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Abstract~The study of blood-tissue exchange by the multiple indicator dilution technique 
often needs frequent sampling in the blood of the indicator dilution curves ODC). Usually, 
this requires the use of a catheter supported by a pump. This causes a distortion in the 
IDC, which must be removed for proper interpretation of the data. A deconvolution-based 
methodology to remove IDC distortion is presented. First, the catheter impulse response is 
modelled by means of data obtained from a suitable experiment. Then the reconstruction 
of the blood IDC is tackled by a new nonparametric deconvolution algorithm, which 
provides (quasi) time-continuous signals and exploits statistically based criteria for the 
choice of the regularisation parameter. The methodology is applied to the removal of 
cathether distortion in studies of glucose blood-tissue exchange in the human forearm and 
myocardium. 
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1 Introduction 

THE STUDY of blood-tissue exchange in physiological systems 
by the multiple indicator dilution technique often requires the 
frequent sampling in the blood of the indicator dilution curves 
(IDCs). Usually this is accomplished by means of a catheter, 
e.g. frequently sampled IDC time series are obtained by 
continuously withdrawing small quantities of blood through 
a catheter supported by an electrical or mechanical pump (we 
will refer to the catheter and pump apparatus as the catheter 
system). Each IDC measurable at the end of the catheter 
system is a distorted version of the blood IDC. Distortions 
are more relevant the changes in the blood IDC are faster. In 
general, the IDC at the cuvette of the catheter is delayed, less 
sharp and also lower in amplitude than the blood IDC. On the 
other hand, slow trends in the IDC are usually preserved. Data 
analysis, e.g. for the calculation of the mean residence time, 
often cannot be made directly on the distorted IDC, and there 
is thus the need to remove the catheter distortion. The 
importance of the problem has been well known for a long 
time (MILNOR and JosE, 1960; GORESKY and SILVERMAN, 
1964; NORWICH, 1977). 
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In this paper we describe a two-stage procedure to remove 
catheter distortion. First, we obtain the impulse response of the 
catheter system by a suitably designed experiment. Then we 
obtain the blood 1DC by a new non-parametric deconvolution 
algorithm which estimates (quasi) time-continuous curves and 
exploits new statistically funded criteria to choose the amount 
of smoothing. We apply the proposed methodology in studies 
of glucose blood---tissue exchange in the human forearm and 
myocardium employing the multiple indicator dilution tech- 
nique. 

2 The problem 

Consider, for the sake of simplicity, a single indicator, e.g. a 
radioactive tracer, a pulse of which is injected in the blood at 
the inlet of an organ to obtain information on the blood-tissue 
exchange. Assume that the resulting blood IDC, say u(t) 
(mass • volume-l), cannc~tbe monitored by manual sampling 
and that it must be withdrawn by a catheter system. Let z(t) 
denote the IDC measurable at the euvette of the catheter. 
Because of the distortion due to the catheter system, z(t) is 
shit~ed to the right along the time axis and it is broader and 
lower than u(t). In practice, only a noisy IDC time series can 
be measured: 

y(t~) = z(tk) + v(te), k = 1,2 . . . . .  n (1) 
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having assumed that the error which corrupts each IDC sample 
is additive. 

By viewing the desired but unknown u(0 as the input of the 
catheter system, we can pose its reconstruction as an input 
estimation problem from the noisy samples {y(tk) } of its 
causally related output z(t). If  the tracer transport through 
the catheter occurs with a steady flow rate and is mainly 
convective, the catheter can be represented by a linear and 
time-invariant system (NORWICH, 1977) and z(t) is related to 
u(t) by a convolution integral 

4 0  = t - ~)u(z) d~ (2) 

where g(O (time-l) represents the catheter impulse response. 
We can then pose recovering the input u(t) from the available 
output samples b~(tk)} as a deconvolution problem. Its solution 
requires, however, the availability of the impulse response 

3 Methdology 

3.1 Catheter impulse response modelling 

A proper knowledge of the impulse response g(t) is needed 
to solve the deconvolution problem accurately. In fact, errors 
in g(t) would be reflected in errors on the estimate of u(t) 
provided by deconvolution. 

