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econvolution Method to 
fter a Glucos 

Giovanni Sparacino and Claudio Cobelli,* Member, IEEE 

Abstruct- Insulin secretion rate (ISR) is not directly mea- 
surable in man but it can be reconstructed from C-peptide 
(CP) concentration measurements by solving an input estimation 
problem by deconvolution. The major difficulties posed by the 
estimation of ISR after a glucose stimulus, e.g., during an intra- 
venous glucose tolerance test (IVGTT), are the ill-conditioning 
of the problem, the nonstationary pattern of the secretion rate, 
and the nonunifordinfrequent sampling schedule. In this work, 
a nonparametric method based on the classic Phillips-Tikhonov 
regularization approach is presented. The problem of nonuni- 
fordinfrequent sampling is addressed by a novel formulation of 
the regularization method which allows the estimation of quasi 
time-continuous input profiles. The input estimation problem 
is stated into a Bayesian context, where the a priori known 
nonstationary characteristics of ISR after the glucose stimulus 
are described by a stochastic model. Deconvolution is tackled by 
linear minimum variance estimation, thus allowing the derivation 
of new statistically based regularization criteria. Finally, a Monte- 
Carlo strategy is implemented to assess the uncertainty of the 
estimated ISR arising from CP measurement error and impulse 
response parameters uncertainty. 

I. INTRODUCTION 

HE ability to measure insulin secretion rate (ISR) is 
essential for a quantitative understanding of the glucose 

regulation system in man, both in healthy and disease states. 
Unfortunately, ISR cannot be directly measured since insulin 
is secreted by the pancreatic ,f-cells into the portal vein which 
is not accessible in vivo: one can only measure the effect of 
secretion in the circulation, i.e., the plasma concentration of 
insulin. Furthermore, before reaching plasma, insulin under- 
goes a large and variable liver extraction 1401. Thus, insulin 
plasma concentration only reflects post-hepatic insulin delivery 
rate into the circulation. Luckily, a peptide, C-peptide (CP), 
is co-secreted with insulin on an equimolar basis but, unlike 
insulin, it is not extracted by the liver [37]. Thus the plasma 
Concentration of CP directly reflects the pancreatic ISR. Since 
CP kinetics are linear it is possible to pose the measurement 
of pancreatic ISR as an input estimation problem which can 
be solved by deconvolution [171, [37], [38]. 

The aim of this study is to quantify ISR in humans after 
a glucose stimulus. In particular we consider the intravenous 

Manuscript received August 1, 1994; revised December 19, 1995. This 
work was supported in part by MURST under Project “Bioingegneria dei 
Sistemi Metabolici e Cellular?’ and by National Institutes of Health under 
Grant RR-02176, “Resource Facility for Kinetic Analysis.” Asterisk indicates 
corresponding author. 

G. Sparacino is with the Dipartimento di Elettronica ed Informatica, 
Universita di Padova, Padova, 35 100 Italy. 

*C. Cobelli is with the Dipartimento di Elettronica ed Informatica, Uni- 
versita di Padova, Via Gradenigo 6/A, Padova 35100 Italy (e-mail: co- 
belli 0pia.dei.unipd.it). 

Publisher item identifier S 0018-9294(96)03187-4. 

glucose tolerance test (IVGTT), where an impulse dose of glu- 
cose is administered. This test is widely used in physiological 
and clinical investigations to assess glucose tolerance, see e.g., 
[3], [6]. The major challenges posed in the reconstruction of 
ISR during IVGTT by deconvolution are the ill-conditioning 
of the problem, the nonunifordinfrequent sampling and the 
nonstationary pattern of the ISR signal. 

The first attempts to use deconvolution to quantify glucose- 
induced ISR trace back to [46] and [36]. In these studies 
insulin plasma concentration was used, and therefore, only 
post-hepatic insulin delivery rate has been reconstructed. In 
[46] plasma insulin values are first transformed by reading 
off a “smooth line” drawn by eye to pass between each pair 
of duplicate measurements; then, insulin delivery rate was 
obtained through the direct solution of the input estimation 
problem, since the short insulin half-life makes the deconvo- 
lution problem only slightly ill-conditioned, see e.g., [9]. In 
[36], post-hepatic insulin delivery rate was reconstructed by 
means of the classic Phillips-Tikhonov regularization method 
[35], [44]; the problem of nonunifondinfrequent sampling was 
tackled by interpolating the sampled points with straight lines 
and assigning the mean value of such interpolating functions 
to frequent and equally-spaced time intervals. More recently, 
investigators have resorted to CP concentration to assess ISR. 
In particular, in [41], CP, and thus insulin, secretion rate during 
an IVG’IT was estimated by inverting analytically the two- 
compHment CP kinetic model by using splines to smooth 
the CP concentration and calculate numerically its first time- 
derivative, as proposed in [ 171. This procedure assumes the CP 
impulse response to be biexponential. Moreover, smoothing 
output data before making deconvolution can be critical and 
it does not always guarantee against ill-conditioning, see e.g., 
[15]. Of note is that with all the above approaches [36], [41], 
[46] it is difficult to obtain confidence limits of the estimated 
ISR profile. 

The nonparametric deconvolution approach we apply here 
to the same data set used in [41] is an evolution of the 
Phillips-Tikhonov regularization method. The problem of 
nonunifondinfrequent sampling is addressed by a novel 
formulation of the regularization method which allows the 
estimation of quasi time-continuous input profiles. The input 
estimation problem is stated into a stochastic context so that 
regularization is tackled by solving a linear minimum variance 
estimation problem where the a priori known nonstationary 
characteristics of the input are described by a stochastic model. 
The major advantages provided by the stochastic context 
consist in providing new statistically based regularization 
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criteria and obtaining expressions to easily compute the 
confidence intervals of the estimate. 

The paper organization is as follows. Section I1 states the 
deconvolution problem. The experiment and the data base are 
described in Section 111. Section IV is devoted to the modeling 
of the CP impulse response. Section V first recalls some funda- 
mentals about deconvolution and its ill-conditioning; then, a 
brief review of the Phillips-Tikhonov regularization method 
is presented. Its use to solve our problem is shown to be 
not successful, thus calling for new strategies. In Section VI, 
deconvolution is first restated within a stochastic context as a 
linear minimum variance estimation problem. Then the issues 
of nonunifondinfrequent sampling, input nonstationarity, and 
statistically based choice of the regularization parameter are 
addressed. Finally, the question of confidence intervals is 
considered. Linear minimum variance estimation naturally pro- 
vides analytical expressions to compute confidence intervals. 
However, since these intervals assume an error free impulse 
response model, a Monte-Carlo strategy is used to evaluate 
the joint uncertainty of the estimate arising from both data 
error and impulse response parameters uncertainty. Finally, a 
discussion is reported in Section VII. Two appendices comple- 
ment the paper. Appendix A shows the statistical basis of the 
new regularization criteria. Appendix B tests the deconvolution 
procedure on a simulation problem. 

