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This paper discusses the results of numerical analysis of dispersion of passive solutes in two- 
dimensional heterogeneous porous formations. Statistics of flow and transport variables, the accuracy 
and the role of approximations implicit in existing first-order theories, and the convergence of 
computational results are investigated. The results suggest that quite different rates of convergence 
with Monte Carlo runs hold for different spatial moments and that over 1000 realizations are required 
to stabilize second moments even for relatively mild heterogeneity (rr• < 1.6). This has implications 
for the extent of the spatial domain for single-realization numerical studies of the same type. A 
comparison of the variance of plumes with the results of linear theories (0.05 < rr•, < 1.6) shows an 
unexpectedly broad validity field for the theoretical solution obtained from a suitable linearization of 
flow and transport. Reformulation of the same problem linearizing in turn the flow or the transport 
equations shows opposite deviations from the linear theory. The interesting consequence is that the 
errors induced by linearizations in the flow or the transport equations have different signs, and their 
effects on the moments of dispersing plumes are compensating, thereby yielding consistent formula- 
tions. Unexpected features of the statistics of probability distributions of longitudinal and transverse 
velocities and travel times are also computed and discussed. 

1. INTRODUCTION 

This paper discusses numerical simulations of dispersion 
of passive solutes in heterogeneous porous formations. Its 
aims are the discussion of a methodology for the assessment 
of convergence of computations; the study of statistics of 
flow and transport variables; and the study of the individual 
role and the mutual interactions of the approximations 
implicit in existing first-order theories. 

Recent experimental evidence and theoretical results sug- 
gest that the transport of passive solutes in natural porous 
formations is dominated by the spatial variations in hydrau- 
!ic conductivity resulting in heterogeneous convection fields 
(see, for an exhaustive review, Dagan [1989]). A theory of 
flow and transport has been developing in recent years 
[Gelhat and Axness, 1983; Dagan, 1984, !987, 1988, 1989, 
1990; Gelhar, 1986; Neuman et al., 1987; Barry et al., 1988; 
Neuman and Zhang, 1990] which links the kinematics of the 
dispersion process to field measurable quantities, i.e., the 
spatial correlation structure and the variability of the log 
conductivity field Y(x) of porous formations viewed as a 
random space function. Fundamental experimental valida- 
tions from accurate field analyses and critical elaborations of 
the data support the validity of linear theories at least for 
mildly heterogeneous aquifers [e.g., Freyberg, 1986; 
Mackay et al., 1986; Sudicky, 1986; Woodbury and Sudicky, 
1991; Barry et al., 1988; Naff et al., 1988; Graham and 
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McLaughlin, 1991; Le Blanc et al., 1991, Garabedian et al., 
1991; Rajaram and Gelhar, 1991]. 

Limits and validity of the theory of flow and transport in 
heterogeneous porous formations have recently been dis- 
cussed IDagan, 1989]. It is accepted that the linear (denoted 
here as Dagan's) theory subsumes a number of previous 
results [Matheron and de Marsily, 1980; Dagan, 1984; 
Gelhar and Axness, 1983; Dagan, 1987] and captures the 
foremost features of the processes whenever the variance of 
log conductivity •r2r, a significant measure of heterogeneity, 
is small (cr• < 1) because a first-order perturbation is used as 
a consistent approximation involving such a parameter. 

Implicit in the reference theory are the following assump- 
tions IDagan, 1987]: (1) Lagrangian and Eulerian statistical 
stationarity and homogeneity; (2) linearized statistics of the 
convection field, i.e., deduced from the linearized flow 
equation; and (3) negligible fluctuations of particles' dis- 
placements about the mean trajectory. Alternatively, Corrs- 
in's conjecture has been assumed, yielding an explicit de- 
pendence of the moment equations on the covariance of 
velocities. 

The relative role and the mutual interactions of nonlinear 
terms neglected in the formulation of first-order theories for 
increasingly heterogeneous conductivity fields have been the 
subject of a number of numerical and theoretical investiga- 
tions. Most notable among the latter are recent contributions 
which attempt to capture the effects of nonlinear terms 
related to deviations from the average trajectory of particles 
by relaxing assumption 3 according to an iterative scheme 
[Neurnan and Zhang, 1990; Zhang and Neuman, 1990] or 
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Fig. 1. Covariances of numerically reconstructed log conductivity 
fields Y. 

numerically [Rubin, 1990]. Accuracy and convergence of 
computations, and flow and transport statistics are also 
investigated in this paper. 

