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1 Introduction

Let G be a finitely generated profinite group. We may define the Mobius function
1(H, G) in the lattice of the open subgroups of G by the following rules: (G, G) = 1
and ) .- 5 u(K,G) =0if H < G. In [8] we started the study of the following ques-
tion, proposed by Mann (see [11] and [12]): what are the groups in which |u(H, G)| is
bounded by a polynomial function in the index of H and in which the number b, (G)
of subgroups H of index n satistying u(H, G) # 0 grows at most polynomially in n?
In this paper we will say that a profinite group G has polynomially bounded Mobius
numbers (PBMN) if G satisfies these two properties.

The interest of this question comes from its relation to the study of the function
P(G, k) expressing the probability that & randomly chosen elements generate G topo-
logically. Indeed the groups G with PBMN are precisely those for which the infinite
sum

(H,G)
|G: H|'

H<,G

is absolutely convergent in some complex half-plane. When this happens, this infinite
sum represents in the domain of convergence an analytic function which assumes pre-
cisely the value P(G, k) at any sufficiently large positive integer k (see [12] for more
details).

Since (M, G) = —1 for any maximal subgroup M of G, we have m,(G) < b,(G)
(where m,(G) denotes the number of maximal subgroups of G with index n). In
particular, if b,(G) grows polynomially, then G has polynomial maximal subgroup
growth (PMSG). A theorem of Mann and Shalev [13] characterizes groups with
PMSG as those which are positively finitely generated (PFG), i.e. P(G,k) > 0 for
some choice of k. Mann conjectured that, conversely, the following holds:

Conjecture 1. If G is a PFG group, then G has PBMN.
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The conjecture has been proved for particular classes of profinite groups, for
example some arithmetic groups [12], finitely generated prosolvable groups [7],
groups with polynomial subgroup growth [9]. In [8] we proved that in order to decide
whether a finitely generated profinite group G has PBMN, it suffices to investigate the
behavior of the M&bius function of the subgroup lattice of the finite monolithic
groups that appear as epimorphic images of G. We need some definitions to be
more precise. Let L be a finite monolithic group (i.e. a group with a unique minimal
normal subgroup): we will say that L is (#,,#,)-bounded if there exist two constants
n, and n, such that

(1) (L) <n™, where b;(L) denotes the number of subgroups K of L with
|IL:K|=nand L =KsocL;

(2) |u(K,L)| < |L:K|™ for each K < L with L = Ksoc L.

In [8] the following is proved. Denote by A(G) the set of finite monolithic groups L
such that soc L is non-abelian and L is an epimorphic image of G. A PFG group G
has PBMN if and only if there exist #; and #, such that each L € A(G) is (1,,7,)-
bounded. In this paper we obtain a stronger reduction theorem, which requires us
to deal only with almost simple groups. If L is a finite monolithic group with non-
abelian socle, then soc L = ) x --- x S,, where the groups S; are isomorphic simple
groups. Let X be the subgroup of AutS; induced by the conjugation action of
Ng(S1) on S;. This X}, is a finite almost simple group, uniquely determined by L.
Our main result is the following.

Theorem 1. Let L be a monolithic group with non-abelian socle. If the associated
almost simple group Xp is (c1,c2)-bounded, then L is (n,,n,)-bounded with
m =10+2(1 4+ ¢1 + ¢2)/r and n, = 2¢, + 8.

Combined with [8, Theorem 1], this implies

Corollary 2. A PFG group has PBMN if there exist ¢ and ¢y such that X is (c1,¢2)-
bounded for each L in A(G).

This theorem allows us to reformulate Mann’s conjecture as follows.

Conjecture 2. There exist ¢; and ¢, such that any finite almost simple group is (¢, ¢3)-
bounded.

Recently, in collaboration with Valentina Colombo, we have proved that this con-
jecture is satisfied by the symmetric and alternating groups [3]. This implies

Corollary 3. If G is a PFG group and, for each open normal subgroup N of G, all
composition factors of G/N are either abelian or alternating groups, then G has
PBMN.
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2 Monolithic groups

Let P be a finite poset. The Mobius function up : P x P — Z is defined as follows:
1p(x,y) = 0 unless x < y, when it is defined recursively by the equations

up(y,y) =1 and Z up(z,y) =0 when x < y.

X<z<y
The following is well known:

Lemma 4. If x < y then up(x,y) is equal to the difference between the number of
chains from x to y of even length, and the number of such chains of odd length.

Two well-known results will play a relevant role in our discussion. One is the
Moébius inversion formula. Suppose that f,g: P — Z are functions such that
g(x) =>_,<, f(y) forall x e P. Then

fy) = Z,uP(x, y)g(x) forall ye P.

