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Abstract: In order to ensure consistency in the 
treatment of flashover data, it is desirable that a 
standard method of analysis of test results be 
established. Previous workers have suggested that 
the maximum likelihood method would be appro- 
priate for estimating the parameters of the break- 
down probability distribution, such as V,, and 
in the normal distribution. The present paper 
shows how this method may be applied in practice 
and can be extended to determine the confidence 
region associated with sets of parameters, and the 
confidence interval on a single parameter. It is 
also shown how other parameters, such as the 
voltage level corresponding to a specified prob- 
ability of breakdown, may be determined. An 
example is given of the application of the method 
to a typical data set for flashover in air together 
with a listing of a suitable computer program in 
Fortran 77. It is recommended that this method 
be considered for adoption as a standard pro- 
cedure. 

1 Introduction 

A variety of different test strategies may be employed in 
investigating the breakdown characteristics of a discharge 
gap subjected to impulse voltages. 

In the Class I multilevel test procedure [l], for 
example, a number of impulses are applied for a fixed 
value of the crest voltage and the number of breakdown 
and withstand events recorded. The time between the 
voltage applications must be sufficient for each applica- 
tion to be independent (i.e. the same initial conditions 
apply) and the test is repeated for various crest voltages 
in the region where the breakdown probability undergoes 
a transition from a low to a high value. 

In analysing the results of such tests it is normally 
desired to evaluate the crest voltage V,, at which there is 
a 50% probability of flashover and also some measure of 
the range of voltages over which the probability of break- 
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down PB(V)  increases from very low to very high values 
(Fig. la). 

Most workers in the past have taken the form of the 
distribution of Fig. la to be that of the cumulative 
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normal distribution: 

pB( V )  = - exp [ - ( V  - V,,)2/2a2] dV (1) 

since most breakdown data agrees well with this distribu- 
tion for PB(V)  greater than about 2% [2, 31. Some 
authors [4-61 have suggested that alternative distribu- 
tions such as the Weibull, Gumbell or extreme-value dis- 
tributions are more appropriate at very low probability 
levels. All these distributions, however, are very close to 
the cumulative normal distribution for probability levels 
greater than 2%. 

Whatever distribution is assumed to be appropriate 
for a given case, some method must be adopted for esti- 
mating the parameters defining the distribution. 

For multilevel tests the parameters V,, and a in the 
distribution (eqn. 1) have most commonly been estimated 
by plotting the observed frequencies of breakdown on 
normal probability paper, drawing the ‘best’ straight line 
by eye (Fig. lb) and determining the values of V,, and cr 
from 

&a 1” - m  

Vso = V[PB(V) = 0.51 

0 = V[PB(V)  = 0.51 - V[PB(V) = 0.161 (2) 
It should be pointed out at this stage that a must not be 
interpreted in any sense as the standard deviation of V,, . 
It is simply the parameter in eqn. 1 which gives a 
measure of the rate at which P A V )  goes from low to high 
values with increasing crest voltages. 

A number of alternative test strategies have also been 
adopted which have the aim of establishing an accurate 
estimate of one particular parameter with fewer overall 
impulses than that necessary in the full multilevel test 
procedures. Typical standard procedures are the Class I11 
‘up-and-down’ method [l] for determining V,, and the 
‘extended up-and-down’ test [7] for evaluating crest volt- 
ages corresponding to low breakdown probability levels. 
The basic philosophy of such strategies is illustrated by 
the following example. 

Suppose that n impulses are applied at a given crest 
voltage. If no breakdowns occur then the voltage is 
increased by a predetermined amount and n impulses 
again applied. If one or more breakdowns occur then the 
voltage is reduced by the same amount. Repeating this 
procedure, the average crest voltage V, will approach a 
level at which there is a 50% probability that no break- 
downs occur in the n impulses, i.e. 

(1 - P)” = 0.5 (3) 
where P is now the probability that breakdown occurs in 
any single impulse at the voltage V,. The number of 
impulses is therefore chosen to give an average crest 
voltage corresponding to the desired probability level. 
For example, n = 7 and 20 give P = 9.4% and 3.4%, 
respectively, i.e. V, = V9,4 and V3,4 [8]. Another modifi- 
cation to the above procedure is to reduce the crest 
voltage immediately after the first flashover in a series. 

