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The tendency to ergodicity of transport through heterogeneous stratified formations by a flow tilted 
with respect to the bedding is examined in this note. The idealized model of evenly stratified 
formations resembles recharge areas in naturally layered sedimentary geological structures over short 
distances, and transport features of more complex heterogeneous structures. Two cases are consid- 
ered herein: the ergodic limit and the nonergodic regime. In the former case the theory predicts a 
constant asymptotic value of longitudinal dispersivity controlled by the log transmissivity integral 
scale. In the latter case, asymptotic results of an analytic nature are derived for the limit case of large 
travel times. Monte Carlo simulations are performed to study the plume evolutions for a wide range 
of heterogeneities and of initial size of the solute body transverse to the bedding. Results are compared 
with the analytical solution. It is concluded that, in the realistic case of finite initial transverse size of 
the plumes, ergodicity is not obeyed. Ergodic conditions, in our experiments, were not achieved even 
for a solute body whose dimension was 400 times the log transmissivity correlation scale. In such 
cases, theoretical and numerical evidence suggests that in nonergodic regimes the longitudinal 
dispersion coefficient tends asymptotically to zero for any initial size of the solute body. 

1. INTRODUCTION 

The dispersive mechanism of transport in aquifers is 
governed by the spatial variability of the hydraulic conduc- 
tivity K. One of the simplest models of heterogeneity is that 
of stratified formations for which K varies only in the 
vertical direction. Interest in this model has been fostered, 
on the one hand, by the presence of layering in sedimentary 
formations and on the other hand, by its simplicity. Although 
perfect layering over large horizontal distances is an ideali- 
zation which is quite improbable in nature, the model may 
apply to flow and transport at short distances. In any case it 
may serve as a simple tool to grasp the transport phenome- 
non in more complex heterogeneous structures. No wonder 
that the stratified model has been the object of numerous 
studies in the past [e.g., Mercado, 1967; Marle et al., 1967; 
Gelhat et al., 1979; Matheron and de Marsily, 1980; Giiven 
et al., 1984; Giiven and Molz, 1986; Cvetkovic and Shapiro, 
1989; Dagan, 1990]. In most of these studies the flow is 
assumed to be parallel to the bedding, i.e., it is driven by a 
constant and horizontal head gradient, J, with velocity given 
by Darcy's law V 1 = K J/n, where n is the constant effective 
porosity. In the aforementioned studies, K is assumed to be 
random. Conversely, if K is regarded as deterministic [e.g., 
Marle et al., 1967], the concentration is averaged over the 
formation thickness which in turn is large compared to the 
heterogeneity scale I. The longitudinal dispersion coefficient 
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D is most conveniently defined by the Aris moments method 
[Aris, 1956] as half of the rate of change of the second spatial 
moment of the solute body. Under ergodic conditions, 
implied by most previous studies, D is equal to D, the 
ensemble mean of the coefficient of dispersion of a test 
particle around its mean trajectory. In the sequel we will 
differentiate among these dispersion coefficients. 

Three regimes of transport are present for flow parallel to 
the layering and for transport of a conservative solute 
IDagan, 1989]. In the short-time Taylor regime [Taylor, 
1953] (regime 1) transverse pore-scale dispersion D a can be 
neglected and solute particles are convected by V1, valid for 
tDd/I 2 •< 1. In this regime, D grows linearly with the time 
t [Mercado, 1967]. The intermediate Matheron and de 
Marsily'[1980] regime (regime 2) is valid for tDd/I 2 > 1 but 
tD d/B 2 << 1, where B is the entire thickness of the aquifer. 
In this case transverse pore-scale dispersion is effective in 
ensuring mixing over the layers, but not over the entire 
thickness B. In their fundamental work, Matheron and de 
Marsily [1980] have shown that D grows like t •/2 in this 
regime. For both regimes 1 and 2 the formation and the 
solute body may be assumed to be unbounded since the 
thickness B is immaterial, the only relevant length scale 
being I. In Taylor's [1953] asymptotic regime (regime 3), 
tDd/B z >> 1. In this case, transverse pore-scale dispersion 
ensures mixing over the entire thickness and D tends to a 
constant value. However, due to the smallness of Dd, for 
porous media (dispersivity of order of 10 -3 m) and the large 
value of B = O(10 •- 10 2 m), attaining the third regime is 
practically impossible. Therefore, unlike flow and transport 
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in other regimes, regimes 1 and 2 are the ones of interest in 
the present context. 

Two important features of these two regimes are, first, D 
increases permanently with the travel time, i.e., no Fickian 
limit is reached, and secondly, the phenomenon depends 
crucially on Da, the transverse pore-scale dispersion. 

