
Rend. Sem. Mat. Univ. Poi. Torino 
Voi. 53, 4 (1995) 
Number Theory 

A. Languasco 

SOME RESULTS ON GOLDBACH'S PROBLEM 

Abstract. In Section 1 we introduce the Goldbach Conjecture and gì ve a brief account 
on the main contrìbution to this subject. In the next sections we sketch the proofs 
of some results on the existence of Goldbach numbers in short intervals and the 
exceptional set for Goldbach's problem. 

1. Introduction 

In 1742, in two letters to Euler, Goldbach conjectured that 
every even integer n > 2 is a sum of two primes. 

This statement is known as the Goldbach Conjecture. Sometimes by the Goldbach 

Conjecture one means also the weaker statement 
every sufficiently large even integer n is a sum of two primes. 

The previous statements are stili unproven. In the following we will cali "G-number" 
an even integer satisfying the Goldbach conjecture. 

A short history of the main results on this topic is the following. 

In 1919, Brun [3], using a combinatorial variant of the Eratosthenes sieve, proved 
that every sufficiently large even integer can be written as a sum of two integers with at most 
9 prime divisors. In the 1920's Hardy and Littlewood [14,15] applied their method (the 
circle method) to this problem. They proved, under the General ized Riemann Hypothesis 
(GRH), the following two results: 

(i) every sufficiently large odd integer is a sum of three primes (ternary Goldbach . 
problem); 

(ii) writing E = {2n : 2n is not a G-number} for the exceptional set for Goldbach's 

problem and letting E(N) = E C\ [l,N], one has for every e > 0 that 

\E(N)\ < N1*2*', 

i.e., "almost ali" even integers are G-numbers. In 1937,1.M. Vinogradov [35,36] removed 
the dependence on GRH in (i) and so he solved unconditionally the ternary Goldbach 
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problem. For the proof see Vaughan [34], eh. 3, or Davenport [6], eh. 26. 

The probiem of the distribution of G-numbers in short intervals goes back to 
Linnik [25]. In 1952, using the circle method, he proved, under the assumption of the 
Riemann Hypothesis (RH), that every interval [N, N + H], with N suffìciently large and 
H > log3+ff N, contains a G-number. 

In the latest 40 years many results have been proved. The state of the art is the 
following. 

Concerning "approximations" of Goldbach's problem, in 1966 Chen [4], [5] proved 
that every suffìciently large even integer can be written as a sum of a prime and an "almost-
prime" number (an "almost-prime" number is an integer with at most two prime factors). 

THEOREM (Chen [4], [5], 1966). Every suffìciently large even integer N can be 
represented as 

N = p + a, 

where p is a prime and a £ P2 := {a £f$ : a has at most two prime divisors }. 

To prove Chen's theorem one can use the modem sieve techniques and some analytic 

arguments developed to study the distribution of primes in arithmetic progressions. For a 

proof see e.g. Halberstam-Richert [13], eh. 11. 

In 1975 Montgomery-Vaughan [29] obtained an unconditional result on the size of 

the exceptional set. 

THEOREM (Montgomery-Vaughan [29], 1975). There exists an ejfectively 
computable Constant 6 > 0 sudi that 

\E(N)\<.Nx-b. 

The best conditional (under GRH) result in this direction was proved by Goldston 
[11] and Kaczorowski-Perelli-Pintz [18] (see the remark in the next page): 

THEOREM (Goldston [11], 1992; Kaczorowski-Perelli-Pintz [18], 1993). Assume 
GRH. Then 

\E(N)\<^Nll2\o£N . 

Writing E(NyH) = E C)[N,N + H] for the exceptional set in short intervals, the 
best unconditional result concerning the size of E(N, H) is 

THEOREM (Mikawa [26], 1992). Let e > 0, A > 0 be arbitrary constants and 
^7/48+e <H<N. Then 

\E(N,H)\<£ìAHL-A. 
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Mikawa's result does not give information on the asymptotic behavior of the counting 
function R(2n) = J^ A(h)A(k) of the number of representations of a G-number as a 

h+k=2n 
sum of two primes. In this direction the best unconditional result in short intervals is 

THEOREM (Perelli-Pintz [30], 1992). Let e > 0, A, B > 0 be arbitrary constants 
andNxl3+s < H < N. Then for ali 2n G [N,N + H], withat most 0(HL~B) exceptions, 
one has 

R(2n) = 2ne(2n) + 0(NL-A), 

where &(2n) = 2 Yl U - fp-iv» ) I l l ^ i ) ^-the "singular series" of Goldbach's 

problem. 

