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1 Introduction

Let G be a finitely generated profinite group. We may define the Möbius function
mðH;GÞ in the lattice of the open subgroups of G by the following rules: mðG;GÞ ¼ 1
and

P
KdH mðK ;GÞ ¼ 0 if H < G. In [8] we started the study of the following ques-

tion, proposed by Mann (see [11] and [12]): what are the groups in which jmðH;GÞj is
bounded by a polynomial function in the index of H and in which the number bnðGÞ
of subgroups H of index n satisfying mðH;GÞ0 0 grows at most polynomially in n?
In this paper we will say that a profinite group G has polynomially bounded Möbius

numbers (PBMN) if G satisfies these two properties.
The interest of this question comes from its relation to the study of the function

PðG; kÞ expressing the probability that k randomly chosen elements generate G topo-
logically. Indeed the groups G with PBMN are precisely those for which the infinite
sum

X
H<oG

mðH;GÞ
jG : Hjs

is absolutely convergent in some complex half-plane. When this happens, this infinite
sum represents in the domain of convergence an analytic function which assumes pre-
cisely the value PðG; kÞ at any su‰ciently large positive integer k (see [12] for more
details).

Since mðM;GÞ ¼ �1 for any maximal subgroup M of G, we have mnðGÞc bnðGÞ
(where mnðGÞ denotes the number of maximal subgroups of G with index n). In
particular, if bnðGÞ grows polynomially, then G has polynomial maximal subgroup
growth (PMSG). A theorem of Mann and Shalev [13] characterizes groups with
PMSG as those which are positively finitely generated (PFG), i.e. PðG; kÞ > 0 for
some choice of k. Mann conjectured that, conversely, the following holds:

Conjecture 1. If G is a PFG group, then G has PBMN.
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The conjecture has been proved for particular classes of profinite groups, for
example some arithmetic groups [12], finitely generated prosolvable groups [7],
groups with polynomial subgroup growth [9]. In [8] we proved that in order to decide
whether a finitely generated profinite group G has PBMN, it su‰ces to investigate the
behavior of the Möbius function of the subgroup lattice of the finite monolithic
groups that appear as epimorphic images of G. We need some definitions to be
more precise. Let L be a finite monolithic group (i.e. a group with a unique minimal
normal subgroup): we will say that L is ðh1; h2Þ-bounded if there exist two constants
h1 and h2 such that

(1) b�
n ðLÞc nh1 , where b�

n ðLÞ denotes the number of subgroups K of L with
jL : K j ¼ n and L ¼ K soc L;

(2) jmðK ;LÞjc jL : K jh2 for each K cL with L ¼ K soc L.

In [8] the following is proved. Denote by LðGÞ the set of finite monolithic groups L

such that soc L is non-abelian and L is an epimorphic image of G. A PFG group G

has PBMN if and only if there exist h1 and h2 such that each L A LðGÞ is ðh1; h2Þ-
bounded. In this paper we obtain a stronger reduction theorem, which requires us
to deal only with almost simple groups. If L is a finite monolithic group with non-
abelian socle, then soc L ¼ S1 � � � � � Sr, where the groups Si are isomorphic simple
groups. Let XL be the subgroup of Aut S1 induced by the conjugation action of
NGðS1Þ on S1. This XL is a finite almost simple group, uniquely determined by L.
Our main result is the following.

Theorem 1. Let L be a monolithic group with non-abelian socle. If the associated

almost simple group XL is ðc1; c2Þ-bounded, then L is ðh1; h2Þ-bounded with

h1 ¼ 10 þ 2ð1 þ c1 þ c2Þ=r and h2 ¼ 2c2 þ 8.

Combined with [8, Theorem 1], this implies

Corollary 2. A PFG group has PBMN if there exist c1 and c2 such that XL is ðc1; c2Þ-
bounded for each L in LðGÞ.

This theorem allows us to reformulate Mann’s conjecture as follows.

Conjecture 2. There exist c1 and c2 such that any finite almost simple group is ðc1; c2Þ-
bounded.