This study uses numerical tools involving numerical flow 
field solution and particle-tracking techniques following a 
significant body of literature [e.g., Freeze, 1975; Smith and 
Freeze, 1979; Smith and Schwartz, 1980, !981; Ababou et 
al., 1989; Rubin, 1990; Salandin and Rinaldo, 1990; Salan- 
din, 1990; Tompson et al., 1989; Valocchi, 1990; Russo, 
1991]. The numerical analysis consists of (1) efficient gener- 
ation of single realizations of random transmissivity fields 

with a specified spatial correlation structure; (2) suitably 
accurate finite element solution of the flow field for every 
realization; (3) particle-tracking techniques (unaffected by 
boundary effects) for the solution of the transport equation; 
(4) Monte Carlo iterations for steps 1-3; and (5) ensemble 
averaging. The foremost numerical problems in this context 
concern the amount of computation required to establish 
accuracy and convergence. Two lines of thought are cur. 
rently being followed in the literature. The former employs a 
large single-realization domain, postulating that a sufficient 
number of uncorrelated particles can be released in the 
direction transverse to the flow to yield reliable ensemble 
averaging [Ababou et al., 1989; Tompson et al., 1989; 
Valocchi, 1990]. The latter iterates flow realizations in a 
Monte Carlo manner, producing several independent ran. 
dom fields of transmissivity with a specified spatial correla- 
tion structure, solving flow and transport for each of them 
and averaging over the different realizations [Freeze, 1975; 
Smith and Freeze, 1979; Smith and Schwartz, 1980, 1981; 
Salandin, 1990; Salandin and Rinaldo, 1990; Salandin et al., 
1991]. Both techniques require extensive use of computa- 
tions and pose serious theoretical and numerical problems as 
the measure of heterogeneity grows large. The second path 
is pursued in this paper because of its flexibility in ascertain- 
ing convergence of computations. 

To investigate the relative role of the linearization of ttow 
and transport, the problem has also been reformulated in 
what might be called an inconsistent manner, i.e., linearizing 
the flow or the transport equations independently. Flow 
linearization has already been assumed to test the validity of 
linear theories [Rubin, 1990]. In fact, particle-tracking tech- 
niques are a viable and efficient tool for nonlinear transport 
and an analytical solution of a general nature is available for 
the statistical structure of the linear velocity field [Neuman 
et al., 1987; Dagan, 1987]. 
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Fig. 2. A comparison of the performance of FFT-based, matrix (NNM) and turning bands (TB) methods for the 
generation of random lognormal fields with assigned spatial correlation structure. 
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and the field is completely characterized by its expected 
value (Y) and covariance C r(r), with r the planar distance 
vector between two points [e.g., Dagan, 1989]. 

Several numerical methods are available for this purpose, 
although not all of them are computationally efficient in view 
of the large domains required to track dispersing particles for 
sufficiently large travel distances in a convection field unaf- 
fected by boundaries. 

Clifton and Neuman [1982] generated stationary, corre- 
lated fields with zero mean using a matrix method in which 
the number of computations is approximately proportional 
to the number n of points in the computational grid and the 
storage is O(n2). Earlier a version of the nearest neighbor 
method had been applied by Smith and Freeze [1979] al- 
though the method neither guarantees stationarity of the 
generated fields nor a specified correlation structure. Inver- 
sion of an n by n banded matrix is required and storage is 
proportional to n 2. Methods based on fast Fourier trans- 
forms (FFT) have been developed [Mantoglou and Wilson, 
1982; Tompson et al., 1989; Gutjahr, 1989], considerably 
increasing the computational efficiency for large problems. 
The actual computations have employed the FFT-based 

tr • - l.so method developed by Gutjahr [ 1989]. Preliminary numerical 
experiments [Bellin, 1991] indicated that at comparable sizes 
of the two-dimensional computational problem, Gutjahr's 
approach yields smaller spatial variations of the recon- 
structed covariance of Y with respect to the turning band 
method [Mantoglou and Wilson, 1982; Tompson et al., 
1989]. Also, such a method proves more efficient computa- 
tionally than matrix-based methods as the problem grows 
large. 