11. ESTIMATION OF INSULW SECRETION 
RATE: A DECOWOLUTION PROBLEM 

CP kinetics are known to be linear and time-invariant among 
a wide range of concentration levels [22], [38]. So it is possible 
to relate CP plasma concentration and insulin (equal to the CP) 
secretion rate by the convolution integral 

~ ( t )  zz g ( t  - T)ISR(T) d~ (1) L 
where: 

c ( t )  is the CP plasma concentration (pmol/ml). 
g ( t )  is the CP impulse response (l/ml). 
ISR(t) is the insulin secretion rate (pmol/min). 

Thus, the estimation of ISR during IVGTT from the sampled 
concentration can be stated as a deconvolution problem. To 
solve it, the impulse response g ( t )  of the CP system is 
needed. Usually the protocol to determine the impulse response 
(see Section 111) is performed separately from the IVGTT. In 
theory, there could thus be the risk that the so-determined 
g ( t )  is different from that during the IVGTT. Available studies 
support, however, that g ( t )  is not affected by elevated values of 
glucose and insulin concentrations like those observed during 
an IVGTT [31] and that intraindividual variability is small, 
see e.g., [38] and [49]. We thus assume the impulse response 
not to vary between the two experiments, also in keeping with 
[41] and [45]. 

111. EXPERIMENT AND DATA BASE 
Data base originates from a two-stage experiment already 

described in [41] and performed on seven young normal 

men. To determine in each individual the impulse response 
of the CP system, a somatostatin infusion was administered to 
suppress endogenous pancreatic secretion and was maintained 
throughout the study. An intravenous bolus (150 pg equivalent 
to 49650 pmol) of biosynthetic CP [38] was then injected in 
the blood. CP plasma samples were collected at minutes: 2-1 1, 
14, 17, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 
120, 140, 160, and 180. 

The same subjects were then observed during an IVGTT. 
Basal condition was monitored for 1 h by measuring plasma 
concentration levels every 15 min at times -60, -45, -30, 
-15, and zero. An intravenous bolus of glucose (0.5 g/Kg of 
body weight) was then injected in the blood. CP concentrations 
were measured for four hours, collecting data at minutes: 1, 
3, 5, 7, 9, 12, 15, 20, 25, 30, 35, 40, 45, 60, 75, 90, 105, 120, 
140, 160, 180, 200, 220, and 240. 

Measurement error of CP concentration was assumed to 
be uncorrelated, Gaussian with zero mean. Its coefficient of 
variation (CV) is assumed to be constant and ranging between 

A representative data set of the two-stage experiment is 
4-6%. 

shown in Fig. 1. 

IV. THE IMPULSE RESPONSE 

A sum of exponential model describes the impulse response 
of the CP system, i.e., the data following the impulse dose of 
CP 

M 

g ( t )  = Atepmzt.  (2) 
i=l 

Parameter estimation was performed by a nonlinear least 
squares algorithm assuming a constant (but unknown) coeffi- 
cient of variation of the measurement error. The CV has been 
estimated a posteriori [5],  [30], also given its crucial role in 
regularized deconvolution (see Sections V and VI). 

It is commonly accepted [17], [22], [37] that a two- 
exponential model is a good description of the CP impulse 
response. In this study we have found that a three-exponential 
model (where the third exponential is the fastest one) was 
generally superior to the two-exponential one by considering 
both the Akaike [ l ]  and the Schwarz [42] criteria. In other 
words, by increasing the model-order, there is a significant 
decrease of the weighted residual sum of squares with only a 
slight concomitant deterioration of the parameter precision. For 
example, by considering the Akaike information criterion AIC 
= 2P + N log WRSS [30], where P is the number of model 
parameters, N is the number of data points, and WRSS is the 
weighted (by the inverse of squared measurements) residual 
sum of squares, the three-exponential model was superior in 
all subjects except for subject #1 and subject #7, where the 
two-exponential model had a comparable performance. 

Table I shows the parameters of the three-exponential 
model, the difference of AIC, AAIC, between the three and 
the two-exponential model, and the a posteriori estimate of 
the measurement error CV. 

Fig. 2 shows for subjects #1-5 and #7 the fit of the three- 
exponential model. For subject #6, the fit was presented in 
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#6 . ’ t  m 

Fig. 1. The influence of the CP impulse response model order, 
in particular two versus three, in reconstructing various ISR 
patterns by deconvolution has been recently studied in [43]; the 
presence of high frequency components in the ISR spectrum 
during IVGTT encourages the use of the three-exponential 
model. 

v .  DECONVOLUTION: FUNDAMENTALS AND 
REVIEW OF THE REGULARIZATION APPROACH 

A. Problem Statement 

In general, deconvolution techniques consider problems 
involving causal signals, i.e., the system initial conditions are 
assumed to be zero. In our case, since for t < 0 a basal 
secretion occurs, it is necessary to remove its effect before 
deconvolving the data, thus obtaining a system with initial 
conditions equal to zero. From (1) it follows 

e@) = g ( t  - r)ISR(r) dr + g ( t  - r)ISR(r) d r  (3) 

where time zero is the time of glucose injection. Assuming 
ISR to be constant at level ISRb for t < 0, its effect for t > 0, 
say co(t) ,  is given by 

s: l 
0 

co(t)  = 1, g ( t  - r)ISRb dr .  (4) 

ISRb can be estimated by multiplying the basal CP con- 
centration by the clearance rate estimated from the impulse 
response [SI. Basal concentration is determined as the mean 
of the live samples collected before the glucose injection (see 
Section 111). Letting 

e’@) = c ( t )  - co(t)  

= it g(t - r ) ISR(r)  d r  ( 5 )  

it is then possible to estimate ISR(t) from c’(t) data by 
deconvolution. 

Since CO is known with high precision, the error on CO can 
be assumed negligible with respect to the error on e; thus, 
the error on e’ can be considered approximately equal to the 
error on e. 

