; SD, strongly dis-
sipative; MD, moderately dissipative; WD, weakly dissipa-
tive. Parameters are defined in the text.

2The value of Uy and Co could not be inferred from the
source and the values of the parameters have been evaluated
by arbitrarily assuming Us =1 m/s and Cp = 20.

3. Weakly Dissipative and Weakly
Convergent Estuaries

An example of such an estuary is the seaward portion
of the bay of Fundy, which is characterized by a nearly
rectangular geometry in plane view and, owing to the
large depths (of the order of some tens of meters), by a
fairly low friction coefficient [Greenberg, 1979, Prandle
and Rahman, 1980).

This limiting behavior is mathematically described
by the following conditions

R <1
§ )
Momentum conservation here requires that local iner-
tia must dominantly balance gravity while, neglecting
the topographic effect, flow continuity leads to a bal-
ance between first and second terms in (10). It is then
convenient to set

K<1 (18)

B,

=1 0 -1,
S ’ e2S

(19)

which, recalling (12), is equivalent to the following
choice of the scales L§ and Ug:
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) Us = ey/9D3

We point out that in terms of the alternative formu-
lation (14) and (15) the above scaling corresponds to
choosing ¢ =1 =1 in (13).

Also note that (19) imply that FZ ~ O(e?), hence
convective inertia is also negligible in the momentum
equation. At this stage it is convenient to expand

(20)

U =
d =

Us + €U + O(€?) ,
do + edy + 0(62) .

(21)
(22)

At leading order substitution of (21) and (22) into (10)
and (11) leads to the classical linear scheme of tide prop-
agation in inviscid rectangular channels:

do,t

)

dO,z

+ UO,I:O,
+ Uyt =0.

(23)
(24)

Provided no reflection of the tidal wave occurs the gen-
eral solution of (23) and (24) may be set in the form

[UOv dO]

> {[6m1(6), Dra (&) cosm(z — ¢) +

m=1

t [Pm2(), Dma(§)]sinm(z — 1)}

where, using the language of the multiple scale tech-
nique [Nayfeh, 1973, p. 49], € is a “slow” spatial vari-
able, defined as

(25)

E=er, (26)

which describes a weak modulation of the amplitude
of the tidal wave associated with the effects of channel
convergence and friction.

Substituting from (25) into (23) and (24), we readily
find

Omi = Dmi (t=12m=1,2,..). (27)

Notice that (27) suggests that, as is well known, in
weakly dissipative and weakly convergent estuaries of
infinite length, velocity is dominantly in phase with free
surface elevation. Having assumed that both conver-
gence and dissipation are weak, let us set

K = ke, R=re. (28)

Substituting from (21) and (22) into (10) and (11), us-
ing (28) and the chain rule

0 0 0
% — 5; + 6-8_6 ; (29)
at O(e) we find
dl,t + U171 = ——(d()Uo),z +kUy — Uo,g s (30)
1
Uiy + dig=—1rU|Uo| —doe — ('2"U3> -(31)

» T

iFrom (30) and (31) we readily obtain a second-order
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linear partial differential equation governing the func-
tion dy (z,t):

di gz = —(doUs),zt +kUo,s — Uo et

1
+ 7(Uo|Uo),z + dogs + (5U§>

dige —

. (32)
YT
Equation (32), like the system (23) and (24) is hyper-
bolic. Recalling (17), it follows that

Diile=0o = 1; Dmile=o =0 (m >1);

Dmale=0 =0 (33)

Since, at leading order, Uy is equal to D11 (§) cos(z — t)
(as Dyy and Ds; keep O(e) along the estuary) and Dy
keeps positive, a classical expansion truncated at second
order gives

(m>1).

8
U0|U0| 3—7; COS(Z‘ — t)

+ S cos3(z —t) +..| D?, .

157 (34)

Now it should be noticed that each of the terms at the
right-hand side of (32) is secular; indeed, any of these
terms would lead to solutions for d; proportional to
zcosm(z —t) (or zsinm(z —t)) for some m, and such
solutions are unbounded for £ — co. Hence the right-
hand side of (32) must vanish. This condition implies

dDi11 4r k

- — - — — 2 —

i@ 371_@11 + 2'D11 , (35)
dD 3

e <36>
dDs; 4r

Equation (35) shows that the amplitude of the funda-
mental may either decay of grow, depending on the bal-

ance between channel convergence and friction. Indeed,
we find

D1 = ;
"7 1 4 Begexp(k€/2)
_8r
T 3nk
It is easy to show that D;; keeps constant whenever the
following condition is satisfied:
kE CED} _ 8

csexp(k€/2) 1

Cs = )

1-B

(38)

- *
T eL;

i.e., whenever the ‘Green’ amplification effect associ-
ated with topographic funneling is exactly balanced by
friction.

