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SUMMARY

The paper deals with non-Fickian dispersion of inert solutes in random permeability fields. Attention is
focused critically on the statistical characterization of the porous medium which affects pollutant dispersion
in groundwater. After a brief account of recent results of stochastic theories of transport in porous media
and of the fundamental indications of large-scale field experiments, it is inferred from numerical studies that
the particular choice of an analytical form of covariance of log-conductivity has a poor influence on the
overall dispersion process. In fact, different covariance structures with the same macroscale (a measure of the
distance between two points beyond which the permeability ceases to be correlated) yield very similar
dispersion processes. The result has a noteworthy bearing on field studies of pollutant dispersion in
groundwater because it underlines the reliability of exponential correlation structures yielding analytical
expression for time-varying macrodispersion coefficients.

INTRODUCTION

Recent studies on dispersion in random permeability fields! ~3 have shown the validity of Dagan’s
theory*~® of stochastic transport in groundwater in comparison with the results of the large-scale
field study, known as the Borden site experiment.!*7-3

The theory hinges on the relationship between the Eulerian velocity field and the heterogeneous
structure and yields the dependence of the concentration expected values upon the formation
structure via the covariance of the log-conductivity of the medium,®> which is modelled by a
second-order stationary random field. This paper focusses on the effects of different correlation
structures of the random permeability field on the overall dispersion process. A consistency
requirement is posed in that all covariances are assumed to yield the same integral scale
(macroscale).

The paper is organized as follows. An introductory section recalls the main findings of
stochastic theory of transport in groundwater. A section follows on the computation of dispersion
coefficients of an isotropic 2-D random permeability field, which is the thickness-averaged model
of a layered system. This is considered representative®:>'¢ of a stratified natural formation in
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which the horizontal macroscales are similar, and much larger than the vertical one. A discussion
on the results closes the paper.

LAGRANGIAN AUTOCORRELATION TENSOR AND THE STRUCTURE OF THE
RANDOM PERMEABILITY FIELDS

We consider a porous formation and a solute body of concentration C, introduced at time t =t in
a volume V,; the ambient concentration is C=0. A solute particle is viewed as a indivisible
infinitesimal body of mass dM =n, C,da that moves along a trajectory of equation x =X(z; a, to)-
The concentration distribution AC associated with the particle is proportional to Dirac’s
distribution

AC(x, t; a, tg)= r;—ocodaé(x~X) 1)

Since the porosity n changes very little as compared with the conductivity, we assume that it is
constant, i.e. n=ny.

Let f(X; t, t5,a) dX be the probability of a particle originating at x =a at time t,, to be within dX
at time ¢. By the definition of the expected value we obtain from (1) that

(ACY= "2 Coda f(%; 1, 1o, 3) 2

This fundamental result, obtained by Taylor,® can be described as follows: the concentration
expected value is given by the probability density function (pdf) of the particle’s trajectory, which
is regarded as a function of x and t.

It is readily seen that {C) is obtained from (2) by integration over the volume ¥, with respect
to a:

CCX, 85 19) > = J CAC(x, t; a, to) ) da 3)
Vo

We can think of the random particle’s trajectory x =X(z; a, t,) as a sum of a large number of
independent infinitesimal smali steps: for the central limit theorem in statistics the pdf of X would
be the stationary multivariate normal

fX)= exp[— F(X—(XH)T-R™H(X—<(X))] 4)

1
(27I)m/2 |R[l/2
where X' =X — (X is the residual, and R is the covariance matrix of the displacements about the
mean (a2 moment of inertia), whose j, Ith element is X ; (t; a, t,) = (X ;X >, dependent only, for the
stationary case, on the time lag t—t,. If we take t,=0 then X ;=X (t). Power to —1 denotes
inverse and |- | denotes determinant.

It is well known that, for the Gaussian pdf (4), (AC), equation (2), satisfies the convection
diffusion-type equation

3(ACY  3CACY __  B*(AC)
pEE 1 g g D oot

J

©)

where the velocity V; and the hydrodynamic dispersion coefficients D are

V.=<ﬁ> and D,,(t)=1-dxf’ (6)

. de 2 dt
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Let V(x, t) be the Eulerian velocity field, with V=U + u(x, t), U= (V), and u a random space
function® deterministic in ¢. The total displacement X, is related to u by
dX,

dX,
— =U+uX, )+ ——=

de dt @

where X is associated with a ‘Brownian motion’ type of transport, such that Xy;=2D,,, and the
remaining part of (7) is related to displacement originating from convection by the fluid.