Recently, in collaboration with Valentina Colombo, we have proved that this con-
jecture is satisfied by the symmetric and alternating groups [3]. This implies

Corollary 3. If G is a PFG group and, for each open normal subgroup N of G, all

composition factors of G=N are either abelian or alternating groups, then G has

PBMN.
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2 Monolithic groups

Let P be a finite poset. The Möbius function mP : P � P ! Z is defined as follows:
mPðx; yÞ ¼ 0 unless xc y, when it is defined recursively by the equations

mPðy; yÞ ¼ 1 and
X

xczcy

mPðz; yÞ ¼ 0 when x < y:

The following is well known:

Lemma 4. If xc y then mPðx; yÞ is equal to the di¤erence between the number of

chains from x to y of even length, and the number of such chains of odd length.

Two well-known results will play a relevant role in our discussion. One is the
Möbius inversion formula. Suppose that f ; g : P ! Z are functions such that
gðxÞ ¼

P
ycx f ðyÞ for all x A P. Then

f ðyÞ ¼
X
xcy

mPðx; yÞgðxÞ for all y A P:

The other is Crapo’s closure theorem. A closure map on P is a function : P ! P

satisfying the following three conditions:

(a) xc x for all x A P;

(b) if x; y A P with xc y, then xc y;

(c) x ¼ x for all x A P.

If is a closure map on P, then P ¼ fx A P j x ¼ xg is a poset with order induced by
the order on P.

Theorem 5 (Crapo’s closure theorem [4]). Let P be a finite poset and let : P ! P be

a closure map. Fix x; y A P such that y A P. Then

X
z¼y

mPðx; zÞ ¼ mPðx; yÞ if x ¼ x;

0 otherwise:

�

Denote by LðGÞ the subgroup lattice of a finite group; notice that if H cK cG

then mLðGÞðH;KÞ ¼ mLðH;KÞðH;KÞ, where LðH;KÞ is the set of subgroups of K

containing H. From now on, for simplicity we will write mðH;KÞ instead of
mLðH;KÞðH;KÞ whenever H is a subgroup of K .

Now let G be a monolithic finite group, i.e. a finite group G such that N ¼ soc G is
a minimal normal subgroup, and assume that N is non-abelian; so there exists a finite
non-abelian simple group S such that N ¼ S1 � � � � � Sr, with Si GS for i ¼ 1; . . . ; r.
Let c be the map from NGðS1Þ to Aut S induced by the conjugacy action on S1. Set
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X ¼ cðNGðS1ÞÞ and note that X is an almost simple group with socle Inn S ¼ cðS1Þ.
Let T :¼ ft1; . . . ; trg be a right transversal of NGðS1Þ in G. The map

fT : G ! X o SymðrÞ

given by

g 7! ðcðt1gt�1
1p Þ; . . . ;cðtrgt�1

rp ÞÞp;

where p A SymðrÞ satisfies tigt�1
ip A NGðS1Þ for all i A f1; . . . ; rg, is an injective homo-

morphism. We will identify G with its image in X o SymðrÞ; in this identification, N is
contained in the base subgroup X r and Si is a subgroup of the ith component of X r.
We will denote by pi : N ! Si the projection to the ith factor.

Now define B ¼ fBcG jBN ¼ Gg. It is a poset, with order induced by inclusion.

Lemma 6. For each B A B, there exists one and only one subgroup C satisfying

(1) BcC;

(2) C VN ¼ ðC VS1Þ � � � � � ðC VSrÞ;

(3) cðC VS1Þ ¼ cðNBðS1ÞÞV Inn S.