A model ofg(t) can be determined from a suitably designed 
experiment. In principle, we could determine the impulse 
response of the catheter system by measuring, at the cuvette, 
the response to a pulse input. However, it may be more 
convenient to determine the impulse response by measuring 
the response of the catheter system to a step. In fact, there are 
at least two advantages in this procedure. First, the experi- 
mental realisation of a step is usually simpler than that of a 
pulse (NoRwICH, 1977). Second, because the unknown IDC is 
regular, it is important to provide a good description of the 
catheter behaviour, especially in the low-frequency range. The 
step input is thus convenient because its spectral content 
decreases as I l l  f being the frequency, and this makes it 
easier to observe the low-frequency spectrum of the catheter 
system. 

A sum of M delayed exponentials usually describes well the 
impulse response of a catheter system. If  all the indicator 
entering the catheter system eventually leaves, the area under 
g(t) is unitary. With fixed model order, parameters can be 
determined by fitting the model against the, say, step response 
data by nonlinear least squares. Model order can be chosen by 
considering goodness of fit, precision of parameter estimates 
and parsimony criteria (CARSON et al., 1983; LANDAW and 
DtSTEFANO, 1984). 

Note that, because IDC distortion depends on the geometric 
characteristics of the sampling device and on the speed of the 
electrical pump and not on the subject under study, we use the 
same model of g~0 to remove distortion from the IDCs of 
different patients collected with the same catheter system. 

form with parameters to be estimated from the data, is named 
parametric deconvolution (NORWICH, 1977; CUTLER, 1978; 
VENG-PEDERSEN, 1980). Rex.endy, deconvolution has also 
been faced by using regression splines (VEROTTA, 1993). 

3.2.1 Stochastic deconvolution approach. We now describe 
a new non-parametric deconvolution method which, for cer- 
tain aspects, can also be viewed as an evolution of the 
Philtips--Tikhonov (PT) regularisation approach. 

Consider the time-continuous model of eqn. (2). Define two 
grids: let f2 s = {tl, t2 . . . . .  tk . . . . .  t~} denote the (experimental) 
sampling grid and let f~,, = {T 1, T 2 . . . . .  T k . . . . .  T~v } be an 
arbitrary uniform grid, possibly finer than f~, (N >/n) but 
with fl, _c f ~  The grid D~ does not need to have any experi- 
mental counterpart and can be arbitrary. For such a reason, we 
call D~ the virtual grid. We assume that u(t) can be approxi- 
mated as a piecewise constant within each time interval of the 
virtual grid. By properly discretising the convolution integral 
(DE NICOLAO et aL, 1995), we can thus model the n-dimen- 
sional vector of the measurements, say y, as: 

y = z  + v =  Gu+ v (3) 

where v is the n-dimensional vector of the measurement error, 
assumed to be additive (see eqn. 1), u is the N-dimensional 
vector of the input considered on the virtual grid, and G is a 
n • N near-to-Toeplitz matrix. 

The above discretisation procedure is different from that 
originally considered in (PHILLIPS, 1962) and related papers, 
where the input is assumed to be pieeewise constant on the 
sampling grid. 

Consider u, v and y of the model of.eqn. 3 to be stochastic 
vectors. It is thus possible to pose the deconvolution problem 
as a linear minimum variance estimation problem (BECK and 
ARNOLD, 1977), i.e. 'Find the estimate d, linearly depending 
on the data vector y = Gu + v, such that E[llu - flit 2] is mini- 
mised'. 

Assume that the second-order a priori statistical description 
of u and v is available. In particular, consider that u and v are 
uneorrelated zero mean random vectors with eovariance 
matrices given by Zu=22R=,~2(FTF) -1 and Z~.=a2B, 
respectively, where 22 and a z are scalars and R and B are N- 
and n-dimensional positive definite matrices. Under these 
hypotheses, the linear minimum variance estimator is found 
by solving 

rn~m(v - Gu)T B - I ( y -  Gu) + 7uT FT F~t (4) 

where 7 = a2/22. The solution of the problem of eqn. 4 is 

= (GTB-IG + 7FTF) -j GrB-ly  (5) 

When the vectors involved in the model of eqn. 3 are 
Gaussian, the linear estimator of  eqn. 5 has the minimum 
error variance among all the estimators of u given y. 

