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SOME RESULTS ON GOLDBACH’S_ PROBLEM

Abstract. In Section 1 we introduce the Goldbach Conjecture and give a brief account
on the main contribution to this subject. Tn the nexf sections we sketch the proofs
of some results on the existence of Goldbach numbers in short intervals and the
exceptional set for Goldbach’s problem.

1. Introduction

In 1742, in two letters to Euler, Goldbach conjectured that
every even integer n>2isa sum of two primes.

This statement is known as the Goldbach Conjecture. Sometlmes by the Goldbach

Conjecture one means also the weaker statement
every sufﬁae_utly large éven l_nteger n is a sum of two primes.

The previous statements are still unproven, In the following we will call “G-number”
an even integer satisfying the Goldbach conjecture. '

A short history _of the main results on this topic is the following.

- In 1919, Bfun'[3], using a combinatorial variant of the Eratosthenes sieve, proved
that every sufficiently large even integer can be written as a sum of two i'htegers with at most
9 prlme divisors. In the 1920’s Hardy and Littlewood [14,15] applied their method (the
circle method) to this problem They proved under the Generalized Rlemann Hypothesis
(GRH), the following two results: _

(i) every sufficiently large odd integer is a sum of three prlmes (ternary Goldbach
problem);

(i) writing E = {2n : 2n is not a G-number} for the exceptio'na] set for Goldbach’s
problem and letting E(N) = E ([1, N}, one has for every ¢ > 0 that

E(N)| < NV,

i.e., “almost all’; even integers are G-numbers, In 1937, LM. Vinogradov [35,36] removed
the dependence on GRH in (i) and so he solved unconditionally the ternary Goldbach
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problem. For the proof see Vaughaﬁ' [34], ch. 3, or Davenport [6], ch. 26.

The problem of 'the-distriblitiq'n of (-numbers in short intervals goes back to
Linnik [25). In 1952, using the circle method, hie proved, under the assumption of the
Riemann Hypothesis (RH), that every interval [N, N 4+ H], with N sufficiently large and
H > log®** N, contains a G-number.

In the latest 40 years many results have been provcd The state of the art is the
_followmg o

Concerning approxlmatlons” of Goldbach’s problem in 1966 Chen [4] [5] proved
that every sufficiently large even integer can be written as a sum of a prime and an “almost-
prime” number (an “almost-prime” number is an integer Wlth at most two prime factors).

THEOREM (Chcn (41, [S], 1966) Every sujﬁccemly large even integer N can be
represented as
N = r+a,
‘where p is a prime and a € Py := {a € N : a has at most two prime divisors }.
| To prove Chen’s theorem one can use the modern sieve tccl._in'iques and some analytic

arguments developed to étucly'the distribution of primes in arithmetic progressions. For a
proof see e.g. Halberstam-Richert [13], ch. 11. :

In 1975 Montgomery-Vaughan [29] obtamcd an unconditional result on the size of
~ the exceptional set. :

THEOREM (Montgome_ry-Vaugha-n [29], - 1975). . There exists an effectively
computable constant § > O such that _
[E(N)l < N8
The best cdnditi_enal (under GRH) result in this direction was proved by Goldston
[11] and ‘Kaczorowski-Perelli-Pintz [18] (see the remark in the next page):
- ’__I_‘HEOREM (GoldSton (117, 1992; Kaczomwski-PerelliéPintz [18], 1993). Assume
GRH. Then - :
|E(N)| < NY210g® N .
Writing E(N,H) = EN[N,N + H] for the exceptional set in short intervals, the
best unconditional result concerning the size of E(N, H) is
THEOREM (Mikawa [26], 1992). Lete > 0, A > 0 be arb:tra:y constants and
N7/%+s < H < N. Then
|[E(N, H)| <e.n HL™A
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Mikawa’s result does not give information on the asymptotic behavior of the countmg
function R(2n)= - A(h)A(k) of the number of representations of a G—number as a
ht .

k=2n
sum of two primes. In this direction the best unconditional result in short intervals is

THEOREM (Perelli-Pintz [30], 1992). Let ¢ > 0, A, B > 0 be arbitrary constants
and N}/3+¢ < H < N. Then for all 2n € [N, N+ H), with at most O(H L~5) exceptions,
one has |

R(2n) = 2»8(2n) + O(NL™4),

where S(2n) =___2pl;[2 (1 - (p_l—l)z) l';l (%) is the “singular series” of Goldbach’s
. ,I n .
r>2
problem.
A similar result holds for a certain restricted countmg function R*(2n) in the shorter
interval N7/36+¢ < I < N, see Perelli-Pintz {30].
In the class of conditional results on the exceptional set in short intervals the best

one (under GRH) is the following

THEOREM  (Kaczorowski-Perelli-Pintz [18], 1993).  Assume GRH an.d_ let
"Hilog™® N = o for N — 0. Then

|E(N, H)| < B 10g° N.