In the present study, the log transmissivity covariance 
chosen is isotropic and exponential [Gelhar and Axness, 
1983; Dagan, 1984; Neuman et al., 1987; Dagan, 1989; 

• Sudicky 1986]' L8 , 

x,/y c r(lrl) = • 2re -IrI//r ( 1 ) 

The plan of the paper is as follows. Section 2 describes the 
numerical procedures related to the generation of two- 
dimensional random fields with preset spatial correlation 
structure and the finite element and particle-tracking 
schemes adopted. Section 3 presents computational results 
related to accuracy and convergence of numerical results 
and of statistics. This section is mostly devoted to the 
methodology adopted for ascertaining the reliability of the 
results. Section 4 discusses the results of extended statistics 

on flow and transport variables. Section 5 describes compar- 
isons of computational results with linear theories and with 
partially linearized models of the same processes in the 
range 0.05 < cr• < 1.6. A set of conclusions closes the 
paper. 

2. NUMERICAL SIMULATION OF STOCHASTIC DISPERSION 

The starting point for .our numerical studies is the efficient 
generation of independent realizations of random two- 
•mensional fields of log transmissivity, Y(xi), viewed as a 
multivariate normal vector for any set of points xi. Usually, 
only the assumption of weak stationarity is made about Y 

where try, is the variance of the multivariate normal field Y 
and I r is the correlation scale of the field Y. In this study we 
do not consider nugget effects [Dagan, 1989, p. 359]. 

Figure 1 illustrates examples of reconstructed autocorre- 
lations py -- C y/O'• for a problem in which eight grid points 
per integral scale l y are generated numerically in the range 
0.05 -< Cr2r -< 1.6. Frequency cutoffs were set at 288 x 288 
wave numbers in the example of Figure 1. The agreement of 
longitudinal correlations is excellent although transverse 
correlations slightly modify their integral scales. This effect, 
which has also been observed in applications of turning band 
codes unless a very large number of generation lines are 
employed (a procedure unsuitable to Monte Carlo itera- 
tions), is not shown by matrix-based methods (Figure 2) 
even for coarser grids. The example shown in Figure 2 used 
32 generation lines for the turning band method with 2048 
frequencies per line where the line discretization distance 
used was I r/16. The FFT method employed 288 x 288 wave 
numbers. The comparison is fair because we found experi- 
mentally that CPU time was equivalent in these conditions. 
The prohibitively large storage required by matrix methods 
in these conditions prevented their generalized use. The 
generation interval (up to 0.125 /r) has been adjusted in 
relation to convergence of computations (see section 4). 

The Monte Carlo (MC) method is applied as follows: 
1. For each successive iteration, independent rea!iza- 
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tions of the random field Y are produced (characterized by 
the mean, the two-point covariance and the ratio • of the 
correlation scale I ¾ to the grid size, the last feature having 
imp0rta•nt computat.ional consequences as discussed in what 
follows) in a rectangular domain of coordinates (x l, x2) 
elongated in the direction of the mean flow (xl). 

2. The mean head gradient J = (J, 0) and the porosity 
are ass.umed constant. The actual velocity field V(x) is 

obtained by solution of the following equations [e.g., Dagan, 
1987]: 

V2h +Vh ß VY' =J ß VY' V(x) = (vh - J) 
n 

where h(x) is the head fluctuation about the mean value 
(-Jxi); Y' = Y(x) - (Y); V = U + u(x) is the Eulerian 
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velocity; and T = e r(x) is the lognormal transrnissivity field 
[Freeze, 1975]. The mean velocity is therefore U = e(r)j/n. 

We refer to the solution of (2) as the solution of the flow 
equation. The approximation in (2), adopted by linear theo- 
ries IDagan, 1984; Neuman et al., 1987; Dagan, 1989], and 
used in a O((r•) reformulation of the general problem, is: 

e(l'• 
?•h = J. vr V(x) = (Vh - J(1 + Y')) (3) 

n 

Computations are performed in dimensionless form with 
reference to the scales/r, Jlr, l rn/(T) J, and (T) J/n for 
length, head, time and velocity respectively, where (T) = 
½xp [{Y) + (1/2)•1. 