However, linear minimum variance estimation requires a 
second-order a priori statistical description, i.e. mean and 
covariance matrix, of both v and u. 

3.2 Deconvolution 

After having determined g(t), we can attack the deconvolu- 
tion problem (BERTERO, 1989; DE NICOLAO et al., 1996). 
Many deconvolution methods have been presented in the 
literature. A first approach is non-parametric and it includes: 
regularisation (PHILLIPS, 1962; TtKHONOV, 1963); truncated 
singular value decomposition (I-IANSEN, 1992); and maximum 
entropy (CHARTER and GULL, 1991). An alternative class of 
methods, where the unknown input has a known functional 

3.2.2 Second-order statistic description of v and u. In most 
cases we have quantitative a priori information about the 
precision of the data. The measurement error vector v can be 
often assumed (Gaussian and) uncorrelated. In this case its 
covariance matrix Z~ is diagonal. For instance, by assuming a 
constant measurement error CV, we have E~=o2B with 
B = diag (,v~t, ~ . . . . .  ~ )  and a = CV (a possibly unknown). 

Conversely, because an a priori statistical description of u 
based on firm grounds is obviously not available, we must 
postulate some structure for E,, = 22R = 22(FTF) - l  by simply 
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exploiting the 'rough' information that u(t) is regular. An easy 
way to descnq~e the regularity of  u(t) consists in modelling the 
stochastic process {uk} by a random walk (COMMENGES, t984): 

u, = uk-i + w~ (6) 

where, assuming that D,~ is uniformly spaced, {wk} is a 
stationary white noise process with zero mean and variance 
).2 and u0 = 0. The degree of regularity of  {u~} depends on the 
scalar 22 which will need to be determined aposteriori together 
with the input profile. An alternative but still simple way to 
describe the smoothness of  u(t) is to assume that the process 
{uk} can be modelled by an integrated random walk: 

u k = uk_i - 2u*-2 + wk (7) 

where {wk} is a stationary white noise process with zero mean 
and variance ).2 and u_ 1 = u 0 = 0. For the models of  eqns. 
6 and 7, the matrix F is an N-dimensional square Toeplitz 
matrix whose first column is [ 1 , - 1 , 0  . . . . .  0] "r and 
[ 1 , - 2 ,  t, 0 . . . . .  0] T, respectively. Note that the models of 
eqns. 6 and 7 describe a stochastic process obtained by the 
simple or double integration of a white noise process, respec- 
tively. We cannot address the choice of  the best model on 
theoretical firm grounds, and one usually determines by trials 
which is the most appropriate number of  integrators in a 
particular case study. 

3.2.3 Choice of  the regularisation parameter. In eqns. 4 and 
5 the parameter y = or2/). 2 is unknown. In fact, although ~r 2 can 
be known (e.g. known data CV), 22 is always unknown. If  we 
interpret eqn. 4 in a deterministic setting, the first term of  the 
cost function weights the adherence to the experimental data 
and the second is proportional to the input roughness 
(expressed by the energy of  the ruth time-differences, m = 1 
or m = 2). The parameter ), balances their relative importance. 
By raising "t the cost of  roughness increases and matching the 
data becomes relatively less important. For such a reason , / is  
called the regularisation parameter. Its choice is commonly 
reeognised as a critical problem. Too large values of  y will 
lead to very smooth realisations of  a which well explain the 
data at the cost of  wide and spurious oscillations (the estimate 
a which may be not able to explain the data (oversmoothing). 
Conversely, too small values of  ), will lead to ill-conditioned 
solutions a which well explain the data at the cost o f  wide and 
spurious oscillations (the estimate a explains both data and 
noise). To avoid subjectivity on the choice of),, several criteria 
have been proposed (GOLUB et al., 1979; HALL and TITTER- 
INGTON, 1987; HANSEN, 1992). When o ~ is known, a very 
popular and easy-to-use criterion to tune "/ is as follows 
(TWOMEY, 1965). 