Actually, Kaczorowski-Perelli-Pintz’s proof was not totally correct. In fact their
technique yields only |E(N, H)| <« HY/?log® N. However the result can be saved by a
technical device, see Languasco-Perelli [23] and [21]. _

- Assuming further a pair correlation type hypo_thesis on the zeros of the Dirichlet
L-functions, A. 'P-erélli and the author have recently proved the following

THEOREM (L.anguasco-Perelli {23], 1995) Assume GRH and a certain pair
correlation hypothesis on the zeros of the Dirichlet L-series. Lete > Oand N* < H < N.
Then '

|E(N, H)| < N°.

In Section 5 we will explain, with some details, the basic argument in the proof of
- the previous theorem. '
Another problem is to study the existence of G-numbers in short intervals. We have
the following
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THEOREM (Ramachandra [31,32], 1973 and 1976; Montgomery-Vaughan [29],
1975). Let € > 0 be an arbitrary constant and let N be sufficiently large. Then

: Z ~ r(n)>» NY,

- ne[N,N+N®)

where r('n) 5T 1,8 > 6,0, and 6,,05 are two positive real numbers such that
: ﬂ""P1+P2

(i) every interval [z, z + Hy], with Hy > x 1"", contains > i -——1— prime numbers,
(it) all buz O(IogX) intervals of the type 2,2 + Hs), z e NN [I,X] and Hy > a2te,
contain > -2 H - prime numbers.
_ This means that the existence ot Gsnumbers in short intervals is connected with
the distribution level (61) of primes in short intervals and with' the distribution level (85)
of primes in “a]most all” short intervals. The best results are 8, = 0.535 (Baker-Harman
[2]) and #5 = 1 7 (Watt [37]), hence the technique of Ramachandra and Montgomery-
Vaughan can prove that there exist G-numbers in [N, N+H ], provided that H >> N Ote
¢ = 0.5635 114 = 0.03821.... We observe that from the above result one can get also
that a positive proportwn oi the numbers in [N N + H] are G-numbers, prov1ded that .
H >> N9+s
Assurmng suitable hypotheses on the distribution of the zeros of the Riemann zeta
- function, one can obtain better results Indeed we have

THEOREM | (Katai [19], 1967; Montgomery-Vaughan [29], 1975) Assume RH.
Then there exists C' > O such that, for N sufficiently !arge, the interval [N, N + Clog® N ]
contains a G-number.
' Other proofs, based on the cn'cle method, have been gwen by Goldston [10] (1990).
_and by Languasco—Perelll {22] (1994) see Sectlon 3. _
The prevmus result ‘can be sharpened using a stronger - hypothesm Assuming
Montgomery's conjecture (MC), see [28], one has '

THEOREM (Goldston (10}, 1990). Assume RH and MC. Then there exists C > 0
such that, for N sufficiently large, the interval [N, N + C'log N] contains a G-number.

Recently the author [21] has proved, in analogy with Ramachandra and Montgome-
fy-Vaughan’s_ result, that, under the assumption of RH and MC, a positive proportion of
the numbers in [N, N + H} are G-numbers, provided that # > log N,

The methods used to obtain the last two results apparently do not give intervals
shorter than log N. One can obtain shorter intervals assuming further the Elliott-Halberstam
conjecture (EH), see Elliott-Halberstam [7). We have: '
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THEOREM (Frledlander-Goldston {81, 1995). Assume RH, MC and EH. Then there .

!loE]ogN)

log log 108 ol contains

exist C > 0 such that, far N suﬁ?czemly large, the interval [N,N 4+ C
a G-number.

‘For a more exhaustive presentation of these results see the author’s Ph. D, thesis
[20] We ﬁna]ly remark that some improvements of the above results by Mlkawa, Baker-
Harman and Watt have been recently obtained by Chinese researchers.

2. The Circle Methed

An important tool to approach additive problems and, hence, to prove some of the
prevlously quoted results, is the circle (or Hardy-Littlewood) method. Since Zaccagmm _
[38], also collected in this volume, furnishes a general introduction to this method, in the
following we use his notation, specialized in the case of Goldbach’s problem.

We write
A=B=P={pecN:pprime }

and, by technical reasons, we take

CR(N)= )0 A(WA(K),
h4h=N
where A(n) is the von Mangoldt function, as the weighted counting function of 1hc set of
the G-numbers. Then the associated Fourier polynomial becomes

S(a) = Z A(n)e(na). |

n<2N

To obtain information on the asymptotic formula for R(N') and on the size of the
exceptlonal set we have to distinguish between major and minor arcs, while for the existence
of G-numbers in short intervals, as we will see in the next section, it suffices to study the
behavior of S{«) in a neighborhood of 0.