A similar result holds for a certain restricted counting function R*(2n) in the shorter 
interval N7/36+£ <H <N, see Perelli-Pintz [30]. 

In the class of conditional results on the exceptional set in short intervals the best 
one (under GRH) is the following 

THEOREM (Kaczorowski-Perelli-Pintz [18], 1993). Assume GRH and let 
Hìog N —* oo for N —> co. Then 

\E(N,H)\<CH^2\og3N. 

Actually, Kaczorowski-Perelli-Pintz's proof was not totally correct. In fact their 
technique yields only \E(N,H)\ <C Hll2\og° N. However the result can be saved by a 
technical device, see Languasco-Perelli [23] and [21]. 

Assuming further a pair correlation type hypothesis on the zeros of the Dirichlet 
L-functions, A. Perelli and the author have recently proved the following 

THEOREM (Languasco-Perelli [23], 1995). Assume GRH and a certain pair 
correlation hypothesis on the zeros ofthe Dirichlet L-series. Let e > O.and N£ < H < N. 
Then 

\E{N,H)\<N£. 

In Section 5 we will explain, with some details, the basic argument in the proof of 
the previous theorem. 

Another problem is to study the existence of G-numbers in short intervals. We have 
the following 
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THEOREM (Ramachandra [31,32], 1973 and 1976; Montgomery-Vaughan [29], 
1975). Let e > 0 bean arbitrary Constant and let N be sufficiently large. Then 

X >(»)>*'. 
ne[N,N+N6] 

where r(n) =. JD 1» '0 > #102 and 61,62 are two positive real numbers such that 

(i) every interval [x,x + Hi], with H\ > xei+£, contains > j ^ : prime numbers; 

(ii) ali but o(j—Y) intervals of the type [x,x + #2]> a? £ N fi [1,X] a«d # 2 > a^2+e, 

contain ;> y^^ prime numbers. 

This means that the existence of G-numbers in short intervals is connected with 
the distribution level (#i) of primes in short intervals and with the distribution level (02) 
of primes in "almost ali" short intervals. The best results are 6\ — 0.535 (Baker-Harman 
[2]) and 62 — j ^ (Watt [37]), hence the technique of Ramachandra and Montgomery-
Vaughan can prove that there exist G-numbers in [N.,N 4- H], provided that H > Ne+£, 
6 = 0.535^ = 0.03821.... We observe that from the above result one can get also 
that a positive proportion of the numbers in [N,N + H] are G-numbers, provided that 
H^N6+£. 

Assuming suitable hypotheses on the distribution of the zeros of the Riemann zeta 
function, one can obtain better results. Indeed we have 

THEOREM (Kàtai [19], 1967; Montgomery-Vaughan [29], 1975). Assume RH. 
Then there exists C > 0 such that, far N sufficiently large, the interval [N, N + Clog" N] 
contains a G-number. 

Other proofs, based on the circle method, have been given by Goldston [10] (1990) 
and by Languasco-Perelli [22] (1994), see Section 3. 

The previous result can be sharpened using a stronger hypothesis. Assuming 
Montgomery's conjecture (MC), see [28], one has 

THEOREM (Goldston [10], 1990). Assume RH and MC. Then there exists C > 0 
such that, far N sufficiently large, the interval [N, N -f C log N] contains a G-number. 

Recently the author [21] has proved, in analogy with Ramachandra and Montgome-
ry-Vaughan's result, that, under the assumption of RH and MC, a positive proportion of 
the numbers in [N, N •+ H] are G-numbers, provided that H ^> log N. 