Criterion 1. Adjust ? until WRSS(v) = nor 2, where WRSS = 
0 '  - C'4)TB-1 (Y - Ga) denotes the weighted residuals sum of 
squares. 

However, neither Criterion 1 nor any of the above-men- 
tioned criteria are based on firm statistical grounds, and their 
use in the linear minimum variance estimation context would 
make the estimator of  eqn. 5 suboptimal. Indeed, the stochastic 
approach enables the derivation of  statistically based criteria 
for the choice of~,, either when 02 and 22 are both unknown or 
when only 22 needs to be adjusted. 

Criterion 2 ().2 unknown, o "z known). Tune ], until 
WESS(7)=q(y)/7, where WESS=arR-1a denotes the 
weighted estimates sum of squares and 

q(y) = traee(B-~/2G[GT B-lG + yFTF] - I  Gr 8-1/2) 

with B -I/2 such that B -'l = B-I/2B -I/2. 
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Criterion 3 ().2 and a z unknown). Tune 7 until 

WRSS/(n - q(y)) = 7WESS(y)/q(y) 

and estimate o z a posteriori as a z = WRSS/(n - q(~,)). 

The quantity q(7) is a real number varying from 0 to n, and 
it is named the degree of  freedom associated with y. It has 
been shown (DE NICOLAO et aL, 1997) that under Gaussian 
assumptions the above criteria have a nice interpretation in 
terms of maximum likelihood of  the data. In the non-Gaussian 
ease, they are still meaningful, because they are consistent 
with average properties of  linear minimum variance estima- 
tion (SPARACINO and COBELLI, 1996). It is also possible to see  
that the widely used Criterion I is not consistent with linear 
minimum variance estimation properties and it is at risk of  
oversmoothing. 

To conclude, an additional advantage of  the stochastic 
embedding consists in providing closed-form expressions to 
compute confidence intervals of  the input IDC which also 
account for bias error (DE NICOLAO et aL, 1997). 

The guidelines for the numerical implementation of the 
above deconvolution algorithm are given by De Nicolao et aL 
(DE NICOLAO et al., 1997). 

4 Case studies 

4.1 Study of glucose blood--tissue exchange in the human 
forearm 

The experiments are designed to study glucose blood-tissue 
exchange in the human forearm in normal subjects. The study 
protocol has been approved by the Institutional Ethical Com- 
mittee of  the Helsinki University School of  Medicine, where 
the experiments are performed. We explain the purpose, 
nature and potential risks of  the study to the volunteers, and 
obtain written consent before their participation. 

Three tracers (indocyanine green, an intravascular refer- 
ence, [3H]-D-mannitol, an extracellular marker of  glucose, and 
[14C]-3-O-methyl-glucose, a permeant tracer which enters 
cells but is not metabolised) are simultaneously injected into 
the brachial artery, and we collect plasma samples from the 
forearm deep vein for I5 rain. To monitor early tracer 
dynamics, we use a catheter supported by an electrical pump 
in the first 90 s. The catheter is a standard 20G two-inch, 
suitable for carmulation of  forearm deep vein. We collect 
samples with a constant period of  T =  0.858 s. Subsequently, 
when the blood IDC is known to vary very slowly, we take 
samples manually. A reliable measure of  the uncertainty of  the 
deconvolution data is not available. However, measurement 
errors can be assumed to have an approximately constant, even 
if unknown, CV. 