Evaluating the functions Djy and Ds3; requires some
straightforward algebraic work to integrate equations
(36) and (37). We find

(Da2,D31) = <2,—%£> D(¢) ,

(40).
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Figure 2. Time evolution of the dimensionless flow
depth D = D*/D¢ at distances z*/L} = m/4 (m =
0,4) from the outlet of the estuary as predicted by
(42). The values of the adopted parameters, typical
of a weakly dissipative and weakly convergent estuary,
are (a) €e=0.15,S=1,K =015, R=04, L} /L§ = 2,
and (b) e =0.15,S =1, K =03, R=0.15, L*/L§ = 2.

2.00

where

D(&)

21 In 1+ Bes exp(k€/2)
k B2 1+ Be,
1 1

T 17 Be, exp(ek/2) 1+Bcs} - (4

Summarizing, the complete solution for D up to O(e)
reads

D=1 + €[D(§)cos(x —t)+ Daa(§)sin2(z —t)
+  D31(€)cos3(z —t)] + O(e?) . (42)

The temporal development of the solution for D at var-
ious cross sections along the estuary is plotted in Fig-
ure 2.

In order to complete the derivation of the solution up
to O(e), we need to calculate U;. It is easy to show that
an equation similar to that obtained for d; is derived
for U; from (30) and (31). Suppressing secular terms,
such equation becomes

Ul,zz + U],tt =0 (43)

Notice that (43) must be solved requiring that the net
flow discharge in a tidal cycle must vanish at any order.
Hence, denoting by angle brackets the average over a
cycle, we must require that
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(UD) = (Up) + e(Uodp + Ur) + 0(62) =0 (44)
Recalling the expressions for Uy and dy, it follows that
the solution for U; must read

Ur= 3 (D4 + D% +Dh) + 012,68 (49)
where &, is a periodic function, of the form (25), which
is needed to suppress secular terms at order 2. Below
we do not pursue the evaluation of ®;, which would
only provide weak corrections to the harmonic content
of Uy. However, it is of interest to note that the ef-
fect of the first term on the right-hand side of (45) is
to give rise to a weak residual current needed to sat-
isfy global continuity. Furthermore, the solution for U
suggests that, at least at the leading order, weakly dissi-
pative and weakly convergent estuaries are neither ebb
dominated, nor flood dominated.

The above analysis applies within most of the upper
central region of Figure 2 and 3 of Jay [1991]. The
present weakly nonlinear extension shows that the ef-
fect of weak nonlinearities associated with friction and
spatial nonuniformity of velocity and depth gives rise
at second order to an My correction of the fundamental
(M) along with a much weaker Mg correction and a
negative residual current.

A perturbation analysis somewhat related to that
presented in this section was proposed by Kreiss [1957].
However, in such work, neither convergence nor friction
nonlinearity was taken into account.

4. Weakly Dissipative and Moderately
or Strongly Convergent Estuaries

We now move to the upper right region of Figure 2
and 3 of Jay [1991]; in other words, we consider estuaries
weakly affected by friction and moderately or strongly
convergent, in the sense that both K and (Fg/€*S) are
O(1) quantities. Among the estuaries collected in Table
1, only the Bristol Channel satisfies the latter condi-
tion. Anyhow, it is of interest to examine this limiting
behavior as part of the complete picture that we wish
to draw.

In the present case it is convenient to set

S=1, K=1. (46)

Recalling (12), the conditions (46) are readily shown to
be equivalent to the following choice of the spatial and
velocity scales Ly and Ug:

9Dg
w*QL;; '

Uy =ew”Ly L§ = (47)

Furthermore, neglecting dissipation at leading order
formally requires that the ratio R/S be small. We point
out that, in terms of the formulation (13) the scaling
(47) is readily shown to correspond to choosing ¢ =
1/Ky and ¢ = K.
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Substituting from the expansions (21) and (22) into
(10) and (11) with R expressed in the form (28), at
leading order we find:

dO,t + ng,ﬁ —Uyg=0 s (48)
Uot + doz=0, (49)
having defined
_ R _L
=== —L—g . (50)

(From (48) and (49) we readily derive the following lin-
ear second-order partial differential equation of hyper-
bolic type for do:

Fdoge — do,z — doe =0 . (51)

Recalling the boundary condition (17), (49) and (51)
are solved in the form

1
do = exp (i) [— expi(t — \iz) +c.c.| , (52)

2F7 |2

Uy = exp (%

where c.c. denotes the complex conjugate of a complex
number. Furthermore, v9 and ~; read

N

) [(Yo + im1) expi(t — Mz) +cc] (53)

Yo = 2 ) "= Zj_—‘ ) (54)
VAF -1
AL = TF (55)

having assumed that F keeps larger than 1/4.