It should be noted that, even when the test procedure 
is aimed at measuring a single V,, the investigator very 
often wishes to extrapolate the results in order to obtain 
an estimate of the crest voltage corresponding to a very 
low breakdown probability level. Some method for evalu- 
ating the best probability distribution from such data is 
therefore highly desirable. 

Whatever testing strategy is adopted, providing all the 
impulses are independent of each other, the test data will 
give the frequencies of breakdown at a number of crest 
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voltages. The number of impulses at a given level, 
however, may vary widely. 

Brown [3] and Carrara and Yakov [6] have suggested 
that the maximum likelihood method is the most appro- 
priate technique for estimating the parameters of a break- 
down probability distribution (e.g. V,, and cr in eqn. 1). 
Brown estimated the confidence intervals associated with 
V,, and cr using both the concept of tolerance limits and 
a semiempirical graphical method, and also made a 
detailed comparison of his procedures with other 
accepted techniques. The confidence intervals for a single 
parameter, estimated by the different techniques, were in 
good agreement and further details may be obtained in 
[3]. Carrara and Yakov [6] pointed out that it should be 
possible to extend the maximum likelihood method to 
estimate the confidence intervals, but their suggested pro- 
cedure was somewhat empirical. In the present work a 
standard procedure, based on the likelihood function, is 
established for estimating the parameters of the distribu- 
tion together with their corresponding confidence regions 
and intervals. 

In the following it will be assumed that the cumulative 
normal distribution is appropriate but the techniques 
described are equally applicable to any probability dis- 
tribution. 

2 

In standard statistical texts [9-121 it is stated that the 
most powerful method for estimating the parameters of 
an assumed distribution based on a given set of data is 
the method of maximum likelihood. Brown [3] was the 
first worker to apply this technique to flashover data and 
it has also more recently been used by Hylten-Cavallius 
et al. [4], Carrara and Yakov [6] and Eriksson et al. 

For multilevel tests consisting of n, impulses at each of 

Estimation of V,, and u 

~ 1 4 1 .  

N voltage levels, the likelihood function is given by 
N 

Lb/H(VsO, a)) = c n Pp(1 - Pk.-bk (4) 
k =  1 

where b, is the number of observed breakdowns at the 
kth level, P ,  is the probability of breakdown as deter- 
mined from eqn. 1 and C is an arbitrary constant. 

We note that each series of impulses is a binomial trial 
of whether or not the gap breaks down and that 
Lb/H(V,,  , a)) is proportional to the probability that the 
observed data set y occurs on the hypothesis, H( V,, , a), 
that V,, and a take on certain values. In the maximum 
likelihood method the likelihood function L is maximised 
and thus yields the ‘maximum likelihood’ estimates, V:,  
and cr*, of the true parameters. Note that in this pro- 
cedure the data set remains constant while the hypothesis 
H( V,, , cr) is chosen so as to maximise L. Alternatively it 
is usually more convenient to maximise the natural 
logarithm of L, in which case the multiplicative constant 
C becomes an arbitrary additive constant. 

Estimates of parameters using this procedure have 
large sample properties which are desirable in the sense 
that they are approximately unbiased and normally dis- 
tributed and no other estimate has a smaller limiting 
value of [(sample size) x (variance)] [lo]. 

It is a relatively straightforward procedure to write a 
computer program to find the maximum likelihood esti- 
mates V:, and cr*, and thus enable the straight line rep- 
resenting the corresponding best fit cumulative normal 
distribution to be drawn, on probabilistic paper, for a 
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given data set. A listing of a simple algorithm in Fortran 
77 is given in Appendix 7.3. 

A measure of how well the estimated distribution fits 
the observed breakdown frequencies can be obtained 
from a X-square test which, for example, in the multilevel 
procedure takes the form [3] 

where the Pks are obtained from eqn. 1 with V50 = V:, 
and o = o*. The number of degrees of freedom is 
y = N - 2 and the parameter h = x2/y is expected to be 
of order of, or less than, unity. Values of h appreciably 
greater than 1 either indicate that the assumed distribu- 
tion is inappropriate, or that a particular data set may 
not be reliable and that care must be taken in inter- 
preting the results. 