The methods used to obtain the last two results apparently do not give intervals 
shorter than log N. One can obtain shorter intervals assuming further the Elliott-Halberstam 
conjecture (EH), see Elliott-Halberstam [7]. We have: 
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THEOREM (Friedlander-Goldston [8], 1995). Assume RH, MC and EH. Then there 
exist C > 0 such that, for N sufficienti)' large, the interval [N, N + C f°$ °^ 'N ] contains 
a G-number. 

For a more exhaustive presentation of these results see the author's Ph. D. thesis 
[20]. We finally remark that some improvements of the above results by Mikawa, Baker-
Harman and Watt have been recently obtained by Chinese researchers. 

2. The Circle Method 

An important tool to approach additive problems and, hence, to prove some of the 
previously quoted results, is the circle (or Hardy-Littlewood) method. Since Zaccagninr 
[38], also collected in this volume, furnishes a general introduction to this method, in the 
following we use his notation, specialized in the case of Goldbach's problem. 

We write 

A - B - *P = {p e N : p prime } 

and, by technical reasons, we take 

R(N)= J2 Hh)Hk), 
h+k=N 

where A(n) is the von Mangoldt function, as the weighted counting function of the set of 
the G-numbers. Then the associated Fourier polynomial becomes 

S(a) — 2 . A(n)e(no!). 
n<2iV 

To obtain information on the asymptotic formula for R(N) and on the size of the 
exceptional set we have to distinguish between major and minor arcs, while for the existence 
of G-numbers in short intervals, as we will see in the next section, it suffices to study the 
behavior of S(a) in a neighborhood of 0. 

3. Circle Method and G-numbers in short intervals 

In what follows, we will present in more detail our result on G-numbers in short 
intervals. 

Since the explicit formula for. S(ex) is not a direct one (see, e.g., Baker-Harman [1]), 
for the problem in short intervals it is more convenient to use a "smooth" version of S(a), 
i.e., 

oo 

5(tì) = ^A(n )e (na )e - n / J v . 
n = l 
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S(a) is the originai Hardy-Littlewood function. We have the following explicit formula 

P 

where z == -^ — 2iria, p runs over the non trivial zeros of f(s) and T is the gamma function. 

The result is 

T H E O R E M 1 (Languasco-Perelli [22]). Assume RH, let z — -^ — litio, and 

L — log N. For N sufficiently large and 0 < £ < \ we have 

(1) / \S(a)2-\\da<Z.NtiL2 + Ne/2L . 

Theorem 1 sharpens (by a log N factor) an analogous result due to Linnik [25]. This 

follows by using the ingenious averaging technique of Saffari-Vaughan (see [33], Lemmas 

5 and 6) which makes the use of the explicit formula for S(a) more effìcient. 

From Theorem 1 we deduce, by a pure circle method technique, the result of Kàtai 

and Montgomery-Vaughan: 

COROLLARY 1. Assume RH There exists a constants C > 0 such that, for N 

sufficiently large, the interval [N, N •+• CL2] contains G-numbers. 

We now sketch the proof given in [22], Corollary 1. 

Let 

L(a) 

where a(m) = H — \m\ and 

H 

2_j e(—ma) 
m = l 

H 

= 2_] à(m)e{—mcì) , 

m=-H 

É(a) = S(a)2 - ^ 
1 

z 
Hence we get 

N+H 

(2) 
n=N-H 

J2 a(n-N)e-n/NR(N)= f2 S(a)2L(a)e{-Na)da 
--N-H \~h 

= f2 ^-e{-Na)da+ I* É(a)L{a)e(-Na)da = h +I2 . 

1\ is computed using the residue theorem. We have 

N+H N N+H 

I1= ]T a{n-N)ne-n/N+ 0{H2) = - £ a(n - N) .+ 0(H3) 
(3) n=N-H n=N-H 
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The estimation of I2 follows from (1) and 

l 
L ( a ) < m i n ( # 2 , — ) . 

By partial integration we obtain 

(4) I2<HNL2 + H3/2NL. 