In conclusion, the inverse problem to solve is 

c’(t) = g ( t  - r ) ISR(r)  dr. (6)  6” 
Let R, = {il l  . . .  , t k l  . . .  , in} be the given (nonuniform) 
sampling schedule and assume that the signal ISR(t) can be 
approximated as a piecewise constant within each sampling 
interval. For ti, E R,, k = 1, 2, . . .  n 

tk 

c ’ ( t k )  = 1 g ( t k  - r)ISR(r) dr 

C-peptide decay curve 

minutes 

(a) 

C-peptide data during IVGTT 

1 %  
1.5 -OC 

E ,/ O 0  
0 
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O o o I  

01 I ‘  
0 50 100 150 200 

minutes 

(b) 

Fig. 1. The two-stage experiment!performed on seven young normal sub- 
jects. A representative data set of C-peptide concentration (subject #6) is 
shown. (a) Following a C-peptide bolus injection. The continuous line denotes 
the fitted impulse response model. (b) Following a glucose bolus injection 
during an intravenous glucose tolerance test (IVGTT). 

where t o  = 0. Letting 

gk,z = .fi, g ( t k  - r) d7 (8) 

U ,  = ISR(t,) (9) 
it follows 

One may also think u k  to be the mean level of ISR during the 
kth sampling interval. Adopting a matrix notation 

e‘ = Gu (1 1) 

where c’ is the n-dimensional vector of the sampled output 
(noise-free), U is the n-dimensional vector whose components 
are samples of the unknown ISR, and G is a n x n lower- 
triangular matrix, whose entries are 

Note that, as sampling is not uniform, relation (SO) does not 
represent a discrete copvolfition, i.e., the discretized system is 
time-varying. G ( k ,  i )  depends on both the arguments, and not 
on their difference only, so that G is not a Toeplitz matrix. 
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# 2  

# 3 

TABLE I 
ESTIMATES OF THE THREE-EXPONENTIAL MODEL PARAMETERS (A,, 0, = 1, 2, 3) WITH THEIR PRECISION (EXPRESSED AS PERCENT CV, IN PARENTHESIS); VALUES 

OF THE DIFFERENCE OF AIC, AAIC, BETWEEN THE THREE AND THE TWO-EXPONENTIAL MODEL, AND A POSTERIORI ESTIMATE OF THE MEASUREMENT ERROR cv 

(48) (72) (IO) (56) (36) (3) 
1.71 0.963 0.519 0.287 0.081 0.023 -10 5.5 
(18) (34) (14) (30) (25) (5) 
2.21 1.000 0.370 0.326 0.053 0.016 -33 4.8 

# 5 

# 6  

# 7  

I (12) 1 ( 8) I ( 18) I ( 16) I ( 13) I ( 7) I 
# 4  I 2.23 1 0.946 I 0.531 I 0.339 I 0.079 I 0.022 I -18 I 4.8 

(13) (23) (11 )  (23) (20) (4) 
2.10 0.835 0.559 0.378 0.068 0.017 - I  1 7.5 
(26) (26) (15) (36) (30) (7) 
1.61 0.630 0,390 0.367 0.076 0.023 -8 6.1 
(20) (26) (19) (31) (29) (8) 
1.29 0.882 0.819 0.253 0.085 0.024 2 4.5 
(39) (66) (9) (49) (40) (3) 

Assuming the measurement error to be additive, we model 
the observations as 

y = c ' + v  

= G u + v  (13) 

where y denotes the n-dimension vector of the noisy data and 
'U is the n-dimension vector of the measurement errors. Let 
W denote the n x n covariance matrix of the measurement 
error; since errors are uncorrelated, W is diagonal. Assuming 
measurement errors to have a constant CV, the ith element 
of the diagonal of W ,  i.e., the variance of the error on the 
measurement taken at time t,, can be expressed as (CVY;)~ 
(CV here is a real number). 

B. Deconvolution by Least Squares and Ill-Conditioning 

Least Squares (LS) estimation is the simplest and most 
direct way to solve the input estimation problem of model 
(13). The estimate is the solution of the optimization problem 

(14) 

Since G is invertible (gz, # 0, Vi ) ,  LS estimate is ii = G-ly. 
Residuals are therefore, zero. LS estimate is unbiased and the 
covariance matrix of the estimation error, e = U - 6, is equal 

It is well known that such a direct solution of the decon- 
volution problem can be severely ill-conditioned, i.e., a small 
percentage error in the data can be amplified in a much larger 
percentage error in the estimate. Ill-conditioning is enhanced 
by the smoothness of the impulse response as well as by 
a frequent sampling rate. Details can be found in [21] and 
[29]. An example of LS estimation applied to our case is 
shown in Fig. 3, where the deconvoluted profile is presented 
together with the model predictions (reconvolution) against 
the data. All the data are fully matched at the expense of large 
oscillations. In particular, wide oscillations during the second- 
phase secretion, say for t > 10 - 15 min, are physiologically 
unplausible and can be considered to be mostly due to ill- 
conditioning. 

m;ln (y - G z ~ ) ~ W - l ( y  - Gu). 

to ( G ~ W - ~ G ) - ~ .  

The ill-conditioning of the deconvolution problem is a 
classic in the mathematics/physics/engineering literature. Sev- 
eral methods attack it by assuming the analytic expression 
of the input to be known except for a small number of 
parameters so that the deconvolution problem becomes a 
parameter estimation problem. This approach is often named 
parametric deconvolution. In [51], for example, the unknown 
input is assumed to be described by a sum of exponentials and 
one has only to estimate the amplitudes and the eigenvalues 
of the exponentials. Other cases are discussed in [ l l ] ,  [48], 
[50], and [53]. In parametric deconvolution the ill-conditioning 
is circumvented by constraining a priori the functional form 
of the input. However, this requires to deal with issues such 
as the choice of the model order, e.g., the order of the 
polynomials in [ I l l ,  and the problem of local minima in 
parameter estimation phase. Furthermore, the use of parametric 
methods makes it difficult to provide confidence limits. Even if 
parametric deconvolution has been successfully used in several 
applications, e.g., [23] and [50], the adoption of a specific 
functional form can be a rather heavy assumption. In several 
cases it is even not possible to assign a prescribed functional 
form to the input. 

Recently, splines approximation of the unknown input has 
been proposed [54], [SS]. Splines functions are a very flexible 
tool, see e.g., [57], and, in a deconvolution context, they 
can be constrained in several ways to account for possible 
sources of a priori knowledge about the unknown input (e.g., 
nonnegativity, monotonicity) [55]. However, as illustrated 
in [54], their use requires to cope with sometimes critical 
issues, such as the choice of the number and location of 
the splines knots which determine the input smoothing de- 
gree and the behavior of the estimate in presence of fast 
transients. 

An alternative approach does not postulate any functional 
form of the input and it is often indicated as nonparametric 
deconvolution. Most of the nonparametric methods are based 
on the so-called Phillips-Tikhonov regularization method [3S], 
[44] and start from the discretization of the convolution inte- 
gral, facing ill-conditioning by applying regularization/filtering 
techniques based on some a priori information, e.g., the input 
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Fig. 2. Fit of the C-peptide three-exponential impulse response model (subjects #1-5 and #7). 

is regular; to mention but a few contributions, we remind 
[IO], [13], [25], [28], and [47]. For a survey, see [41. Some 
nonparametric methods, in place of regularization, exploit the 
maximum entropy principle, e.g., [7], [8], and [16]. Below we 
will consider the Phillips-Tikhonov regularization method for 
solving our problem. 