Proof. Since BN ¼ G, for each i A f2; . . . ; rg there exists bi A B with Si ¼ S bi

1 . If
C VN ¼ ðC VS1Þ � � � � � ðC VSrÞ and BcC, then

C ¼ BðC VNÞ ¼ BððC VS1Þ � � � � � ðC VSrÞÞ

¼ BððC VS1Þ � ðC VS1Þb2 � � � � � ðC VS1ÞbrÞ

is uniquely determined by the knowledge of C VS1. If we add the further condition
that cðC VS1Þ ¼ cðNBðS1ÞÞV Inn S, then we have a unique possible choice for C.
Now let Y ¼ cðNBðS1ÞÞ and T ¼ c�1ðY V Inn SÞVS1. It is easy to see that B nor-
malizes T � T b2 � � � � � T br and that C ¼ BðT � T b2 � � � � � T brÞ is the required
subgroup. r

For any B A B, we will denote by B (the G-closure of B) the subgroup C described
by the previous lemma. Moreover, if B1;B2 A B we will say that B1 is G-closed in

B2 if B1 ¼ B2 VB1. Suppose that B A B, let Y ¼ cðNBðS1ÞÞ (notice that BN ¼ G

implies Y Inn S ¼ X ) and let T ¼ ft1; . . . ; trg be a right transversal of NBðS1Þ in B.
As BN ¼ G and N cNGðS1Þ, we have that NGðS1Þ ¼ NBðS1ÞN and T is also a
right transversal of NGðS1Þ in G. If we use precisely this transversal T in order to
define our embedding fT : G ! X o SymðrÞ, then we obtain fTðBÞcY o SymðrÞ and
B ¼ f�1

T ðY o SymðrÞÞ.

Lemma 7. Let B1;B2 A B with B1 ¼ B1, B2 ¼ B2 and cðNB1
ðS1ÞÞ ¼ cðNB2

ðS1ÞÞ. Then

B2 ¼ Bx
1 for some x A E ¼ S2 � � � � � Sr.
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Proof. We claim that if cðNB1
ðS1ÞÞ ¼ cðNB2

ðS1ÞÞ ¼ Y , then NB1
ðS1ÞE cNB2

ðS1ÞE.
Indeed let g A NB1

ðSÞE. Since B1N ¼ B2N, we have also NB1
ðS1ÞN ¼ NB2

ðS1ÞN, so
there exists s A S1 such that gs A NB2

ðS1ÞE. Moreover

cðgÞ A cðNB1
ðS1ÞÞ ¼ Y and cðgsÞ A cðNB2

ðS1ÞÞ ¼ Y ;

hence cðsÞ A Y V Inn S. As B2 ¼ B2, we must have s A c�1ðY V Inn SÞVS1 ¼ S1 VB2.
Hence g A NB2

ðSÞE. By the same argument, NB2
ðS1ÞE cNB1

ðS1ÞE. This means that
NB1

ðS1ÞE ¼ NB2
ðS1ÞE is a supplement of N=E in NGðS1Þ=E. By [2, Theorem 1.1.35],

B1 and B2 are E-conjugate. r

Lemma 8. Suppose that B A B with B ¼ B and cðNBðS1ÞÞ ¼ Y. Then

(1) jG : Bj ¼ jX : Y jr, and

(2) jE : NEðBÞj ¼ jX : Y jr�1, where E ¼ S2 � � � � � Sr.

Proof. As we noticed before, we may assume that

G cX o SymðrÞ and B ¼ B ¼ ðY o SymðrÞÞVG:

Moreover, G ¼ BN implies X ¼ Y Inn S and consequently

jG : Bj ¼ jN : BVNj ¼ jðInn SÞr : ðY V Inn SÞrj

¼ jInn S : ðY V Inn SÞj r ¼ jY Inn S : Y jr ¼ jX : Y jr:

If k ¼ ðs1; s2; . . . ; srÞ A E (hence s1 ¼ 1) and b ¼ ðy1; . . . ; yrÞa A B, then

p1ð½k; b�1�Þ ¼ y1s1a y�1
1 A Y ; hence s1a A Y V Inn S:

Since BN ¼ G, for each i A f1; . . . ; rg there exists ðy1; . . . ; yrÞa A B with 1a ¼ i, hence