Finally, from (2), (3) and (4), it follows that 

N+H H2N 
(5) ] T a(n - N)e~n/NR(N) = ^ - + 0(HS + HNL2 + H3/2NL) . 

n=N-H 6 

Choosing H = CL2 , C > 0 suffìciently large, from (5) we get 

N+H 

J2 a(n-N)e~n/NR{N)^>H2N 
n=N-H 

and then Corollary 1 follows. 

4. Parseval identity for S(a) 

In this section we discuss a problem related to the topics we have seen in the previous 
section: the truncated Parseval identity for S(a). It is easy to prove, using the Parseval 
identity and the Prime Number Theorem, that 

NL (6) r \S(a)\2da 

Using Theorem 1 and 

f* 1 N 
(7) / Y~\2da = ~ arctan(27r^), 

which is easily obtained, we have 

/ \S(a)\2da = — a,rctan(27rJVO + 0{NZL2 + N£1/2L), 
J-P 7T 

i.e., a conditional truncated version of (6). However we can observe that taking £ = \ in 
the previous formula, we obtain only the result, weaker than (6), 

f2 \S(a)\2da<NL2 
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In 1959, Lavrik [24] proved that 

/ 
J a 

b 1 — 
\S(a)\2da = —--NL + 0(7Vlog2 L) 

if 0 < b — a < 1. An unconditional result concerning truncations of Parseval's identity, 
which improves Lavrik's result, is the following 

THEOREM 2 (Languasco-Perelli [22]). Let 0 < b-a < 1 and N sujficiently large. 
Then 

• / \S(a)\2da = -^NL + 0(N(L(b - a))1/3) + O(N) . 
Ja l 

We remark that Theorem 2 is essentially the best possible, in the sense that one 
cannot replace the term O(N) by o(N). We finally remark that Theorem 2 enables one to 
deduce the order of magnitude of J_> \S(a)\2da in the whole range 0 < £ < | . In fact 
we have 

COROLLARY 2 (Languasco-Perelli [22]). Let N be sujficiently large. Then 

•e (N2Z i f o < e < ^ 
/ \S(a)\2da^l N i f £ < « < £ 

•' " f
 [NÌL if ir-< € < è-

The proof of Corollary 2 runs as follows. 

If 0 < £ < 77, by Stirling's fòrmula and the zerchfree region of ((s) we have 

Y^z'pT(p) < ^2\z\~p\jf-^ exp(7 arctan 27riVa - £ | 7 | ) = o(N) , 
p p 

where /? = /? + ij runs over the non-trivial zeros of ((s). Using (7) we have 

/ \S(a)\2da^N2£ . 

Since f* \S(a)\2da is an increasing function of £, from the previous result we have that 

\S(a)\2da>N 

- e 
for jf < £, < j-- The corresponding upper bound follows from Theorem 2. Then Corollary 
2 follows arguing in a similar way in the range £ < £ < § • 
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5. The exceptional set 

The classical method to study the size of the exceptional set for Goldbach's problem 
is based on the following remark: if 

(8) ] T \R(2n) -2n©(2n) |2 < N2f(N,H) 
N<2n<N+H 

then, since &(2n) ^> 1, one has 

(9) E(N,H)< Y, (2n)-2\R(2n)-2ne{2n)\2<.f(N,H). 
N<2n<N+H 

Obviously (8) and (9) are of interest only if f(N, H) = o(H). In the following we 
will sketch a conditional proof of (8) with f(N, H) — N£. 

Writing in this case 

SX- + v) = ^T(i1) + R(ihq)a), 

where T(??) = Yl e(m?)> it is not difficult to prove, applying the circle method, see [18], 
n<2N 

with parameters P and Q, see [38], that 

] T \R(2n) - 2n<ò{2n) + F(n,N, H)f 
N<2n<N+H 

N<2n<N+H Jm 

< Y. | / S(a)2e(-2na)da\ 

N<2n<N+H q>P 

where F(n, N, H) is a certain funcdon satisfying 

+ E i2»ES^-2«)i: 
ATSn^S ATA li „^ r> r \ i j 

1 ,J* 

(11) •F{n,N,H)<Nil^v(lT1'2CÌ2'' f'Qt\R(t,,ì,a)l%)XI2 + PQ. 
q<P a = l *^ _W 

Since, under GRH, we have, see [18] and [22], 

(12) £ * / , I ^ M > « ) | 2 ^ < < - £ - , 
a=l J~7§ ^ 

we obtain, choosing P = Qlog - 1 0 N, that (11) becomes 

(13) F(n,Ar,#)<Anog-37V, 

uniformly for 2n e[N,N + H]. 