Matheron and de Marsily [1980] have investigated an 
additional type of flow, namely, the one driven by a head 
gradient tilted with respect to the bedding in an unbounded 
formation. In this case, which may arise in presence of 
recharge, a small vertical drift of velocity is superimposed 
upon the horizontal motion. The main finding of Matheron 
and de Marsily [ 1980] is that the vertical drift of velocity V2 
has a dramatic impact upon transport: (1) unlike in regime 2 
above, the dispersion coefficient D, in the direction parallel 
to the bedding, tends to a constant value for sufficiently large 
V2t/l and (2) this constant D is practically independent of 
Da for the large Pe = V2I/D•t encountered in practice and 
Da can be neglected altogether. Furthermore, D is propor- 
tional to the velocity integral scale. Since a constant D 
characterizes diffusive transport, Matheron and de Marsily 
[1980, p. 911] conclude that "Fickian behavior will take 
place asymptotically under the very reasonable assumption 
that the integral of the covariance of the parallel velocity 
component (or permeability) is finite." 

The results can be conveniently interpreted in the frame- 
work of the Lagrangian transport theory. Indeed, for flow 
parallel to the bedding and in regime 1, a particle is con- 
vected with constant, random velocity and there is no 
mechanism to ensure the mixing which leads to a constant 
D. In contrast, in the presence of drift, each particle spans 
layers of different K and the conditions of applicability of the 
central limit theorem may be fulfilled, if many integral scales 
are covered by the trajectory. The results are illustrated, for 
instance, by Figure 8b of Matheron and de Marsily [1980]. 
Since transport by tilted flow displays features which are 
encountered in two- or three-dimensional heterogeneous 
structures, its study is of definite interest. 

As we have mentioned above, all the results are underlain 
by the ergodic hypothesis, i.e., from a theoretical standpoint 
they are valid for an infinite solute body or for a sufficiently 
large time to ensure mixing by pore-scale dispersion over the 
entire thickness. It is tacitly admitted in the literature that 
ergodic conditions are approached for finite, but sufficiently 
large plumes as compared with I. Then, the dispersion 
coefficient D evaluated from the stochastic model applies to 
any given realization in depicting the rate of change of the 
second spatial moment of the solute body. 

In reality, plumes are of finite size and ergodic conditions 
may not be obeyed. The uncertainty related to the finite size 
has been considered for flow parallel to stratification by 
Black and Freyberg [1987] who indicate that it may be quite 
large. Dagan [1989, 1990] examines this issue in a more 
general context and presents a scheme to define and evaluate 
the actual effective dispersion coefficient D, which is ran- 
dom, and the effective dispersion coefficient (/•) defined as 
the expected value of D. Furthermore, a framework to 
evaluate the variance of/• is also established. Both (/•) and 
the variance of D depend on the solute body size, and 
ergodicity is assumed to be obeyed for the dimension which 
is sufficiently large to render the coefficient of variation of D 
close to zero so that/• • (/•) • D. 

To illustrate these ideas, the tendency to ergodicity of 

transport through stratified formations and tilted flow has 
been examined, as a project undertaken by a study group at 
the Summer School of Environmental Dynamics held in June 
1990 in Venice (see acknowledgments). The results of Monte 
Carlo simulations (see section 4) showed to our surprise that 
ergodic conditions were not achieved even for a solute body 
whose dimension is 400 times the permeability correlation 
scale. Furthermore, for large times (/•) tends to zero for any 
finite size solute body, no matter how large. This and other 
interesting results have motivated further theoretical elab0. 
ration of the problem and its presentation herein. 

In section 2 theoretical results obtained under ergodic 
conditions are described. The results follow Matheron and 
de Marsily's [1980] approach, simplified along the lines of 
the presentation of Dagan [1989]. In section 3 we examine 
the nonergodic transport problem along the lines of Dagan 
[1990], while section 4 presents the numerical methodology 
and section 5 its results. Finally, section 6 discusses the 
results and their relevance to other transport problems. 

2. TRANSPORT IN STRATIFIED FORMATIONS BY FLOW 
TILTED WITH RESPECT TO THE BEDDING 

(THE EROOr>Xc LIMIT) 

We consider a two-dimensional Cartesian coordinate sys- 
tem with x i a horizontal axis and x2 a vertical one. The 
hydraulic conductivity K(x2) is a random function whose 
statistical moments are given. Furthermore, we assume that 
K is stationary. Thus, the expected value (K) is constant and 

x" ) x, with K' - the covariance Ca:(x•, x'•) = (K'(x•)K'( 2 / - 
K - (K), depends only on r = [x• - x'•l. The integral scale 
I is defined by I = f(• p•:(r) dr where the autocorrelation, 
pg, is given by P•c = C g/eric. 