The latter solution displays most of the features
pointed out by Jay [1991]. In particular, it loses its
wavy character when the condition F = 1/4 is satis-
fied; this is the condition called critical convergence by
Jay [1991]. Recalling (47) and (50), the latter condition
occurs, provided

V9Dg ’

2w*

Notice that, as pointed out by Lightill [1978], the super-
critical regime F < 1/4 is meaningless in the inviscid
limit. Also notice that, in agreement with Jay [1991],
both the wavelength and the wave speed increase very
rapidly in the subcritical regime F > 1/4 close to criti-
cality. Finally, since the rate of width reduction can be
written in this case in the form Bf exp(—xz/F), at lead-
ing order the flow discharge in the subcritical regime
decays exponentially in spite of the exponential growth
of the tidal velocity.

Let us proceed to O(e). Substituting from the ex-
pansions (21), (22), and (28) into (10) and (11), and
recalling (46), at 0(e) we find

L=

(56)

(57)
+ ~7:U1,z - Ul = _-}—(dOUO),:t +(d0U0> a(58)

F
Ul,t + dl,:c = _TU0|U0| - E(U(?)aw )
dy g
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hence
fdl,zz - dl,z - dl,tt = _Tf[UO|U0|]7z +"'U0|U0|
F F?
+ g(Ug)’z_T(Ug)wz

+  F(doUo),zt —(dolUo)st - (59)
In order to proceed analytically, we employ Dronkers’
[1964] approach to expand the quantity Uo|Up].

Let us denote by U, the maximum value of Uy. Re-
calling (53), it is easy to show that such a maximum
occurs when the following condition is satisfied:

t — Az = arctan (— (60)

2f,\1> ’

the solution in the fourth quadrant being the appropri-
ate one. Hence we readily find

A_\/1+—4}:5:\—f.

Ua:Uaexp(i) , Ug = 5

2F
Dronkers [1964] has shown that the term Up|Up| with Uy
periodic function with zero mean and maximum value
U,(z) may be expanded, using Chebyshev polynomials

as follows
Uo U\ ®
v, (U) } |

Using the latter approximation and the solution (52)
and (53) for dy and Up, some tedious algebra allows us
to evaluate d; in the form

(61)

16

Uo|Uo| = T5r

U2 (62)

dy = mz: A [— exp (%__) exp i(mt — Apx)

+ exp (%) expim(t — \xz) + c.c.]

x

+ dio [exp (?) — 1]
The coefficients Ay, Ay, Az are given in the appendix,
while the constant d; is evaluated below by suppressing
secular terms that would otherwise arise in the solution
for U;. Furthermore, the quantities Ay and A3 read

(63)

VI6F — 1 V36F —1
o=t =T (8

Further algebra allows us to solve equation (57) for U;
using the solution (63) for d;. We find

U, = u10($)+

M)«

[exp (%) dmexpim(t — A x)
1

z
+ exp (;) Pm expi(mt — Apz) + c.c.] , (85)
where ¢,, and ¢,, are constants given in the appendix.
Furthermore, the constant djo of (63) must take the
value

3
I
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dio = —F(v% +71) , (66)

to avoid the occurrence of a secular term (linear in time)
which arises from the effect of convective inertia. Fi-
nally, the function u1o(x) is evaluated by imposing van-
ishing flow discharge averaged over a cycle (see (44)).
Employing the solutions for Uy,dp and Ui, the latter
condition gives

x

U0 = —7Y0 €Xp <f) (67)
The picture arising from the above results is as follows.
The linear behavior of weakly dissipative estuaries in
the moderately strongly convergent limit confirms Jay’s

2.00

2.00

1.00 2.00
Figure 3. Time evolution of the dimensionless flow
depth D = D*/D}, tidal velocity U = U* /Ug, and flow
discharge Q@ = Q*/(B3D3U;) at distances z*/L; =
m/4 (m = 0,4) from the outlet of the estuary as
predicted by (52) and (53) along with (63) and (65).
The values of the adopted parameters, typical of a
weakly dissipative and moderately convergent estuary,
are e = 015, S =1, K =1, R = 015, F = 0.8,
L¥/L§ =1.
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[1991] results. In particular the wave amplifies land-
ward and both its wavelength and wave speed increase
rapidly close to the critical convergence of Jay [1991]
(see (55)). Furthermore, the latter equation shows that
the phase lag between flow depth and tidal velocity
increases from the vanishing weakly convergent limit
(11 = 0 as F — oo) to 90° as the critical convergence
limit is approached (y1 — 1 as F — 1/4). Similarly, as
F — o0, the amplitude of tidal velocity o behaves as
1/2v/F while the tidal wavenumber tends to 1/v/F. Re-
calling that our scaling (47) involves L}, one can readily
show that such limits coincide with the corresponding
values obtained in the weakly dissipative case.
Nonlinearity arising from convective inertia and chan-
nel convergence gives rise to the development of an My
tidal component while friction nonlinearity produces a
correction of the fundamental M, and a third harmonic
(Mg). Overtides amplify in the landward direction, and
their rate of amplification is twice as fast as that char-
acterizing the fundamental. Hence the profile of the
tidal wave is increasingly distorted, as Figure 3 shows.
A second effect of nonlinearity is the development of a
progressive lowering of the mean water level in the land-
ward direction along with a negative residual current.
As aresult, weakly dissipative and moderately/strongly
convergent estuaries appear to be ebb dominated, in the
sense that both the peak of ebb velocity and the dura-
tion of the ebb phase exceed the corresponding values
for the flood phase. Nevertheless, the flow discharge
(see Figure 3) exhibits a larger peak during the flood
period since water level and velocity are about in phase.