334 A. Languasco 

We remark that (12) is the corrected version of Lemma 1 of [18], see [22], [21], 

The second term on the right hand side of (10) is of arithmetical nature, and its 

estimation (see Lemma 2 of [18]) leads to a negligible error term. 

Hence, the key point is the estimation of the first term on the right hand side of 
(10). Squaring out and interchanging summation and integration we get 

(14) ] C / ^(a)2e(^2ha)da < HNL max / *Q \S(-+ i^dri, 
N<2n<N+H J™> . . *(^qf=Qi J~ ^ q 

i.e., the problem is now to estimate the mean square of \S(^ + rj)\ over a single minor are. 
Since T(rj) < min(7V, A) , we have 

(15) 7 * |S(^ + »?)|2A?« - ^ + J"^ |fl(,, j.ajl^i,, 
~qQ ' qQ 

so it is clear that the quantity defìned by 

I(X,Q',q,a) = / |i2(7?,^,a)|2rf?7 

plays an important role in (14). By (12), we could expect a bound of the type 

NL4 

(16) I(X,Q;q,a)< 
qQ 

In a recent paper, A. Perelli and the author proved that a form of Montgomery's pair 
correlation conjecture implies a weaker version of (16) where the factor X4 is replaced by 
N£. The result is the following 

THEOREM 3 (Languasco-Perelli [22]). Assume GRH. Let 

F(N,T;q,a) = ] £ Xi(a)x2(aMXiMx2) £ ^ ( 7 l " 7 a ) M 7 i ~ 72), 
Xi.Xa(modg) l7 i | , l72 |<T 

where r(x) denotes the Gauss sum and jj, j = 1,2, run over the imaginary parts of the 

non trivial zeros of L(s, Xj)- IfF(N} T; q, a) verifi.es 

(17) F(N,T;q,a)<£q
2TN£ 

uniformi)' for ^—: <T < N, q < ^-^- = Q and (a,q) — 1 then 

N1+£ 

I(X,Q]a,a)<~-— 
qQ 

holds for q <Q and (a, q) = 1. 

http://verifi.es
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Actually, the result in [22] is more precise and depends on the choice Q = Ne, 

9 e (0, | ] . We also remark that the trivial upper bound for F(N,T'ìq,a), as T —• oo, is 

clearly 

F ( J V , r ; g > a ) < ^ ( g ) 2 r i o g 2 5 r 

uniformly in N>q and a. Moreover, by adapting Montgomery's method in [28] we can 

prove, see [22], that 

(18) F(N,T-q,a)~±<p(q)2T\ogN, 
IT 

uniformly for NìogN <T < NA and q < N log - 4 Àr, and that 

(19) F(N,T]qìa)<Aq2T\ogNì 

uniformly for N <T < NA and q < N log"3 N. 

Now, using Theorem 3 and (10)-(15), we have that (8) holds with f(N, H) = N£ 

and then, by (9), we have 

E{N,H)<N£. 

Finally observe that one can repeat the previous argument replacing in (17) the 

factor N£ with logAT, i.e., using in the conjecture the expected order of magnitude for 

F(N, T] q, a). So, choosing P = QL~l~£, we could expect that 

E(N,H)<£ L3+£ (log H)\ 

but the estimation of the tails, produced by an application of Gallagher's lemma, see [21], 

[23], allows us to choose only P = QL~3~£ and then to obtain only the weaker estimate 

E(N,H)<£ L7+£ (log H)2. 

If we assume only GRH the tails problem can be avoided using the function S(a) instead 

of S(a), see [21], [23]. 
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