3. Circle Method and G-numbérs in short intervals

In what follows, we will present in more detail our result on G-numbers in short
intervals. '

Since the explicit formula for S(«) is not a direct one (see, e.g., Baker-Harman [1)),
for the problem in short intervals it is more convenient to use a “smooth” version of S(«),
ie,

| S(a) = E;&(n)e(na)e"‘m.
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S(a) is the orlgmal Hardy—thtlcwoocl functlon We have the fol]owmg explicit formula -
5(a) = Z “PT(p) + 0((10g NY?)
P

where z =L —2ma, p runs over the 1on tr1v1a| 7108 of ¢ (s) and T is the gamma function.
The result is

THEOREM 1 (Languasco-Perclh [22]). Assume RH, let z = }—{,- - Imice and
log N. For N suﬁiczently large and 0 < £ < 1 we have

(1).'_ | f_ ) 1S(a)? - z—2|da &« NEL? 4+ NeY2L

Theorém 1 sharpens (by alog N factor) an analogous result due to Linnik {25]. This
- follows by using the i ingenious averaging technique of Saffari- Vaughan (see [33], Lemmas
5 and 6) which makes the use of the explicit formula for S(a) more efficient.
From Theorem 1 we deduce, by a pure circle method technique, the result of Kétal
~and Montgomery-Vaughan:

COIROLLAR_Y 1. Assume RH. There exists a constants C > 0 such that, for N
sufficiently large, the interval [N, N + C'L?] contains G-numbers. '
We now sketch the proof given in [22], Coroltary 1.

Let 2
L) = | e(-ma)| = 3 a(m)e(=ma),
m=1 m=-H

where a(m) = H — |m| and

B(o) = §(a)” - o

‘Hence we get

N+H | P
Y a(n-N)e™NR(N)= S(@)’ L(@)e(~Na)da
(2) n=N~H -z _

= f 1 L(a) e(—Na)da + /%1 E(a)L(a]e(—Na)dtx =L+1.

I, is computed using the residue theorem. We have

Nt+H | N NiE __
L= 3 an-Nre N 40(H)== )" a(n—N)+O(H?
(3) n=N~H € p=N-H
H2N

+ O(H3)
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The estimation of I3 follows from (1) and
1

. . 2

L{a) <« min(H ,W).
By partial integration we obtain
(1) Iy € HNL* + H32NL.

Finally, from (2), (3) and (4), it follows that
. N4+ H HQN
(5) > a(n—N)e"™NR(N) = — +O(H® + HNL® + H3?NI) .
n=N-H : .

Choosing H=CL?, C>0 sufﬁcieﬁtly large, from (5) we get

N+H |
> a(n—N)e™NR(N)> H*N
n=N-H

and then Corollary 1 follows.

4. Parseval identity for S(«)

In this section we discuss a problem related to the topics we have seen in the previous
section: the truncated Parseval identity for S(«). It is easy to prove, using the Parseval -
identity and the Prime Number Theorem, that

© | 15@pdan~ T
| -4
Using Theorem 1 and
: ¢
(7) /:£ #da = %arcta.n(%rN{),

which is easily obtained, we have
e N
f 15(e0)|?dax = — arctan(27 N€) + O(NEL? + NgV2L), .
-£

i.e., a conditional truncated version of (6). However we can observe that taking £ = % in
the previous formula, we obtain only the result, weaker than (6),

jg 15(e)|2der < NL? .

L
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In 1959, Lavrik [24} proved that

b _ :
/ 1S(a))2de = b 5 NL+O(Nlog L)

if 0 < b=a < 1. An unconditional result concerning truncations of Parseval’s identity,
- which improves Lavrik’s result, is the following

THEOREM 2 (Languasco-Perelli [22]). Let 0 <b—a < 1and N sufficiently !argé.-
Then : :

f b 3 Pdac = “SENL + OWN(L(b — )%+ O(N)

We_ remark that Theorem 2 is essentially the best possible, in the sense that one
cannot replace the term O(N) by o(N). We finally remark that Theorem 2 enables one to
deduce the order of magnitude of fff |S(a)|2de in the whole range 0 < £ < 3. In fact
we have : '

CoRroLLARY 2 (Languasco-Perelli [22]). Let N be sufficiently large. Then

- N2 H0<{<g
LEIS(a)I‘dax N ifi<

The .pr’o'of of Corollary 2 runs as follows. |
If 0 < &< 4, by Stirling’s formula and the zero-free region of ¢ (s) we have

> L(p) < Y [Pyl ~H exply axctan 2mNa — 2 hyl) = o(N)
g . ] - '
where p = B4 4y runs over the non-trivial zeros of (s). Using (7) we have
;o
f 15(0) 2der < N%¢ .
..E :
Since ff ¢ 15(@)|2da is an increasing function of £, from the previous result we have that
&
] |S(a)|*da > N
-£

for % <E€< % The corresponding upper. bound follows from Theorem 2. Then Corollary
2 follows arguing in a similar way in the range % <E< %
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5. The exceptional set

The classical method to study the size of the exceptlona] set for Goldbach’s problem
is based on the following remark: if '

(8) 2 IR - 2820 < NPV, H)
N<n<N+H
then, since &(2n) > 1, one has

(9) EWNHYS S (20)7YR(2n) — S(2n)]* < f(N, H).
. N<2n<N+H .