The flow in the x l direction is driven by the constant head 
gradient J such that by Darcy's law 

Vl(X2) -- U -{- tt(x2) = JK(x2)/n (1) 

where U = (V•) = J(K)/n is constant and u = JK'/n isthe 
residual. The flow domain is regarded as unbounded, and a 
constant and deterministic vertical velocity V2 is vectorially 
added to V•. Obviously, the velocity field (V•, V2) satisfies 
exactly the continuity equation, and no approximation is 
involved except for the neglect of influence of boundaries. 
By virtue of (1), the velocity covariance is given by 

Cu(x •, x[) -- Cu(r) = J2CK(r)/n2 = S2KU2pK(r); (2) 

= 2 

where s•r is the coefficient of variation of K. 
Transport is analyzed here by using the Lagrangian meth- 

odology (for details see Dagan [1989]). With neglect of the 
effect of pore-scale dispersion, the vectorial equation for the 
trajectory of a solute particle is x = X(t, a), where t is the 
time. At t = 0, X• = 0, X2(0, a) = a, i.e., the initial 
location of the particle is x• = 0, x2 = a. X1 is a random 
function determined by the kinematical equation 

dX 
• = V(X) (3a) 
dt 

that is, 



SALANDIN ET AL..' TECHNICAL NOTE 3011 

dX1 dX2 
---= U + u(X2)' = V2. (3b) dt ' dt 

Integration of the last equation gives X2 = a + V2t and 
with the above initial condition X1 in (3 b) becomes 

X•(t, a)= Ut + u(V2t' + a) dt'. (4) 

The fundamental equation (4) is our starting point. In 
contrast to (3a), which leads to a stochastic integrodifferen- 
tial system for X, (4) is of considerable simplicity: it ex- 
presses X1 explicitly in terms of u, whereas X2 is determin- 
istic. Of course, this result pertains to the assumption of 
perfect layering. 

From (4) we have (X•) = Ut, whereas the two-particle 
covariance X•(t, a, b) = (X'•(t, a)X•(t, b)) (defined in 
words as the covariance at time t of the displacement of two 
particles whose initial positions are, respectively, x2 = a 
andx2 = b at t = 0) is given by 

Xii(t, a, b) = Cu(V2t' + a, V2 t" + b) dt'dt". (5) 

K 

b o • 2 

Fig. 1. (a) Sketch of a few realizations of one-particle trajecto- 
ries. (b) The dependence of the dispersion coefficient D upon time 
(equation (9)). 

In particular, the one-particle variance, for a = b, is 
written as follows' 

Xll(t) = Cu[V2(t' - t")] dt'dt" 

= 2 (t- t Cu(V2t') dr' 

•l 2 ß , , = v2 2 - (6) 

where r = V2t/l is a dimensionless time and I is a vertical 
length scale proportional to the integral scale I. The reduc- 
tion of the double integral in (5) to a single one is achieved by 
the change of variables t' - t" --> t', t" --> t" and accounting 
for C,(V2t') = Cu(-V2t'). This is a particular case of the 
Cauchy algorithm [Dagan, 1989]. 

For ergodic transport, the dispersion coefficient in the x• 
direction is defined by 

1 dXll(t) U 2 •a r ,) D(r) •-•= s} l K(Ir dr' (7) 2 dt • P 

where the last expression results from (6). 
To illustrate these concepts we have represented in Figure 

la afew possible trajectories of the ensemble of X. Thus Xl• 
is a measure of the spread of the trajectories around their 
mean (X1) = Ut, X2 = V2t. Iris clear from (7) that ifK has 
a finite integral scale I, it follows that $•o pic(l•") d•" = I/l 
and D(oo) = s2gU2I/V2, a result obtained by Matheron and 
de Marsily [1980]. 

To further illustrate the results, we select now a model of 
formation constituted by layers of constant thickness I with 
K generated independently from a lognormal population Y = 
In K, with (Y) and • the expected value and variance, 
respectively. In this case, and assuming that both K values 

and the location of interfaces between layers are random to 
ensure stationarity, we have 

2 

s•c=<-•=e •:- 1; 
[rl 

O K = 1 I Irl < 1, (8) 

pK=O [r] > l. 

Hence, we obtain from (7) 

U 2 l 

D(oo) = •22 (e v} - 1) :; 

D(o•) 2•' 1 - r < 1; (9) 

------ = 1 r>l 
D(o) 

and D(r)/D(m) is represented in Figure lb. 
Under ergodic conditions, i.e., for a solute body extending 

ve•ic•y over an infinite number of inte• scales, it is 
assumed that ensemble and space averages may be ex- 
changed. Then the centroid of the solute body moves •ong 
the mean X whereas the rate of change of its second spati• 
moment •ound the centroid is equal to 2D. 