NEðBÞ ¼ ðInn S VYÞr�1 and

jE : NEðBÞj ¼ jInn S : ðInn S VYÞj r�1 ¼ jX : Y jr�1: r

If K A B, then LðKÞVB is a poset, with order induced by LðKÞ, and the position
R ! RVK defines a closure map in this poset. Moreover let

CðKÞ ¼ fR A B jRcK and R ¼ RVKg

be the poset consisting of the subgroups of K that are G-closed in K . Finally, if
H cK and H A B, let

SðH;KÞ ¼ fR A B jH cRcK and RVK ¼ Kg:
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AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Now let H A B. We define functions f ; g : B�B ! Z in the following way:

f ðH;RÞ ¼ mðH;RÞ if R A SðH;GÞ;
0 otherwise;

�

gðH;RÞ ¼ mCðRÞðH;RÞ if R A SðH;GÞ and H is G-closed in R;

0 otherwise:

�

For H cK cG, let LðH;KÞ be the set of subgroups of K containing H. Notice that
if H A B and K A SðH;GÞ, then SðH;KÞ ¼ SðH;GÞVLðH;KÞ. Indeed if R ¼ G

then RVK ¼ K ; conversely if RVK ¼ K then K cR, hence K cR ¼ R, but we
are assuming K ¼ G, so we must have R ¼ G. But then, for K A SðH;GÞ, applying
Crapo’s closure theorem to the lattice LðH;KÞ, we obtain

X
R ASðH;KÞ

mðH;RÞ ¼
X

R ASðH;GÞVLðH;KÞ
mðH;RÞ

¼ mCðKÞðH;KÞ if H is G-closed in K ;

0 otherwise:

�

This means that f and g satisfy the relation

gðH;KÞ ¼
X

RcK ;R ASðH;GÞ
f ðH;RÞ

and, by the Möbius inversion formula, for any R A SðH;GÞ we have

f ðH;RÞ ¼
X

KcR;K ASðH;GÞ
mðK ;RÞgðH;KÞ:

Setting R ¼ G, we get

Lemma 9. If H A B, then

mðH;GÞ ¼
X

K ASðH;GÞ
mðK ;GÞgðH;KÞ:

In particular, jmðH;GÞjc
P

K ASðH;GÞ jmðK ;GÞj � jgðH;KÞj.

Lemma 10. Let S ¼ fK A B jK ¼ Gg.

(1) jSjc 2jNj2.

(2) jmðK ;GÞjc jNj5=2
for each K A S.

266 A. Lucchini

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Proof. If K A S then Inn S ccðNKðS1ÞÞ. Moreover cðK VNÞ is normalized by
cðNKðS1ÞÞ, so either p1ðK VNÞ ¼ 1 or p1ðK VNÞ ¼ S1. In the first case K is a com-
plement for N in G and by [10] there are at most jNj2 possibilities. In the second case
there exists a partition J1; . . . ; Ju of f1; . . . ; rg such that

K VN ¼ D1 � � � � � Du

where Di is a full diagonal subgroup of S Ji (see for example [2, Definition 1.1.37]).
We claim that K ¼ NGðK VNÞ. Indeed, as K VN tK and G ¼ KN, we have

NGðK VNÞ ¼ KNNðK VNÞ ¼ KNNðD1 � � � � � DuÞ ¼ KðD1 � � � � � DuÞ ¼ K :

Hence K is uniquely determined by D ¼ D1 � � � � � Du, and we have to count the
possibilities for D. Let r : G ! SymðrÞ be the homomorphism which maps g to the
permutation of the set fS1; . . . ;Srg induced by conjugation by g and let P ¼ rðGÞ.
The subsets J1; . . . ; Ju are the blocks of an imprimitivity system for P, so they are
uniquely determined by the knowledge of J1 and can be chosen in at most 2r

di¤erent ways. Moreover for any J J f1; . . . ; rg, S J contains precisely jAut SjjJj�1

full diagonal subgroups. We conclude that the possibilities for D are at most

2rjAut Sjr�1
c jSj2r

c jNj2, since 4jOut Sjc jSj (see for example [1, Lemma 2.7]).
Hence jSjc 2jNj2. This concludes the proof of (1).