By employing a first-order perturbation method and a generalized Fourier transform, Dagan®
obtains the fundamental result

d*x; 2
de2  (Qn)"?
rendering the displacement covariance in terms of Eulerian velocity covariance transform 4, by
means only of the hypothesis that X is a Gaussian process.® In (8) k is the wave-number vector
and integration ranges from — oo to + 0.
For a constant hydraulic gradient and stationary log-conductivity Y of the permeability field,

the velocity covariance transform can be expressed* 3 in terms of C, (the Fourier-Stieltjes
transformed covariance of Y) by the linearized expression

bty kik,
ﬂ(k)'“ ZZU 04\5171 |k|2 5ql lklz CY(k) &)

where C, (k) is the log-conductivity covariance transform, § is the Kronecker ‘function’, p, g=1, m,
and m is the space dimensionality. From (8) and (9) we obtain the expression for X ; in terms of

Y(k) as follows:®
d*x; k;k, kik,\ -
2 L XU U b= i | | 8= 7 ) €
de*  (2m) k| k|

x exp[ik"-Ut—k-Dy-kt]dk (10

Ja,.,(k, f)exp[ik-(X> —kT-D,-ke]dk ®)

Solution of (10), given a transform covariance structure Cy(x) of the log-conductivity field,
yields the time-varying dispersion coefficients D (t) in equation (5), whose general solution (for the
pulse boundary condition at t =0 and centred at the origin of the Cartesian co-ordinate system) is
furnished by (4) apart from constants.

Dagan* has given the solution to (10) in the case of exponential covariance (Cy(x)=
c%exp(—|x|/ly). The 2-D results for the constant velocity field V =(v, 0) are?

3 ex T
D,(t)=vly 63 [1— o= -3 pr(z ) 3(1 —exp(— r))]+Dd11 (11)
vl o2 6 3 3
D,,(t)= ;t Y [1— = +2exp(—r)<l+ = T—2>]+Dd22 (12)

where T=ut/ly.
These last results are used to calibrate the computational procedure.
Solution to (3) and (5) yields, for the impulse at t,=0 in the 2-D case (11), (12)

= 1
<(/‘(x19x2, I)> ——W [‘[

477:((1) Wy JJvs

{xy —a, —vt)? =) (x2—a,)?
40, 49,

:|da1 da,
(13a)

Cola,, a,)exp |:—
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where ®@;, i=1, 2, is given by
t
D,(1)= J D, (t)dr (13b)

0

Equations (13a) and (13b) are integrated for the final comparisons.

THE COMPUTATION OF DISPERSION COEFFICIENTS

Integrating (10) once, we have

k.k
F30,U,(0y- 1 ) (=i
dXj . 2 k| k| )
de — (2mm? ik-U—kT-D, k Y

x exp[ik-Ut—kT-D,-ke—1]dk (14)

If we neglect D, in (14)° and for the 2-D constant velocity field V =(v, 0), the hydrodynamic
dispersion coefficients are from (14), (6) and (7)

1dXi | 1 k2 \?C,(k,, ko) [exp(ik,vt)—1]
el L) S 1— Hintoy
11 2 dt + dil 27[ JJ( k%-f—k% iklv dklde'i'Ddll (15)

1dX,, 1 kykIINECy (ks ky) [exp(ik,vt)—1]
= - D = —_—
D,, > +Dy5, 2n”<k%+k§ T dk,dk,+ Dy, (16)

The longitudinal and transversal dispersion coefficients are numerically evaluated from (15) and
(16) for several different forms of the isotropic correlation function C,(x) outlined below:

(a) Cy(x)=0Fexp(—[x)/ly;) (17)
© C,(x)= :?(1 +cos(m|x|/ly3))/2 g :z:fﬁ: (19)

Equation (20) is the limit case of the covariance structures used, in which the formation has been
regarded as a collection of equal blocks of independent properties. The exclusion of uncorrelated
components of Y (‘nugget’ effects) is inconsequential because variability at other scales is assumed
negligible. Hole effects in the covariance structure do not appear in experimental analyses.®

The covariances (17), (18), (19) and (20) are all isotropic and the symmetry reduced the
computation of transform and of integrals (15), (16). The calculations are performed only for the
real part: the formulas employed (enforcing symmetry of the spectra and complex conjugation of

real data) are

dx 4v [ (= sin(k,vt k2, a2t

X, =7j J (ky )<1_k2+‘k2) Gk, , ky)dk, dk, 21)
1 2

dX z
22 _ f j Sm(kl””( kiks ) ik, k,)dk, dk, 22)

k, k} + k2
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It is emphasized that the numerical procedure of integration of (21) and (22) is a delicate one,
since k starts from zero: yet limits for k—0 are finite. The treatment of the sine function is delicate
too, because the period of the function decreases as time increases: if time-adjusted shorter
integration steps Ak were not employed, a large error would occur. On the other hand, a fixed
larger Ak is sufficient for a correct evaluation of numerical transform of the covariance Cy(x): to
perform varying steps of integration, the covariance matrix éy(k) is interpolated by linear
piecewise polynomial functions.!’ Limits for t—0 of sine functions are trivial.