3. TRANSPORT IN STRATIFIED FORMATIONS BY FLOW 
TILTED WITH RESPECT TO THE BEDDING 

(THE NONERGODIC REGIME) 

We consider now a solute body whose initial shape is a 
slab of zero thickness in the x• direction, lying along the 
segment 0 < x2 < L (Figure 2). The thickness in the x• 
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L 

:t=O 

ß [p!,:(l'r' + Io•) + pK(l,r'- 1o•)]dr' da (13) 
where •-= V2t/l, X = L/I and a = a/l are dimensionless 
variables. The passage to the last expression in (13) is similar 
to that of (6). Equation (13) permits one to calculate the 
variance of the centroid coordinate for any given 0K. 
Asymptotically, we get for a fixed 3• and for r >> l/l and r >> 

Fig. 2. Initial solute body and solute body at time t. 

•0 • I [pg(l•" + la) + PK(Ir' -- lc•)] dr' --> 2- 
l 

direction is immaterial since any slab parallel to the x l axis 
just translates with velocity (Vl(x2), V2). 

With C(x, t) the concentration field, the first three spatial 
moments of the solute body are defined by 

M = nC dx; R =• nCx dx; 
(10) 

Sii=• nC(xi-Ri)(xj-Rj) dx i, i = 1, 2, 
where M is the total mass (constant for a conservative 
solute), R is the vectorial coordinate of the centroid and the 

S id are proportional to the moments of inertia of the solute 
body. We assume that the solute mass is uniformly distrib- 
uted within the slab. Then we get for the two moments of 
interest [Dagan, 1990] 

Rl(t) = • Xl(t, a) da; 

Sll = • [X•(t, a) - Rl(t)] 2 da. 

(11) 

R 1 and S• are random variables and can be estimated in 
terms of their statistical moments. Starting with R• in (11) 
we have by (4) and (5) 

Rll = Var (R1) = •'• Xli(t, a, b) da db (12) 

L2 Cu[V2(t'- + a b] da db dt dt". 
dO dO dOdO 

By the changes of variables a - b --> a, b ----> b and t' - 
t" --, t', t" ---> t" in (12) the quadruple integral can be reduced 
to a double one as follows: 

R œ) = (t- t')(œ - a) 

$ 2 

R II '--> 2s•c •222 lit. 
(14) 

In contrast, for a fixed r but for X >> 1 and X >> r, we 
obtain in (13) 

fo r I [pK(Ir' + la) + PK(lr' - Icr)] dr' --> 2 • 

(15) 
U 2 II 2 

1/2/(R ) = The coefficient of variation s a, equal to R l l 1 
R •{2/(Ut), is seen to tend to zero either for ,• = L/l • m for 
a fixed r = tV2/l or for r• m and a fixed X. The asymptotic 
expressions of sa, based on (14) and (15), are as follows: 

SR • SK r -1/2 r • •, X fixed; 

sa • sK x-•/2 X • m, r fixed. 

Regarding s a • 0 as a criterion of ergodicity for the 
centroid motion, it is seen that it is ensured for any time only 
if L/I >> 1. !n section 4 we shall describe the results of 
Monte Carlo simulations for equal-thickness layers, for 
which I = 2I and s} = exp (•) - 1. An impo•ant point, 
however, is that R l l itself (equation (14)) is growing linearly 
with t for any given L. 

We discuss next the quantity of major interest, namely, 
Sll in (11). Under nonergodic conditions it is a random 
variable since in each realization, like the one depicted in 
Figure 2, it has a d•erent value. 

Following Dagan [1990] we define first the actual disper- 
- • /dt) a measure of the spread sion coefficient by D = • (dS • , 

of the solute body around its centroid in each realization. D 
is random and subject to unce•ainty and it is only appro- 
priate to define the effective dispersion coefficient by (•) = 
1 

• (d(Sii}/dt), the best estimate of •. 
The fundamental relationship satisfied by (S • ) [Kitanidis, 

1988; Dagan, 1989] is as follows: 

{Sii(t, L)} = Sii(O, L) + Xii(t) - Rii(t, L) (17a) 

ß [C•(V2 t' + a) + Cu(V2t'- a)] dt' da that is, 
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1 d(S•) 1 dR•(t, L) 
(/5(t, L)) - 2 dt = O(t) -• dt . (17b) 

This relationship has a simple interpretation: X•, the 
expected value of the spatial moment with respect to the 
mean centroid location, is equal to (S•), the variance with 
respect to the actual centroid, augmented by R•i , the 
variance of R •. 

It is seen that for a solute body of finite dimension L the 
effective dispersion coefficient (equation (17)) depends on L. 
Itis only for L/I--> o• that dR •/dt in (17b) tends to zero and 
the ergodic relationship (/5) = D is satisfied. 