Now we want to estimate jmðK ;GÞj for a given K A S. First assume that
K VN 0 1. As before, there exists a partition J1; . . . ; Ju of f1; . . . ; rg such that
K VN ¼ D1 � � � � � Du where Di is a full diagonal subgroup of S Ji . In order to
estimate mðK ;GÞ we need more information on the set LðK ;GÞ of subgroups
of G containing K . If U A LðK ;GÞ, then U ¼ KN VU ¼ KðU VNÞ; moreover
there exists a partition J �

1 ; . . . ; J �
v of f1; . . . ; rg which refines J1; . . . ; Ju such that

U VN ¼ D�
1 � � � � � D�

v where D�
i is a full diagonal subgroup of SJ �

i . We may assume
that 1 A J �

1 J J1. We claim that U is uniquely determined by the knowledge of J �
1 .

Since KN ¼ G, we have P ¼ rðGÞ ¼ rðKÞ, so for each i A f2; . . . ; vg there exists
xi A K such that J �

i ¼ ðJ �
1 Þ

rðxiÞ. On the other hand, U VN ¼ D�
1 � � � � � D�

v is normal-
ized by K , hence D�

i ¼ ðD�
1 Þ

xi is uniquely determined by D�
1 for each i A f2; . . . ; vg.

The full diagonal subgroup D1 of S J1 is uniquely identified by a family faigi A J1; i01

of elements of Aut S (if x A S J1 , then x A D1 if and only if piðxÞ ¼ p1ðxÞai ).
Similarly D�

1 is uniquely identified by a family fbigi A J �
1
; i01 of elements of Aut S.

As D1 cK VN cU VN ¼ D�
1 � � � � � D�

v and J �
1 J J1, we must have bi ¼ ai for

each i A J �
1 nf1g. This completes the proof of our claim. By Lemma 4, jmðK ;GÞj

is bounded by the number of chains in LðGÞ connecting U to G. From what
we have just seen, any of these chains is uniquely determined by a chain
W1 ¼ J1 IW2 I � � �IWl ¼ f1g of subsets of J1, with jWij divisible by jWiþ1j for

each i A f1; . . . ; l � 1g. We claim that the number of these chains is at most 4jJ1j.
Indeed we may choose jW2j in at most 2jJ1j di¤erent ways, and when W2 has been
chosen, by induction we have at most 4jJ2j c 4jJ1j=2 ¼ 2jJ1j possibilities for the chain
W2 I � � �IWl ¼ f1g. This leads to the conclusion

jmðK ;GÞjc 4jJ1j c 4r
c jSjr=2 ¼ jNj1=2:
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Now assume that K VN ¼ 1. Again jmðK ;GÞj is bounded by the number of chains
K0 ¼ K < K1 < � � � < Kl ¼ G. Since K1 A S and K1 VN 0 1, as we have seen
before there are at most jNj2 possible choices for K1. For any choice of K1, by the
same argument as above, we have at most jNj1=2 possible choices for the chain
K1 < � � � < Kl ¼ G. Hence jmðK ;GÞjc jNj5=2. r

Lemma 11. Let H A B and let Y ¼ cðNHðS1ÞÞ. There exists a lattice isomorphism bH

from LðY ;X Þ to the lattice CðH;GÞ of G-closed subgroups of G containing H.