In any testing it would seem highly desirable to carry 
out a X-square check on the results as they are taken in 
order to verify that consistent data have been obtained. 

3 Confidence region and confidence intervals 

In his studies Brown [3] compared several different 
methods, all based on the concept of variances, for esti- 
mating the confidence interval associated with a single 
distribution parameter. Carrara and Yakov [6] pointed 
out that the likelihood approach could be extended to 
determine the confidence region associated with the 
simultaneous evaluation of the distribution parameters. 
They concluded, however, that further work was neces- 
sary to put their semiempirical procedure on to a sound 
statistical basis. 

In the following it is shown how the likelihood func- 
tion may be used to estimate both the confidence region 
and confidence intervals associated with the maximum 
likelihood estimates evaluated as in Section 2. 

3.1 
The P% confidence region for the maximum likelihood 
estimators V:, and a* is defined by the boundary in the 
V5,/a plane for which there is a P% probability that the 
true values of V50 and a lie within this boundary. It can 
be demonstrated [1&12] that the inequality 

The confidence region for V;, and u* 

defines the lOO(1 - a) per cent confidence region for the 
hypothesis H(V:o, a*), provided that the constant K is 
chosen to correspond to a confidence level of the likeli- 
hood ratio (i.e. the left-hand side of eqn. 6) equal to 

The determination of K is not straightforward and in 
[SI, for example, it was suggested on semiempirical 
grounds that a value of K equal to 0.2 was appropriate 
for a 90% confidence region. There is, however, a well 
established theorem [12, 131 that in the limit of large 
samples 

(7) 

may be approximated by a limiting psquare distribution 
~ ' ( r )  with a degree of freedom, r, equal to the number of 
parameters in the hypothesis H. If we denote by C(a) the 
value of ,y2(r) corresponding to a probability of (1 - a), 

(1 - a). 

2[ln LCy/H*) - In LCy/H)] 

the lOo(1 - a) per cent confidence region will be given by 

that is 

so that K may be identified with the corresponding value 
of and is easily calculated from standard X-square 
tables. 

Table 1 shows the values of K for the 90%, 95% and 
99% confidence regions at various degrees of freedom. 

Table 1 : Values of K in relation (6) corresponding to differ- 
ent confidence levels (1 - a) 

Degrees 90% 95% 99% 
of freedom r ( a  = 0.1 ) (a  = 0.05) ( a  = 0.01 ) 

K 1  0.258 0.1 465 0.03625 
2 0.1 00 0.0500 0.01 000 
3 0.044 0.0200 0.00343 

We thus see that the locus of points in the V5o/a plane 
for which the likelihood ratio is equal to 0.1 defines a 
90% confidence region for the simultaneous estimates 
V:, and o*. This value of the likelihood ratio was also 
employed by Eriksson et ai. [14]. For large samples this 
confidence region will have an elliptic shape and Fig. 2 
shows the results obtained for the typical set of flashover 
data, Table 2, taken from experimental results reported in 
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Fig. 2 Maximum likelihood estimation of V , ,  (=96.92 kV), u 
(=4.224 kV)  and the associated 90% confidence region for the typical 
data set of Table 2 

Table 2: Typical set of flashover data 1151 

Crest voltage, kV Number of breakdowns 
lout of 20 imDulses) 

a7 0 
90 2 
92 1 
94 5 
96 a 
102 i a  
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a companion paper [lS], in which the generalised likeli- 
hood method is extensively applied. 

8 -  

3.2 Confidence intervals for the individual parameters 
V;, and u* 

In many circumstances it is more convenient to evaluate 
confidence intervals for the individual parameters V:, 
and a* since they are more easily presented in tabular 
form. Brown has, for example, made a detailed exami- 
nation of the various methods of determining the con- 
fidence intervals from the variances of the maximum 
likelihood estimators of V50 and 

The simplest (and most optimistic) method assumes 
that the error in the estimation of a parameter is nor- 
mally distributed and that the sample is suficiently large 
for tolerance limits to be used. Thus, for example, the 
lOO(1 - a)% confidence interval for V:, is defined by 

[3]. 

vlso * tJUYSO' (10) 

where t is the lOO(1 - a)% tolerance limit and uysol  the 
variance of V:, (see Appendixes 7.1 and 7.2). 