5. Strongly Dissipative and Weakly
Convergent Estuaries

We now assume that gravity and friction dominate
momentum balance, that is, local inertia is relatively
small and channel convergence is weak. These condi-
tions are satisfied for the Fleet and the Fraser estuaries.
It is then convenient to set

g
R=1, a6 = 1,

(68)

and, recalling (12), the following scales for L§ and Uf

emerge:
39D\
to= (T) |

Ug = (w*e2gC2DE2) /3 . (69)

Note that the condition of negligible local inertia im-
plies that S/R be small. Also, in terms of the formula-
tion (13) the scales (69) are equivalent to choosing both
¢ and ¢ equal to (eRo)™'/3.

The scaling (69) appears to estimate the actual inten-
sity of tidal velocity for the Fleet and Fraser estuaries
(see Table 1) fairly well, as we find Uf = 0.63 m/s for
the Fleet estuary and U} = 0.86 m/s for the Fraser
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estuary. Also note that an estimate of U based on
the classical weakly dissipative scheme (see (20)) would
sharply overestimate U (1.53 m/s for the Fleet and
1.57 m/s for the Fraser). An expansion of the usual
form (21) and (22) then leads to the following problem
at leading order:

doy + Upe=0, (70)

doe. + UolUo| =0, (71)
or, after simple manipulations,

Uo,zz — (Uo|Uo|) =0 . (72)

The latter equation is a quasi-linear second-order par-
tial differential equation of parabolic type that describes
a diffusive behavior of the tidal wave.

Unfortunately, (72) cannot be solved analytically un-
less the frictional term is linearized. A linearized treat-
ment has been recently proposed by Friedrichs and
Madsen [1992]. However, linearization may be justified
only in relatively short estuaries such that nonlinear ef-
fects cannot fully develop. Otherwise, as it is shown
below, linearization severely affects the behavior of the
solution. We then defer the treatment of this case to the
next sections, where it is treated as a particular case of
the strongly dissipative and strongly convergent case.

6. Strongly Dissipative and Strongly
Convergent Estuaries: the Kinematic
Wave Approach

We now assume that local inertia is small relative to
dissipation and convergence is strong. Hence we set
R=1, K=1, (73)
which correspond to the following choice of the relevant
scales:

* * Tk * gD32C§
UO = ew Lb 5 LO = Tm .
€W b

(74)
In terms of the formulation (13) the latter scaling is
equivalent to choosing ¢ = 1/K, and ¢ = K2/(eRy).
Table 1 shows that several estuaries may be taken
to approximate the above scheme, though, actually,
the effect of local inertia is seldom small. Estimates
for Ug based on (74) give 0.35, 0.70, 1.13, 1.42, 1.38,
0.57, and 0.83 m/s, respectively, for the Columbia,
Conwy, Elbe, Gironde, Ord, Tamar, and Thames es-
tuaries which most closely fit the strongly dissipative
and strongly convergent scheme. Again, notice that the
weakly dissipative estimate (20) would usually overes-
timate strongly the above values (0.99, 4.34, 1.98, 2.28,
3.91, 4.78, and 2.15 m/s, respectively, for each of the
above estuaries). We can then attempt to solve the
problem analytically by setting the usual asymptotic
expansion (21) and (22) for d and U in terms of the
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small parameter €. From (74) and the definition of S it
follows that

DgCg
eLy ’

F§
€2S

_L

S = =5

=F

(75)

Let us then assume that S and F are both of order €
and substitute from (21), (22), and (73), into (10) and
(11). At leading order, we find the following equations:

dO,t - UO =0 ) (76)

doyz + U0|U0] =0. (77)

The latter system is readily reduced to the following
nonlinear first-order partial differential equation for do:

dO,z + dO,tldO,t| =0. (78)

Equation (78) may be transformed into a kinematic
wave equation that reads

dot + a(t)do =0, (79)

where a(t) is a dimensionless wave speed such that
1

|_d—0,—t| .