The actual velocity field V(x) is obtained from a suitable 
finite element solution of the boundary value problem d½- 
.Mcd by (2) and deterministic boundary conditions of the first 
type [e.g., Pinder and Gray, 1977; Gambolati, 1980; 

Johnson, 1987]. The solver employed for the resulting alge- 
braic system was the conjugate gradient method (GCM) with 
incomplete Cholesky acceleration [Gambolati, 1988]. The 
flow domain is rectangular, 36/r by 181 y wide. The major 
length is in the direction X l of mean flow. The discrete 
transmissivity field is generated in 288 by 144 square blocks 
of size l y/8. The finite element grid is obtained by subdivid- 
ing each integral scale into up to 32 triangular elements 
according to convergence of computations (see also section 
5). Linear shape functions allow for velocities constant 
within an element. Convergence of computations (see sec- 
tion 4) assures the reliability of the computational results 
under these conditions (G. Gambolati, personal communica- 
tion, 1992). The total number of elements is 20,736 and tl•at 
of the nodes is 10,585. The deterministic boundary condi- 
tions imposed are no flux at x2 = 0 and x2 = 18/r and unit 
specific discharge in the X l direction at the nodes of coordi- 
nates (0, x2) and (36/y, x:). The condition h = 0 is imposed 
for the node x = (0, 0). 

It is interesting to observe that the deterministic boundary 
conditions affect considerably the domain suited for solving 
the transport equation [Rubin and Dagan, 1988, 1989]. 
Computed velocity variances cru • are plotted (Figures 3a and 
3b) to define an inner core region unaffected by boundaries. 
Only in the region where the variance is constant can 
particles be tracked without bias. It is clear from the 
computations that at increasing values of o,•, the test area is 
significantly reduced, even exceeding the indications of a 
biased belt of 31r. Such an indication is drawn, somewhat 
arbitrarily, from theoretical results [Rubin and Dagan, 1989] 
on the head variogram in a flow field where the boundary 
conditions are of constant head. Although it is not entirely 
clear whether the influence of boundaries is a numerical 

effect or is due to genuine nonstationarity as in the work by 
Rubin and Dagan [1989], at try, = 2 a meaningful portion of 
the velocity field is affected by boundary conditions and the 
corresponding results would be inconclusive. For this reason 
we restricted our attention to the cases where • _< 1.6. 

It is to be observed that the final aim of the flow analysis 
is the computation of the statistics of velocity, e.g., the 
covariance function ujt(r) = (uj(O)ut(r)) where uj is the 
velocity fluctuation about the mean Uj along the xj direc- 
tion, which is used in transport theory. A general first-order 
approximation for the analytical velocity covariance is avail- 
able [Neuman et al., 1987; Dagan, 1984] as a function of the 
velocity and log conductivity covariance spectra. Compari- 
son with the explicit solution for u jr obtained assuming the 
covariance structure (i) in the two-dimensional case [Rubin, 
1990] will yield an estimate of nonlinear effects in the 
solution of the flow equation. 

3. The transport theory deals with the deterinitiation of 
the spatial moments of the concentration distribution which, 
in the case of passive solute studied in this context, are 
computed by the moments of the displacement distribution 
of dispersing particles [Taylor, 1921]. Ensemble averaging is 
made upon releasing only one particle for each random 
transmissivity field so as to generate only uncorrelated paths 
(pore scale dispersion is neglected in this study, i.e., Pe = o• 
where Pe is the proper Peclet number). The trajectory Xt(t; 
x0, to) of the particle starting at time to = 0 from an inner 
initial position x0 = (51 r, 9/r) can be computed by 
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Xt(t; xo, 0)= x0 + Ut + u(X•(r; x0, 0)) d•- 

= x o + Ut + X' (4) 

Dagan [1984, 1987] proposed a linear theory in which the 
basic equation for the second moments Xjt(t) = 
(X)(O)X•(t)) of particle displacements as a function of the 
velocity covariance function IDagan, 1984], 

Xjt(t) = 2 (t- r)uj•(U•') dr (5) 

allows closed-form solutions in the case of the exponential 
covariance for Y considered in this paper. Pore scale disper- 
sion is neglected in (5) and in the present computations. 
These solutions will be compared with all numerical solu- 
tions. 

The trajectory of the particle, computed by discretizing 
(4), i.e., a particle-tracking procedure, is recorded at discrete 

time intervals. The discrete time step is computed from local 
velocities to avoid particles' bypassing one or more elements 
in a single time step. This procedure ensures also that even 
for the largest tr2r tested the particles provide a sample of all 
computed velocities. 