We determine the model ofg( t )  by measuring the response 
of  the catheter system to the unitary step 1 (t). In this paper 
only [BH]-D-mannitol, i.e. the less expensive tracer, is used at 
this stage. We prepare a blood solution, containing [3t-1]-D- 
mannitol at a known concentration, and then withdraw it 
through the catheter. We collect samples at the cuvette using 
the same sampling grid as in the multiple tracer experiments. 
To improve the precision of  the impulse response model and 
to evaluate the reproducibility of  the experiment, the entire 
procedure is repeated four times. We fit the functions 

g(t) = ~e~ ' - t~) l ( t  - td) (8) 

g(t)={~_~e-~(t-t~)-~zfl,e-~t-ta)[ll(t-ta)~_p J (9) 

to the data, where ta is the catheter time-delay and c~ and fl are 
non-negative parameters. The impulse response models of  
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eqns. 8 and 9 result from the unitary constraint on the area 17o00o0 
under g(0 and, for the model of  eqn. 9, from the additional 14ooooo 
assumption of the continuity of g( �9 ) for t = td. We estimate the ~g 1 looooo 
model parameters by nonlinear least squares. Figure 1 displays 
the fits of the monoexponential model (top panel, ~=0.300 ~ 8o0ooo 50oooo 
and td= 13.216) and of the two-exponential model (bottom 
panel, ~=0.305, ~g=4.119 and ta= 13.020) against the [3H]- 200o00 
D- marmitol step response 2. In all the experiments, fitting the -looooo 
model of eqn. 9 against the data returns residuals only slightly 
smaller than those obtained by the model of eqn. 8, at the price 
of an estimate of parameter 1~ overly sensitive to data noise. In 
addition, both the Akaike and Schwartz criteria indicate the 
monoexponential model in three out of four cases. In the 
deconvolution procedure below we thus adopt a monoexpo- 
nential model whose parameters, i.e. = = 0.255 and 
ta= 12.655, are obtained by averaging those obtained by 
each of the four step responses (r =0.230 and t~= 12.624 in 
experiment 1, r  and ta= 12.620 in 3, ==0.231 and 
ta= 12.165 in 4). 

Catheter distortion is removed from each IDC time series 
separately. Figure 2a shows a representative data set [3hr]-D- 
mannitol, subject I). Owing to severe ill-conditioning, the 
least squares (LS) estimate (obtained from eqn. 3 as a = G-ly,  
with f~=f2 , )  shows unrealistic oscillations and negative 
values (Fig. 2b, thin line). Regularised deconvolution is then 12 "T 

performed, assuming the unknown vector u to be modelled on A[ 
t'~ = {kTv}, Tv = T/8, by the doubly integrated white noise of 
eqn. 7. We use Criterion 3 for the choice of the regularisation 
parameter and estimate the measurement error CV a posteriori *~ 0 
accordingly. Figure 2b (thick line) shows the estimate for the -a~  
representative data set ('f = 1 • 10 -I~ q(7)= 46.56, a poster- 
iori estimated CV= 4.5%). Figure 2c also shows the percen- 
tage residuals, being the residuals calculated by subtracting the 
model predictions, calculated by using the regularised IDCs in 
place ofu(t) in eqn. 2, to the experimental data. The same time 
series is also deconvoluted by modelling the unknown IDC by 
a random-walk process. Results (not shown) indicate that, Fig. 2 
here, the doubly integrated white noise is more appropriate 
than the random-walk process, because it leads to smoother 
and more realistic IDC profiles. 

125000[ ~ , - % , ~ ~ ~ . ~  .~... 

, '~176176176176 / 

 'SLZ . . . .  

~* o-.~.~z~ ~ ~Ac~o*o~cr~,,d,,~o, ~ ' 2 s ~ 1 7 6 1 7 6  l - o 

,ooooo I / 
'~ 75000 

0 , 1 i | 
10 20 30 40 50 60 70 

seconds 

Fig. 1 (a) Fit of the monoexponential model against the samples of  
the step response (laH]-D-mannitol, experiment 2); (b) fit of  
the two-e.vponentl"al model against the same data 
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Study of glucose blood--tissue exchange in the human fore- 
arm; (a) a representative data set ([ JH]-D-mannitol, subject 
I); (b) IDC reconstructed by least squares (thin line) and by 
regularised deconvolution by using the virtual grid and the 
new maximum likelihood (ML) criterion (thick line); (c) 
percentage residuals of the regularised estimate 

The deconvoluted blood IDCs are anticipated, and they 
show in general a sharper and higher peak and are, rather 
expectedly, less smooth than the IDCs measured at the cuvette 
of the catheter. The deconvoluted blood IDC, complemented 
by the rest of the data provided by the manual sampling, are 
being analysed by mathematical models of blood-tissue 
exchange (BoNAI)ONNA et al., 1995). 