X<y

The other is Crapo’s closure theorem. A closure map on P is a function ~ : P — P
satisfying the following three conditions:

(a) x < xforall xe P;
(b) if x, y € P with x < y, then X < j;
(c) x=xforall xe P.

If ~ is a closure map on P, then P = {x € P| X = x} is a poset with order induced by
the order on P.

Theorem 5 (Crapo’s closure theorem [4]). Let P be a finite poset and let ~ : P — P be
a closure map. Fix x, y € P such that y € P. Then

Z,up(x,z) = {ﬂp(x,y) if x=X,

= 0 otherwise.

Denote by #(G) the subgroup lattice of a finite group; notice that if H < K < G
then py ) (H,K) = ttyy k) (H,K), where Z(H, K) is the set of subgroups of K
containing H. From now on, for simplicity we will write u(H,K) instead of
Ko, x)(H, K) whenever H is a subgroup of K.

Now let G be a monolithic finite group, i.e. a finite group G such that N = soc G is
a minimal normal subgroup, and assume that N is non-abelian; so there exists a finite
non-abelian simple group S such that N = S; x --- x S, with §S; = Sfori=1,...,r.
Let yy be the map from Ng(S;) to Aut S induced by the conjugacy action on Sj. Set
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X = y(Ng(S1)) and note that X is an almost simple group with socle Inn .S = /(S)).
Let T:={#,...,t} be a right transversal of Ng(S) in G. The map

¢r: G— X Sym(r)
given by

g = Wngtiy), - (gt ),
where 7 € Sym(r) satisfies #,g¢;.! € Ng(S) for all i e {1,...,r}, is an injective homo-
morphism. We will identify G with its image in X ¢ Sym(r); in this identification, N is
contained in the base subgroup X" and S; is a subgroup of the ith component of X".
We will denote by 7; : N — S; the projection to the ith factor.
Now define 4 = {B < G| BN = G}. It is a poset, with order induced by inclusion.

Lemma 6. For each B € A, there exists one and only one subgroup C satisfying
(1) BLG;

(2) CNN=(CNS|) x---x(CNS,);

(3) w(CNS1) =y (Np(S1))NInn S.

Proof. Since BN = G, for each i€ {2,...,r} there exists b; € B with S; = Slb’. If
CNN=(CNS;)x---x(CNS,)and B < C, then

C=B(CNN)=B(CNS) x---x(CNS,))
= B((CNS)) x (CNS)” x - x (CNS)H™)

is uniquely determined by the knowledge of CNS;. If we add the further condition
that Y(CNS;) = yY(Np(S1)) NInn S, then we have a unique possible choice for C.
Now let ¥ = y(N3(S})) and T =y~ '(Y NInnS) N S). It is easy to see that B nor-
malizes 7 x T? x ---x T” and that C = B(T x T” x --- x T") is the required
subgroup. []

For any B € %4, we will denote by B (the G-closure of B) the subgroup C described
by the previous lemma. Moreover, if By, B, € # we will say that B; is G-closed in
B, if By = B,N By. Suppose that Be %, let Y = y/(N3(S))) (notice that BN = G
implies Y Inn S = X) and let T = {1;,...,1} be a right transversal of Np(S)) in B.
As BN = G and N < Ng(S)), we have that Ng(S)) = Np(S;1)N and T is also a
right transversal of Ng(S)) in G. If we use precisely this transversal 7' in order to
define our embedding ¢; : G — X ¢ Sym(r), then we obtain ¢,(B) < Y ! Sym(r) and

B=¢7'(Y1Sym(r)).

Lemma 7. Let By, B, € # with By = By, B, = By and (N, (S1)) = ¥(N3,(S))). Then
By = By for some xe E =8, x -+ x §,.
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Proof. We claim that if Y/ (Ng, (S1)) = ¥(Np,(S1)) = Y, then N, (S1)E < N, (S1)E.
Indeed let g € N, (S)E. Since BN = B, N, we have also Ng, (S;)N = Np,(S1)N, so
there exists s € S; such that gs € N, (S1)E. Moreover

¥(9) e¥(Np, (S1)) =Y and Y(gs) € y(Np,(S1)) =Y,
hence y/(s) € Y NInn S. As B, = B,, we must have s € Y (YNInnS)NS; = S1NB,.
Hence g € Ng,(S)E. By the same argument, N, (S1)E < N, (S1)E. This means that
N3, (S1)E = Np,(S1)E is a supplement of N/E in Ng(S;)/E. By [2, Theorem 1.1.35],
By and B, are E-conjugate. []

Lemma 8. Suppose that B € # with B= B and y(Ng(S1)) = Y. Then
(1) |G:B|=|X:Y|, and
(2) |E:Ng(B)|=|X: Y|, where E= S, x --- x S,.