The particle trajectory (4), of components X• and X2 in 
the longitudinal and transverse directions, is computed nu- 
merically with reference to a time interval At and at the ith 
MC iteration by a discrete first-order scheme [e.g., Oksen- 
dal, 1988], where NAt is the maximum travel time (corre- 
sponding to travel distances exceeding the inner core region 
of unbiased velocities). The statistical moments of particles' 
trajectories are computed with reference to averages over M 
Monte Carlo iterations. 

The steps 1 through 3 are repeated until the statistics of 
ensemble averaging of the transport variables (mean trajec- 
tory, longitudinal and transverse second moments)show 
negligible variations with increasing number of iterations. 
Most computations (see section 5) required up to 1500 •C 
iterations to stabilize second-order moments. 
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3. STATISTICS 

Figures 4 and 5 illustrate the results of the computation of 
dimensionless covariance functions u • • (r), u 22 (r) for longi- 
tudinal and transverse velocities. The numerical results, 
obtained by averaging over the central core (8/r by 8/r 
wide) unaffected by boundary conditions, are compared with 
the linear solution [Rubin, 1990]. From the results we argue 
that, at second order, significant differences in the correla- 
tion structure are shown only within a limited radius of 
influence in the proximity of the origin of the spatial lag 
(where, according to the linear theory, u•l(0) = 3/8tr2r, 
U22(0 ) -- 1/8cr•,). 

Figures 6a and 6b show another interesting result con- 
cerning the statistics of velocity. The variances u • (0) and 
U22(0 ) are computed (within the inner core region) by 
ensemble averaging over !500 realizations in all different 
spatial locations (mesh points) inside the inner core region. 
The ensemble average hence varies from point to point, 
allowing the estimation of its spatial mean and standard 
deviation. In Figures 6a and 6b the spatial mean values of 
u•](0) and U22(0 ) are plotted with their interval of confl- 
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Fig. 9. Third moments of computed longitudinal velocities as a 
function of 

dence (estimated by three standard deviations) as a function 
of the log conductivity variance of cr2r. We observe a 
consistent increase of the confidence interval with increasing 
heterogeneity as expected, and a progressive departure from 
the linear relation with 3/8 and 1/8 slope. 

Figures 7a-7d show computed (cumulative) probability 
distributions for longitudinal and transverse velocities at 
tr2r = 0.05, 0.2, 0.8, 1.6 based on ensemble averaging with 
1500 realizations. Maximum likelihood fits for normal and 

lognormal distributions are also shown. From the graphs one 
clearly infers the tendency of longitudinal velocities to be 
represented by a skewed distribution. The departure from 
the (linear) Gaussian shape is already observed at ar•, >_ 0.2. 
This tendency is not shown by transverse velocities, which 
remain normal even at the highest degrees of heterogeneity 
tested here. 

To investigate this peculiarity further, Figure 8 shows a 
comparison of the covariance C!n u(r) of the logarithm of 
longitudinal velocity and the unmodified linear solution for 
the case cr2r = 0.20. It is interesting to observe that if 
velocities and their logarithms have similar correlation struc- 
tures their distribution may approximate lognormality. In 
this case, in fact, on expanding an.{arbitrary) covariance 
C,,(r) of velocities (assumed lognormally distributed) in 
Taylor series the following relation is obtained: 

Cu(r) 
Clnu(r) = U2 + O(•r•) (6) 

which may serve as an indicator. Nevertheless, from the 
results we argue that differences are larger than O(tr•). 

Figure 9 shows the results of the computation of third- 
order moments for longitudinal velocities as a function of 
cr2r. The interval of confidence here is one standard devia- 
tion, computed from the spatial variations in the inner core 
region. The geometric departure from the null third moments 
of the normal distribution clearly supports our conjecture on 
the noteworthy role of nonlinear terms. Similarly, Figure 10 

Fig. !0. Fourth-order moments (normalized by the correspond- 
ing values of the Gaussian distribution) of computed longitudinal 
velocities as a function of tr2r. 
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Fig. 11. Lagrangian mean trajectories. 

shows fourth-order moments normalized by the values of the 
Gaussian distribution. The interval of confidence is defined 

by one standard deviation. The departure from the normal 
distribution is therefore statistically significant, in any case, 
as tr2r > 0.2. 