We are now in a position to compute (/5) in (17b) by using 
the previous results. Indeed, from (7) and (13), we get 

(15(t, L))= s• U2 I f• for V 2 A 2 (A -- a)[2PK(lr') 
- pK(lz' + ia) -- p(lr' -- lrz)] d•" da. (18) 

Once again (/5(t, L)) can be evaluated explicitly for any 
given PK and it is presented in section 4 for the uniform 
thickness layer formation. It is easy to compute the asymp- 
totic limit of (/5) for large r and fixed A = L/l. Indeed, it is 
easy to ascertain that for any PK(r) the integral over •-' of 
[2PK(Ir') - pK(ir' + la) -- pK(lr' -- /a)] tends to zero as 
r--> o• and we arrive at the somewhat unexpected result that 
(/5(t, L)) ---> 0 for fixed L and t --> oo. This means that 
transport is never ergodic for a finite size solute body, no 
matter how large, if enough time elapses. In contrast, for a 
fixedt but for ;t --> o• it is seen that (/5) --> D since dRli/dt 
in (17) tends to zero. Since in any conceivable application L 
is finite we conclude that for this type of formation and flow 
the solute body does not expand in the mean if pore-scale 
dispersion is neglected. 

Since (/5) --> 0 for t ---> o, it is worthwhile to evaluate 
at the same limit. Integration of (18) over t yields 

(S•) = 2sf V2 2 •-• (;t - a)[2scg(/r ) 
- •:K(lr' + la)- sCK(lz '--/a)] dz' da 

(19) 

ff(r) = pf(r') dr'. 

For r---> o• we have f• SCK(lr ' + la) dz' = Is ff(lz') dr' 
and similarly for other integrals. Hence, we obtain in (19) 

U21•o[ /i (S•(t,L))-->4s•:•222•- • (;t-a) •:g(lz')dr'da (20) 

Finally, to illustrate the results we have evaluated (S •) 
for lognormal K and for layers of uniform thickness, i.e., 
with pg and SK as in (8). The final result for ;t > 1 in (20) 
becomes 

U 2 

(Sll(*:, L))= 4 V712 [exp (o'•,) - 1] 
;t 1 1 

12 12 241 1] 120;t 2 ß 
(21) 

The striking result is that (S•l) tends to a constant value, 
i.e., in the mean and asymptotically a solute body of finite 
extent does not expand around its centroid. Furthermore, 
(S•) increases with permeability variability, with the inte- 
gral scale I = l/2 and with L, the vertical extent of the solute 
body. 

This main result of the analysis can be understood by 
inspecting Figure 2. Indeed, let X•(t, 0) be the trajectory of 
the highest point of the solute body. The trajectory of any 
other particle is given by 

Xl(t, a) = X•(t, O) + Xt , 0 (0 < a < L) (22) 

and in particular the lowest particle moves along X• (t, L). It 
is seen, therefore, that trajectories of various particles 
become correlated after a time interval L/V 2 and the solute 
body moves in a "channel" of constant width X• (L/V2, O) 
for t > L/V 2 (Figure 2). Since X• (L/V2, 0) is random, this 
width differs from realization to realization and S• is a 
random variable whose variance can be calculated along the 
same lines (see developments in the work by Dagan [1990] 
for normal X). However, the analytical computations be- 
come cumbersome and are left to numerical simulations 

(section 4). 

4. MONTE CARLO SIMULATIONS OF TRANSPORT 

IN LAYERED FORMATIONS 

The numerical experiments are based on a discretization 
of the layered aquifer and the solute body as illustrated in 
Figure 3. The constant thickness of the layers is I. The 
permeability K, constant for each layer, is supposed to be 
lognormally distributed and the mean velocity field in the 
horizontal direction is U = J{K)/n. In the vertical direction 
a constant drift of velocity V2 = (1 / 10) U is assumed. 

A Monte Carlo (MC) method is applied as follows. For 
each successive iteration a realization is drawn at random 

from a cumulative normal distribution of log transmissivity Y 
= In K, i.e., P(Y; (Y), try,) (of assigned mean (Y) and 
variance rr•,). This simply implies generating a sequence of 
random numbers Wi in (0, 1) drawn from a uniform distri- 
bution and solving for the ith layer the equation Yi = 

(r), 
At time t = 0 a rectangular initial solute body of dimen- 

sion L normal to the layers and of unit width in the direction 
parallel the bedding (Figure 3) is inserted in the formation. 
With neglect of pore-scale dispersion, each slug moves by l 
along x 2 during a period At = l/V2 and longitudinally by 
Ax • = V• At according to the velocity V • of the actual layer. 
For each MC realization we compute the position of the 
center of mass and the second spatial moment of the solute 
body moving in the aquifer at the same prefixed time 
intervals. By repeating this procedure for an arbitrary num- 
ber of different realizations of ¾(x 2) with same mean and 
variance, one can calculate the statistics (mean and vari- 
ance) of the two moments of interest over the various 
realizations. 