It is also possible, however, to estimate the confidence 
interval for a single parameter from the likelihood func- 
tion [lo, 123. In this case the generalised likelihood ratio 
[lo] must be used since the hypothesis concerning the 
distribution and the parameters is composite rather than 
simple. A hypothesis is termed simple when it defines the 
distribution of the random variable exactly, otherwise it 
is termed composite. Thus, for example, the hypothesis 
H(V50, a) of a normal distribution with the parameters 
equal to certain specific values is simple, whereas the 
hypothesis H(V,J of a normal distribution with V50 
specified but a unspecified is composite. 

In order to establish a confidence interval for V:, , the 
maximum value of LCy/H(V,,)), obtained by varying a, 
may be compared with the maximum of the likelihood 
function Lb/H( V:o, a*)) and the generalised likelihood 
ratio test becomes 

where the limiting X-square distribution for the 2 log- 
likelihood ratio now has only one degree of freedom 
because only one parameter (V50) is being tested. 
LCy/H( V5,)) is now proportional to the probability that 
the given data set y will occur on the hypothesis, H(V50), 

that V5, takes a particular value with a unspecified and 
arbitrary. 

For one degree of freedom we see from Table 1 that a 
90% confidence interval would be obtained with 
K = 0.258, and a 95% confidence interval with 
K = 0.1465. 

The same procedure may be followed to establish an 
appropriate confidence interval for P. 

Table 3: Maximum likelihood estimates and condidence 
intervals for the typical data set of Table 2 as computed 
from thevariances (a )  and thegeneralised likelihood ratio ( b )  

Confidence intervals, kV 
Maximum 

est i maters, 
kV a b a b 

likelihood 90% 95% 

V,, 96.92 95.7-98.1 95.8-98.2 95.5-98.4 95.5-98.6 
u 4.224 3.0-5.4 3.1-5.5 2.8-5.6 2.9-5.8 
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In Table 3 the 90% and 95% confidence intervals of 
V:, and a* computed both from the variances and the 
generalised likelihood test are compared and very good 
agreement is obtained between the two methods. 

It should be noted that the simultaneous confidence 
intervals of the two parameters define a rectangle in the 
V50/0 plane which could also be regarded as a confidence 
region [lo], but that simultaneous lOO(1 - a)% intervals 
lead to a lOO(1 - a)'% confidence region (e.g. simulta- 
neous 90% confidence intervals lead to a 81% confidence 
region). The rectangular regions corresponding to simul- 
taneous confidence intervals of 90% and 95% for the 
typical data set are compared in Fig. 3, with the 90% 
confidence region determined from the likelihood ratio. 

Carrara and Yakov [6] estimated the 90% confidence 
interval associated with a single parameter by drawing 
the extreme tangents to the corresponding elliptic con- 
fidence region. We see from Fig. 3 that this can lead to 

lor 
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Fig. 3 
a 90% confidence region from likelihood ratio 
b region in u/V,,, plane defined by simultaneous 95% confidence intervals 
c region in u/V5,, plane defined by simultaneous 90% confidence intervals 
_ _ _ _  intervals defined by extreme tangents to the 90% confidence region 
(Data as Table 2) 

ConJidence regions and intervals 

very pessimistic estimates, since the intervals defined by 
the tangents to the 90% confidence region are even 
greater than the 95% confidence intervals computed 
either with the variances or the generalised likelihood 
ratio. 

3.3 Estimation of other parameters of the distribution 
The methods described in Sections 2, 3.1 and 3.2 may be 
applied to any two-parameter distribution and are easily 
expanded in principle to n-parameter distributions. 

In addition to estimating V50 and o the method of 
maximum likelihood may also be employed for the esti- 
mation of other parameters of interest, such as voltage 
levels corresponding to low or high breakdown probabil- 
ities, and the generalised likelihood ratio used to deter- 
mine the corresponding confidence intervals. 