Proof. Since HN ¼ G, for each i A f2; . . . ; rg there exists hi A H with Si ¼ S hi

1 . If
Z A LðY ;X Þ, then T ¼ c�1ðZ V Inn SÞVS1 is normalized by NHðS1Þ; hence H nor-
malizes T � T h2 � � � � � T hr and we may define bHðZÞ ¼ HðT � T h2 � � � � � T hrÞ.
Since HN ¼ G, we must have X ¼ Y Inn S and this can be used to prove that bH is
injective. Indeed if bHðZ1Þ ¼ bHðZ2Þ, then Z1 V Inn S ¼ Z2 V Inn S, which implies
Z1 ¼ YðZ1 V Inn SÞ ¼ YðZ2 V Inn SÞ ¼ Z2. It remains to prove that bH is surjective.
If C A CðH;GÞ, then U ¼ C VS1 is normalized by NHðS1Þ and

C ¼ HðC VNÞ ¼ HððC VS1Þ � � � � � ðC VSrÞÞ

¼ HððC VS1Þ � ðC VS1Þh2 � � � � � ðC VS1ÞhrÞ ¼ bHðZÞ

with Z ¼ YcðUÞ. r

Now let H A B with Y ¼ cðNHðS1ÞÞ and let K A SðH;GÞ. Consider the poset
CðH;KÞ of the subgroups that are G-closed in K and contain H. The map

gH;K : LðY ;X Þ ! CðH;KÞ; gH;KðZÞ ¼ bHðZÞVK ;

is surjective and satisfies

gH;KðZ1 VZ2Þ ¼ gH;KðZ1ÞV gH;KðZ2Þ.

For any Z A LðY ;XÞ, define

~ZZ ¼ 7
W ALðY ;X Þ

gH; K ðW Þ¼gH; K ðZÞ

W :

Notice that ~ZZ is the smallest element of LðY ;ZÞ with gH;Kð ~ZZÞ ¼ gH;KðZÞ. The map
Z 7! ~ZZ is a closure map in the dual poset L�ðY ;XÞ. We will say that Z is gH;K -
closed in X if ~ZZ ¼ Z. The map gH;K induces an order-preserving bijection between
the subposet of the gH;K -closed subgroups of L�ðY ;X Þ and the poset C�ðH;KÞ. By
Crapo’s closure theorem,

X
~ZZ¼Y

mL�ðY ;XÞðX ;ZÞ ¼ mC �ðH;KÞðK ;HÞ:
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By Lemma 4 if x; y A P then mP� ðx; yÞ ¼ mPðy; xÞ, so we can conclude that if H is G-
closed in K , then

X
~ZZ¼Y

mðZ;X Þ ¼ mCðH;KÞðH;KÞ ¼ gðH;KÞ: ð2:1Þ

Now we are ready to prove Theorem 1. So assume that X is ðc1; c2Þ-bounded, i.e.
that there exist c1 and c2 such that

(1) jmðY ;X Þjc jX : Y jc1 for each Y cX with X ¼ Y Inn S;

(2) b�
n ðX Þc nc2 for each n A N.

Lemma 12. If H A B and K A SðH;GÞ, then jgðH;KÞjc jSj1þc1þc2 .

Proof. If H is not G-closed in K , then gðH;KÞ ¼ 0. Otherwise, by (2.1),

jgðH;KÞj ¼
����
X
Z AW

mðZ;XÞ
����c

X
Z AW

jmðZ;XÞj

where W ¼ fZ cX j ~ZZ ¼ cðNHðS1ÞÞ and mðZ;XÞ0 0g. Since Z Inn S ¼ X for each
Z A W, we have jWjc jSj1þc2 and jmðZ;X Þjc jX : Zjc1 c jSjc1 for each Z A W, henceP

Z AW jmðZ;XÞjc jWj jSjc1 ¼ jSj1þc1þc2 . r

Proposition 13. For each H A B, we have

jmðH;GÞjc jG : Hjh1 with h1 ¼ 10 þ 2ð1 þ c1 þ c2Þ=r:

Proof. Recall that the maximal subgroups of G not containing N can be classified in
terms of their intersection with N as follows:

(a) maximal subgroups R with p1ðRVNÞ ¼ S;

(b) maximal subgroups R with 1 < p1ðRVNÞ < S;

(c) maximal subgroups R with RVN ¼ 1.

We may assume that mðH;GÞ0 0. This implies that H is an intersection of maximal
subgroups of G (see for example [5]). We distinguish two possibilities.