4.2 Study of  glucose blood--t~'ssue exchange in the human 
myocardium 

We design the experiments to study glucose blood--tissue 
exchange in the myocardium of normal humans. The study 
protocol has been approved by the Institutional Ethical Com- 
mittee of the CNR Institute of Clinical Physiology, Pisa, Italy, 
where the experiments are performed. We explain the purpose, 
nature and potential risks of the study to the volunteers, and 
obtain written consent before their participation. 

3 14 Three tracers ([ H]-D-rrmnnitol, [ C]-3-O-methyl-gtueose, 
and [3H]-3-D-gtucose, which enters the cell and is metabo- 
lised) are simultaneously injected into the left coronary artery. 
Then, we collect plasma samples from the main cardiac vein 
for 5 min. In the first 42 s, we withdraw the IDC by means of 
a catheter system and sample it with a constant period 
T=0.8814 s. Thereafter, we collect samples manually each 

Medical & Biological Engineering & Computing July 1997 



15 s. The catheter is a standard 7-F catheter suitable for 
coronary sinus catheterisations. Measurement error variance 
of the data is known and it corresponds to an approximately 
constant CV of around 3%. 

We determine catheter impulse response by repeating four 
times a step response experiment with [3I-I]-D-mannitol, as in 
Section 4.1. We fit the impulse response models of cons. 8 and 
9 to the four step response data sets by nonlinear least squares. 
In two out of four cases, the model of eqn, 9 is not solvable 
from the data. In the other two, we obtain overall comparable 
residuals but with an estimate of the parameter ,8 overly 
sensitive to data noise; in addition, both the Akaike and 
Schwartz criteria indicate the monoexponential model to be 
more parsimonious. We then obtain the parameters of the 
monoexponential model adopted below in the deeonvolution 
procedure, i.e. r  ta=9.956, by averaging those 
determined by the single step responses (= = 0.334, ta= 9.21 
for experiment 1, ==0.368, ta=10.62 for 2, ~x=0.436, 
ta=9.90 for 3, ==0.365, ta= 10.07 for 4). 

The unknown vector u was described on a uniformly spaced 
virtual grid (period 7 , =  T/8) by the doubly integrated white 
noise, which is again seen to have a better behaviour than the 
random walk (not shown~. Fig. 3a displays a representative set 
of experimental data ([~H]-D-marmitol, subject 2). Fig. 3b 
(thin line) shows the regularised estimate obtained by adopting 
Criterion 1 for the choice of the regularisation parameter 
( 7 = 4  x 10 -7, q(y)= 14.06) and by having assumed a con- 
stant 3% CK Fig. 3c (squares) shows the percentage residuals. 
Criterion 1 is known, in theory, to be at risk of oversmoothing. 
In fact, in Fig. 3b (thick line), we show the profile obtained by 
adopting Criterion 2 ( y = 3  • 10 -s, q(y)=21.63). In Fig. 3c 
(diamonds) we display the related percentage-residuals. Note 
how Criterion 2 leads to lower values of the regularisation 
parameter, leaving more freedom to the estimate than Criter- 
ion l, as was theoretically expected from Section 3.2. 

Lastly, we report a simulation study whose aim is to show 
how the virtual grid can allow the reconstruction of accurate 
input IDCs from output samples collected even much more 
rarely than above. We extract from the representative data set 
n = 8 samples, shown in Fig. 4a. The classic PT regularised 
estimate (D.~ = tq~) is shown in Fig. 4b (thin line). The stair- 
case approximation of the input is evidently rough and 
unrealistic. Then we define Q, = {kT,}, T, as above and 
apply the new algorithm. Results are shown in Fig. 4b (thick 
line). Note that the deconvoluted profile shown in Fig. 4b and 
calculated from n = 8  data points does not show a big 
difference from the one displayed in Fig. 3b and based on 
the complete data set. This underlines the importance of 
optimal experiment design strategies (CA~ON et al., 1983); 
if the reduced sampling scheme contains enough information, 
the virtual grid can allow an accurate reconstruction of the 
continuous-time blood IDCs. 