C. The Phillips-Tikhonov Regularization Approach 

The idea of the Phillips-Tikhonov regularization method is 
to look for a solution which provides a good data fit and has, 
at the same time, a certain degree of smoothing. The approach 
assumes model (13) and estimates the unknown input U by 
solving the optimization problem [32] 

whose solution is 

6 = ( G ~ w - ~ G  + y ~ T ~ ) - l ~ T ~ - l y .  (16) 

The cost function in (15) is made up of two terms. The first 
penalizes the distance between the model predictions Gu (i.e., 
reconvolution) and the data, i.e., how well the estimated input 
can match the data. The presence of matrix W ensures that the 
adherence to each datum is pursued according to its reliability. 
The second term penalizes the roughness of the estimated 
input through a suitable design of the smoothing matrix Q. 
The relative benefit of solution regularity and data fit is given 
by the amplitude of the parameter y. By raising y, the cost of 
roughness increases and the data match becomes relatively less 
important. For such a reason y is usually called regularization 
parameter. The choice of the regularization parameter is 
commonly recognized as a critical problem. Several criteria 
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Fig. 3. Least squares approach. (a) Deconvoluted insulin secretion rate 
(ISR). (b) Model predictions against data (subject #6). 

have been proposed. When the measurement error variance is 
known, a widely used criterion is 1471 

Criterion 1: Adjust y until the residual sum of squares 
(RSS) equals the sum of the measurement error variances, 
i.e., until RSS = trace(W). 

The rationale of the criterion is clear: since the residuals can 
be viewed as an a posteriori estimate of the measurement error 
(assuming an error-free model), the regularization parameter 
should make the residual sum of squares, RSS, equal to the 
expected sum of the squared measurement errors, E[uTv] = 
trace (W). 

The smoothing addendum uTQTQu must ensure the reg- 
ularity of the solution. Several functionals can be selected 
to penalize the signal roughness [32], [44], 1471 and the 
“most appropriate” one usually depends on the particular case 
under study. Usually, smoothness is pursued by penalizing the 
energy of the mth order time-derivatives, m being a parameter. 
For example, in [35] the second-order timederivatives were 
originally considered whereas in 1101 the energy of the first 
derivatives was penalized so that, for uniform sampling, Q 
is a square lower triangular Toeplitz matrix (size n) whose 
first column is [I, -2, 1, 0, . . .  , o ] ~  or [I, -1, 0, . . .  , o ] ~ ,  
respectively. The parameter m is usually adjusted by trials. 
When sampling is nonuniform, matrix Q has to be suitably 
chosen since input variability must also be penalized according 
to the length of the time interval where it occurs. In the case of 
the first derivatives, for example, one can define Q by dividing 
by the kth row of the above mentioned square Toeplitz 
matrix, Atk being the duration of the kth sampling interval. 

deconvolution ISR 

2000 

“0 50 100 150 200 
minutes 

(a) 

reconvolution vs C-peptide data 
r 

O k I  So 100 150 200 
minutes 

(b) 

Fig. 4. 
predictions against data (subject #6). 

The Phillips-Tikhonov approach. (a) Deconvoluted ISR. (b) Model 

The above formulation of the Phillips-Tikhonov regular- 
ization method has been applied to our problem by adopting 
Criterion 1 for the choice of the regularization parameter and 
assuming for the measurement error variance that reported in 
Table I. The energy of the first-order time derivatives was 
penalized (by considering the second order similar results 
were obtained). Fig. 4 shows the deconvoluted ISR and the 
model predictions against data for the same subject (#6) as 
in Fig. 3. In all subjects, the sudden ISR variations occurring 
immediately after the glucose injection were systematically 
oversmoothed. In fact, the reconvoluted profiles are not able 
to fit the initial rapidly changing data, say for t < 10-15 
min, thus resulting in large residuals, see e.g., Fig. 4(b). In 
practice the initial residuals (one to four, depending on the 
subject) determine the entire RSS of Criterion 1. On the 
contrary, a perfect adherence to the data was obtained in the 
second phase, say for t > 10-15 min, at the expense of large 
oscillations (Fig. 4). A large measurement error is predicted 
for the initial data and virtually no error for all the remaining 
ones. To regularize the profile in the second-phase release, y 
should be increased but this would result in an even more 
oversmoothing of the first-phase ISR. To obtain a good fit of 
the initial data, y should be decreased but this would produce 
even more roughness in the second-phase ISR. 

The systematic oversmoothing of the initial peak is due to 
the fact that the solution minimizes a cost function where the 
temporal variations of the input have the same price wherever 
they occur. In other words, the unknown signal is assumed to 
be “stationary.” On the contrary, during IVGTT, we expect an 
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initial rapid release of insulin by the pancreas, i.e., ISR changes 
very quickly and each sample is completely unpredictable from 
the previous one. A much more regular profile is expected 
later, when insulin release is known to occur at a slower rate. 
Actually, this biphasic (nonstationary) pattern represents an 
a priori available knowledge which was not exploited in the 
above implementation of the regularization method. 

Fig. 4 also shows that the staircase approximation, i.e., ISR 
is constant during each sampling interval, is particularly rough 
when the time interval gets longer due to the less frequent 
sampling, i.e., from 15 min on. The assumption behind (7) 
becomes critical and the estimated ISR is a poor approximation 
of a physiological continuous signal. 

Finally, let us consider the regularization parameter. Its 
choice is critical and, in fact, this issue is a classic of 
the deconvolution literature. In the above strategy all the 
regularization effort is played in the first phase so that in 
the second phase (where the signal is known to be regular) 
ill-conditioning persists and the used regularization criterion 
does not play any visible role. However, neither Criterion 1 
nor any of the many others proposed in the literature, for a 
survey see [4], [26], [34], and 1391, has become a standard 
also because it is difficult, in a deterministic setting, to judge 
their relative merits. 

In the next section we will exploit the lessons learned 
from the implementation of the classic Phillips-Tikhonov 
regularization method. The approximations due to the nonuni- 
fordinfrequent sampling will be addressed by means of a 
different formalization of the input estimation problem. Then, 
provided that the a priori knowledge about the biphasic ISR 
pattern can be described by a suitable model, we will state 
deconvolution in a stochastic embedding as a linear minimum 
variance estimation problem. 

VI. A STOCHASTIC APPROACH 
Two kinds of information are available: the known biphasic 

pattern of ISR is an a priori information while the observed 
data can be thought as an a posteriori information. The above 
classification suggests to state the problem into a Bayesian 
embedding. 