Proof. As we noticed before, we may assume that
G < X!Sym(r) and B=B=(Y1Sym(r))NG.
Moreover, G = BN implies X = Y Inn S and consequently

IG:B|=|N:BNN|=|ImnsS) : (¥ NInnS)’|
=|InnS:(YNInnS)|"=[YInnS: Y|"=|X:Y|"

If k = (s1,82,...,8) € E (hence sy = 1) and b = (y1,..., y,)a € B, then
m([k,bil]) = ylswyfl €Y, hences;,, e YNInnS.
Since BN = G, foreach i € {1,...,r} there exists (yi, ..., y,)o € B with la = i, hence

Np(B) = (InnSNY)"™" and
|E : Ng(B)| =|InnS : (InnSN Y)|’*1 = |X : Y‘rfl' O

If K € 4, then £ (K) N % is a poset, with order induced by #(K), and the position
R — RN K defines a closure map in this poset. Moreover let

¢ K)={Re#|R<Kand R=RNK}

be the poset consisting of the subgroups of K that are G-closed in K. Finally, if
H < Kand H € 4, let

S(H,K)={Re#|H<R<Kand RNK = K}.
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Now let H € 4. We define functions f,g : # x 4 — Z in the following way:

f(H,R) = w(H,R) if Re ¥(H,G),
7 0 otherwise,

g(H,R) = {ﬂ%(R)(Ha R) if Re ¥(H,G) and H is G-closed in R,
7 0 otherwise.

For H < K < G, let Z(H, K) be the set of subgroups of K containing H. Notice that
if He# and K € ¥(H,G), then ¥(H,K) = ¥(H,G)N £(H,K). Indeed if R= G
then RNK = K; conversely if RNK = K then K < R, hence K < R = R, but we
are assuming K = G, so we must have R = G. But then, for K € ¥(H, G), applying
Crapo’s closure theorem to the lattice #(H, K), we obtain

> wH,R)= > u(H, R)
ReY(H,K) Re(H,G)NZ(H,K)

B {y(m{)(H, K) if H is G-closed in K,
0 otherwise.

This means that f and g satisfy the relation

g(H.K)= Y f(HR)
R<K,Re¥(H,G)

and, by the Mobius inversion formula, for any R € (H, G) we have

SH,R)= Y uK,Ryg(HK).
K<R,Ke¥(H,G)

Setting R = G, we get

Lemma 9. If H € 4, then

In particular, |(H, G)| < Yk ey ) (K. G)| - lg(H.K).

Lemma 10. Let ¥ = {K e # | K = G}.
(1) |#] <2IN|*
) |u(K,G)| < |NI*? for each K € &.
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Proof. If K€% then InnS < Y(Nk(S))). Moreover (KN N) is normalized by
W(Nk(S1)), so either 7; (KN N) =1 or 7; (KN N) = S;. In the first case K is a com-
plement for N in G and by [10] there are at most | N|* possibilities. In the second case
there exists a partition Jy,...,J, of {1,...,r} such that

KNN=A; x---xA,

where A; is a full diagonal subgroup of S’ (see for example [2, Definition 1.1.37]).
We claim that K = Ng(K N N). Indeed, as KN N = K and G = KN, we have

Ng(KNN)=KNy(KNN)=KNy(A; x - xA,)=K(A; x--- X A,) =

Hence K is uniquely determined by A= A; x --- x A,, and we have to count the
possibilities for A. Let p : G — Sym(r) be the homomorphism which maps g to the
permutation of the set {Si,...,S,} induced by conjugation by g and let P = p(G).
The subsets Ji,...,J, are the blocks of an imprimitivity system for P, so they are
uniquely determined by the knowledge of J; and can be chosen in at most 2"
different ways. Moreover for any J < {1,...,r}, S’ contains precisely |[AutS |\J\ !
full diagonal subgroups. We conclude that the possibilities for A are at most
27| Aut S| < |S|2’ IN|?, since 4|Out S| < |S| (see for example [1, Lemma 2.7]).
Hence || < 2|N |*. This concludes the proof of (1).