The above approach is similar to that proposed by
Friedrichs and Aubrey [1994]. However, from (80) it is

a(t) = (80)

a)

b)

1
0.75 1.00

x/L.
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apparent that the local value of the wave speed varies
from some finite value to infinity at any cross sec-
tion where the derivative d, ; vanishes instantaneously.
Hence, in the context of the latter approximation, the
tidal wave is subject to the process of peaking typical
of kinematic waves characterized by convergence of the
characteristic lines, which leads to multiple-valued solu-
tions, i.e., to wave breaking [see Whitham, 1974, section
2.10]. Such feature of the solution is artificially removed
by the linearization procedure performed by Friedrichs
and Aubrey [1994], whereby a becomes a constant; in
other words, we feel that linearization hides a funda-
mental feature of the kinematic wave approximation
which may affect crucially tidal propagation in strongly
dissipative and strongly convergent estuaries.

This point deserves some more thorough discussion
in order to clarify the different viewpoint underlying
the present approach as compared with that proposed
by Friedrichs and Aubrey [1994]. Such different view-
points have clearly emerged in the course of the revis-
ing this paper, also thanks to the contributions of C. T.
Friedrichs.

In the present approach we do not make any assump-
tion about the structure of Uy; we only know that Uy is
an O(1) function periodic in time. In other words, we
must allow for overtides to appear at leading order with
any amplitude (a priori not small) and phase required

U -
1
0
]
-1
2 —
1.00 1.25 1.50 1.75 2.00
t
2
U -
1
0
-1
2 —
0.00 0.25 0.50 0.75 1.00
x'/L,

Figure 4. (a) Time evolution of the dimensionless flow depth D = D*/Dg and tidal velocity
U = U*/U; at distances z*/L% = m/4 (m = 0,4) from the outlet of the estuary as predicted by
the kinematic wave equation (79) with a wave speed given by (81). (b) Spatial developments of
D and U at times t*/T* = m/8 (m = 1,8). The values of the adopted parameters, typical of a
strongly dissipative and strongly convergent estuary, are € = 0.15, S =1, R=1, L:/Lgy=2.
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to satisfy the nonlinear kinematic wave equation. In
fact, if the product Up|Up| is not linearized, (79) can
be easily solved employing the method of characteris-
tics. We have performed such calculation treating the
frictional term by Dronkers’ [1964] approach. Using the
expansion (62), where U, () is now equal to 1, the wave
speed a(t) becomes

1 1
alt) = om

T 81
16 1+ 202 (81)

Equation (79) with a(t) given by (81) has been solved
numerically using the method of characteristics, march-
ing in z by backward differences.

The temporal and spatial developments of the tidal
wave obtained by such an approach are shown in Fig-
ure 4. Notice that cross sectionally averaged velocity
and free surface have a 90° phase lag at the entrance
of the estuary. The process of peaking emerges clearly
from the spatial development of the temporal distribu-
tion of tidal velocity in a tidal cycle. It is less evident
in the corresponding plot for free surface elevation. In
other words, peaking does not necessarily show up in
the form of breaking of the free surface as the develop-
ing discontinuity affects the velocity distribution more
sharply than it affects free surface elevation. The above
solution shows that the effect of overtides must be in-
cluded at leading order as it gives rise to an O(1) dis-
tortion of the tidal wave.

Friedrichs and Aubrey [1994], on the other hand, con-
sider linearization of the frictional term as part of an ex-
pansion of the complete de Saint Venant equations. The
latter viewpoint essentially assumes that, at leading or-
der, Uy simply reduces to the fundamental tidal com-
ponent and higher harmonics have increasingly smaller
amplitudes. This allows Friedricks and Aubrey to em-
ploy the expansion (34) and neglect, at leading order,
the effect of the third harmonics, which ranges about
1/5 of the fundamental. The former viewpoint does not
make the latter assumption, and indeed, as is shown in
section 7, the fully nonlinear numerical solution of the
complete de Saint Venant equation confirms that such
assumption is not reasonable in the present case, as the
full equations predict a development of the tidal wave
that strongly resembles that predicted by the nonlinear
kinematic wave approach.

7. Strongly Dissipative and Strongly
Convergent Estuaries: a Nonlinear
Parabolic Model

The results obtained by the kinematic wave model
discussed in the previous section show that the approx-
imations on which such approach is based are not uni-
formly valid; in fact, the process of peaking eventually
leads to local values of the spatial derivatives (Up, )
which are much larger than one would estimate from
the choice of the spatial scale L§ made in section 6.
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We now show that the process of peaking is partially
damped by keeping the contribution proportional to
Up,z in the equation of flow continuity at leading or-
der. Such scheme is reasonable for estuaries like the
Potomac (see Table 1) where the parameter F attains
a value (1.66) comparable with the value of K (1.09).