Assessing lognormality proves more difficult. In fact, if u 
is indeed lognormal, simple relationships between the mo- 
ments of u and In (u) can be established (i.e., (u) = exp ((ln 
u) + tr12nu/2), and ((u - (u)) n) = fn(Cr12nu) where fn are 
known functions (G. Dagan, personal communication, 1991). 
If we use such relationships for, say, tr• = 1.6 and assume 
tr•2n u = (3/8)tr} = 0.60, then ((u - (u))3)/(u) 3 -- 2.6, i.e., 
roughly twice the result of Figure 9. Similarly, ((u - 
(tt))4)/3{(t/ -- {t/})2) 2 -- 10, about 3 times the result of 
Figure 10. Also the second moment {(u - {u)2)/{u) 2 is 
larger than the value in Figure 6. These discrepancies 
suggest that u is somewhere between normality and lognor- 
mality. As a likely consequence only complex theoretical 
closures similar to those of the problem of turbulence [e.g., 
Lundgren and Pointin, 1975; Kraichnan, 1970] might be 
thought of as appropriate. 

We also observe (Figure 11) that at increasing heteroge- 
neity the mean Lagrangian trajectory slightly deviates from 
the Eulerian value of (Ut, 0). This effect is perceived for 
tr2r > 0.8. Since theoretically Eulerian and Lagrangian 
mean velocities are equal (a result known from the turbu- 
lence literature (G. Dagan, personal communication, 199!)), 
an explanation of this Lagrangian retardation rests on nu- 
merical accuracy alone. 

CONVERGENCE OF COMPUTATIONS 

Accuracy of computations is crucial to establish the va- 
lidity of the theoretical points addressed. Here we need to 
establish two types of convergence: (1) that of the numerical 
solution; and (2) that of statistical quantities obtained by 
ensemble averaging over Monte Carlo iterations. 

With reference to the second type, one first observes that 
substantially different rates of convergence hold for different 
statistical moments [Salandin eta!., 1991]. While the exper- 
imentally determined mean trajectories (via ensemble aver- 
aging) approach the asymptotic values and the theoretical 
predictions with few iterations regardless of the model 
employed (fully nonlinear, partially linearized), at increasing 
values of tr• the number of iterations required to stabilize 
second-order moments also increases. To quantify this ef- 
fect, Figures 12a and 12b show results of simulations of fully 
nonlinear flow (i.e., the solution to (2)) and transport and, for 
the sake of comparison, of the solution characterized by 
linear flow (i.e., the solution to (3)) and nonlinear transport, 
which is commonly adopted by theoretical [e.g., Neuman 
and Zhang, 1990] or numerical [e.g., Rubin, 1990] studies. 
The results shown are the longitudinal (Figure !2a)and 
transverse (Figure 12b) displacement variances Xl•/l• and 
X22/12y averaged progressively over 100, 500, 1000 and 1500 
MC realizations at tr2r = 0.2. Analogous results are pre- 
sented in Figures 13 and 14, respectively, for try, = 0.8 and 
1.6. It is to be observed that simulations are stopped at 
arbitrary travel times (e.g., Figures 13, 14), whenever a 
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Fig. 12. (a) Longitudinal and (b) transverse displacement variances as a function of dimensionless time averaged over increasing MC runs (•r•, = 0.2). 

single particle transits the inner core regionß The probability 
of such an occurrence grows with increasing values of 

We observe that stabilization of second moments occurs 
after hundreds of iterations even for relatively small values 

of cr2r, in particular for the transverse variance. This is an 
interesting result. In fact, on one hand it suggests as a 
general methodology in MC-type studies to adjust the num- 
ber of iterations to the convergence of the highest moment of 
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Fig. 13. (a) Longitudinal and (b) transverse displacement variances as a function of dimensionless time averaged 
over increasing MC runs (•r• -- 0.8). 

interest; on the other hand, the results in Figures 12-14 have 
implications for the spatial extent of single-realization stud- 
ies of stochastic dispersion. Such studies, in fact, [e.g., 
Tompson and Gelbar, 1990; Ababou eta!., 1989] postulate 

that spatial averaging over a sufficiently large domain (.say, 
sampling enough independent trajectories) might mimic ½m 
semble averaging. A measure of the number of independent 
trajectories is the extent of the domain transverse to the 
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mean flow measured by the number of integral scales span- 
,ning the possible initial positions of the dispersing particles. 
This measures the quantity of independent information on 
which to build the statistics. Our results would therefore 
suggest the need for quite large dimensions of one- 

realization studies as the variance of log conductivity grows 
large. 