The horizontal spatial step is generally given by 

J J l 

(AX)i,p,m =- (K)i,p,mAt-' (K)i,p,m (23) 
n n V2 
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L 

1 

Fig. 3. Definition sketch of the discretized solute body shape for 
transport in stratified formations by flow tilted with respect to the 
bedding. 

where the index i refers to the ith layer in the initial slug (i = 
1, NL), m refers to the mth Monte Carlo run (m = 1, NMC) 
and p refers to current time which equals the number of 
crossed layers (p = 1, NTS). Here NL is the number of 
layers covered by the initial solute body, i.e., NL = L/l, 
NTS is the number of time steps simulated for each realiza- 
tion, and NMC is the number of different realizations gen- 
erated by the Monte Carlo simulation. 

The position of the center of mass and the second spatial 
moment at current time TAt (note that T in the discrete 
stepping procedure is an integer) are given by 

(Rl(T))m = 1 NL T 1 E (xi(r))m s"g E E (AX)i,p,m = St 
i=1 p=I i=1 

(24) 
NL 

1 E [(Xi(T)) - (Ri(T)) m. (Sll(T))m = NL m 

The expected value and the variance of R l and S 1 l, over 
a number NMC of MC runs, are given by 

NMC 

1 • (R i(T))m 
NMC 

m=l 

Rii(T) = Var [Rl(T)] (25) 

NMC 

1 • [(Ri(T)) - NMC m 
rn=l 

and 

{S1 i(T)) -- 

NMC 

1 • (S;,(T))• 
NMC 

m---1 

Var [Sll(T)] = 

NMC 

1 '• [(S,i(T)) NMC m 
m=l 

- (s 2 

(26) 

respectively. 

The numerical experiments assumed four different values 
of try,, equal to 0.5, 1.0, 1.5 and 2.0 respectively. For each 
value of cry, the initial body dimension NL is set equal to 5, 
20, 50 and 200. The constant number of time steps NTS is 
200. 

In all MC method applications a fundamental parameter is 
the number of runs. The question is, How many realizations 
are needed to ensure a good approximation for the statistical 
moments? A parameter of interest to define practical limits is 
the rate of convergence of a given simulation. It is defined by 
an estimate of rate of change of the overall deviations of all 
computed values of a quantity of interest (either R1 or Sll ) 
with increasing MC runs. In order to choose a value for 
NMC suitable for our purposes (not too large in order to limit 
the computational burden, although large enough to ensure 
stable results) several runs have been performed in which 
the convergence rate of the variances of R i and Sli as a 
function of the number of Monte Carlo runs has been 
studied. The results are illustrated in Figures 4a and 4b, 
here plotted in the case A = 5 and cry, = 2 and somewhat 
arbitrarily normalized. From Figure 4a it is inferred that for 
NMC = 50,000 the results are to be considered stable for the 
coefficient of variation of R•. Numerical difficulties arise in 
computing the time evolution for the coefficient of variation 
of S l• for high values of try, and small values of A (Figure 
4b). Nevertheless, we observe that the time-averaged values 
of the coefficient of variation of S l l are near to stabilization. 
Since the higher statistical moments exhibit a slower veloc- 
ity of convergence, it is concluded that this number of Monte 
Carlo runs offers a good balance of accuracy of results and 
computer run time. Therefore all the results discussed in the 
next section have been obtained using 50,000 MC runs. 

5. RESULTS OF THE MONTE CARLO SIMULATIONS 

Figure 5 illustrates the time evolution of the coefficient of 
variation of the centroid trajectory (Rli) l/2/(R•) for dif- 
ferent values of k = L/l and try,. The results are normalized 
by a factor (s r - 1) •/2, where s r = exp (tr2y). According to (16) 
this transformation renders the coefficients sR independent 
of tr2r such that at the same value of k all the curves coincide. 
We also observe that the larger the number of layers 
occupied by the initial solute body, the smaller the coeffi- 
cient of variation that results from the calculations. As we 

expected theoretically (equation (16)), the variance of the 
centroid tends to zero for A --> oo (fixed t) or for large travel 
times (t V/21 --> oo, fixed A). This is valid asymptotically with 
convergence proportional to A -1/2 and 'r -1/2. For k -- r and 
k << 200, the behavior of the coefficient of variation may 
differ significantly from the asymptotic values (equation 
(16)). We note that for X = 5 the differences between the first 
limit in (16) and our numerical results at r = 200 are 
negligible. Also the second asymptotic result in (16)is 
confirmed for r << A. From Figure 5 one may also study the 
tendency to ergodicity in the numerical experiments upon 
comparison with (17). With reference to other transport 
problems, it is also of definite interest that heterogeneity is 
manifested in the uncertainty of the centroid position, the 
cases of three-dimensional flow being more involved but 
essentially similar [Dagan, 1991]. 