The following equations then arise at leading order:

dO,t
dO,a:

+ .7:U0,m —Up=0
+ Up|Uo| =0

The latter system is readily reduced to a single nonlin-
ear parabolic equation for Up:

UO,zI - :U'UO,z - M(IUOIUO)vt =0 (84)
where
K= F

Equation (84) has been solved numerically with the fol-
lowing boundary condition at the mouth of the estuary:

(UO,:c - ,U‘UO):EZO = _ﬂdO,t (86)

while the condition of vanishing velocity has been em-
ployed at the inner end of the estuary.

We have analyzed the propagation of a monochro-
matic tide by comparing the results based on the kine-
matic wave approach, which have been discussed in sec-
tion 6, with the numerical solution of the nonlinear
parabolic model at first order and with the numerical so-
lution of the fully nonlinear de Saint Venant equations.
The numerical solution of the parabolic model was ob-
tained using an implicit scheme based on a six-point
rectangular box where convective terms were discretized
by using the SMART algorithm proposed by Gaskell
and Lau [1988], while time derivatives were weighted
averages in space of forward differences. The value cho-
sen for the temporal weight § was 0.5.

The numerical solution of the full de Saint Venant
equations was obtained employing the classical box
scheme developed by Preissman [1961]. We recall that
such implicit scheme is based on a four-point rectan-
gular box where time and spatial derivatives are dis-
cretized as weighted averages of differences calculated
at adjacent points with temporal weight 6 and spatial
weight 1. The values chosen for 6 and ¥ were 0.6 and
0.5 respectively.

Figures 5-7 show the temporal evolution of the di-
mensionless flow depth D and tidal velocity U at various
dimensionless distances z*/L} from the outlet of the es-
tuary, as predicted by the full de Saint Venant equations
and by the nonlinear parabolic model for three sets of
values of the parameters €, S,F, and K. The spatial
distributions of the maximum and minimum tidal el-
evations are also shown. The amplitude parameter €
was set equal to 0.15, a realistic value, sufficiently small
to ensure that our expansion in powers of € should ap-
ply. The value of the ratio L*/L{ was set equal to 2,
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Figure 5. Time evolution of the dimensionless flow depth D = D*/Dg and tidal velocity
U = U*/Ug at distances z* /L = m/4 (m = 0,4) from the outlet of the estuary as predicted by
(a) complete de Saint Venant equations, and (b) parabolic model at first order. (c) Maximum
and minimum values of D and U along the estuary as predicted by complete de Saint Venant
equations (solid line), and parabolic model at first order (dotted lines). The values of the adopted
parameters, typical of a strongly dissipative and strongly convergent estuary, are € = 0.15, S =

0.15, F=0.15, K =1, R=1, L}/L; = 2.

though the latter choice is obviously inessential to the
comparison presented herein.

The general comment that arises from a glance at
Figures 5-7 is that the nonlinear parabolic model may
be a good approximation of the full de Saint Venant
solution for estuaries like the Potomac, i.e., when the
relative effect of local inertia is sufficiently small and
the effect of channel convergence is, at least partially,
balanced by the effect of the Up , term in the continuity
equation (see Figure 7). The latter smooths the process
of wave peaking and leads to damping of the tidal am-
plitude. Figure 7 also shows that the small effect of
local inertia in the full de Saint Venant solution leads

to a slight amplification of the tidal amplitude which,
on the contrary, is slightly damped in the context of the
parabolic model.
. The weakly convergent and strongly dissipative limit
is illustrated in Figure 8 where it appears that the solu-
tion based on the limit model of (72) agrees quite well
with the full de Saint Venant solution. Both of them
predict damping of the tidal wave and a phase lag be-
tween free surface elevation and tidal velocity somewhat
smaller than /2. Finally, we point out that, in agree-
ment with Jay [1991], it turns out that the tidal wave
speed increases as F increases.

Figures 5 and 6 also show that as F decreases, the
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Figure 6. Time evolution of the dimensionless flow depth D = D*/D{ and tidal velocity
U =U*/U} at distances z*/L* = m/4 (m = 0,4) from the outlet of the estuary as predicted by
(a) complete de Saint Venant equations, and (b) parabolic model at first order. (c) Maximum
and minimum values of D and U along the estuary as predicted by complete de Saint Venant
equations (solid line), and parabolic model at first order (dotted lines). The values of the adopted
parameters, typical of a strongly dissipative and strongly convergent estuary, are € = 0.15, S =

0.15, F=05K=1 R=1,L}/L} =2.

agreement between the parabolic model and the full so-
lution is less satisfactory. Notice that the process of
peaking was predicted in the context of the kinematic
wave approach and is also reproduced by the parabolic
model, though the diffusive effect of the Uy, term in
the continuity equation prevents the development of
sharp discontinuities. The peaking process appears to
be sharper in the solutions of the full de Saint Venant
equations; this is mainly caused by the role of local in-
ertia, as discussed in section 8. Also notice that the
phase lag between free surface elevation and velocity of
the tidal current ranges about 90° as in the kinematic

model. It is appropriate to point out at this stage that
somewhat similar patterns are also predicted by the
combined first- and second-order solution of Friedrichs
and Aubrey [1994].