A. Deconvolution as a Linear Minimum 
Variance Estimation Problem 

Consider the model 

y = G u + v  (17) 

where y and U are a n-dimensional (stochastic) vectors, U is a 
N-dimensional (stochastic) vector, and G is a n x N matrix. 
Assume that U and v are uncorrelated with a priori covariance 
matrix C ,  and E,, respectively. For sake of reasoning, assume 
C ,  and C,  to be positive definite matrices and u and U to 
have zero mean. In a probabilistic setting, consider the Linear 
Minimum Variance Estimation Problem: “Find the estimate 6, 
linearly depending on the data vector y, such that E [  I Iu - 61 1 2 ]  
is minimized, i.e., minimize the expectation E of the squared 
euclidean norm 1 1  . I /  of the estimation error.” Under the 

above assumptions, the solution is found by the following 
optimization problem [2]: 

m;ln (y - Gu)~C,’ (y - Gu) + uTCi lu .  (18) 

The cost function in (18) consists of two terms. The first 
term denotes, as in problem (15), the distance of the model 
predictions from the data, whereas the second one weights the 
adherence to the a priori knowledge on U .  In explicit form, 
the linear minimum variance estimator of u given y is 

6 = (GTCi lG  + Cll)-’GTC-l v Y. (19) 

The estimation error e = u - 6 has zero mean and covariance 
matrix 

cov (e) = (G~c;’G + E;’)-’. (20) 

When the vectors involved in model (17) are Gaussian, the 
linear estimator (19) has minimum error variance among all 
the estimators of U given y. 

To tackle deconvolution as a linear minimum variance 
estimation problem, the knowledge of the a priori second- 
order statistic description, i.e., mean and covariance matrix, of 
both U and ‘U is thus required. Let us consider these covariance 
matrices depending on a scale factor (possibly unknown), i.e., 
C ,  = X2R and C, = a2B, such that (18)-(20) become 

2 
U X2 

min (y - G u ) ~ B - ’ ( ~  - Gu) + - uTR-’u (21) 

cov(e) = ~ ( G ~ B - ~ G  + TR-’)-’. (23) 

Note the similarity between the “deterministic” (15), (16) 
and the “stochastic” ones (21), (22). The ratio a2/X2 cor- 
responds to y but here it has a precise statistical meaning. 
When one of the two scale factors (or both of them) is (are) 
unknown one can estimate it (them) according to its (their) 
statistical meaning, thus allowing the recall of some favorable 
properties, such as the minimum variance of the estimator (22) 
and the existence of a closed form expression of the estimation 
error covariance matrix (23). 

Finally, it is interesting to note that in [56] and [57] a 
similar rationale was used to interpret “deterministic” smooth- 
ing splines as Bayes estimates. This allowed the derivation 
of “Bayesian confidence intervals,” conceptually similar to 
(23), whose performance have been studied in [33], [56] and 
~ 3 1 .  

B. The Virtual Grid 
In this paragraph we address the problem of infrequent 

sampling. Consider the time-continuous model (6). With the 
final aim of discretizing it, let us consider two decoupled grids. 
Let R, = { t ~ ,  tz, . . . , t k  . . . , tn}  be the (experimental) 
sampling grid and R, = {TI, Tz ,  . . .  , Tk, . . .  , TN} be a 
finer (N > n) grid over which the unknown input will be 
discretized. R, must contain Q,, but it is arbitrary and it 
has not an experimental counterpart. For these reasons we 
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call R, the virtual grid. Let cL(Tk)  denote the (noise-free) 
output at virtual sampling times Tb. Assume that ISR(t) can be 
approximated as a piecewise constant within each time interval 
of the virtual grid. In keeping with (7), it follows: 

where TO = 0. Adopting the usual matrix notation one has 

CL = G,u (25) 

where ch and U are the vectors of input and output considered 
on the virtual grid, and G, is a N x N lower triangular 
matrix whose entries are 

T, 

G,(k, i )  = Lt-l g ( T b  - 7) d.r k 5 i .  (26) 

Times belonging to the virtual grid R, but not present in the 
sampling grid R, do not correspond to sampled output data. 
We can regard them as (virtually) missing data. Denote by G 
the n x N matrix obtained by canceling from G, those rows 
which don't correspond to sampled output data. Finally, by 
considering the measurement error we have a model of the 
observations as in (17). 

When N > n, model (17) determines a linear system with 
less equations than unknowns. Indeed, the reconstruction of 
the N-dimension vector U from the n-dimension vector 9 by 
linear minimum variance estimation is still possible since it 
exploits (and requires) some a priori knowledge on U ,  i.e., 
its a priori second-order statistic description on R,. Note 
that, by considering R, to be finer and finer, this prior will 
be closer and closer to that of a time-continuous input and, 
accordingly, vector U will determine a piecewise profile closer 
and closer to a time-continuous function. In other words, this 
procedure exploits the a priori knowledge about the input and 
its continuity properties directly in its natural continuous-time 
domain. 

C. A Stochastic Model Describing ISR during IVGTT 

A glucose stimulus is known to cause an initial spike in ISR 
followed by a much more regular pattern. In this paragraph 
we propose a stochastic model which formalizes this a priori 
knowledge. 

The model considers the input on a grid divided, for 
sake of reasoning, in two portions of length N I  and N2, 
i.e., R, = R,I, R,z}. In the first portion the model must 
account for the spiky insulin release where the time-course 
of ISR changes very quickly. R,1 ends at min 12 or min 
15, i.e., T N ~  = 12 or 15, depending on the subject. Each 
sample of ISR on R,1 is completely unpredictable given 
the previous one. One may think that, in this portion, the a 
prior1 covariance matrix of the process is infinite; only the 
a posteriori information is used to reconstruct the signal in 
this portion, so R,1 overlaps the sampling grid R8 in its first 
NI elements. The estimation of uk for k 5 NI is completely 
determined by the first N I  observations (number of unknowns 
= number of independent equations). The second portion of 

the virtual grid can be much finer than the corresponding 
sampling grid. Here we considered a 1 min evenly-spaced grid, 
i.e., f2,2 = {TNI + 1, T N ~  + 2, . . . , 240}. In this portion the 
unknown input is known to be regular and we assumed it to 
be described by a random-walk model 

uk = u ~ - I +  wk k > NI (27) 

where Wk is a white noise process with zero mean and variance 
X2. The random-walk model driven by a zero-mean white 
noise is commonly used to describe smooth signals, e.g., [lo], 
since the difference between two consecutive samples is a 
random variable with finite variance X2. Note that the lower 
is X2, the more regular is process (27). 

Broadly speaking, the covariance matrix C, can be thought 
as 

(28) 

The block structure of the covariance matrix C, denotes 
the uncorrelation between the two regions where a priori 
knowledge about ISR is available and where it is not. The 
lower-right block X2(PTP)-l  corresponds to the covariance 
matrix of the portion of vector U described by the random- 
walk model. In particular, matrix P is a N2-dimension Toeplitz 
square matrix whose first column is [l, -1, 0, ... , O I T ;  see 
e.g., [lo]. 