Now we want to estimate |u(K,G)| for a given K € &. First assume that
KNN # 1. As before, there exists a partition Jj,...,J, of {1,...,r} such that
KNN=A; x---x A, where A; is a full diagonal subgroup of S”. In order to
estimate u(K,G) we need more information on the set ¥ (K,G) of subgroups
of G containing K. If Ue #(K,G), then U=KNNU = K(UNN); moreover
there exists a partition J},...,J) of {1,...,r} which refines Ji,...,J, such that
UNN =A{ x - x Af where A/ is a full diagonal subgroup of S’/. We may assume
that 1 e J;7 = Ji. We claim that U is uniquely determined by the knowledge of J|.
Since KN = G, we have P = p(G) = p(K), so for each i€ {2,...,v} there exists
x; € K such that J;* = (J])” () On the other hand, U NN = A{ x --- x A, i3 normal-
ized by K, hence A’ = (A])" is uniquely determined by A for each ief{2,...,v}
The full diagonal subgroup A; of /1 is uniquely identiﬁed by a family {o},;c; .
of elements of AutS (if xeS”!, then xeA; if and only if 7;(x) =7 (x)").
Similarly Ay is uniquely identified by a family {f;},. It of elements of AutsS.
As Aj < KNN<UNN=A] x---xA; and J; CJI, we must have f; =o; for
each i e J{\{1}. This completes the proof of our claim. By Lemma 4, |u(K, G)|
is bounded by the number of chains in #(G) connecting U to G. From what
we have just seen, any of these chains is uniquely determined by a chain
Q=J1o2Q > - 2Q,={1} of subsets of J;, with |Q,| divisible by |Q;.;| for
each ie{l,...,/—1}. We claim that the number of these chains is at most 41/,
Indeed we may choose |Q,| in at most 2!l different ways, and when Q, has been
chosen, by induction we have at most 421 < 411/2 = 2l possibilities for the chain
Q) o - o = {1}. This leads to the conclusion

(K, G)| <4 <47 <|s|"? = N|'”.
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Now assume that KNN = 1. Again |u(K, G)| is bounded by the number of chains
Kh=K< K <---<K; = G. Since K1 €% and KiNN #1, as we have seen
before there are at most |N|* possible choices for K1 For any choice of K|, by the
same argument as above, we have at most [N | possible choices for the chain
K, < --- < K; = G. Hence |u(K,G)| < [N|*?. O

Lemma 11. Let H € # and let Y = y(Ng(S1)). There exists a lattice isomorphism f g
from L (Y, X) to the lattice €(H, G) of G-closed subgroups of G containing H.

Proof. Since HN = G, for each ie{2,...,r} there exists #; € H with S; = Sh‘ If
Ze2(Y,X), then T =y (ZNInnS) N S1 is normalized by Ny (S}); hence H nor-
malizes T x T x --- x T" and we may define f8,;(Z) = H(T x T" x --- x T").
Since HN = G, we must have X = Y Inn S and this can be used to prove that f is
injective. Indeed if f,(Z)) = f,(Z,), then Z;NInn S = Z, NInn S, which implies
Z,=Y(Z NInnS) = Y(Z,NInn S) = Z,. It remains to prove that §;; is surjective.
If Ce 4(H, G), then U = CN S is normalized by Ny (S)) and

C=H(CNN)=H((CNS)) x---x (CNS,))
= H((CNS) x (CNSH" x - x (CNS)") = pu(2)

with Z = Yy(U). [

Now let H e # with Y = y(Ny(S1)) and let K € ¥(H,G). Consider the poset
%(H, K) of the subgroups that are G-closed in K and contain H. The map

VHK * LY, X) — %¢(H,K), VHA,K(Z) = ﬁH(Z) nK

is surjective and satisfies

VH,K(ZI NZ,) = VH,K(ZI) N VH,K(ZZ)~
Forany Z € (Y, X), define

Z= N w.
WeZ(Y,X)
VH.K(W):}’H,K(Z>

Notice that Z is the smallest element of (Y, Z) with Th. x(Z) = 7u.x(Z). The map
Z — Z is a closure map in the dual poset Z*(Y, X). We will say that Z is VH K"
closed in X if Z = Z. The map 7u x induces an order-preserving bijection between
the subposet of the y, x-closed subgroups of #*(Y, X) and the poset 4*(H,K). By
Crapo’s closure theorem,

Z /‘J*(Y,X)(Xv zZ)= ﬂ%’*(H,K)(K» H).
Z=Y
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By Lemma 4 if x, y € P then up.(x, y) = up(y, x), so we can conclude that if H is G-
closed in K, then

S (Z, X) = g0 (H K) = g(H, K). (2.1)
zZ=Y

Now we are ready to prove Theorem 1. So assume that X is (¢, ¢;)-bounded, i.e.
that there exist ¢; and ¢, such that

(1) |u(Y,X)| <|X:Y]|” foreach Y < X with X = Y Inn S;
(2) b;(X) < n® for each n e N.