Obviously-(8) and (9) are of interest only if f(N,H) = o(H). In the following we
will sketch a conditional proof of (8) with f(N,H) = '
Writing in this case

S(E +n) = ”EQ;T(n) + R(n q,a),

where T(n) = > e{nn), it is not difficult to prove, applying the circle method, see [18],
n<2N .

with paramcters P and @), see [38], that

> |R(2n) - 206(2n) + F(n, N, H)}
N<2n<N+H

(10) < Z | [ S{a) e(—2na)dal?

N<2n<N4+H Y™

Y e Z“quch(—zn)ﬁ,

N<om<N+H  ¢>P

 where F'(n, N, H) is a certain function satisfying '

Y

(1) Fln,N,H) < N2 Y p(g)” 1’2(2 f IR, q,a)Pdn) +PQ.
Slmce, under GRH, we have, see [18] and [22], _ .

g el
12 * |R(n, q,
(12) ;f—;’a 7,4

we obtain, choosing P = Qlog™'° IV, that (11) becomes

(13) | F(n,N,H) < Nlog™® N,
uniformly for 2n € [N, N + H].
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* We remark that (12) is the corrected version of Lemma 1 of [18], see [22], [21].

The second term on the right hand snde of (10) is of arlthmetlcal nature, and its
estimation (see Lemma 2 of [18]) leads to a neghglble error term..

Hence, the key point is the estimation of the first term on the right hand side of
(10). Squaring out and interchanging summation and integration we get '

(14) Z fm .S'(cc) e(=2na)do

N<2nS<N+H

2

<<HNL max/ IS( + 1)|*dn,

{n,q)=1 -

i.e., the problem is now to estimate the mean square of |5($ + n)| over a single minor arc.
- Since T(n) < min(N, T%:T)’ we have

1 1

= [ e N 79 '“ 9
15 / IS+ ldn < oo / IR, afdn,

s0 it is clear that the quantity defined by

q_é?_
I(X,Q;q,0) = ] |R(n, ¢, ) dn

plays an important role in (14). By (12), we could expect a bound of the type

4

(16) L X Qe <

In a recent paper, A. Perelli and the author proved that a form of Montgomery’ s pair
correlation conjecture 1mplles a weaker version of (16) where the factor L4 is replaced by
Ne, The result is the following

'THEOREM 3 (Languasco-Perelli [22]). Assume GRH. Let

F(N,T;q,a) = 3 x@Ta(@r®@)re) D>, Ny, — 1),
X1,X2{mod ¢) Ivildval €T

where 7(x) denotes the Gauss sum and v;, j = 1,2, run oﬁer the imaginary parts of the
non trivial zeros of L(s,x;). If F(N,T;q,a) verifies

(17) F(N,T;q,a) <. ¢*TN*

uniformly for ﬂ—? <T<N,q< —“L;E =@ and (a,q) = 1 then

( ) Nl £
I(X,Q;a,a) K
Q)

holds for ¢ < Q and ,(a, g) =1
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Actually, the result in [22] is more precise and depends on the choice Q= N,
¢ < (0, sl We also remark that the trivial upper bound for (N, Tiq,a), a8 T ~ oo, is
clearly

F(N,T;q,0) < qp(q)°T log® qT

umformly in V,q and ¢. Moreover, by adapting Montgomery s method in [28] we can
prove, see [22], that

(18) | F(N,T;q,a) ~ -:;w(Q)leog N,
uniformly for Nlog N < T < N4 and ¢ < Nlog=* IV, and that
(19) S F(N,T;q,0) <4 ¢°Tlog N,

uniformly for N < T<NAand g < Nlog™3N.

Now, using Theorem 3 and (10}- (15), we have that (8) holds with f{N,H )
and then, by (9), we have

E(N,H) < N°.

Finally observe that one can repeat the previous argument replacing in (17) the
factor N¢ with log NV, i.e., using in the conjecture the expected order of magnitude for
F(N T;q,a). So, choosmg P = QL' we could expect that

E(N,H) €. L¥*(log H)

but the estimation of the tails, produced by an application of Gallagher’s lemma, see {21],
[23], allows us to choose only P = QL~3¢ and then to obtain only the weaker estimate

E(N,H) &, L™*(log 3)2-

If we assume only GRH the tails problem can be avoided using the functlon S (a) instead
of S(a), see [21], [23).
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