In theory, R,2 could be chosen even much finer. Note 
that when a finer and finer R,2 is selected, the random- 
walk becomes closer and closer to the integral of a time- 
continuous white noise process and the prior (27), made on 
the input first discrete-time differences, becomes closer and 
closer to a prior on the input first continuous-time derivatives. 
Finally, it is worth noting that other models, e.g., an integrated 
random-walk model, could have been used to describe the 
second-phase ISR as well. 

D. The Choice of the Regularization Parameter 
Consider C, = a2B where a is equal to CV (assumed 

constant in each data set) and B is a diagonal matrix whose 
entries are the squared measurements. The covariance matrix 
of the unknown vector U ,  i.e., C, = X2R, is known except 
for the scale factor X2. 

If the value of a2 is assumed to be known, only X2 
has to be adjusted to obtain the minimum variance esti- 
mate: for its choice one has to face problems equivalent 
to the ones encountered with the regularization parameter 
(Section V-C). For example, one may resort to Criterion 1, 
but, since this criterion has an intuitive motivation but not 
firm statistical grounds, the statistical properties of the estimate 
mentioned in Section VI-A could not be properly invoked. 
On the other hand, other available criteria, e.g., generalized 
cross-validation [24], L-curve [25],  have been developed on a 
somewhat heuristic basis and/or in a deterministic setting as 
well and thus their use in a stochastic context is questionable 
too. 

Here our a priori knowledge about measurement error 
is also approximate. We only know that CV should range 
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Fig. 5. The stochastic approach. (a) Left panel: Deconvoluted ISR. Right panel: Model predictions against data (subjects #1, #2, and #4). 

between 4-6%, i.e., CT should range between 0.04 and 0.06. 
The individual tuning of the CV is, however, important. In fact, 
adopting the same CV in all the subjects, say 5%, determines 
too much smoothing in some individuals, and too little in 
others (results not shown). In addition, in the impulse response 
study we have noted that the aposteriori CV estimate (Table I) 
tends to vary, albeit in a small range, among individuals. 
Therefore, our strategy was to treat the CV 4-6% information 
as indicative and to simultaneously estimate the input together 
with the so-called statistical power of both the measurement 
error (i.e., a2) and unknown signal (i.e., X2). 

Exploiting the stochastic embedding, statistically-based cri- 
teria can be derived for the choice of X2 and cr2. In fact, for the 

linear minimum variance estimate of problem (21), it holds 

E[WESS($)] =Pq($) 

E[- . sS($)]  = 0 2 [ n - q ( $ ) ]  (30) 

where WRSS = (~ -Gi i )~B-~(g - -Gi iL )  denotes the weighted 
residual sum of squares, WESS = GTR-'ii denotes the 
weighted estimate sum of squares, and 
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where B-'I2 is such that B-' = B-1/2B-1/2. The proofs of 
(29) and (30) are reported in Appendix A. Given the analogy of 
(30) and a property of linear regression models [5] ,  where the 
averaged sum of the squared residuals is a biased estimator of 
the error variance, with the bias depending on the (integer) 
number of degrees of freedom of the model, q(a2 /X2)  is 
named degree offreedom associated with the ratio a2/X2.  Here 
the quantity q(a2/A2) is a real number varying from zero to n. 

Properties (29) and (30) suggest consistency criteria to 
choose the parameters X2 and/or a2 when they are unknown. 
Precisely, when X2 is unknown (a2 assumed to be known), 
one should tune it until WESS equals its statistical expectation 
(29). Conversely, when a2 is unknown (A2 assumed to be 
known), one should tune it until WRSS equals its statistical 
expectation (30); this case is mainly speculative because X2 

is usually unknown. When both a2 and X2 are unknown, one 
can adopt the following criterion, being y = a 2 / X 2  

Criterion 2: Tune y until 

(32) WRSS( y ) WESS( y ) 
4 ( Y )  . 

= Y  
n - 4 ( Y )  

As y is determined, the estimate of a' is given by 

(33) 

according to (30). 
It is easy to see that, since q ( y )  > 0 for y > 0, Criterion 1 

is not consistent with (30) and, in a stochastic context, would 
lead, on the average, to oversmoothing. 
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E Results 
In each subject we considered both o2 and X2 unknown 

and tuned their ratio according to Criterion 2. The estimation 
algorithm was implemented by exploiting suitably designed 
numerical tools [14]. In Fig. 5 we present, for all subjects 
but #3, the deconvoluted profile and the corresponding model 
predictions together with the data. The deconvoluted profile 
of subject #3 is presented in the next section together with 
its confidence interval. In some cases the sample at time 
1 min was an outlier and was eliminated from the data 
set. R,z starts at min 12 in subjects #2, #3, #6 and at 
min 15 in subjects #1, #4, #5, #7. The a posteriori es- 
timate of the measurement error CV of the IVGTT data, 
obtained by (33), are, for subject #1-7: 3.9%, 6, 3.7, 2.7, 
7.4, 7.1, and 5.2. They vary in a range consistent with both 
our a priori knowledge and the a posteriori estimate of 
Table I. 

Having accounted for a priori knowledge through (27) 
and (28), the initial peak is estimated without systematic 
oversmoothing. Thanks to the introduction of the virtual grid, 
the second-phase ISR profile is practically time-continuous 
and more physiologically realistic. Finally, Criterion 2 seems 
to indicate in each subject a reasonable compromise between 
adherence to data and regularization. 

Note that “linear regularization” was sufficient to obtain 
nonnegative ISR profiles in all subjects. Would had this 
not happened one should either develop a stochastic model 
more complex than e.g., (27) and use it in conjunction with 
nonlinear estimation algorithms, see e.g., [13], or pose the 
input estimation problem in a deterministic context, e.g., [lo], 
[12], and [52]. 

It is possible to make a qualitative comparison between 
the average secretory profile, displayed in Fig. 6, and the one 
presented in Fig. 1 of [41] obtained from the same data set. 
Our estimate gives a sharper and higher peak whereas, in the 
second part, the mean levels are substantially equivalent. Of 
note is that our average profile is smoother and shows, from 
min 60, a slow, low in amplitude, oscillatory pattern. However, 
it is worth remarking that here a three instead of a two- 
exponential impulse response model was used. The different 
spectral content of the lower order model is likely to affect the 
peak amplitude estimation, especially in those subjects where 
the impulse response is better described by a three exponential 
model [43]. 

I‘ 

.. 

F. Conjeidence Limits 

It is important to derive the confidence limits of the insulin 
secretory profiles reconstructed by deconvolution. There are 
two sources of uncertainty. The first is the measurement error 
of the CP concentration measured during IVGTT. The second 
source is related to the impulse response of the CP system, 
i.e., the parameters of the impulse response are estimated with 
a certain precision. For sake of reasoning, we name the first 
source of uncertainty as data noise, the second as parameter 
uncertainty. 