Figure 6a shows the time evolution of the coefficient of 
variation of Sll obtained by dividing [Var (Sll)] 1/2 by the 
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Fig. 4. The coefficient of variation of (a) R1 and (b) Sil, 
normalized with respect to o-•,, versus dimensionless time for fixed 
cr2r = 2 and X = L/l = 5 as a function of MC runs. 

asymptotic result of (20), (SlI(•, L)>, for various sizes X of 
the initial plume and cry,. The oscillating values of Var (S •) 
in time affect the corresponding values of the coefficient of 
variation. To grasp some average features, mean values have 
been taken over time for the final 15 intervals and are plotted 
in Figure 6b. This is a correct procedure for all cases in 
which we consider a dimension of the initial solute body X < 
200, because when the body has traveled a number of layers 
equal to A, the quantities Var (S]]) and S]• exhibit an 
oscillating trend about constant mean values. For the cases 
in which X = 200 we consider the results at the end of the 
modeled period, since the quantities are still growing at z = 
200. Figure 6b suggests that prediction of S• is quite 
uncertain. As expected, when the initial dimension of the 
solute body increases the coefficient of variation of S • 
decreases. However, even when the initial size of the solute 
body is large, uncertainty remains noteworthy. 

'• ........... X •50 
• ........ X •.œ00 

I1 • --"'-'---- 

0 50 100 150 2,00 

Fig. 5. The coefficient of variation of the centroid trajectory for 
different cry, (= 0.5, 1.0, 1.5 and 2.0) and A - L/I (= 5, 20, 50 and 
200) normalized by the quantity (•r- 1)1/2, where •' = exp (try,). 

Figure 7 compares the ratio of the actual computed values 
of the longitudinal variance (S•]) and the theoretical limit 
(equation (21)) for the various cases investigated. We note 
that for large travel times all values converge to the theoret- 
ical limit except for oscillations. All simulations collapse on 
a unique curve for the same values of X but different values 
of cry,. We also note that at larger values of A a slower 
convergence to the asymptotic value is achieved. The differ- 
ences from the ergodic results of Matheron and de Marsily 
[ 1980] are manifest: For any finite initial size of solute body 
the growth is limited and after an initial development the size 
of the body remains constant. 

Figure 8 illustrates the evolution of the dimensionless 
dispersion coefficient, defined as the ratio of the effective 

• •)/dt and the value of dispersion coefficient 
D(oo) in (9). Actual values have been obtained by numerical 
differentiation of the variance (S 1 l) of Figure 6. We observe 
that the dispersion coefficient grows from zero to a maximum 
and then drops again to zero, at a slower rate for an increasing 
initial transverse dimension of the solute body. The growth 
period is confined to an initial stage for which V2t/l < 1 for 
which no details can be provided by the present method if of 
interest. Oscillations in the estimate of variance are enhanced 

here because of numerical differentiation. 

From Figures 5-8 we observe that in transport of solutes 
in idealized stratified systems by a tilted flow, the solute 
body does not disperse at all asymptotically no matter how 
large the log transmissivity correlation scale is. Hence, in 
view of the theoretical results of section 2, this case of 
transport is nonergodic for any finite size of the initial solute 
body. We infer that heterogeneity is manifested in the uncer- 
tainty of the centroid position rather than in dispersion, the rate 
of change of X• in (17a) being compensated by that of R•. 

These results also bear implications on the behavior of the 
effective longitudinal dispersivity for more complex struc- 
tures or for rectangular bodies of finite dimensions, say, l•, 
12. Dagan [1991] discusses in detail the cases of transport in 
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Fig. 7. The ratio between the Monte Carlo simulations results 
for (Sll(•-,•k)) and the theoretical ($! (c•, k)) (equation (21))for 
different cr½, (0.5, 1.0, 1.5 and 2.0) and • = L/I (5, 20, 50 and 200). 
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Fig. 6. (a) The co•ci•nt of v•ation of • • 1 for • equal to 0.5 

and 1.0, and k = L/I (5, 20, 50 and 200) versus dimensionless time. 
V•ues for • equal to 1.5 and 2.0 are not included as they are out 
of scale. (b) Th• asymptotic values averaged over 15 time intervals 
of the same quantities versus k. 

50,000 realizations of independent lognormally distributed 
permeabilities of the layers. Our main results are as follows. 

1. The centroid of a solute body of finite size moves in a 
given realization along a sinuous path. However, as shown 
in Figure 5, this path does not depart too much from the 
mean one, except at short times and for small plumes. 