Suppose, again for a cumulative normal distribution, 
that we wish to determine the maximum likelihood esti- 
mate of the voltage level having a 5% probability of 
breakdown V :  . This can be achieved in two ways. First, 
one may maximise the likelihood function, where L is 
now expressed as a function of V, and any other param- 
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eter, e.g. a. In this case L can be written 
N 

L(y/H( V5, c)) = c n Pp(  1 - Pk)nL-bk  (12) 
k =  1 

where P k  is given by 

1 “ l r  
P - - exp {[V - (V5 + 1 . 6 5 ~ ~ ) ] ~ / 2 a ~ }  dV (13) 

k - & a  --oo 

Alternatively, since the cumulative normal distribution 
has been assumed to represent the data, V :  may be com- 
puted from 

V :  = V:, - 1.650* (14) 

provided that V:, and a* have already been determined. 
It can easily be demonstrated that both these pro- 

cedures lead to the same value of V: and that the 
maximum value of the likelihood function is also the 
same. 

The confidence intervals associated with V, can be 
estimated from the generalised likelihood ratio which 
now becomes 

(15) 

where the limiting X-square distribution has one degree of 
freedom. Table 4 shows the maximum likelihood estima- 

Table 4: Confidence intervals associated with various 
voltage levels as found from (a )  variances and ( b )  gener- 
alised likelihood ratio. Data as in Table 2 

Maximum 
l i k e l i h o o d  90% confidence intervals, kV 
estimates 
kV a b 

V, 87.1 84.8-89.2 84.8-89.2 
v, 90.0 88.2-91.5 88.3-91.5 
V,, 91.2 90.2-92.8 90.1-92.8 
V,, 102.4 100.5-1 04.7 100.4-1 04.8 
V,, 103.9 102.2-1 06.6 101.6-1 06.7 
V,, 106.8 104.7-1 09.9 104.&110.0 

tes of several voltage levels at high and low breakdown 
probabilities together with the 90% confidence intervals 
determined both from eqn. 15 and from using the concept 
of tolerance limits [3] for the assumed data set of Table 
2. 

Very good agreement is obtained between the two 
procedures, but it should be noted that the use of toler- 
ance limits implies the assumption of a normally distrib- 
uted error in the estimates (which, however, is usually a 
good assumption) and large samples, while use of the 
generalised likelihood ratio requires only large samples. 

In principle the above method could be used to esti- 
mate the voltage levels, confidence regions and intervals 
associated with any breakdown probability. It should be 
remembered, however, that the form of the probability 
distribution function must be specified and that extrapo- 
lation to very low or very high breakdown probability 
levels can only be carried out reliably provided that the 
assumed distribution remains valid at these levels. 

Following the procedure adopted by Brown [3], it is 
also possible to estimate from the given data set the con- 
fidence interval associated with the breakdown probabil- 
ity at any voltage level. Assuming that a normal 

breakdown probability distribution applies and that the 
only experimental errors are in the estimates of the 
breakdown frequency (these errors having a binomial 
distribution), the method of variances may be applied to 
compute the 90% confidence interval for the breakdown 
probability (eqn. 24 in Appendix 7.1). Thus at the voltage 
level 87.1 kV, corresponding to the maximum likelihood 
estimate of VI for the data set of Table 2, PB(V)  is equal 
to 1% and the 90% confidence interval on PAP‘) is 
0%-3%. If a narrower confidence interval on PAV)  is 
required then the number of shots in the data set must be 
greatly increased, especially at low probability levels. 

4 Conclusions 

The establishment of a standard procedure for the sta- 
tistical analysis of flashover data is highly desirable since 
different procedures can lead to quite different results for 
the same data. 

The likelihood approach is a very powerful method for 
analysing such data, and not only estimates the para- 
meters of the breakdown probability distribution but also 
their associated confidence regions and intervals. In order 
to apply the analysis, however, the form of the break- 
down probability distribution must be specified and the 
approach does not provide a criterion for comparing dif- 
ferent possible distributions [9]. 

As previously suggested [6], the likelihood analysis 
should be considered for adoption as a standard pro- 
cedure and be incorporated in the appropriate IEC Stan- 
dard. 

Provided that the impulses are independent, the 
method can treat both Class I and Class I11 testing pro- 
cedures, and is uniformly applicable to any assumed 
breakdown probability distribution. 

In all testing it is highly desirable that a psquare test 
is carried out in order to check the consistency of the test 
data. 