8. The Effect of Local Inertia in
Moderately Dissipative Estuaries

A glance at Table 1 shows that the effect of local
inertia is seldom actually negligible in real estuaries.
Figure 9 shows that, as the parameter S is increased
starting from the strongly convergent and strongly dis-
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Figure 7. Time evolution of the dimensionless flow depth D = D*/D} and tidal velocity
U =U*/U; at distances * /LY =m/4 (m = 0,4) from the outlet of the estuary as predicted by
(a) complete de Saint Venant equations, and (b) parabolic model at first order. (c) Maximum
and minimum values of D and U along the estuary as predicted by complete de Saint Venant
equations (solid line), and parabolic model at first order (dotted lines). The values of the adopted
parameters, typical of a strongly dissipative and moderately convergent estuary, are € = 0.15,

§$=015F=1,K=1,R=1,L:/L} =2.

sipative case (R = 1, K = 1,5 = 0.15 of Figure 5), the
process of peaking of the tidal profiles is enhanced and
the amplitude of the tidal wave is progressively more
amplified. Hence local inertia plays a role opposite to
that of the diffusive term FUp . of the continuity equa-
tion.

As regards ebb versus flood dominance, Figures 5-9
suggest that both strongly and moderately dissipative
estuaries are invariably flood dominated. This is fur-
ther confirmed by Figure 10, where the temporal devel-
opment of the unit discharge throughout the tidal cycle
is plotted for each of the cases corresponding to Figures
3-9.

9. Discussion and Conclusions

The analysis and results of the present paper sug-
gest that modeling tide propagation in convergent estu-
aries by one-dimensional models requires some care in
the choice of the simplest suitable model able to cap-
ture the fundamental physics of the process. In weakly
dissipative estuaries the effect of convergence can be
readily incorporated in the context of classical pertur-
bation expansion approaches adequate to weakly non-
linear processes, with some care to treat the secular
terms that may arise if an infinite domain is assumed
in the model. The cascade process whereby overtides
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Figure 8. Time evolution of the dimensionless flow depth D = D*/D¢ and tidal velocity
U =U* /Uy at distances 2* /L = m/4 (m = 0,4) from the outlet of the estuary as predicted by
(a) complete de Saint Venant equations, and (b) parabolic model at first order. (¢) Maximum
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e

are generated and evolve landward is then analytically
predicted and describe a tidal wave which is increasingly
distorted as channel convergence increases. Further-
more, ebb dominance results along with the nonlinear
generation of a seaward directed residual current. The
latter result appears to be of some interest for possible
applications to the dispersion of passive tracers in such
estuaries. The linearized results of Jay [1991] concern-
ing tidal wavenumber and tidal wave speed, respectively
decreasing and increasing up to the critical convergence
threshold, are confirmed by the present analysis.

In strongly dissipative estuaries the highly nonlinear
nature of the frictional term gives rise to some distinct

features that cannot be appropriately modeled by per-
turbation expansions which do not keep the strongly
nonlinear nature of the mathematical problem at the
leading order of approximation. In particular, accord-
ing to our results, the linearized kinematit wave ap-
proximation derived at leading order by Friedrichs and
Aubrey [1994] hides the tendency to breaking intrinsic
to the full kinematic wave model. The perturbation
expansion developed in this paper shows that it is pos-
sible to remove the restrictions posed by the linearized
kinematic wave approximation, keeping the nonlinear
nature of the problem, and provided allowance is made
for some diffusion arising from the convective term of
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Figure 9. Time evolution of the dimensionless flow depth D = D*/D{ and tidal velocity
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the continuity equation. The nonlinear parabolic model
thus derived smooths the tendency to peaking of the
nonlinear kinematic wave model. Comparison with so-
lutions of the full de Saint Venant equations reveals
that the parabolic approximation is appropriate, pro-
vided local inertia is sufficiently small while channel
convergence is sufficiently strong. The former condi-
tion is quite severe and requires that the estuary be
shallow and strongly dissipative. The latter condition,
say K ~ O(1), recalling (12), may be written in the

form I )
b0 ()
Us ew*

Hence, the time taken by the flow to travel along a
reach of the tidal channel of length comparable with
the convergence length must be small compared with
the tidal period. This requirement is often satisfied in
real convergent estuaries as shown in Table 2.