The first of the two types of convergence required to 
assess the validity of the present results (alluded to at the 
beginning of this section) deals with the size of the compu- 
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tational mesh compared with the scale of heterogeneity (i.e., 
the integral scale l r), i.e., the number of generated mesh 
points per integral scale required to reach convergence of 
second-order moments of displacements. Ababou et al. 
[1989] suggested that discretization effects may be avoided 
when the ratio •/of discretization scale to integral scale is 
'! -> 1 + rr•. Valocchi [1990] chose, for safety, to employ as 
many as 10 generated points per integral scale, although in 
single-realization studies. 

Here we chose to test convergence experimentally for 
second-order moments. As an example, Figures 15a and 
15b show the longitudinal and transverse displacement vari- 
ance (,r• = 0.8) computed for ratios r/= 1, 2 and 4, the 
latter two obeying Ababou's criterion. All fields were 
regenerated at increasing resolutions, and a posteriori check- 
ing assured that no variance reduction was artificially 
created. Longitudinal displacement variances show clear con- 
vergence, no significant difference being observed in the tran- 

sition from r/= 2 to r/= 4. Convergence is less pronounced for 
transverse variances. Interestingly, the computations for a 
ratio r/= 1 show an artificially good agreement with the linear 
solution due to an artificial increase in the actual integral scale 
l r as a result of discrete approximations. Also, a coarse 
discretization of the heterogeneous Y field induces an artificial 
linearization of the numerical flow field because of filtering of 
high frequencies. 

In a similar manner the ratio r/= 4 proved appropriate for 
the most heterogeneous field investigated herein (rr2r = 1.6). 

5. FIRST-ORDER THEORIES 

Figures 16a and 16b show longitudinal and transverse 
(dimensionless) displacement variances computed for 
0.2 by five models: (1) Dagan's [1984] analytical solution; (2) 
the fully nonlinear numerical solution (defined by the math- 
ematical model of (2), and a convergent and accurate numer. 
ical model); (3) a fully linear numerical solution obeid 
solving (3) and (5); (4) a partially nonlinear solution of 
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first type, characterized by a linearized flow evaluation 
(equation (3)) and nonlinear transport computations (by 
particle tracking; see section 3); and (5) a partially nonlinear 
solution of the second type, characterized by nonlinear flow 
(computed as in the second model) and linear transport 
computations. The latter is simply computed, e.g., for the 
longitudinal displacement variance X• l, by: 

Xl!(t) = 2 d,(t- r)Ull(Uœr) (7) 

where a numerical estimate of Lagrangian mean velocity Ur 
and of the nonlinear velocity covariance u• are employed. 

The numerical solution of the linearized equations 
matches well the analytical results, hence proving the sound- 
ness of the procedures. The fully nonlinear model yields 
smaller variances, both longitudinal and transverse. The 
foremost result in Figure ! 6 is that nonlinear contributions to 
the longitudinal displacement variance yield counteracting 
(and nonadditive) contributions to the dispersion process. It 
is suggested, therefore, that part of the unexpectedly broad 
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range of validity of the linear solution (see Figure 17) might 
be due to the difference in sign of the errors induced by the 
linearizations of flow and transport. Transverse displace- 
ments are, as usual, harder to judge, although, in general, 
opposite signs of linearization errors are also evidenced. 

It is also interesting (Figures 17a and 17b) that, as sug- 
gested previously ISaiahdin and Rinaldo, 1990], reformula- 
tion of the same problem with a linearization of the flow 
equation alone, an assumption often accepted in theoretical 
and numerical studies on this subject, yields deviations from 
linear theory larger than those induced by a fully nonlinear 
solution. Some doubts are therefore cast on previous con- 
clusions drawn on the limitations of the linear theory based 
on partially linearized equations [e.g., Rubin, 1990]. This is 
more evident (Figure 18) in terms of dispersion coefficients. 
Besides taking a numerical derivative of the computed 

variances (i.e., D• = 1/2dX•/dt) (Figure 18b)), Figure 18a 
illustrates, for the sample case of the longitudinal dispersion 
coefficient, the apparent (dimensionless) dispersion coet/i- 
cient (D• = X•/(2tUI¾)). The macroscopic effect of the 
linearization in the flow equation alone seems to yield an 
overestimation of the longitudinal dispersivity and an under- 
estimation of the transverse dispersion. The latter result is 
not confirmed by other numerical findings [e.g., Rubin, 
1990]. 