Finally, it should be remembered that, although the 
likelihood analysis provides the best estimates of the 
parameters of a distribution, it is the responsibility of the 
investigator to ensure that the optimum testing strategy 
is adopted to minimise the confidence intervals for the 
desired parameters. The likelihood method provides a 
very convenient means of comparing different strategies. 
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7 Appendix 

7.1 Variances of distribution parameters 
Brown [ 3 ]  has shown that the variances of the maximum 
likelihood estimates of the parameters (assuming a cumu- 
lative normal distribution) may be calculated as follows : 

variance of V50 

variance of a 

a2 
v, = - r k  

k = l  

where 

Vk - v50 &=- 
a 

Yk 

p k  = { - m z k  d &  

nk zk’ 
p k ( l  - P k )  

rk = 

D =  ( k  c r k Y z  1 )( $2) ( k =  2 1 .k&)’ 

The variances depend on the true values of V,, and CT but 
are estimated by using the values V&, and a*. 

Similar expressions to eqns. 16 and 17 will give the 
variances of other variables of interest. For example the 
variance of the estimator of the voltage V, corresponding 
to a P% breakdown probability is given by 
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and 
z; 

’P, = - 1 yk(yk - YE)’ (24) 
k = l  

is the variance of the estimate of the probability of break- 
down PB at a voltage level V,, where 

vB - v50 
CT 

YE = - 

7.2 Definition of tolerance limits 
Suppose that a certain variable x is normally distrubuted 
with a known mean value, p, and a standard deviation B. 
Then the probability that a measurement x will lie within 
t standard deviations from the mean is 

exp [ - ( x  - ~)~/2a’]  dx  per cent (26) 
p = - s ‘  100 

f i a  - - f  

where the limits f t are called the P% tolerance limits. 

7.3 Fortran 77 program listing 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM LHOOD 

A PROGRAM TO PERFORM STATISTICAL ANALYSIS O F  
FLASHOVER DATA USING A MAXIMUM LIKELIHOOD 
METHOD 

THE PROGRAM CALLS FIVE SUBROUTINES AS FOLLOWS: 

I .  INPUT 
ALLOWS THE USER T O  SUPPLY THE NUMBER O F  
VOLTAGE LEVELS AND FOR EACH LEVEL THE 
TEST VOLTAGE, THE NUMBER O F  BREAKDOWNS 
AND NUMBER O F  WITHSTANDS 

2. ESTIM 
OBTAINS ESTIMATES FOR THE PARAMETERS WHICH 
BEST FIT THE CHOSEN DISTRIBUTION 

3. CHIS 
CALCULATES H =CHI**Z/(NO. O F  DEG. O F  FREEDOM) 
AS A CHECK O N  THE RELIABILITY O F  THE RESULTS 

4. CONREG 
PLOTS THE CONFIDENCE REGION FOR A SELECTED 
CONFIDENCE LEVEL 

5. CONINT 
CALCULATES CONFIDENCE INTERVALS USING THE 
GENERALISED LIKELIHOOD RATIO 

VARIABLES IN COMMON FOR ALL ROUTINES ARE: 

M NUMBER O F  VOLTAGE LEVELS 
V50 ESTIMATE O F  V50 
SIG ESTIMATE O F  SIGMA 
U(loo0) TEST VOLTAGES 
ID(1000) NUMBER O F  BREAKDOWNS 
IW(loo0) NUMBER O F  WITHSTANDS 

THE PROGRAM USES A NUMBER O F  NAG ROUTINES 
AND NAG GRAPHICAL ROUTINES. 

DOUBLE PRECISION DECLARATIONS MAY NOT BE 
REQUIRED FOR SOME IMPLEMENTATIONS 

IMPLICIT DOUBLE PRECISION (A-H.0-Z) 
EXTERNAL HEIGHT 
COMMON M,VSO,SIG,U( 1 oo0),ID( I OOO),I W( 1 OOO) 
CALL INPUT 
CALL ESTIM 
CALL CHIS 
CALL CONREG 
CALL CONINT 
STOP 
END 

IEE PROCEEDINGS, Vol. 135, Pt .  A,  No. I ,  JANUARY 1988 