Similarly to the previous case study, the deconvoluted IDCs 
are quite different from the measured IDCs, taking into 
account the importance of correcting for catheter distortion. 
The deconvoluted IDC, complemented with the manually 
collected data, are being used to develop distributed models 
of glucose kinetics in the human myocardium (Vzc~I et aL, 
1994). 

Remark:. In this paper we determine the model of  the 
impulse response of the catheter system using [3I-I]-D-manni- 
tol. This impulse response model can be safely applied only to 
deconvolve the dilution curves of the extraeellular tracers, i.e. 
indocyanine green and [3H]-D-marmitol. Should we want to 
remove the catheter distortion from the dilution curves of 
~4 [ C]-3-O-methyl-glucose (which is transported in and out of 

the cell) or [3H]-3-D-glucose (a permeant tracer which is also 
metabolised), we should take care due to the fact that these 
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Fig. 3 Study of glucose blood-tissue exchange in the human myo- 
cardium; (a) a representative data set ([3H]-D-mannitol, 
subject 2); (b) [DC reconstructed by adopting Twomey's 
(Tw) criterion (y = 4 x 10 -7, thin line) and the new max- 
imum likelihood (ML) criterion (y = 3 x 10 -8, thick line); 
(c) percentage residuals (diamonds for ML, squares for Tw) 

tracers also permeate red blood cells. Thus additional experi- 
ments need to be performed to determine the catheter impulse 
response model with these tracers, and to assess if eventual 
variations in hematocrit at the catheter tip site occur (in this 
case they could not be properly handled by the present 
approach) and the effect of interindividual hematocrit varia- 
tions. However, we would expect the related variations to be 
small. 

5 C o n c l u s i o n s  

The study of blood-tissue exchange in physiological sys- 
tems by the multiple indicator dilution technique requires 
frequent sampling in the blood of the IDC. The use of a 
catheter system causes a distortion which must be removed 
before data analysis. In this paper we approach the reconstruc- 
tion of the actual IDC profile in the blood as a deconvolution 
problem. Its solution requires a model of the catheter impulse 
response, which we obtain by measuring the response of the 
catheter to a step. Having obtained the impulse response, we 
tackle the reconstruction of the blood H3C by a new deconvo- 
lution algorithm. Tbank.~ to the introduction of the so-called 
virtual grid, the algorithm provides quasi time-continuous IDC 
profiles, in the face of a finite sampling rate, without having 
imposed any functional constraint. A simulated example 
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Study o f  glucose blood-tissue exchange in the human myo- 
cardium (same data as in Fig. 3): role and usefulness of  the 
virtual grid; (a) reduced data set; (b) blood IDC recon- 
structed by the classic Phillips-Tikhonov regularisation 
method (thin line) and blood IDC reconstructed by means 
of the virtual grid (thick line) 

shows how the virtual grid can also be useful when optimal 
experiment design strategies are designed. Thanks to the 
statistic framework into which the input estimation problem 
is stated, the deconvolution method adopts new statistically 
based criteria for choosing the amount of regularisation. This 
gives to the estimate some favourable statistical properties, 
e.g. closed-form expressions are available to compute con- 
fidenee intervals. 

The deconvoluted IDC has been shown to be anticipated, 
with a sharper and higher peak and less smooth than the 
measured IDC. This confirms that removal of  catheter distor- 
tion is necessary to properly model the data. In fact, the 
identification of  a physiologic model from the measured and 
the deeonvoluted IDC would give different results, not only 
regarding the macro parameters of  the system, such as the 
mean transit time, but also for the micro parameters describing 
the blood-tissue exchange, e.g. transport parameters into the 
cell. 
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