Lemma 12. If H € % and K € (H, G), then |g(H,K)| < |S|'T <,

Proof. If H is not G-closed in K, then g(H, K) = 0. Otherwise, by (2.1),

lg(H,K)| =

S uz. X)\ < S uz.x))

ZeQ ZeQ

where Q = {Z < X | Z = Y(Ny(S))) and u(Z, X) # 0}. Since ZInn S = X for each
Z € Q, we have Q| < |S|'T andl|u(Z, X)| <X :Z|7 < |S] for each Z € Q, hence
Yzea lU(Z, X)| <1QI[S|" =S| O

Proposition 13. For each H € %, we have
lw(H,G)| < |G: HI"™ withn, =104+2(1 +¢; +c2)/r.
Proof. Recall that the maximal subgroups of G not containing N can be classified in
terms of their intersection with N as follows:
(a) maximal subgroups R with 7; (RN N) = S;
(b) maximal subgroups R with 1 < 7;(RNN) < S;
(c) maximal subgroups R with RNN = 1.
We may assume that u(H, G) # 0. This implies that H is an intersection of maximal

subgroups of G (see for example [5]). We distinguish two possibilities.

Case 1. All maximal subgroups of G containing H are of type (b). In [6] it is proved
that in this case u(H,G) = u(Y,X) with Y = y(Ny(Sy)) and |G: H| = |X : Y|";
more precisely, it is proved that if H is an intersection of maximal subgroups of G
and all the maximal subgroups of G containing H are of type (b), then H is G-closed
in G, ¥(H,G) = {G}, yy ¢ is a lattice isomorphism between £ (Y, X) and 4(H, G)
and consequently u(H,G) = g(H, G) = u(Y, X). It follows

W(H,G)| = (Y, X)| <|X: Y| =|G: H|"".
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Case 2. There exists a maximal subgroup M of G of type (a) or (c) containing H. In
this case |G : H| > |G : M| = |N : MNN| > |N|"?. By Lemma 9

wWH,G) = Z WK, G)g(H, K).

Ke¥(H,G)

By Lemma 10, |#(H, G)| < 2|N|*. Moreover by Lemma 10 and Lemma 12, for each
K € #(H,G) we have |u(K, G)| < |[N|*? and g(H,K) < |S|"" . Hence

|ﬂ(H7 G)‘ < 2|N|2+(5/2)+(1+01+02)/r < 2|N|(9/2)+(1+c'1+cz)/r < |G . H|10+2(1+c1+c2)/r.
This concludes our proof. []
Lemma 14. Let /" = {H € | u(H, G) # 0}. Then || < |N|* with o = 4 + ¢,.

Proof. By Lemma 9, if H € /", then there exists K € & (H, G) with g(H,K) # 0. In
particular, H is G-closed in K and this implies

H=HNK=pu(Y)NK =yy g(Y),

with Y = y(Np(S1)). Moreover, by (2.1), there exists Z with u(Z,X) # 0 and
Z =Y. This means that T = f;(Z) is a G-closed subgroup of G which satisfies

Y(N7(S1))=Z and TNK=p,(Z)NK = VH,K(Z) = VH,K(Y) =H.

Soif g(H,K) # 0 then H = KN T for a subgroup T which is G-closed in G and satis-
fies u(W(N7(S1)), X) # 0. There are at most |S|*™" possibilities for Z = y/(N7(S)).
Given Z, by Lemma 7, there are at most |S|" ! G-closed subgroups 7 with
W(N7(S1)) = Z. So there are at most |S|"![S|?T = |N| S| poss1ble choices for T
and at most || = 2|N|* possible choices for K. Hence |4 < 2|N|*|S| < |N[*T.

O

Proposition 15. b (G) < n™ with n, = 2¢, + 8.
Proof. First assume that n < |[N|'/2. As we saw in the proof of Proposition 13,
if He #, u(H,G) #0 and |G : H| = n, then H is an intersection of maximal sub-
groups of type (b) and n = u" with u =|X : Y|, where Y = (Ng(S))). There are
bi(X) < u™ possible choices for ¥ and, by Lemma 7 and Lemma 8, there are
precisely |X : Y|"' =u"! possible choices for H with Y = y(Ny(S;)). Hence
b (G) < b (X)u~' <ueu~' < nt'. Now assume that n > |N|"/2. In this case,
b (G) < |/ < |N\4+" < n**2 by Lemma 14. ]
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