The case of exponential covariance is solved numerically to provide a measure of the accuracy
of the procedure upon comparison with the closed-form solutions (11) and (12). Numerical
accuracy proves to be within 1 per cent.

To well-pose the comparison, the isotropic integral scale

2 0 1/2
I,= |:—2f Cy(r)rdr:l (23)
Oy Jo

has been fixed so as to study the possible influence of the form of the correlation function for Y. If
we impose Iy, =2:7m (Reference 1) the remaining coefficients for (18), (19) and (20) are

ly=66m [;3=70m I,,=38m

Figures 1 and 2 illustrate the time evolution of the dispersion coefficients D, and D, , for all the
cases (17) to (20). Figures 3 and 4 show the comparison between the computed covariance of
longitudinal and transversal displacements of the plume (the moments of inertia) with that
measured at the Borden site for the case of inorganic inert solute,! where the experimental
characteristics of the permeability field have been employed.
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Figure 1. Longitudinal dispersion coefficients D, as a function of residence time ¢ in the random permeability field:
(a) Dagan’s* exponential autocorrelation function (17); (b) autocorrelation function (18); (c) autocorrelation function (19);
(d) autocorrelation function (20)
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Figure 2. Same as Figure 1 for transversal dispersion coefficients D,,
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Figure 3. Comparison between observed longitudinal spatial moments X, for the Borden site experiment (after
Freyberg!) and computed curve X ,: (a) Dagan’s* exponential autocorrelation function (17); (b) autocorrelation function
(18); (c) autocorrelation function (19); (d) autocorrelation function (20)

DISCUSSION

The characteristic values of the Borden site experiment® are employed in the example. Here the
initial solute body covers an area V,, 8 x 8 m? =64 m?2. The average velocity oriented along the X ,-
axis is v=0-091 m/day: the variance of log-conductivity 62=0-74 x 0-24=0-1776." The spatial
correlation scales are I,,=I,=I1,=382m. Solute injection is, at initial concentration
Co =60 mg/l.
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Figure 4. Same as Figure 3 for the lateral spatial moment X ,, (observed X, after Freyberg!)
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Figure 5. Initial concentration field for the numerical experiment. Units are [mg/1] for concentration and [m] for X, X,
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Ergodic requirements, based on the comparison of the injection area ¥V, with the integral scales,
are seemingly met.*

As shown in Figures 1 and 2, the largest difference in the asymptotic value of the longitudinal
dispersion coefficient is within 30 per cent.

We observe that the diagrams of Figures 3 and 4 (reproducing a celebrated graph by Freyberg')
synthetize very well the evolution of the Borden plume. Curve (a) is the outcome of Dagan’s
theory, where the correlation structure is assumed to be exponential. The lines (b) to (d) portray
the evaluation of the plume in the cases of the different autocorrelation structures (17) to (20),
which maintain the same integral scale I,. We note that the lateral spread of the plume is virtually
unaffected by the choice of autocorrelation function. The longitudinal spread is more affected, but
the differences are not striking. As an example, Figures 5 to 7 illustrate the plume evolution
(solution to equation (13) obtained generally by numerical quadrature via a 3-point Gauss
scheme) with the above parameters after 500 days. The difference in the maximum concentration is
17 per cent.

Hence the differences induced on decision-making parameters (most notably the maximum
concentration) are bound to be obscured by the other uncertainties built into field-scale transport
phenomena. Such uncertainties are: (i) the nature of the input concentration; and (ii) the real time
sequence of injection. The latter is particularly important because the non-Fickian structure of the
macrodispersion implies a memory of the system on the time lag (t —t,) from injection time t,. Asa
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Figure 6. Expected concentration field after 500 days (dispersion coefficients computed as in case (a))
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Figure 7. Expected concentration field after 500 days (dispersion coefficients computed as in case (d))
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consequence, non-Fickian processes result in a convoluted structure for the dispersion coefficients,
whenever the mass injected M (t,, a)dadt, is not instantaneously forced in the system. Real life
settings (waste repositories or injection wells) almost inevitably fall into this case unless for special
test setups.

We therefore conclude that the choice of analytical expressions for the autocorrelation structure
of random permeability fields is quite irrelevant, provided that the integral scale of correlation is
properly defined.

This amounts to a clear picture of the macroscopic scale of heterogeneity in the formation which
turns out to be the dominant factor in the establishment of a macrodispersive regime in
groundwater. This has important practical implications. In fact, this conclusion yields to a
generalized use of Dagan’s model with exponential autocorrelation function, which allows the
closed-form solutions (11) and (12) for the time-varying dispersion coefficients.
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