2. The second spatial moment, a measure of the spread 
around the centroid, does increase with the travel distance 
till the latter becomes equal to the vertical extent of the 
solute body, as illustrated by Figure 7. Subsequently it 
remains constant, contrary to the linear growth prevailing 
under ergodic conditions. This result can be simply ex- 
plained by the tunneling effect displayed in Figure 2: The 
trailing edge of the solute body moves on a trajectory parallel 
to that of the leading edge once it has covered a distance 
equal to the plume vertical extent. Obviously, the presence 
of the hitherto neglected pore-scale dispersion changes this 
result, but its effect is often negligible [Dagan, 1989]. 

3. Under these circumstances the "macrodispersion" of 
effective dispersion coe•cient is not a useful entity. In 
particular, the macrodispersion coeflScient tends to zero for 
sul•ciently large travel distance, as illustrated by Figure 8. 

4. The prediction of the second spatial moment by the 
statistical theory is affected by a large degree of uncertainty 
(see Figure 6b). 

two-dimensional aquifers of thin solute bodies (1) streamline 
aligned, and (2) normal to the mean flow. Conclusions similar 
to those suggested here were drawn in the case of transport of 
a thin solute body aligned with the mean flow direction. 

6. SUMMARY AND CONCLUSIONS 

In the present note we have examined transport in heter- 
ogeneous stratified porous formations by a flow tilted with 
respect to the bedding, for which the theory predicts that, if 
ergodicity is obeyed, a constant asymptotic value is reached 
by longitudinal dispersivity. We have proved that in the 
realistic case of finite transverse sizes of the initial plume, 
the ergodic requirements are not met. Our methodology is of 
analytic nature, for a few statistical moments of the solute 
body, and numerical, based on Monte Carlo simulation of 

Fig. 8. The ratio between the "effective dispersion coefficient" 
(/•) -- •(d(Sl!) dt) and D(oo) (equation (9)). (•) has been obtained 
by nurfierical differentiation of (S l l (% k)) of Figure 7. 
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The present study has illustrated a few aspects of trans- 
port through heterogeneous formations by employing a 
simple, but illuminating, example. The salient question is 
whether similar results apply to the more common type of 
formations of two- or three-dimensional heterogeneous 
structures. Recent investigations [Dagan, 1991] suggest that 
the present results apply to transport of thin plumes, aligned 
with the mean flow direction. In contrast, solute bodies of 
large transverse dimensions with respect to the heterogene- 
ity scale may disperse according to the ergodic theory. 

NOTATION 

a initial position of the transported particle. 
B thickness of the entire aquifer. 

C(x, t) solute concentration field. 
Cx(r) covariance function of the random field X, here 

assumed stationary, i.e., dependent only on the 
separation vector r. 

Da pore-scale dispersion coefficient. 
D=• dX• 1/dt, longitudinal dispersion coefficient 

under ergodic assumptions. 

15=• dS 11/dt, actual effective dispersion 
coefficient. 

• d(S )/dr, effective dispersion coefficient. 
I correlation (integral) scale of hydraulic 

conductivity. 
J constant head gradient. 
K hydraulic conductivity of the porous formation. 
I constant thickness of the layers. 

L transverse dimension of the initial solute body. 
M= f Cdx, total solute mass (constant for a 

conservative solute). 
n effective porosity. 

NL number of layers covered by the initial plume. 
NMC number of Monte Carlo runs. 

NTS number of steps in each MC simulation. 
Pe = V•.I/D a, Peclet number. 

r=lx' - x"l, separation vector between two 
points x', x". 

R = f Cx dx, vectorial coordinate of the centroid of 
the solute body. 

R• position of the centroid of the solute plume in 
the longitudinal direction. 

Rll variance of R1. 
sx=crx/(X), coefficient of variation of the random 

field X. 

SO= 1/M .f C(X i -- Ri)(x j - Rj) dx, variance of 
the solute body. 

t current time. 

T number of time steps At. 
u velocity fluctuation with respect to the mean 

value in the longitudinal direction. 
V• =JK(x2)/n , Darcy's velocity parallel to the 

bedding. 
V2 vertical drift velocity. 
U mean velocity field in the horizontal direction. 
X=(x•, x2) coordinate vector. 

x•, x2 spatial coordinates, respectively parallel and 
normal to the bedding. 

X= X(t, a), trajectory of a solute particle, whose 
coordinates along x•, x2 are X1, X2. 

X'= X - Ut, deviation of actual trajectory from 
mean value. 

X• two-particle covariance of the displacement of 
at time t. 

a= a/l, dimensionless initial position of the 
particle. 

At time step of the numerical simulation. 
•:K(r)=f• pg(r') dr', auxiliary function. 

A=L/I, dimensionless initial size of the solute 
body. 

Px(r) autocorrelation function of the random field X. 
or} variance of the random field X. 

r= V2 t/l, dimensionless time. 
( ) statistical expectation. 

Var ( ) variance of a random function. 
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