Travel time statistics are important IDagan and Nguyen, 
1989; Shapiro and Cvetkovic, 1988; Dagan, 1989] because 
they are robust in characterizing the dispersion process, 
blending all sources of uncertainty into a unique curve. 
Figures 19a-!9d illustrate travel time distributions at three 
distinct absorbing barriers (placed normal to the mean fl0w, 
respectively, at distances L/l r 2.5, 7.5 and 17.5) computed 
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by the fully nonlinear model and two analytical models. The 
figures are relative to the statistics of the experiments with 
e• = 0.05 to 1.6. 

The first analytical model is that of Dagan and Nguyen 
[1989] in which the longitudinal dispersion coefficient is 
constant (say, D ll(oo)), transverse dispersion in this case 
does not play any role [Dagan, 1989], yielding a travel time 
probability G(t, L) of a particle, injected at x = 0 at time 
t = 0 to reach a distance L in the longitudinal direction, 
•iven by 

G(t, L) = • 1 - err [4D•l(OO)t ]•7• (8) 
(where err denotes the error function) with usual notation. 
Equation (8) is supposed to apply asymptotically for large 

Ut/ly when D I! (t) --> D,• (oo). Although to use (8) does not 
seem warranted, in particular for the control plane close to 
the source, we observe its robustness in all cases tested 
herein. This has theoretical implications, e.g., for the inter- 
pretation of field tests, because Dagan's theory predicts that 

9 

D • (oo) = trpl rU regardless of the detailed covariance 
structure of the transmissivity field. The second analytical 
model allows time-dependent dispersion coefficients [Bellin, 
1990; Rinaldo et al., 1991] to yield 

G(t, L)= { 1 -- erf [t[2Xll(t). i fl'r•) (9) 
where D•(t) = 1/2dX•!/dt. The time evolution of X•(t) is 
given by the theoretical values of Dagan's [1984] linear 
solution. We observe a better performance of (9), as ex- 



2226 BELLIN ET AL.: SIMULATION OF DISPERSION IN HETEROGENEOUS POROUS FORMATIONS 

pected, for small travel distances and relatively large heter- 
ogeneity. Shapiro and Cvetkovic's [1988] theoretical travel 
time distributions are also plotted upon substitution of the 
harmonic mean velocity, as in the original formulation, by 
the arithmetic mean. In fact, a recent exact result shows that 
the average travel time evolves proportionally to the har- 
monic mean velocity for x/ly --) 0 and to the arithmetic mean 
for x/ly >> I IDagan et al., 1992]. 

It is clear that all models yield a consistent picture for 
relatively homogeneous log conductivity fields. Although at 
increasing heterogeneity accounting for time-dependent dis- 
persion coefficients via (9) improves the likelihood of the 
distribution, this effect is not major. We therefore conclude 
from the body of results that the linear asymptotic model (8) 
is a robust model of travel time distributions in our experi- 
mental range (tr• -< 1.6). 

6. CONCLUSIONS 

The following conclusions can be drawn from the present 
numerical study on dispersion in heterogeneous porous 
formations: 

1. Nonlinearity affects velocity statistics. Covariance 
functions are significantly modified, in particular in proxim- 
ity to the origin of the spatial lag. Cumulative frequencies 
from actual computations suggest that longitudinal velocities 
in heterogeneous (lognormal) transmissivity fields tend to be 
represented by nonnormal distributions at increasing heter- 
ogeneity. From our examination of spatial moments (up to 
fourth order), it seems that the distribution is somewhere 
between normality and lognormality. Transverse velocities 
retain a normal distribution characteristic of linear models. 

This has implications on theoretical closures of the nonlinear 
problem. 

2. Accuracy and convergence of computations in the 
range tr3 <- 1.6 require up to four generation points of log 
transmissivity per integral scale and 1500 MC realizations to 
stabilize averages of second moments of the displacement 
distributions. This has implications on the problem size for 
single-realization studies of the same type. 

3. A comparison of numerical displacement variances 
with results of linear theories shows an unexpectedly broad 
validity field for the theoretical results. It is suggested that 
this may be due to opposite deviations from linear theoreti- 
cal results induced by independent linearizations of flow and 
transport. 
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