The significant distortion of the current profile typi-
cal of strongly dissipative estuaries has been invariably
found to be associated with flood dominance. Further-
more, proceeding from the weakly convergent to the
strongly convergent case, strongly dissipative estuaries
display increasing values of the tidal wave speed and of
the phase lag between free surface elevation and tidal
velocity, as occurred in the context of Jay’s [1991] work.

(87)

The above findings are based on several simplifying
assumptions. It may be useful to summarize them. (1)
The cross section has been assumed to be rectangular
and the possible presence of tidal flats has been ignored.
(2) The channel axis has been taken to be straight. (3)
The bottom of the channel was fixed and horizontal.
(4) Spatial and temporal variations of the friction coef-
ficient have been ignored. (5) River discharge has been
assumed to be negligible.

Most of these assumptions are not essential to the
analysis performed herein. However, the retarding ef-
fect of tidal flats may significantly alter the picture dis-
played by the present results. In particular, it has been
shown that, owing to the effects of tidal flats, the flood
dominance typical of strongly dissipative estuaries may
be converted into ebb dominance [Speer and Aubrey,
1985; Friedrichs and Madsen, 1992; Shetye and Gou-
veia, 1992). This feature will require attention in or-
der to be able to capture the controlling mechanisms of
the morphodynamical equilibrium of environments like
Venice lagoon, which is one of our final aims. This issue
is the subject of a current investigation that is still in
progress (S. Lanzoni and G. Seminara, manuscript in
preparation, 1998).

The effects of a significant river discharge may
sharply alter the tidal dynamics. In the context of the
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Figure 10. Time evolution of the dimensionless flow discharge per unit width UD as predicted
by the complete de Saint Venant equations for the cases reported in (a) Figure 5, (b) Figure 6,
(c) Figure 7, (d) Figure 8, (e) Figure 9a, and (f) Figure 9b.

linearized treatment of Jay [1991] it turns out that when
river flow dominates the tide, both the damping rate
of tidal amplitude and the tidal waveriumber are pro-
portional to the square root of river speed. In other
words, tidal wavelength and tidal wave speed decrease
while tidal amplitude decays more rapidly upstream as
river discharge increases. The above finding is true for
almost the entire length of the Fraser and Columbia es-
tuary and applies to a major section of the St. Lawrence
[Godin, 1991].

As regards to assumption 3 one can readily appreciate
that one of the effects of a reduction of flow depth in the
landward direction is to enhance the effect of channel
convergence. In fact, assume, for the sake of simplicity,
that the average flow depth varies exponentially in the
form D exp(—x*/L}), with L denoting a depth reduc-
tion length scale. Then some simple algebra shows that
(10) and (11) still hold, provided (1) the expansion (9)
is replaced by

D = D [Dy(x) + ed(a)] (88)

where

* Lx
Do(z) =exp (—%) = exp <—~Z%a:> ,
d d

and (2) the convergence parameter K (see (12)) is mod-

ified as follows:
ug (1 1
w5 )

However, decreasing the average flow depth also leads
to an increasing value of the ratio R/S; in other words,
estuaries that are weakly dissipative in the outer region
may turn into moderately or strongly dissipative pro-
gressing in the landward direction. For example, this is
the case of the transition between the Bristol Channel,
which is weakly dissipative, and the Severn Estuary,
which is moderately/strongly dissipative.

(89)

K =

(90)
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Further, more subtle effects may arise as a result
of spatial-temporal variations of roughness, possibly
due to the presence of small-scale bed forms, such as
dunes, whose characteristics are subject to oscillations
throughout the tidal cycle. However, implementing
such a correction will preliminarily require a thorough
understanding of the mechanics of formation and devel-
opment of estuarine bed forms, a subject that is still at
an infant stage. Some steps in this direction, concern-
ing large-scale bed forms, have been recently pursued
[Seminara and Tubino, 1996].

Finally, curvature effects on the flow structure have
so far been ignored but will require significant attention
in order to predict the large-scale morphodynamics of
real estuaries.

Appendix
Coeficients of (63), (65) are
B1 + B2
A - -
! (11— FX2) =i\ (A1)
do + 161
A =
? 4(1 = FA2) — 2\ (42)
B3 + 103
As =
8 9(1 — FA2) — i3\ (43)
Ay ,
¢ = - (7 + r’yoF1> +i(A1A; —ryTy) (A4)
A 2 _ A2
P2 = - <—f2 + 29 M F + %)
+ (208 —pom + MF( D) (AB)
A .
¢ = - (% + r73I‘3> +1(3MA3 — ryal'3)(A6)
A .
where
B = —rAFmI B2 = 1A Fyl:
,83 = —37’)\1.7:’)/4F3 ,34 = 37')\1‘7:73]-—‘3
3 A 32 1
—)\3_221 24 -
BEN IR MEF T8RS
0o =20 F {(’)’0 — Y1)+ ()\1.7:(73 - ’712)]
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