Case 1. All maximal subgroups of G containing H are of type (b). In [6] it is proved
that in this case mðH;GÞ ¼ mðY ;XÞ with Y ¼ cðNHðS1ÞÞ and jG : Hj ¼ jX : Y jr;
more precisely, it is proved that if H is an intersection of maximal subgroups of G

and all the maximal subgroups of G containing H are of type (b), then H is G-closed
in G, SðH;GÞ ¼ fGg, gH;G is a lattice isomorphism between LðY ;X Þ and CðH;GÞ
and consequently mðH;GÞ ¼ gðH;GÞ ¼ mðY ;X Þ. It follows

jmðH;GÞj ¼ jmðY ;X Þjc jX : Y jc1 ¼ jG : Hjc1=r:
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Case 2. There exists a maximal subgroup M of G of type (a) or (c) containing H. In
this case jG : Hjd jG : Mj ¼ jN : M VNjd jNj1=2. By Lemma 9

mðH;GÞ ¼
X

K ASðH;GÞ
mðK ;GÞgðH;KÞ:

By Lemma 10, jSðH;GÞjc 2jNj2. Moreover by Lemma 10 and Lemma 12, for each
K A SðH;GÞ we have jmðK ;GÞjc jNj5=2 and gðH;KÞc jSj1þc1þc2 . Hence

jmðH;GÞjc 2jNj2þð5=2Þþð1þc1þc2Þ=r
c 2jNjð9=2Þþð1þc1þc2Þ=r

c jG : Hj10þ2ð1þc1þc2Þ=r:

This concludes our proof. r

Lemma 14. Let N ¼ fH A B j mðH;GÞ0 0g. Then jNjc jNja with a ¼ 4 þ c2.

Proof. By Lemma 9, if H A N, then there exists K A SðH;GÞ with gðH;KÞ0 0. In
particular, H is G-closed in K and this implies

H ¼ H VK ¼ bHðYÞVK ¼ gH;KðYÞ;

with Y ¼ cðNHðS1ÞÞ. Moreover, by (2.1), there exists Z with mðZ;XÞ0 0 and
~ZZ ¼ Y . This means that T ¼ bHðZÞ is a G-closed subgroup of G which satisfies

cðNTðS1ÞÞ ¼ Z and T VK ¼ bHðZÞVK ¼ gH;KðZÞ ¼ gH;KðYÞ ¼ H:

So if gðH;KÞ0 0 then H ¼ K VT for a subgroup T which is G-closed in G and satis-
fies mðcðNTðS1ÞÞ;X Þ0 0. There are at most jSjc2þ1 possibilities for Z ¼ cðNTðS1ÞÞ.
Given Z, by Lemma 7, there are at most jSjr�1

G-closed subgroups T with
cðNTðS1ÞÞ ¼ Z. So there are at most jSjr�1jSjc2þ1 ¼ jNj jSjc2 possible choices for T

and at most jSj ¼ 2jNj2 possible choices for K . Hence jNjc 2jNj3jSjc2 c jNj4þc2 .
r

Proposition 15. b�
n ðGÞc nh2 with h2 ¼ 2c2 þ 8.

Proof. First assume that n < jNj1=2. As we saw in the proof of Proposition 13,
if H A B, mðH;GÞ0 0 and jG : Hj ¼ n, then H is an intersection of maximal sub-
groups of type (b) and n ¼ ur with u ¼ jX : Y j, where Y ¼ cðNHðS1ÞÞ. There are
b�

u ðXÞc uh2 possible choices for Y and, by Lemma 7 and Lemma 8, there are
precisely jX : Y jr�1 ¼ ur�1 possible choices for H with Y ¼ cðNHðS1ÞÞ. Hence

b�
n ðGÞc b�

u ðXÞur�1 c uc2 ur�1 c nc2þ1. Now assume that nd jNj1=2. In this case,
b�

n ðGÞc jNjc jNj4þc2 c n8þ2c2 by Lemma 14. r
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