As already pointed out in [lo] and [13], in a stochastic 
context the covariance matrix of the estimation error can be 
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+3% at time 160, -4% at time 180). Rather expectedly, the 
largest variability of the percentage estimation error [shaded 
area, Fig. 7(b)] occurs on 01 (no a priori information is 
specified and, in each run, the estimator must believe to the 
data). The percentage estimation error SD, initially equal to 
2% (reconstruction of basal secretion), raises from 8% (major 
peak amplitude) up to 30% (interval between times five and 
12). Then it has a rapid decrease followed by a somewhat 
steady 5% value maintained till 70 min. Finally, from 70 min 
on, there is an increase of the SD up to 20%, also according 
to the less frequent sampling (less a posteriori information is 
available). 

The Monte-Carlo procedure was also repeated to study 
in each subject the individual effect of the two sources of 

uncertainty on the precision of the deconvoluted profile. First, 
the 300 IVGTT data sets were deconvoluted using the nominal 
impulse response, thus obtaining a dispersion due to data noise 
only. Then, the nominal model predictions were deconvoluted 
with the 300 noisy impulse responses, thus obtaining profiles 
whose dispersion is due to parameter uncertainty only. The 
sample variance obtained when both errors are considered was 
seen to be approximately the sum of the two sample variances 
obtained by considering each source separately. Where the 
ISR is very smooth, say from min 30 on for subject #3, the 
contribution of parameter uncertainty is very minor (for subject 
#3: from 7% of the global variance at 30 min down to 2% 
at 240 min). Its role in the global uncertainty is, however, 
important when ISR changes rapidly (for subject #3: 50% 



524 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 43, NO. 5, MAY 1996 

of the global variance at the first-phase peak), also given 
the lesser precision of the parameters describing the fastest 
component of the impulse response (see Table I). 

Similar results have been obtained for all the other subjects. 

VII. CONCLUSIONS 

Deconvolution allows the indirect measurement of ISR dur- 
ing IVGTT by solving an input estimation problem. The major 
difficulties to be addressed are the nonuniformlinfrequent 
sampling, the choice of the amount of regularization and the 
signal nonstationarity. 

In this paper, the introduction of the virtual grid, by using 
an available a priori knowledge on the continuity properties 
of the unknown input in the second-phase ISR, eliminates the 
staircase approximation and provides secretion rate profiles 
which are physiologically more realistic. Of course, the use 
of the virtual grid is helpful to exploit the a priori knowledge 
on the input but it can not be a panacea for possible loss of 
information caused by infrequent sampling. 

The formulation of the problem in a stochastic embedding 
is not completely new, see e.g., [lo] and [13]. Here it has 
allowed us to derive statistically-based criteria for choosing the 
amount of regularization. The use of Criterion 2 has indicated 
an appropriate regularization in each subject and provided a 
reasonable a posteriori estimate for the measurement error CV. 
Confirmatory results have also come from a test on a simula- 
tion problem (Appendix B). A possible additional advantage 
of the Bayesian embedding consists in providing, assuming an 
error-free impulse response model, a closed form expression 
to compute the confidence intervals. Of course, the possibility 
of invoking the optimal properties of the estimator depends 
on how reliable the statistical priors adopted to describe the 
unknown input are. Here, the goodness of (27) and (28) 
has been assessed a posteriori by the qualitativelquantitative 
results as well as by using the method in a simulation context 
(Appendix B). 

As far as nonstationarity of ISR pattern is concerned, the 
use of model (28) has lead to an estimate of the initial 
peak without systematic oversmoothing. Signal nonstationarity 
could have also been handled differently. We have chosen a 
solution which maintains a sort of statetical flavor, the aim 
being to take advantage of the stochastic embedding. From 
a deterministic point of view, the use of (28) is equivalent 
to apply no regularization on the first portion of the data 
to get a complete adherence to them and to concentrate the 
smoothing action only in the second part of ISR (known to 
be regular). This avoids wide supposedly spurious oscillations 
to appear in the slow part of the estimated ISR profile, as 
it happens when all the regularization effort is played at the 
beginning. Note that initial “null residuals” (Fig. 5) are not 
inconsistent with the assumption of a constant measurement 
error CV but only denote that, when there is a lack of apriori 
knowledge, the linear minimum variance estimator can do 
nothing but to “believe” to the data (a posteriori knowledge). 
On the contrary, with the “deterministic” algorithm (Fig. 4) 
the inconsistency of the residuals (large in the beginning, null 
in the second phase) with the assumption of constant CV was 

due to the systematic oversmoothing of the first-phase ISR. 
Of course, null residuals entail the risk to explain both noise 
and data. Indeed, the high sensitivity of the first-phase ISR 
to data noise is reflected by a larger confidence region, see 
e.g., Fig. 7. 

To conclude, the algorithm presented in this paper was 
developed to solve a specific case study, i.e., the reconstruction 
of ISR after a glucose stimulus. However, while the covariance 
model (28) is problem oriented, the approach machinery, e.g., 
the new regularization criteria and the virtual grid, are general 
purpose. 

APPENDIX A 

Below we give the proof of (29) and (30). Consider model 
(17) and assume w and U uncorrelated with covariance matrices 
given by 

C, = 0 2 B  
= , 2 g 1 / 2 g l / 2  (34) 

= P(FV-1 (35) 

E, =X2R 

where B112 and F are two full-rank square matrices of 
dimension n and N ,  respectively. 

Let us begin with the proof of (30). The linear minimum 
variance estimator of U given y is given by (22); equivalently 
by means of the matrix inversion lemma one has [2] 

Q = RGT(GRGT + yB)-’y (36) 

where y = a2/X2. 
The residuals vector, r = y - GG, is then 

r = [In - GRGT(GRGT + yB)-’]y (37) 

where I ,  denotes the n-dimension eye matrix. 
Reminding that the covariance matrix of y is 

cov (y) = X ~ ( G R G ~  + ?I?) (38) 

by means of the matrix inversion lemma, one finds 

cov ( r )  = a2[B  - G(GTBplG + yRP1)-’GT]. (39) 

Defining 

cov (r,) = .’[I,, - B - ~ / ~ G ( G ~ B - ~ G  

+ yR-1) -1GTB-1/2] ,  (41) 

Thereby, we have 

E[WRSS] = E[rTB-lr] 
= E[rzr,] 
=trace [cov (T,)] 

= a2[n - d Y ) I  (42) 
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Fig. 8. Simulation study. (a) Deconvoluted (continuous line) against true ISR (dashed line). (b) Model predictions against data. 

where it holds 

cov ( Q ~ )  = X ~ F - ~ G ~ ( G F - ~ F - ~ G ~ + ~ B ) - ~ G F - ~ .  (46) 

H = ~ - 1 / 2 ~ ~ - 1 .  

q(y) = .trace [B-l12G(GTB-'G + yR-1)-1GTB-1/2] 
(43) 

Now, let us prove (29). From (36), having recalled (38) and 

In order to easily manipulate (46), let us define 

(47) 
such that (30) is proven. 

( 3 3 ,  it follows H is a n x N matrix. From (46) and (47) we thus have 

cov (6)  = X ~ R G ~ ( G R G ~  + y ~ ) - l ~ ~  cov ( Q ~ )  = x ~ F - T G T B - ~ / ~ ( B - ~ / ~ G F - ~  

= x ~ F - ~ F - ~ G T ( G F - ~ F - T G T  + ? ~ ) - l  . F - T G T ~ - ~ / ~  + yl,)-1B-1/2GF-1 

. G F - ~ F - ~ .  (44) = P H T ( H H T  + & - 1 H .  (48) 

Hence, having defined 
Let U and V be unitary matrices, of dimension n and N ,  

respectively, such that 

Gw = FQ (45) U T H V  = D.  (49) 
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D being a diagonal n x N rectangular matrix whose n 
diagonal elements are denoted with d,, i = 1, 2, . . .  , n. It 
follows that 

trace [ H ~ ( H H ~  + y l n ) - l ~ ]  =trace [ V D ~ U * ( U D V ~  
. V D T U T  + ,yIn)-1UDVT] 

=trace [DT(DDT + ,yIn)-lD] 
n 

2=1 

On the other hand, from (43), (47), and (49), it also holds 

q ( y )  =trace [B-'12G(GTB-'G + yR-1)-1GTB-1/2] 
- - trace [B - 112 GF-1( F-T GTB-  B - l I 2  GF-  

+ ~ I N ) - ' F - ~  GTBP1l2]  

From (48), by comparing (50) and (til), we have finally 

E[WESS] = EIGTR-lG] 
= E[ST,B,] 

= X2q(7 ) .  

= trace [cov (BiL,)] 
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APPENDIX B 
In this appendix, we show the performance of the method 

in a simulation study. The function 

t < O  ic fB3tP1e-b3t  + B 4 t P ~ e - ~ 4 ~  t 2 0 
ISR(t) = C + Ble-blt + B2ePbnt (53)  

with C = 80, Bl = -B2 = 8000, BS = 1.4, Bg = 1.2, p1 = 
3, p2 = 1.75, b l  = 1.8-l, b2 = 1.1-’, b3 = p1/15, and 
bq = p2/50, simulates an ISR profile during an IVGTT. The 
function 

3 

g ( t )  = Aze--cr%t (54) 
2=1 

with AI  = 1.794 x A2 = 8.801 x A3 = 
4.954 x l op5  a1 = 0.313, a2 = 0.073, a3 = 0.021, 
represents the impulse response of the CP system. The function 
c( t )  = g ( t )  @ ISR(t), where “@” denotes convolution, thus 
gives the CP plasma concentration time-course during the 
simulated IVGTT. 

Parameters of (53) and (54) have been chosen by the 
following rationale. The input profile, shown in Fig. 8, was 
chosen to bear a qualitative resemblance with the average 
estimated ISR profile reported in [41]. The impulse response 
parameters were obtained by fitting a three exponential sum 
to the mean of the decay curves. 

First, we considered the ideal situation, where the true 
system impulse response g ( f )  is known and the noise-free 
samples of c ( t )  with the schedule of Section I11 are available. 
In such a case no regularization is needed to solve the inverse 
problem. The unknown input was described by (27) and (28) 
on the grid Ov of Section VI-C (Qv2 starts at min 13). Fig. 8(a) 
shows the reconstruction of the ISR profile (continuous line) 
together with the true ISR (dashed line). Fig. 8(b) shows the 
model predictions, i.e., reconvolution, against the simulated 
noise-free data. In the first phase, given the finite sampling 
rate and the lack of a priori information, the approach can not 
recover pointwise the true ISR and the values of the staircase 
profile should be interpreted as mean of the input in each 
sampling interval. In the second phase, a priori information 
is available and the true time-continuous profile is perfectly 
reconstructed. 

To evaluate the performance of the method in a more 
realistic situation we considered 300 simulations of the two- 
stage experiment of Section I11 by generating noisy samples of 
the response to a CP bolus and noisy measurements of the CP 
concentration during the IVGTT. The artificial measurement 
error is additive, Gaussian and uncorrelated with a constant 
CV = 5%. For each of the 300 simulations, we first fitted 
a three exponential model; then this model was used in the 
deconvolution of the IVGTT data having assumed both o2 and 
X2 unknown. Fig. 9(a) shows the true ISR profile (dashed line), 
the mean of the 300 deconvoluted ISR profiles (continuous 
line) together with the 95% variability bands (shaded area), 
i.e., the interval between the 2.5 and 97.5 percentiles of the 
Monte-Carlo distribution of the estimated input at each time 
point. Fig. 9(b) shows the mean and SD of the percentage 
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errors, calculated pointwise in each run as in Section VI-F. 
Fig. 9(c) displays the true concentration profile (dashed line), 
the mean of the 300 reconvolution profiles (continuous line) 
together with the 95% variability bands (shaded area). The 
average estimated ISR is unbiased except near the second 
peak at min 15 (where the bias is around 10%) where the 
input must be reconstructed from few samples (at 12, 15, 20, 
and 25 min) of a small amplitude oscillation corrupted by a 
relatively large measurement error, i.e., around min 15 there 
is a low signal-to-noise ratio (SNR). Rather expectedly, the 
largest variability of the percentage estimation error [shaded 
area, (b)] occurs in Ovl .  The percentage estimation error SD, 
initially equal to 2.7% (reconstruction of basal secretion), 
raises from 10% (major peak amplitude) up to 38% and 
then it has a rapid decrease followed by a somewhat steady 
value (around 7%) maintained from 20-70 min. Finally, from 
70-240 min, SD raises up to 13%, according to the less 
frequent sampling. 

Interestingly, the mean of the 300 a posteriori estimated 
CV’s, obtained in each single run by Criterion 2, was 5.1 4= 
1.5(%), suggesting that the used criterion provides suitable 
regularization. 

The Monte-Carlo procedure was also repeated two more 
times. First, the 300 IVGTT noisy data sets were deconvoluted 
using the true impulse response. Then, the noise-free IVGTT 
samples were deconvoluted with the 300 perturbed impulse 
responses. Again, the sample variance obtained when both 
the errors are simultaneously considered was seen to be 
approximately the sum of the two sampled variances obtained 
considering each source separately. Where ISR is very smooth, 
say from min 40 on, the contribution of the impulse response 
parameter uncertainty is very minor (from 5% of the global 
variance to 2% at 240 min). Its role in the global uncertainty 
is, however, important around the initial ISR peak (up to 42% 
of the global variance). 
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